
M A N N I N G

Bruce Payette
Richard Siddaway

THIRD EDITION

S A M P L E C H A P T E R

Windows PowerShell in Action
Third Edition

by Bruce Payette
Richard Siddaway

 Chapter 1

 Copyright 2018 Manning Publications

vii

brief contents
1  ■  Welcome to PowerShell  1
2  ■  Working with types  46
3  ■  Operators and expressions  81
4  ■  Advanced operators and variables  114
5  ■  Flow control in scripts  154
6  ■  PowerShell functions  185
7  ■  Advanced functions and scripts  220
8  ■  Using and authoring modules  270
9  ■  Module manifests and metadata  314

10  ■  Metaprogramming with scriptblocks and dynamic code  351
11  ■  PowerShell remoting  405
12  ■  PowerShell workflows  458
13  ■  PowerShell Jobs  499
14  ■  Errors and exceptions  528
15  ■  Debugging  560
16  ■  Working with providers, files, and CIM  604
17  ■  Working with .NET and events  661
18  ■  Desired State Configuration  711
19  ■  Classes in PowerShell  761
20  ■  The PowerShell and runspace APIs  796

1

1Welcome to PowerShell

This chapter covers
■  ■ Core concepts
■  ■ Aliases and elastic systems
■  ■ Parsing and PowerShell
■  ■ Pipelines
■  ■ Formatting and output

Vizzini: Inconceivable!

Inigo: You keep on using that word. I do not think it means what you think it means.

—William Goldman, The Princess Bride

It may seem strange to start by welcoming you to PowerShell when PowerShell is ten
years old (at the time of writing), is on its fifth version, and you’re reading the third
edition of this book.

NOTE  PowerShell v6 is under development as we write this. The appendix
covers the changes that this new version will introduce.

In reality the adoption of PowerShell is only now achieving significant momentum,
meaning that to many users PowerShell is a new technology and the three versions

2	 Chapter 1  Welcome to PowerShell

of PowerShell subsequent to this book’s second edition contain many new features.
Welcome to PowerShell.

NOTE  This book is written using PowerShell v5. It’ll be noted in the text
where earlier versions are different, or work in a different manner. We’ll
also document when various features were introduced to PowerShell or
significantly modified between versions. We treat v5 and v5.1 together as v5 as
the differences are relatively minor.

Windows PowerShell is the command and scripting language from Microsoft built into
all versions of Windows since Windows Server 2008. Although PowerShell is new and
different (or has new features you haven’t yet explored), it’s been designed to make
use of what you already know, making it easy to learn. It’s also designed to allow you to
learn a bit at a time.

Running PowerShell commands
You have two choices for running the examples provided in this book. First is to
use the PowerShell console. This provides a command-line interface. It’s the tool of
choice for interactive work.

The second choice is the PowerShell Integrated Scripting Environment (ISE). The ISE
supplies an editing pane plus a combined output and interactive pane. The ISE is the
tool of choice when developing scripts, functions, and other advanced functionality.

The examples in the book will be written in a way that allows pasting directly into
either tool.

Third-party tools exist, such as those supplied by Sapien, but we’ll only consider the
native tools in this book.

Starting at the beginning, here’s the traditional “Hello world” program in PowerShell:

'Hello world.'

But “Hello world” itself isn’t interesting. Here’s something a bit more complicated:

Get-ChildItem -Path $env:windir*.log |
Select-String -List error |
Format-Table Path,LineNumber –AutoSize

Although this is more complex, you can probably still figure out what it does. It
searches all the log files in the Windows directory, looking for the string “error”,
and then prints the full name of the matching file and the matching line number.
“Useful, but not special,” you might think, because you can easily do this using

	 ﻿	 3

cmd.exe on Windows or bash on UNIX. What about the “big, really big” thing? Well,
how about this example:

([xml] [System.Net.WebClient]::new().
 DownloadString('http://blogs.msdn.com/powershell/rss.aspx')).
 RSS.Channel.Item |
 Format-Table title,link

Now we’re getting somewhere. This script downloads the RSS feed from the Power-
Shell team blog and then displays the title and a link for each blog entry. By the way,
you weren’t expected to figure out this example yet. If you did, you can move to the
head of the class!

One last example:

using assembly System.Windows.Forms
using namespace System.Windows.Forms
$form = [Form] @{
 Text = 'My First Form'
}
$button = [Button] @{
 Text = 'Push Me!'
 Dock = 'Fill'
}
$button.add_Click{
 $form.Close()
}
$form.Controls.Add($button)
$form.ShowDialog()

This script uses the Windows Forms library (WinForms) to build a GUI that has a single
button displaying the text “Push Me!” Figure 1.1 shows the window this script creates.

When you click the button, it closes the
form and exits the script. With this you go from
"Hello world" to a GUI application in less than
two pages.

Let’s come back down to Earth for a minute.
The intent of chapter 1 is to set the stage for
understanding PowerShell—what it is, what it
isn’t, and, almost as important, why the Pow-
erShell team made the decisions they made in
designing the PowerShell language. Chapter
1 covers the goals of the project, along with
some of the major issues the team faced in try-
ing to achieve those goals. First, a philosophi-
cal digression: while under development, from
2002 until the first public release in 2006, the
codename for this project was Monad. The

Figure 1.1  When you run the code from
the example, this window will be displayed.

4	 Chapter 1  Welcome to PowerShell

name Monad comes from The Monadology by Gottfried Wilhelm Leibniz, one of the
inventors of calculus. Here’s how Leibniz defined the Monad:

The Monad, of which we shall here speak, is nothing but a simple substance, which enters
into compounds. By “simple” is meant “without parts.”

—Gottfried Wilhelm Leibniz, The Monadology (translated by Robert Latta)

In The Monadology, Leibniz describes a world of irreducible components from which all
things could be composed. This captures the spirit of the project: to create a toolkit of
simple pieces you compose to create complex solutions.

1.1	 What is PowerShell?
What is PowerShell, and what can you do with it? Ask a group of PowerShell users and
you’ll get different answers:

■■ PowerShell is a command-line shell.
■■ PowerShell is a scripting environment.
■■ PowerShell is an automation engine.

These are all part of the answer. We prefer to say PowerShell is a tool you can use to
manage your Microsoft-based machines and applications that programs consistency
into your management process. The tool is attractive to administrators and develop-
ers in that it can span the range of command line, simple and advanced scripts, to
real programs.

NOTE  If you take this to mean PowerShell is the ideal DevOps tool for the
Microsoft platform, then congratulations—you’ve got it in one.

PowerShell draws heavily from existing command-line shell and scripting languages,
but the language, runtime, and subsequent additions, such as PowerShell Workflows
and Desired State Configuration, were designed from scratch to be an optimal envi-
ronment for the modern Windows operating system.

Most people are introduced to PowerShell through its interactive aspects. Let’s
refine our definitions of shell and scripting.

1.1.1	 Shells, command lines, and scripting languages

In the previous section we called PowerShell a command-line shell. You may be asking,
what’s a shell? And how’s it different from a command interpreter? What about script-
ing languages? If you can script in a shell language, doesn’t that make it a scripting
language? In answering these questions, let’s start with shells.

Defining a shell can be tricky because pretty much everything at Microsoft has some-
thing called a shell. Windows Explorer is a shell. Visual Studio has a component called
a shell. Heck, even the Xbox has something called a shell.

	 What is PowerShell? 	 5

Historically, the term shell describes the piece of software that sits over an operating
system’s core functionality. This core functionality is known as the operating system kernel
(shell ... kernel ... get it?). A shell is the piece of software that lets you access the func-
tionality provided by the operating system. For our purposes, we’re more interested in
the traditional text-based environment where the user types a command and receives
a response. Put another way, a shell is a command-line interpreter. The two terms can
be used for the most part interchangeably.

Scripting languages vs. shells

If this is the case, what’s scripting and why are scripting languages not shells? To some
extent, there’s no difference. Many scripting languages have a mode in which they take
commands from the user and then execute those commands to return results. This
mode of operation is called a read-evaluate-print loop, or REPL. In what way is a scripting
language with a REPL not a shell? The difference is mainly in the user experience. A
proper command-line shell is also a proper UI. As such, a command line has to provide
a number of features to make the user’s experience pleasant and customizable, includ-
ing aliases (shortcuts for hard-to-type commands), wildcard matching to avoid having
to type out full names, and the ability to start other programs easily. Finally, command-
line shells provide mechanisms for examining, editing, and re-executing previously
typed commands. These mechanisms are called command history.

If scripting languages can be shells, can shells be scripting languages? The answer is,
emphatically, yes. With each generation, the UNIX shell languages have grown increas-
ingly powerful. It’s possible to write substantial applications in a modern shell lan-
guage, such as Bash or Zsh. Scripting languages characteristically have an advantage
over shell languages in that they provide mechanisms to help you develop larger scripts
by letting you break a script into components, or modules. Scripting languages typi-
cally provide more sophisticated features for debugging your scripts. Next, scripting
language runtimes are implemented in a way that makes their code execution more
efficient, and scripts written in these languages execute more quickly than they would
in the corresponding shell script runtime. Finally, scripting language syntax is oriented
more toward writing an application than toward interactively issuing commands.

In the end, there’s no hard-and-fast distinction between a shell language and a
scripting language. Because PowerShell’s goal is to be both a good scripting language
and a good interactive shell, balancing the trade-offs between user experience and
script authoring was one of the major language design challenges.

Managing Windows through objects

Another factor that drove the need for a new shell model is, as Windows acquired
more and more subsystems and features, the number of issues users had to think about
when managing a system increased dramatically. To help users deal with this increase
in complexity, the manageable elements were factored into structured data objects.
This collection of management objects is known internally at Microsoft as the Windows
Management Surface.

6	 Chapter 1  Welcome to PowerShell

NOTE  Microsoft wasn’t the only company running into issues caused by
increased complexity. Most people in the industry were having this problem.
This led to the Distributed Management Task Force (dmtf.org), an industry
organization, creating a standard for management objects called the Common
Information Model (CIM). Microsoft’s original implementation of this standard
is called Windows Management Instrumentation (WMI).

Although this factoring addressed overall complexity and worked well for GUIs, it
made it much harder to work with using a traditional text-based shell environment.

Windows is an API-driven operating system, compared to UNIX and its derivatives,
which are document (or text) driven. You can administer UNIX by changing configu-
ration files. In Windows, you need to use the API, which means accessing properties
and using methods on the appropriate object.

Finally, as the power of the PC increased, Windows began to move off the desktop
and into the corporate datacenter. In the corporate datacenter, there were a large num-
ber of servers to manage, and the graphical point-and-click management approach
didn’t scale. All these elements combined to make it clear Microsoft could no longer
ignore the command line.

Now that you grasp the environmental forces that led to the creation of Power-
Shell—the need for command-line automation in a distributed object-based operating
environment—let’s look at the form the solution took.

1.2	 PowerShell example code
We’ve said PowerShell is for solving problems that involve writing code. By now you’re
probably asking “Dude! Where’s my code?” Enough talk, let’s see some example code!
First, we’ll revisit the Get-ChildItem example. This time, instead of displaying the
directory listing, you’ll save it into a file using output redirection like in other shell
environments. In the following example, you’ll use Get-ChildItem to get information
about a file named somefile.txt in the root of the C: drive. Using redirection, you’ll
direct the output into a new file, c:\foo.txt, and then use the type command to display
what was saved. Here’s what this looks like:

PS> Get-ChildItem -Path C:\somefile.txt

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 29/05/2017 13:58 25424 somefile.txt

NOTE  PowerShell has aliases for many cmdlets so dir C:\somefile.txt and
ls C:\somefile.txt would both work. It is best practice to reserve aliases for
interactive usage and not use them in scripts. We’ll usually use the full cmdlet
name but may occasionally use aliases to save space.

Next, instead of displaying the directory listing, you’ll save it into a file using out-
put redirection as in other shell environments. In the following example, you’ll get

	 PowerShell example code	 7

information about a file named somefile.txt in the root of the C: drive. Using redirec-
tion, you direct the output into a new file, c:\foo.txt, and then use the Get-Content
(you can use the alias of cat or type if you prefer) command to display what was saved.
Here’s what this looks like:

PS> Get-ChildItem -Path C:\somefile.txt > c:\foo.txt
PS> Get-Content -Path C:\foo.txt

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----

-a---- 29/05/2017 13:58 25424 somefile.txt

As you can see, commands work more or less as you’d expect. Let’s go over other
things that should be familiar to you.

NOTE  On your system choose any file that exists and the example will work
fine, though obviously, the output will be different.

1.2.1	 Navigation and basic operations

The PowerShell commands for working with the file system should be pretty familiar
to most users. You navigate around the file system with the cd (alias for Set-Location)
command. Files are copied with the copy or cp (aliases for Copy-Item) commands,
moved with the move and mv (aliases for Move-Item) commands, and removed with the
del or rm (aliases for Remove-Item) commands. Why two of each command? One set
of names is familiar to cmd.exe/DOS users and the other is familiar to UNIX users. In
practice, they’re aliases for the same command, designed to make it easy for people to
get going with PowerShell.

NOTE  In PowerShell v6 Core on Linux or macOS these common aliases have
been removed to prevent conflict with native commands on Linux and macOS.
The aliases are present in the Windows versions of PowerShell v6 Core.

Keep in mind that, although the commands are similar, they’re not exactly the same as
either of the other two systems. You can use the Get-Help command to get help about
these commands. Here’s the output of Get-Help for the dir command:

PS> Get-Help dir

NAME
 Get-ChildItem

SYNOPSIS
 Gets the items and child items in one or more specified locations.

SYNTAX
 Get-ChildItem [[-Filter] <String>] [-Attributes {ReadOnly |
 Hidden | System | Directory | Archive | Device | Normal |
 Temporary | SparseFile | ReparsePoint | Compressed | Offline |

NotContentIndexed | Encrypted |IntegrityStream | NoScrubData}]

8	 Chapter 1  Welcome to PowerShell

[-Depth <UInt32>] [-Directory] [-Exclude <String[]>] [-File]
[-Force] [-Hidden][-Include <String[]>] -LiteralPath <String[]>
[-Name] [-ReadOnly] [-Recurse] [-System] [-UseTransaction]

[<CommonParameters>]

 Get-ChildItem [[-Path] <String[]>] [[-Filter] <String>]
[-Attributes {ReadOnly | Hidden | System | Directory |
Archive | Device | Normal | Temporary | SparseFile |
ReparsePoint | Compressed | Offline | NotContentIndexed |
Encrypted | IntegrityStream | NoScrubData}] [-Depth <UInt32>]
[-Directory] [-Exclude <String[]>] [-File] [-Force]
[-Hidden] [-Include <String[]>] [-Name] [-ReadOnly] [-Recurse]
[-System] [-UseTransaction] [<CommonParameters>]

DESCRIPTION
 The Get-ChildItem cmdlet gets the items in one or more specified

locations. If the item is a container, it gets the items inside the
container, known as child items. You can use the Recurse parameter to get
items in all child containers.

 A location can be a file system location, such as a directory, or a
location exposed by a different Windows PowerShell provider, such as a
registry hive or a certificate store.

RELATED LINKS
 Online Version: http://go.microsoft.com/fwlink/?LinkId=821580
 Get-Item
 Get-Location
 Get-Process
 Get-PSProvider

REMARKS
 To see the examples, type: "get-help Get-ChildItem -examples".
 For more information, type: "get-help Get-ChildItem -detailed".
 For technical information, type: "get-help Get-ChildItem -full".
For online help, type "get-help Get-ChildItem -online"PowerShell help system

PowerShell help system
The PowerShell help subsystem contains information about all the commands pro-
vided with the system and is a great way to explore what’s available.

In PowerShell v3 and later, help files aren’t installed by default. Help has become
updatable and you need to install the latest versions yourself. See Get-Help
about_Updatable_Help.

You can even use wildcard characters to search through the help topics (v2 and
later). This is the simple text output. The PowerShell ISE also includes help in the
richer Windows format and will let you choose an item and then press F1 to view the
help for the item. By using the –Online option to Get-Help, you can view the help
text for a command or topic using a web browser.

PS> Get-Help Get-ChildItem

	 PowerShell example code	 9

(Continued)

displays the information in the help file stored locally.

PS> Get-Help Get-ChildItem -Online

displays the online version of the help file.

Using the -Online option is the best way to get help because the online documenta-
tion is constantly being updated and corrected, whereas the local copies aren’t.

1.2.2	 Basic expressions and variables

In addition to running commands, PowerShell can evaluate expressions. In effect, it
operates as a kind of calculator. Let’s evaluate a simple expression:

PS> 2+2
4

Notice as soon as you typed the expression, the result was calculated and displayed. It
wasn’t necessary to use any kind of print statement to display the result. It’s important
to remember whenever an expression is evaluated, the result of the expression is out-
put, not discarded. PowerShell supports most of the basic arithmetic operations you’d
expect, including floating point.

You can save the output of an expression to a file by using the redirection operator:

PS> (2+2)*3/7 > c:\foo.txt
PS> Get-Content c:\foo.txt
1.71428571428571

Saving expressions into files is useful; saving them in variables is more useful:

PS> $n = (2+2)*3
PS> $n
12

PS> $n / 7
1.71428571428571

Variables can also be used to store the output of commands:

PS> $files = Get-ChildItem
PS> $files[1]

 Directory: C:\Users\Richard\Documents

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 16/02/2017 18:36 Custom Office Templates

10	 Chapter 1  Welcome to PowerShell

In this example, you extracted the second element of the collection of file information
objects returned by the Get-ChildItem command. You were able to do this because you
saved the output of the Get-ChildItem command as an array of objects in the $files
variable.

NOTE  Collections in PowerShell start at 0, not 1. This is a characteristic we’ve
inherited from .NET. This is why $files[1] extracts the second element, not
the first.

Given PowerShell is all about objects, the basic operators need to work on more than
numbers. Chapters 3 and 4 cover these features in detail.

1.2.3	 Processing data

As you’ve seen, you can run commands to get information, perform some basic opera-
tions on this information using the PowerShell operators, and then store the results in
files and variables. Let’s look at additional ways you can process this data. First, you’ll
see how to sort objects and how to extract properties from those objects. Then we’ll
look at using the PowerShell flow-control statements to write scripts that use condition-
als and loops to do more sophisticated processing.

Sorting objects

First, sort the list of file information objects returned by Get-ChildItem. Because you’re
sorting objects, the command you’ll use is Sort-Object. For convenience, you’ll use
the shorter alias sort in these examples. Start by looking at the default output, which
shows the files sorted by filename:

PS> cd c:\files
PS> Get-ChildItem

 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 21/01/2015 18:10 9 File 1.txt
-a--- 11/07/2015 15:14 15986 File 2.txt
-a--- 21/01/2015 18:10 9 File 3.txt
-a--- 21/01/2015 18:10 9 File 4.txt

The output shows the basic properties on the file system objects, sorted by filename.
Now sort by filename in descending order:

PS> Get-ChildItem | sort -Descending

 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 21/01/2015 18:10 9 File 4.txt
-a--- 21/01/2015 18:10 9 File 3.txt
-a--- 11/07/2015 15:14 15986 File 2.txt
-a--- 21/01/2015 18:10 9 File 1.txt

	 PowerShell example code	 11

There you have it—files sorted by filename in reverse order. Now you’ll sort by some-
thing other than the filename: file length.

NOTE  Many examples in this book use aliases (shortcuts) rather than the full
cmdlet name. This is for brevity and to ensure the code fits neatly in the page.

In PowerShell, when you use the Sort-Object cmdlet (alias sort), you don’t have
to tell it to sort numerically—it already knows the type of the field, and you can
specify the sort key by property name instead of a numeric field offset. The result
looks like this:

PS> Get-ChildItem | sort -Property length

 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 21/01/2015 18:10 9 File 3.txt
-a--- 21/01/2015 18:10 9 File 4.txt
-a--- 21/01/2015 18:10 9 File 1.txt
-a--- 11/07/2015 15:14 15986 File 2.txt

This illustrates what working with pipelines of objects gives you:

■■ You have the ability to access data elements by name instead of using substring
indexes or field numbers.

■■ By having the original type of the element preserved, operations execute cor-
rectly without you having to provide additional information.

Now let’s look at other things you can do with objects.

Selecting properties from an object	
In this section we’ll introduce another cmdlet for working with objects: Select-Object.
This cmdlet allows you to select a subrange of the objects piped into it and specify a
subset of the properties on those objects.

Say you want to get the largest file in a directory and put it into a variable:

PS> $a = Get-ChildItem | sort -Property length -Descending |
Select-Object -First 1
PS> $a
 Directory: C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/07/2015 15:14 15986 File 2.txt

NOTE  You’ll notice the secondary prompt >> when you copy the previous
example into a PowerShell console. The first line of the command ended in
a pipe symbol. The PowerShell interpreter noticed this, saw the command
was incomplete, and prompted for additional text to complete the command.
Once the command is complete, you type a second blank line to send the
command to the interpreter. If you want to cancel the command, you can

12	 Chapter 1  Welcome to PowerShell

press Ctrl-C at any time to return to the normal prompt. The code examples
in the book won’t include the >> to make copying from the electronic version
simpler for the reader.

Now say you want only the name of the directory containing the file and not all the
other properties of the object. You can also do this with Select-Object (alias select).
As with the Sort-Object cmdlet, Select-Object takes a -Property parameter (you’ll
see this frequently in the PowerShell environment—commands are consistent in their
use of parameters):

PS> $a = Get-ChildItem| sort -Property length -Descending |
Select-Object -First 1 -Property Directory
PS> $a

Directory

C:\files

You now have an object with a single property.

Processing with the ForEach-Object cmdlet

The final simplification is to get the value itself. We’ll introduce a new cmdlet that lets
you do arbitrary processing on each object in a pipeline. The ForEach-Object cmdlet
executes a block of statements for each object in the pipeline. You can get an arbitrary
property out of an object and then do arbitrary processing on that information using
the ForEach-Object command. Here’s an example that adds up the lengths of all the
objects in a directory:

PS> $total = 0
PS> Get-ChildItem | ForEach-Object {$total += $_.length }
PS> $total
16013

In this example you initialize the variable $total to 0, then add to it the length of each
file returned by the Get-ChildItem command, and display the total (you’ll get a differ-
ent total on your system).

Processing other kinds of data

One of the great strengths of the PowerShell approach is once you learn a pattern for
solving a problem, you can use this same pattern over and over again. Say you want to
find the largest three files in a directory. The command line might look like this:

PS> Get-ChildItem | sort -Descending length | select -First 3

Here, the Get-ChildItem command retrieved the list of file information objects, Pow-
erShell then sorted them in descending order by length, and then selected the first
three results to get the three largest files.

	 PowerShell example code	 13

Now let’s tackle a different problem. You want to find the three processes on the
system with the largest working set size. Here’s what this command line looks like:

PS> Get-Process | sort -Descending ws | select -First 3
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1337 1916 235360 287852 1048 63.23 2440 WWAHost
 962 55 94460 176008 692 340.25 6632 WINWORD
 635 40 136040 140088 783 6.42 2564 powershell

This time you run Get-Process to get data about the processes on this computer, and
sort on the working set instead of the file size. Otherwise, the pattern is identical to the
previous example. This command pattern can be applied over and over.

NOTE  Because of the ability to apply a command pattern repeatedly, most of
the examples in this book are deliberately generic. The intent is to highlight
the pattern of the solution rather than show a specific example. Once you
understand the basic patterns, you can effectively adapt them to solve a
multitude of other problems.

1.2.4	 Flow-control statements

Pipelines are great, but sometimes you need more control over the flow of your
script. PowerShell has the usual flow-control statements found in most programming
languages. These include the basic if statements, a powerful switch statement, and
loops like while, for and foreach, and so on. Here’s an example showing the while
and if statements:

PS> $i=0
PS> while ($i++ -lt 10) { if ($i % 2) {"$i is odd"}}
1 is odd
3 is odd
5 is odd
7 is odd
9 is odd

This example uses the while loop to count through a range of numbers, printing
only the odd numbers. In the body of the while loop is an if statement that tests to
see whether the current number is odd, and then writes a message if it is. You can do
the same thing using the foreach statement and the range operator (..), but much
more succinctly:

PS> foreach ($i in 1..10) { if ($i % 2) {"$i is odd"}}

The foreach statement iterates over a collection of objects, and the range operator is
a way to generate a sequence of numbers. The two combine to make looping over a
sequence of numbers a very clean operation.

14	 Chapter 1  Welcome to PowerShell

Because the range operator generates a sequence of numbers, and numbers are
objects like everything else in PowerShell, you can implement this using pipelines and
the ForEach-Object (alias foreach) cmdlet:

PS> 1..10 | foreach { if ($_ % 2) {"$_ is odd"}}

These examples only scratch the surface of what you can do with the PowerShell flow-
control statements. (Wait until you see the switch statement!) The complete set of
control structures is covered in detail in chapter 5 with lots of examples.

1.2.5	 Scripts and functions

What good is a scripting language if you can’t package commands into scripts? Power-
Shell lets you do this by putting your commands into a text file with a .ps1 extension
and then running that command. You can even have parameters in your scripts. Put
the following text into a file called hello.ps1:

param($name = 'bub')
"Hello $name, how are you?"

Notice the param keyword is used to define a parameter called $name. The parameter is
given a default value of 'bub'. Now you can run this script from the PowerShell prompt
by typing the name as .\hello. You need the .\ to tell PowerShell to get the command
from the current directory.

NOTE  Before you can run scripts on a machine in the default configuration,
you’ll have to change the PowerShell execution policy to allow scripts to run.
Use Get-Help about_execution_policies to view detailed instructions on
execution policies. The default settings change between Windows versions, so
be careful to check the execution policy setting.

The first time you run this script, you won’t specify any arguments:

PS> .\hello
Hello bub, how are you?

You see the default value was used in the response. Run it again, but this time specify
an argument:

PS> .\hello Bruce
Hello Bruce, how are you?

Now the argument is in the output instead of the default value. Sometimes you want
to have subroutines in your code. PowerShell addresses this need through functions.
Let’s turn the hello script into a function. Here’s what it looks like:

function hello {
param($name = "bub")
"Hello $name, how are you"
}

	 PowerShell example code	 15

The body of the function is exactly the same as the script. The only thing added is the
function keyword, the name of the function, and braces around the body of the func-
tion. Now run it, first with no arguments as you did with the script

PS> hello
Hello bub, how are you

and then with an argument:

PS> hello Bruce
Hello Bruce, how are you

Obviously, the function operates in the same way as the script, except PowerShell
didn’t have to load it from a disk file, making it a bit faster to call. Scripts and functions
are covered in detail in chapter 6.

1.2.6	 Remote administration

In the previous sections, you’ve seen the kinds of things you can do with PowerShell
on a single computer, but the computing industry has long since moved beyond a
one-computer world. Being able to manage groups of computers, without having to
physically visit each one, is critical in the modern cloud-orientated IT world where
your server may easily be on another continent. To address this, PowerShell has built-
in remote execution capabilities (remoting) and an execution model that ensures if a
command works locally it should also work remotely.

NOTE  Remoting was introduced in PowerShell v2. It isn’t available in
PowerShell v1.

The core of PowerShell remoting is Invoke-Command (aliased to icm). This command
allows you to invoke a block of PowerShell script on the current computer, on a remote
computer, or on a thousand remote computers. Let’s see some of this in action. Micro-
soft releases patches for Windows on a regular basis. Some of those patches are critical,
in that they resolve security-related issues, and as an administrator you need to be able
to test if the patch has been applied to the machines for which you’re responsible.
Checking a single machine is relatively easy—you can use the Windows update option
in the control panel and view the installed updates as shown in figure 1.2.

Alternatively, you can use the Get-HotFix cmdlet:

PS> Get-HotFix -Id KB3213986

Source Description HotFixID InstalledBy InstalledOn
------ ----------- -------- ----------- -----------

W510W16 Security Update KB3213986 NT AUTHORITY\SYSTEM 12/01/2017 00:00:00

This shows you the hotfix is installed on the local machine.

16	 Chapter 1  Welcome to PowerShell

Figure 1.2  Viewing the installed updates on the local (Windows Server 2012 R2) machine

NOTE  Updates for Windows 10 and Windows Server 2016 tend to be cumulative
so your machine may not have KB3213986 installed.

But what about all your other machines? Connecting to each one individually and
using the control panel or running the Get-HotFix cmdlet is tedious. You need a
method of running the cmdlet on remote machines and having the results returned
to your local machine.

Invoke-Command is used to wrap the previous command:

PS> Invoke-Command -ScriptBlock {Get-HotFix -Id KB3213986} `
-ComputerName W16DSC01

Description : Security Update
HotFixID : KB3213986
InstalledBy : NT AUTHORITY\SYSTEM
InstalledOn : 11/01/2017 00:00:00
PSComputerName : W16DSC01

NOTE  Get-HotFix has a –ComputerName parameter, and, like many cmdlets,
is capable of working directly with remote machines. Cmdlet-based remoting
often uses protocols other than WS-MAN. Using Invoke-Command, as in a
PowerShell remoting session, is more efficient, as you’ll see in chapter 11.

You have many machines that need testing. Typing in the computer names one at a
time is still too tedious. You can create a list of computers, either from a text file or in
your code, and test them all:

PS> $computers = 'W16DSC01', 'W16DSC02'
PS> Invoke-Command -ScriptBlock {Get-HotFix -Id KB3213986} `
-ComputerName $computers |
Format-Table HotFixId, InstalledOn, PSComputerName -AutoSize

	 Core concepts	 17

HotFixID InstalledOn PSComputerName
-------- ----------- --------------
KB3213986 11/01/2017 00:00:00 W16DSC02
KB3213986 11/01/2017 00:00:00 W16DSC01

An error is generated on a computer that doesn’t have the patch installed, and results
appear on the computers that do.

NOTE  In a production script you’d put error handling in place to catch the error
and report that the patch wasn’t installed. This will be covered in chapter 14.

Invoke-Command is the way to programmatically execute PowerShell commands on a
remote machine. When you want to connect to a machine to interact with it on a one-to-
one basis, you use the Enter-PSSession command. This command allows you to start
an interactive one-to-one session with a remote computer. Running Enter-PSSession
looks like this:

PS> Enter-PSSession -ComputerName W16DSC01
[W16DSC01]: PS C:\Users\Richard\Documents> Get-HotFix -Id KB3213986 |

Format-Table -AutoSize

Source Description HotFixID InstalledBy InstalledOn
------ ----------- -------- ----------- -----------
W16DSC01 Security Update KB3213986 NT AUTHORITY\SYSTEM 11/01/2017 00:00:00

[W16DSC01]: PS C:\Users\Richard\Documents> Get-Date

05 March 2017 15:35:07

[W16DSC01]: PS C:\Users\Richard\Documents> Exit-PSSession
PS>

When you connect to the remote computer, your prompt changes to indicate you’re
working remotely. Once connected, you can interact with the remote computer the
same way you would a local machine. When you’re done, exit the remote session with
the Exit-PSSession command, which returns you to the local session. This brief intro-
duction covers some powerful techniques, but we’ve only begun to cover all the things
remoting lets you do.

At this point, we’ll end our “cook’s tour” of PowerShell. We’ve only breezed over
the features and capabilities of the environment. In upcoming chapters, we’ll explore
each of the elements discussed here in detail and a whole lot more.

1.3	 Core concepts
The core PowerShell language is based on the mature IEEE standard POSIX 1003.2
grammar for the Korn shell, which has a long history as a successful basis for modern
shells like Bash and Zsh. The language design team (Jim Truher and Bruce Payette)
deviated from this standard where necessary to address the specific needs of an object-
based shell and to make it easier to write sophisticated scripts.

18	 Chapter 1  Welcome to PowerShell

PowerShell syntax is aligned with C#. The major value this brings is PowerShell code
can be migrated to C# when necessary for performance improvements, and, more
importantly, C# examples can be easily converted to PowerShell—the more examples
you have in a language, the better off you are.

1.3.1	 Command concepts and terminology

Much of the terminology used in PowerShell will be familiar if you’ve used other shells
in the Linux or Windows world. Because PowerShell is a new kind of shell, there are
a number of terms that are different and a few new terms to learn. In this section,
we’ll go over the PowerShell-specific concepts and terminology for command types
and command syntax.

1.3.2	 Commands and cmdlets

Commands are the fundamental part of any shell language; they’re what you type to
get things done. A simple command looks like this:

command –parameter1 –parameter2 argument1 argument2

A more detailed illustration of the anatomy of this command is shown in figure 1.3.
This figure calls out all the individual elements of the command.

Command
name

Switch
parameter

Positional
argument

Parameter
with argument

command -parameter1 -parameter2 arg1 arg2

Figure 1.3  The anatomy of a basic command. It
begins with the name of the command, followed
by parameters. These may be switch parameters
that take no arguments, regular parameters
that take arguments, or positional parameters
where the matching parameter is inferred by
the argument’s position on the command line.

All commands are broken down into the command name, the parameters specified to
the command, and the arguments to those parameters. You can think of a parameter
as the receiver of a piece of information and the argument as the information itself.

NOTE  The distinction between parameter and argument may seem a bit strange
from a programmer’s perspective. If you’re used to languages such as Python
and Visual Basic, which allow for keyword parameters, PowerShell parameters
correspond to the keywords, and arguments correspond to the values.

The first element in the command is the name of the command to be executed. The
PowerShell interpreter looks at this name and determines which command to run,
and which kind of command to run. In PowerShell there are a number of categories
of commands: cmdlets, shell function commands, script commands, workflow com-
mands, and native Windows commands. Following the command name come zero or

	 Core concepts	 19

more parameters and/or arguments. A parameter starts with a dash followed by the
name of the parameter. An argument, conversely, is the value that will be associated
with, or bound to, a specific parameter. Let’s look at an example:

PS> Write-Output -InputObject Hello
Hello

Here, the command is Write-Output, the parameter is -InputObject, and the argu-
ment is Hello.

What about the positional parameters? When a PowerShell command is created,
the author of that command specifies information that allows PowerShell to determine
which parameter to bind an argument to, even if the parameter name itself is missing.
For example, the Write-Output command has been defined such that the first param-
eter is -InputObject. This lets you write:

PS> Write-Output Hello
Hello

The piece of the PowerShell interpreter that figures all this out is called the parameter
binder. The parameter binder is smart—it doesn’t require you to specify the full name of
a parameter as long as you specify enough for it to uniquely distinguish what you mean.

NOTE  PowerShell isn’t case-sensitive but we use the correct casing on commands
and parameters to aid reading. It’s also a good practice when scripting, as it’s
easier to understand the code when you revisit it many months later.

What else does the parameter binder do? It’s in charge of determining how to match
the types of arguments to the types of parameters. Remember PowerShell is an object-
based shell. Everything in PowerShell has a type. PowerShell uses a fairly complex type-
conversion system to correctly put things together. When you type a command at the
command line, you’re typing strings. What happens if the command requires a differ-
ent type of object? The parameter binder uses the type converter to try to convert that
string into the correct type for the parameter. If you use a value that can’t be converted
to the correct type you get an error message explaining the type conversion failed. We
discuss this in more detail in chapter 2 when we talk about types.

What happens if the argument you want to pass to the command starts with a
dash? This is where the quotes come in. Let’s use Write-Output to print out the string
“-InputObject”:

PS> Write-Output -InputObject "-InputObject"
-InputObject

And it works as desired. Alternatively, you could type this:

PS> Write-Output "-InputObject"
-InputObject

The quotes keep the parameter binder from treating the quoted string as a parameter.

20	 Chapter 1  Welcome to PowerShell

Another, less frequently used way of doing this is by using the special “end-of-
parameters” parameter, which is two hyphens back to back (--). Everything after this
sequence will be treated as an argument, even if it looks like a parameter. For example,
using -- you can also write out the string “-InputObject” without using quotes:

PS> Write-Output -- -InputObject
-InputObject

This is a convention standardized in the POSIX Shell and Utilities specification.
The final element of the basic command pattern is the switch parameter. These are

parameters that don’t require an argument. They’re usually either present or absent
(obviously they can’t be positional). A good example is the -Recurse parameter on the
Get-ChildItem command. This switch tells the Get-ChildItem command to display files
from a specified directory as well as all its subdirectories:

PS> Get-ChildItem -Recurse -Filter c*d.exe C:\Windows

 Directory: C:\Windows\System32

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 11/11/2016 09:56 187520 CloudStorageWizard.exe
-a---- 16/07/2016 12:42 232960 cmd.exe

As you can see, the -Recurse switch takes no arguments. We’ve only shown the first
folder’s worth of results for brevity.

NOTE  Although it’s almost always the case that switch parameters don’t take
arguments, it’s possible to specify arguments to them. We’ll save our discussion
of when and why you might do this for chapter 7, which focuses on scripts
(shell functions and scripts are the only time you need this particular feature,
and we’ll keep you in suspense for the time being).

Now that we’ve covered the basic anatomy of the command line, let’s go over the types
of commands that PowerShell supports.

1.3.3	 Command categories

As we mentioned earlier, there are four categories of commands in PowerShell: cmd-
lets, functions, scripts, and native Win32 executables. PowerShell v4, and later, also has
configurations (see chapter 18).

Cmdlets

The first category of command is a cmdlet (pronounced “command-let”). Cmdlet is
a term that’s specific to the PowerShell environment. A cmdlet is implemented by a
.NET class that derives from the Cmdlet base class in the PowerShell Software Develop-
ers Kit (SDK).

	 Core concepts	 21

NOTE  Building cmdlets is a developer task and requires the PowerShell
SDK. This SDK is freely available for download from Microsoft and includes
extensive documentation along with many code samples. Our goal is to coach
you to effectively use and script in the PowerShell environment, so we’re not
going to do much more than mention the SDK in this book.

This category of command is compiled into a dynamic link library (DLL) and then
loaded into the PowerShell process, usually when the shell starts up. Because the
compiled code is loaded into the process, it’s the most efficient category of com-
mand to execute.

Cmdlets always have names of the form Verb-Noun, where the verb specifies the
action and the noun specifies the object on which to operate. In traditional shells,
cmdlets correspond most closely to what’s usually called a built-in command. In Power-
Shell, though, anybody can add a cmdlet to the runtime, and there isn’t any special
class of built-in commands.

Functions

The next type of command is a function. This is a named piece of PowerShell script
code that lives in memory as the interpreter is running, and is discarded on exit. Func-
tions consist of user-defined code that’s parsed when defined. This parsed representa-
tion is preserved so it doesn’t have to be reparsed every time it’s used.

Functions in PowerShell v1 could have named parameters like cmdlets but were
otherwise fairly limited. In v2 and later, this was fixed, and scripts and functions now
have the full parameter specification capabilities of cmdlets. The same basic structure
is followed for both types of commands. Functions and cmdlets have the same stream-
ing behavior.

PowerShell workflows were introduced in PowerShell v3. Their syntax is similar to
that of a function. When the workflow is first loaded in memory a PowerShell function
is created that can be viewed through the function: PowerShell drive. Workflows are
covered in chapter 12.

Scripts

A script command is a piece of PowerShell code that lives in a text file with a .ps1 exten-
sion. These script files are loaded and parsed every time they’re run, making them
somewhat slower than functions to start (although once started, they run at the same
speed). In terms of parameter capabilities, shell function commands and script com-
mands are identical.

Native commands (applications)
The last type of command is called a native command. These are external programs
(typically executables) that can be executed by the operating system. Because running
a native command involves creating a whole new process for the command, native
commands are the slowest of the command types. Also, native commands do their
own parameter processing and don’t necessarily match the syntax of the other types
of commands.

22	 Chapter 1  Welcome to PowerShell

Native commands cover anything that can be run on a Windows computer, so you
get a wide variety of behaviors. One of the biggest issues is when PowerShell waits for
a command to finish but it keeps on going. Say you’re opening a text document at the
command line:

PS> .\foo.txt

You get the prompt back more or less immediately, and your default text editor will pop
up (probably notepad.exe because that’s the default). The program to launch is deter-
mined by the file associations that are defined as part of the Windows environment.

NOTE  In PowerShell, unlike in cmd.exe, you have to prefix a command with
./ or .\ if you want to run it out of the current directory. This is part of
PowerShell’s “Secure by Design” philosophy. This particular security feature was
adopted to prevent Trojan horse attacks where the user is lured into a directory
and then told to run an innocuous command such as notepad.exe. Instead of
running the system notepad.exe, they end up running a hostile program that
the attacker has placed in that directory and named notepad.exe.

What if you specify the editor explicitly?

PS> notepad foo.txt

The same thing happens—the command returns immediately. What if you run the
command in the middle of a pipeline?

PS> notepad foo.txt | sort-object
<exit notepad>

This time PowerShell waits for the command to exit before giving you the prompt.
This can be handy when you want to insert something such as a graphical form edi-
tor in the middle of a script to do processing. This is also the easiest way to make
PowerShell wait for a process to exit (you can also use Wait-Process). As you can see,
the behavior of native commands depends on the type of native command, as well as
where it appears in the pipeline.

A useful thing to remember is the PowerShell interpreter itself is a native com-
mand: powershell.exe. This means you can call PowerShell from within PowerShell.
When you do this, a second PowerShell process is created. In practice, there’s nothing
unusual about this—that’s how all shells work. PowerShell doesn’t have to do it often,
making it much faster than conventional shell languages.

The ability to run a child PowerShell process is particularly useful if you want to
have isolation in portions of your script. A separate process means the child script can’t
impact the caller’s environment. This feature is useful enough that PowerShell has spe-
cial handling for this case, allowing you to embed the script to run inline. If you want
to run a fragment of script in a child process, you can by passing the block of script to
the child process delimited by braces. Here’s an example:

	 Core concepts	 23

PS> powershell { Get-Process *ss } | Format-Table name, handles

Name Handles
---- -------
csrss 386
csrss 385
lsass 1778
smss 51

Two things should be noted in this example: the script code in the braces can be any
PowerShell code, and it will be passed through to the new PowerShell process. The
special handling takes care of encoding the script in such a way that it’s passed prop-
erly to the child process. The other thing to note is, when PowerShell is executed this
way, the output of the process is serialized objects—the basic structure of the output is
preserved—and can be passed into other commands. We’ll look at this serialization in
detail when we cover remoting—the ability to run PowerShell scripts on a remote com-
puter—in chapter 11.

Desired State Configuration

Desired State Configuration (DSC) is a configuration management platform in Win-
dows PowerShell. It enables the deployment and management of configuration data
for software services and the environment on which these services run. A configuration
is created using PowerShell-like syntax. The configuration is used to create a Managed
Object Format (MOF) file that’s passed to the remote machine on which the configu-
ration will be applied. DSC is covered in chapter 18.

Now that we’ve covered the PowerShell command types, let’s get back to looking at
the PowerShell syntax. Notice that a lot of what we’ve examined this far is a bit verbose.
This makes it easy to read, which is great for script maintenance, but it looks like it
would be a pain to type on the command line. PowerShell addresses these two conflict-
ing goals—readability and writeability—with the concept of elastic syntax. Elastic syntax
allows you to expand and collapse how much you need to type to suit your purpose.
We’ll cover how this works in the next section.

1.3.4	 Aliases and elastic syntax

We haven’t talked about aliases yet or how they’re used to achieve an elastic syntax
in PowerShell. Because this concept is important in the PowerShell environment, we
need to spend some time on it.

The cmdlet Verb-Noun syntax, although regular, is, as we noted, also verbose. You may
have noticed that in some of the examples we’re using commands like dir and type.
The trick behind all this is aliases. The dir command is an alias for Get-ChildItem, and
the type command is an alias for Get-Content. You can see this by using Get-Command:

PS> Get-Command dir

CommandType Name
----------- ----
Alias dir -> Get-ChildItem

24	 Chapter 1  Welcome to PowerShell

This tells you the command is an alias for Get-ChildItem. To get information about the
Get-ChildItem command, you then do this:

PS> Get-Command Get-ChildItem

CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Get-ChildItem 3.1.0.0 Microsoft.PowerShell.Management

To see all the information, pipe the output of Get-Command into fl. This shows you the
full detailed information about this cmdlet. But wait—what’s the fl command? Again,
you can use Get-Command to find out:

PS> Get-Command fl

CommandType Name
----------- ----
Alias fl -> Format-List

PowerShell comes with a large set of predefined aliases. Two basic categories of aliases
exist: transitional and convenience . By transitional aliases, we mean a set of aliases that
map PowerShell commands to commands that people are accustomed to using in
other shells, specifically cmd.exe and the UNIX shells. For the cmd.exe user, PowerShell
defines dir, type, copy, and so on. For the UNIX user, PowerShell defines ls, cat, cp,
and so forth. These aliases allow a basic level of functionality for new users right away.

NOTE  PowerShell v6 for Linux and macOS removes these aliases to avoid
confusion with native commands.

Convenience aliases are derived from the names of the cmdlets they map to. Get-
Command becomes gcm, Get-ChildItem becomes gci, Invoke-Item becomes ii, and so
on. For a list of the defined aliases, type Get-Alias at the command line. You can use
the Set-Alias command (the alias of which is sal, by the way) to define your own
aliases—many experienced PowerShell users create a set of one-letter aliases to cover
the cmdlets they most often use at the command prompt.

NOTE  Aliases in PowerShell are limited to aliasing the command name only.
Unlike in other systems such as Ksh, Bash, and Zsh, PowerShell aliases can’t
include parameters. If you need to do something more sophisticated than
simple command-name translations, you’ll have to use shell functions or scripts.

This is all well and good, but what does it have to do with elastics? Glad you asked! The
idea is PowerShell can be terse when needed and descriptive when appropriate. The
syntax is concise for simple cases and can be stretched like an elastic band for larger
problems. This is important in a language that’s both a command-line tool and a script-
ing language. Many scripts that you’ll write in PowerShell will be no more than a few
lines long. They will be a string of commands that you’ll type on the command line and

	 Core concepts	 25

then never use again. To be effective in this environment, the syntax needs to be con-
cise. This is where aliases like fl come in—they allow you to write concise command
lines. When you’re scripting, though, it’s best to use the long name of the command.
Sooner or later, you’ll have to read the script you wrote (or worse, someone else will).
Would you rather read something that looks like this?

gcm|?{$_.parametersets.Count -gt 3}|fl name

or this?

Get-Command |
 Where-Object {$_.parametersets.count -gt 3} |
 Format-List name

We’d certainly rather read the latter. (As always, we’ll cover the details of these exam-
ples later in the book.)

There’s a second type of alias used in PowerShell: parameter. Unlike command
aliases, which can be created by end users, parameter aliases are created by the author
of a cmdlet, script, or function. (You’ll see how to do this when we look at advanced
function creation in chapter 7.)

A parameter alias is a shorter name for a parameter. Wait a second, earlier we said
you needed enough of the parameter name to distinguish it from other command
parameters. Isn’t this enough for convenience and elasticity? Why do you need param-
eter aliases? The reason you need these aliases has to do with script versioning. The easi-
est way to understand versioning is to look at an example.

Say you have a script that calls a cmdlet Process-Message. This cmdlet has a param-
eter -Reply. You write your script specifying

Process-Message -Re

Run the script, and it works fine. A few months later, you install an enhanced ver-
sion of the Process-Message command. This new version introduces a new parameter:
-Receive. Only specifying -Re is no longer sufficient. If you run the old script with the
new cmdlet, it will fail with an ambiguous parameter message; the script is broken.

How do you fix this with parameter aliases? The first thing to know is PowerShell
always picks the parameter that exactly matches a parameter name or alias over a par-
tial match. By providing parameter aliases, you can achieve pithiness without also mak-
ing scripts subject to versioning issues. We recommend always using the full parameter
name for production scripts or scripts you want to share. Readability is always more
important in that scenario.

Now that we’ve covered the core concepts of how commands are processed, let’s step
back and look at PowerShell language processing overall. PowerShell has a small num-
ber of important syntactic rules you should learn. When you understand these rules,
your ability to read, write, and debug PowerShell scripts will increase tremendously.

26	 Chapter 1  Welcome to PowerShell

1.4	 Parsing the PowerShell language
In this section we’ll cover the details of how PowerShell scripts are parsed. Before the
PowerShell interpreter can execute the commands you type, it first has to parse the
command text and turn it into something the computer can execute, as shown in fig-
ure 1.4.

Parser3 + 2

+

5Engine

User types an
expression that is
passed to the parser

Parser converts
this to an internal
representation

Execution engine
evaluates the internal
representation3 2

Figure 1.4  Flow of processing in the PowerShell interpreter, where an expression is
transformed and then executed to produce a result

More formally, parsing is the process of turning human-readable source code into a
form the computer understands. A piece of script text is broken up into tokens by the
tokenizer (or lexical analyzer, if you want to be more technical). A token is a particular
type of symbol in the programming language, such as a number, a keyword, or a vari-
able. Once the raw text has been broken into a stream of tokens, these tokens are
processed into structures in the language through syntactic analysis.

In syntactic analysis, the stream of tokens is processed according to the grammatical
rules of the language. In normal programming languages, this process is straightfor-
ward—a token always has the same meaning. A sequence of digits is always a number;
an expression is always an expression, and so on. For example, the sequence

3 + 2

would always be an addition expression, and “Hello world” would always be a constant
string. Unfortunately, this isn’t the case in shell languages. Sometimes you can’t tell
what a token is except through its context. In the next section, we go into more detail
on why this is, and how the PowerShell interpreter parses a script.

NOTE  More information on this and the inner workings of PowerShell is
available in the PowerShell language specification at www.microsoft.com/
en-us/download/details.aspx?id=36389. The specification is currently only
available up to PowerShell v3.

	 Parsing the PowerShell language	 27

1.4.1	 How PowerShell parses

For PowerShell to be successful as a shell, it can’t require that everything be quoted.
PowerShell would fail if it required people to continually type

cd ".."

or

copy "foo.txt" "bar.txt"

On the other hand, people have a strong idea of how expressions should work:

2

This is the number 2, not a string “2”. Consequently, PowerShell has some rather com-
plicated parsing rules, covered in the next three sections. We’ll discuss how quoting
is handled, the two major parsing modes, and the special rules for newlines and state-
ment termination.

1.4.2	 Quoting

Quoting is the mechanism used to turn a token that has special meaning to the Pow-
erShell interpreter into a simple string value. For example, the Write-Output cmdlet
has a parameter -InputObject. But what if you want to use the string “-InputObject”
as an argument? To do this, you have to quote it by surrounding it with single or
double quotes:

PS> Write-Output '-InputObject'
-inputobject

If you hadn’t put the argument in quotes an error message would be produced indicat-
ing an argument to the parameter -InputObject is required.

PowerShell supports several forms of quoting, each with somewhat different mean-
ings (or semantics). Putting single quotes around an entire sequence of characters
causes them to be treated like a single string. This is how you deal with file paths that
have spaces in them, for example. If you want to change to a directory the path of
which contains spaces, you type this:

PS> Set-Location 'c:\program files'
PS> Get-Location
Path

C:\Program Files

When you don’t use the quotes, you receive an error complaining about an unex-
pected parameter in the command because c:\program and files are treated as two
separate tokens.

28	 Chapter 1  Welcome to PowerShell

NOTE  Notice the error message reports the name of the cmdlet, not the alias
used. This way you know what’s being executed. The position message shows
you the text that was entered so you can see an alias was used.

One problem with using matching quotes as shown in the previous examples is you
have to remember to start the token with an opening quote. This raises an issue when
you want to quote a single character. You can use the backquote (`) character to do
this (the backquote is usually the upper-leftmost key, below Esc):

PS> Set-Location c:\program` files
PS> Get-Location
Path

C:\Program Files

The backquote, or backtick, as it tends to be called, has other uses that we’ll explore
later in this section. Now let’s look at the other form of matching quote: double quotes.
You’d think it works pretty much like the example with single quotes; what’s the dif-
ference? In double quotes, variables are expanded. If the string contains a variable
reference starting with a $, it will be replaced by the string representation of the value
stored in the variable. Let’s look at an example. First assign the string “files” to the
variable $v:

PS> $v = 'files'

Now reference that variable in a string with double quotes:

PS> Set-Location "c:\program $v"
PS> Get-Location

Path

C:\Program Files

The directory change succeeded and the current directory was set as you expected.

NOTE  Variable expansion only occurs with double quotes. A common beginner
error is to use single quotes and expect variable expansion to work.

What if you want to show the value of $v? To do this, you need to have expansion in
one place but not in the other. This is one of those other uses we had for the backtick.
It can be used to quote or escape the dollar sign in a double-quoted string to suppress
expansion. Let’s try it:

PS> Write-Output "`$v is $v"
$v is files

	 Parsing the PowerShell language	 29

Here’s one final tweak to this example—if $v contained spaces, you’d want to make
clear what part of the output was the value. Because single quotes can contain double
quotes and double quotes can contain single quotes, this is straightforward:

PS> Write-Output "`$v is '$v'"
$v is 'files'

Now, suppose you want to display the value of $v on another line instead of in quotes.
Here’s another situation where you can use the backtick as an escape character. The
sequence `n in a double-quoted string will be replaced by a newline character. You can
write the example with the value of $v on a separate line:

PS> "The value of `$v is:`n$v"
The value of $v is:
files

The list of special characters that can be generated using backtick (also called escape)
sequences can be found using Get-Help about_Escape_Characters. Note that escape
sequence processing, like variable expansion, is only done in double-quoted strings. In
single-quoted strings, what you see is what you get. This is particularly important when
writing a string to pass to a subsystem that does additional levels of quote processing.

1.4.3	 Expression-mode and command-mode parsing

As mentioned earlier, because PowerShell is a shell, it has to deal with some parsing
issues not found in other languages. PowerShell simplifies parsing considerably, trim-
ming the number of modes down to two: expression and command.

In expression mode, the parsing is conventional: strings must be quoted, numbers
are always numbers, and so on. In command mode, numbers are treated as numbers,
but all other arguments are treated as strings unless they start with $, @, ', ", or (. When
an argument begins with one of these special characters, the rest of the argument is
parsed as a value expression. (There’s also special treatment for leading variable refer-
ences in a string, which we’ll discuss later.) Table 1.1 shows examples that illustrate how
items are parsed in each mode.

Table 1.1  Parsing mode examples

Example command line Parsing mode and explanation

2+2 Expression mode; results in 4.

Write-Output 2+2 Command mode; results in 2+2.

$a=2+2 Expression mode; the variable $a is assigned the value 4.

Write-Output (2+2) Expression mode; because of the parentheses, 2+2 is evaluated
as an expression producing 4. This result is then passed as an
argument to the Write-Output cmdlet.

30	 Chapter 1  Welcome to PowerShell

Table 1.1  Parsing mode examples (continued)

Example command line Parsing mode and explanation

Write-Output $a Expression mode; produces 4. This is ambiguous—evaluating it in
either mode produces the same result. The next example shows why
the default is expression mode if the argument starts with a variable.

Write-Output
$a.Equals(4)

Expression mode; $a.Equals(4) evaluates to true and Write-
Output writes the Boolean value True. This is why a variable is
evaluated in expression mode by default. You want simple method
and property expressions to work without parentheses.

Write-Output $a/foo.txt Command mode; $a/foo.txt expands to 4/foo.txt. This is the
opposite of the previous example. Here you want it to be evaluated
as a string in command mode. The interpreter first parses in
expression mode and sees it’s not a valid property expression, so it
backs up and rescans the argument in command mode. As a result,
it’s treated as an expandable string.

Notice in the Write-Output (2+2) case, the opening parenthesis causes the interpreter
to enter a new level of interpretation where the parsing mode is once again established
by the first token. This means the sequence 2+2 is parsed in expression mode, not com-
mand mode, and the result of the expression (4) is emitted. Also, the last example in
the table illustrates the exception mentioned previously for a leading variable refer-
ence in a string. A variable itself is treated as an expression, but a variable followed by
arbitrary text is treated as though the whole thing were in double quotes. This allows
you to write

PS> cd $HOME/scripts

instead of

PS> cd "$HOME/scripts"

As mentioned earlier, quoted and unquoted strings are recognized as different tokens
by the parser. This is why

PS> Invoke-MyCmdlet -Parm arg

treats -Parm as a parameter and

PS> Invoke-MyCmdlet "-Parm" arg

treats "-Parm" as an argument. There’s an additional wrinkle in the parameter binding.
If an unquoted parameter like -NotAparameter isn’t a parameter on Invoke-MyCmdlet, it
will be treated as an argument. This lets you say

PS> Write-Host -this -is -a parameter

without requiring quoting.

	 Parsing the PowerShell language	 31

This finishes our coverage of the basics of parsing modes, quoting, and commands.
Commands can take arbitrary lists of arguments, so knowing when the statement ends
is important. We’ll cover this in the next section.

1.4.4	 Statement termination

In PowerShell, there are two statement terminator characters: the semicolon (;) and
(sometimes) the newline. Why is a newline a statement separator only sometimes? The
rule is that if the previous text is a syntactically complete statement, a newline is con-
sidered to be a statement termination. If it isn’t complete, the newline is treated like
any other whitespace. This is how the interpreter can determine when a command or
expression crosses multiple lines. For example, in the following

PS> 2 +
>> 2
>>
4

the sequence 2 + is incomplete, so the interpreter prompts you to enter more text.
(This is indicated by the nest prompt characters, >>.) But in the next sequence

PS> 2
2
PS> + 2
2

the number 2 by itself is a complete expression, so the interpreter goes ahead and
evaluates it. Likewise, + 2 is a complete expression and is also evaluated (+ in this
case is treated as the unary plus operator). From this, you can see that if the newline
comes after the + operator, the interpreter will treat the two lines as a single expres-
sion. If the newline comes before the + operator, it will treat the two lines as two
individual expressions.

Most of the time, this mechanism works the way you expect, but sometimes you can
receive some unanticipated results. Take a look at the following example:

PS> $b = (2
>> + 2)
>>
At line:1 char:9
+ $b = (2
+ ~
Missing closing ')' in expression.
 + CategoryInfo : ParserError: (:) [],

ParentContainsErrorRecordException
 + FullyQualifiedErrorId : MissingEndParenthesisInExpression

NOTE  The example code applies to the PowerShell console. If you use ISE
you’ll get the error immediately after pressing the Enter key after typing the
first line.

32	 Chapter 1  Welcome to PowerShell

This behavior was questioned by one of the PowerShell v1 beta testers who was sur-
prised by this result and thought there was something wrong with the interpreter, but
in fact, this isn’t a bug. Here’s what’s happening.

Consider this text:

PS> $b = (2 +
>> 2)

It’s parsed as $b = (2 + 2) because a trailing + operator is only valid as part of a binary
operator expression. The sequence $b = (2 + can’t be a syntactically complete state-
ment, and the newline is treated as whitespace. On the other hand, consider this text:

PS> $b = (2
>> + 2)

In this case, 2 is a syntactically complete statement, so the newline is now treated as a
line terminator. In effect, the sequence is parsed like $b = (2 ; + 2)—two complete
statements. Because the syntax for a parenthetical expression is

(<expr>)

you get a syntax error—the interpreter is looking for a closing parenthesis as soon as
it has a complete expression. Contrast this with using a subexpression instead of the
parentheses alone:

PS> $b = $(
>> 2
>> +2
>>)
PS> $b
2
2

Here the expression is valid because the syntax for subexpressions is

$(<statementList>)

How do you extend a line that isn’t extensible by itself? This is another situation
where you can use the backtick escape character. If the last character in the line is
a backtick, then the newline will be treated as a simple breaking space instead of a
newline:

PS> Write-Output `
>> -InputObject `
>> "Hello world"
>>
Hello world

	 Parsing the PowerShell language	 33

Finally, one thing that surprises some people is strings aren’t terminated by a new-
line character. Strings can carry over multiple lines until a matching, closing quote is
encountered:

PS> Write-Output "Hello
>> there
>> how are
>> you?"
>>
Hello
there
how are
you?

In this example, you see a string that extended across multiple lines. When that string
was displayed, the newlines were preserved in the string.

The handling of end-of-line characters in PowerShell is another of the trade-offs
that keeps PowerShell useful as a shell. Although the handling of end-of-line charac-
ters is a bit strange compared to non-shell languages, the overall result is easy for most
people to get used to.

1.4.5	 Comment syntax in PowerShell

Every computer language has some mechanism for annotating code with expository
comments. Like many other shells and scripting languages, PowerShell comments
begin with a number sign (#) and continue to the end of the line. The # character
must be at the beginning of a token for it to start a comment. Here’s an example that
illustrates what this means (echo is an alias of Write-Output):

PS> echo hi#there
hi#there

In this example, the number sign is in the middle of the token hi#there and isn’t
treated as the starting of a comment. In the next example, there’s a space before the
number sign:

PS> echo hi #there
hi

Now # is treated as starting a comment and the following text isn’t displayed. It can
be preceded by characters other than a space and still start a comment. It can be
preceded by any statement-terminating or expression-terminating character like a
bracket, brace, or semicolon, as shown in the next couple of examples:

PS> (echo hi)#there
Hi

PS> echo hi;#there
hi

34	 Chapter 1  Welcome to PowerShell

In both examples, the # symbol indicates the start of a comment.
Finally, you need to take into account whether you’re in expression mode or com-

mand mode. In command mode, as shown in the next example, the + symbol is
included in the token hi+#there:

PS> echo hi+#there
hi+#there

In expression mode, it’s parsed as its own token. Now # indicates the start of a com-
ment, and the overall expression results in an error:

PS> "hi"+#there
>>
At line:1 char:6
+ "hi"+#there
+ ~
You must provide a value expression following the '+' operator.
 + CategoryInfo : ParserError: (:) [],

ParentContainsErrorRecordException
 + FullyQualifiedErrorId : ExpectedValueExpression

The # symbol is also allowed in function names:

PS> function hi#there { "Hi there" }
PS> hi#there
Hi there

The reason for allowing # in the middle of tokens was to make it easy to accommodate
path providers that used # as part of their path names. People conventionally include
a space before the beginning of a comment, and this doesn’t appear to cause any
difficulties.

Multiline Comments

In PowerShell v2, multiline comments were introduced, primarily to allow you to embed
inline help text in scripts and functions. A multiline comment begins with <# and ends
with #>. Here’s an example:

<#
 This is a comment
 that spans
 multiple lines
#>

This type of comment need not span multiple lines; you can use this notation to add a
comment preceding some code:

PS> <# a comment #> "Some code"
Some code

In this example, the line is parsed, the comment is read and ignored, and the code
after the comment is executed.

	 How the pipeline works	 35

One of the things this type of comment allows you to do is easily embed chunks of
preformatted text in functions and scripts. The PowerShell help system takes advan-
tage of this feature to allow functions and scripts to contain inline documentation in the
form of special comments. These comments are automatically extracted by the help
system to generate documentation for the function or script. You’ll learn how the com-
ments are used by the help subsystem in chapter 7.

Now that you have a good understanding of the basic PowerShell syntax, let’s look
at how commands are executed by the PowerShell execution engine. We’ll start with
the pipeline.

1.5	 How the pipeline works
A pipeline is a series of commands separated by the pipe operator (|), as shown in
figure 1.5. In some ways, the term production line better describes pipelines in Power-
Shell. Each command in the pipeline receives an object from the previous command,
performs some operation on it, and then passes it along to the next command in the
pipeline.

Figure 1.5  Anatomy of a pipeline

Command Command

Switch
parameter

Pipe
operator

Positional
argument

Parameter
with argument

dir -recurse -filter *.cs | format-table name, length

NOTE  This, by the way, is the great PowerShell heresy. All previous shells
passed strings only through the pipeline. Many people had difficulty with the
notion of doing anything else. Like the character in The Princess Bride, they’d
cry, “Inconceivable!” And we’d respond, “I do not think that word means what
you think it means.”

All the command categories take parameters and arguments. In

Get-ChildItem -Filter *.dll -Path c:\windows -Recurse

-Filter is a parameter that takes one argument, *.dll. The string “c:\windows” is the
argument to the positional parameter -Path.

Next, we’ll discuss the signature characteristic of pipelines: streaming behavior.

1.5.1	 Pipelines and streaming behavior

Streaming behavior occurs when objects are processed one at a time in a pipeline. This
is one of the characteristic behaviors of shell languages. In stream processing, objects
are output from the pipeline as soon as they become available. In more traditional

36	 Chapter 1  Welcome to PowerShell

programming environments the results are returned only when the entire result set
has been generated—the first and last results are returned at the same time. In a pipe-
lined shell, the first result is returned as soon as it’s available and subsequent results
return as they also become available. This flow is illustrated in figure 1.6.

PS> Get-Process | Where {$_.handles -gt 500} | Sort handles | Format-Table

Common PowerShell parser

Get-Process
cmdlet

Where
cmdlet

Sort
cmdlet

Format
cmdlet

Result

PowerShell pipeline processor

Figure 1.6  How objects flow through a pipeline one at a time. A common parser constructs each of the
command objects and then starts the pipeline processor, stepping each object through all stages of the
pipeline.

At the top of figure 1.6 you see a PowerShell command pipeline containing four com-
mands. This command pipeline is passed to the PowerShell parser, which figures out
what the commands are, what the arguments and parameters are, and how they should
be bound for each command. When the parsing is complete, the pipeline processor
begins to sequence the commands. First it runs the begin clause of each of the com-
mands once, in sequence from first to last. After all the begin clauses have been run, it
runs the process clause in the first command. If the command generates one or more
objects, the pipeline processor passes these objects one at a time to the second com-
mand. If the second command also emits an object, this object is passed to the third
command, and so on.

When processing reaches the end of the pipeline, any objects emitted are passed
back to the PowerShell host. The host is then responsible for any further processing.

This aspect of streaming is important in an interactive shell environment, because
you want to see objects as soon as they’re available. The next example shows a simple
pipeline that traverses through C:\Windows looking for all the DLLs with names that
start with the word “system”:

PS> Get-ChildItem -Path C:\Windows\ -recurse -filter *.dll |
where Name -match "system.*dll"
 Directory: C:\Windows\assembly\GAC_MSIL\System.Management.Automation\1.0.

0.0__31bf3856ad364e35

	 How the pipeline works	 37

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 16/07/2016 12:43 3010560 System.Management.

Automation.dll

 Directory: C:\Windows\assembly\GAC_MSIL\System.Management.Automation.
Resources\1.0.0.0_en_31bf3856ad364e35

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 16/07/2016 23:51 253952 System.Management.

Automation.Resources.dll

 Directory: C:\Windows\assembly\NativeImages_v4.0.30319_32\System\08da6b66
98b412866e6910ae9b84f363

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 16/07/2016 12:44 10281640 System.ni.dll

With streaming behavior, as soon as the first file is found, it’s displayed. Without stream-
ing, you’d have to wait until the entire directory structure has been searched before
you’d see any results.

In most shell environments streaming is accomplished by using separate processes
for each element in the pipeline. In PowerShell, which only uses a single process
(and a single thread as well by default), streaming is accomplished by splitting cmd-
lets into three clauses: BeginProcessing, ProcessRecord, and EndProcessing. In a
pipeline, the BeginProcessing clause is run for all cmdlets in the pipeline. Then the
ProcessRecord clause is run for the first cmdlet. If this clause produces an object,
that object is passed to the ProcessRecord clause of the next cmdlet in the pipeline,
and so on. Finally, the EndProcessing clauses are all run. (We cover this sequencing
again in more detail in chapter 5, which is about scripts and functions, because they
can also have these clauses.)

1.5.2	 Parameters and parameter binding

Now let’s talk about more of the details involved in binding parameters for commands.
Parameter binding is the process in which values are bound to the parameters on a com-
mand. These values can come from either the command line or the pipeline. Here’s
an example of a parameter argument being bound from the command line:

PS> Write-Output 123
123

And here’s the same example where the parameter is taken from the input object
stream:

PS> 123 | Write-Output
123

38	 Chapter 1  Welcome to PowerShell

The binding process is controlled by declaration information on the command
itself. Parameters can have the following characteristics: they’re either mandatory or
optional, they have a type to which the formal argument must be convertible, and they
can have attributes that allow the parameters to be bound from the pipeline. Table 1.2
describes the steps in the binding process.

Table 1.2  Steps in the parameter binding process

Binding step Description

1. Bind all named parameters. Find all unquoted tokens on the command line that start with a
dash. If the token ends with a colon, an argument is required. If
there’s no colon, look at the type of the parameter and see if an
argument is required. Convert the type of argument to the type
required by the parameter, and bind the parameter.

2. Bind all positional parameters. If there are any arguments on the command line that haven’t
been used, look for unbound parameters that take positional
parameters and try to bind them.

3. Bind from the pipeline by value
with exact match.

If the command isn’t the first command in the pipeline and there
are still unbound parameters that take pipeline input, try to bind
to a parameter that matches the type exactly.

4. If not bound, then bind from the
pipe by value with conversion.

If the previous step failed, try to bind using a type conversion.

5. If not bound, then bind from the
pipeline by name with exact match.

If the previous step failed, look for a property on the input object
that matches the name of the parameter. If the types exactly
match, bind the parameter.

6. If not bound, then bind from the
pipeline by name with conversion.

If the input object has a property with a name that matches the
name of a parameter, and the type of the property is convertible
to the type of the parameter, bind the parameter.

As you can see, this binding process is quite involved. In practice, the parameter binder
almost always does what you want—that’s why a sophisticated algorithm is used. Some-
times you’ll need to understand the binding algorithm to get a particular behavior.
PowerShell has built-in facilities for debugging the parameter-binding process that can
be accessed through the Trace-Command cmdlet. Here’s an example showing how to
use this cmdlet:

PS> Trace-Command -Name ParameterBinding -Option All `
-Expression { 123 | Write-Output } -PSHost

In this example, you’re tracing the expression in the braces—that’s the expression:

123 | Write-Output

This expression pipes the number 123 to the cmdlet Write-Output. The Write-Output
cmdlet takes a single mandatory parameter, -InputObject, which allows pipeline input

	 Formatting and output	 39

by value. The tracing output is long but fairly self-explanatory, so we haven’t included
it here. This is something you should experiment with to see how it can help you figure
out what’s going on in the parameter-binding process.

And now for the final topic in this chapter: formatting and output. The formatting
and output subsystem provides the magic that lets PowerShell figure out how to display
the output of the commands you type.

1.6	 Formatting and output
One of the issues people new to PowerShell face is the formatting system. As a general
rule, we run commands and depend on the system to figure out how to display the
results. We’ll use commands such as Format-Table and Format-List to give general
guidance on the shape of the display, but no specific details. Let’s dig in now and see
how this all works.

PowerShell is a type-based system. Types are used to determine how things are dis-
played, but normal objects don’t usually know how to display themselves. PowerShell
deals with this by including formatting information for various types of objects as part
of the extended type system. This extended type system allows PowerShell to add new
behaviors to existing .NET objects or extend the formatting system to cope with new
types you’ve created. The default formatting database is stored in the PowerShell
install directory, which you can get to by using the $PSHOME shell variable. Here’s a list
of the files that were included as of this writing:

PS> Get-ChildItem $PSHOME/*format* | Format-Table name

Name

Certificate.format.ps1xml
Diagnostics.Format.ps1xml
DotNetTypes.format.ps1xml
Event.Format.ps1xml
FileSystem.format.ps1xml
Help.format.ps1xml
HelpV3.format.ps1xml
PowerShellCore.format.ps1xml
PowerShellTrace.format.ps1xml
Registry.format.ps1xml
WSMan.Format.ps1xml

The naming convention helps users figure out the purpose of files. (The others should
become clear after reading the rest of this book.) These files are XML documents that
contain descriptions of how each type of object should be displayed.

TIP  These files are digitally signed by Microsoft. Do not alter them under any
circumstances. You’ll break things if you do.

These descriptions are fairly complex and somewhat difficult to write. It’s possible
for end users to add their own type descriptions, but that’s beyond the scope of this

40	 Chapter 1  Welcome to PowerShell

chapter. The important thing to understand is how the formatting and outputting
commands work together.

1.6.1	 Formatting cmdlets

Display of information is controlled by the type of the objects being displayed, but the
user can choose the “shape” of the display by using the Format-* commands:

PS> Get-Command Format-* | Format-Table name

Name

Format-Hex
Format-Volume
Format-Custom
Format-List
Format-SecureBootUEFI
Format-Table
Format-Wide

By shape, we mean things such as a table or a list.

NOTE  Format-Hex is a PowerShell v5 cmdlet that is used to create displays
in hexadecimal. The Format-SecureBootUEFI cmdlet receives certificates or
hashes as input and formats the input into a content object that is returned.
The Set-SecureBootUEFI cmdlet uses this object to update the variable.
These two cmdlets are outside the scope of this section.

Here’s how they work. The Format-Table cmdlet formats output as a series of columns
displayed across your screen:

PS> Get-Item c:\ | Format-Table

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs- 06/06/2017 09:06 C:\

PowerShell v5 automatically derives the on–screen positioning from the first few objects
through the pipeline—effectively an automatic –Autosize parameter. This change was
introduced because –Autosize is a blocking parameter that caused huge amounts of
data to be stored in memory until all objects were available.

Format-Table -Autosize parameter
In PowerShell v1 through v4 Format-Table tries to use the maximum width of the
display and guesses at how wide a particular field should be. This allows you to start
seeing data as quickly as possible (streaming behavior) but doesn’t always produce
optimal results. You can achieve a better display by using the -AutoSize switch, but
this requires the formatter to process every element before displaying any of them,

	 Formatting and output	 41

(Continued)

and this prevents streaming. PowerShell has to do this to figure out the best width
to use for each field. The result in this example looks like this:

PS> Get-Item c:\ | Format-Table -AutoSize

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs- 06/06/2017 09:06 C:\

In practice, the default layout when streaming is good and you don’t need to use
-Autosize, but sometimes it can help make things more readable.

The Format-List command displays the elements of the objects as a list, one after the
other:

PS> Get-Item c:\ | Format-List

 Directory:

Name : C:\
CreationTime : 22/08/2013 14:31:02
LastWriteTime : 06/06/2017 09:06:56
LastAccessTime : 06/06/2017 09:06:56

If there’s more than one object to display, they’ll appear as a series of lists. This is usually
the best way to display a large collection of fields that won’t fit well across the screen.

The Format-Wide cmdlet is used when you want to display a single object property
in a concise way. It will treat the screen as a series of columns for displaying the same
information:

PS> Get-Process –Name s* | Format-Wide -Column 8 id

1372 640 516 1328 400 532 560 828
876 984 1060 1124 4

In this example, you want to display the process IDs of all processes with names that
start with “s” in eight columns. This formatter allows for a dense display of information.

The final formatter is Format-Custom, which displays objects while preserving the
basic structure of the object. Because most objects have a structure that contains other
objects, which in turn contain other objects, this can produce extremely verbose
output. Here’s a small part of the output from the Get-Item cmdlet, displayed using
Format-Custom:

PS> Get-Item c:\ | Format-Custom -Depth 1

class DirectoryInfo
{

42	 Chapter 1  Welcome to PowerShell

 PSPath = Microsoft.PowerShell.Core\FileSystem::C:\
 PSParentPath =
 PSChildName = C:\
 PSDrive =
 class PSDriveInfo
 {
 CurrentLocation =
 Name = C
 Provider = Microsoft.PowerShell.Core\FileSystem
 Root = C:\
 Description = C_Drive
 Credential = System.Management.Automation.PSCredential
 }

The full output is considerably longer, and notice we’ve told it to stop walking the
object structure at a depth of 1. You can imagine how verbose this output can be! Why
have this cmdlet? Mostly because it’s a useful debugging tool, either when you’re creat-
ing your own objects or for exploring the existing objects in the .NET class libraries.

1.6.2	 Outputter cmdlets

Now that you know how to format something, how do you output it? You don’t have to
worry because, by default, things are automatically sent to (can you guess?) Out-Default.

Note the following three examples do exactly the same thing:

dir | Out-Default
dir | Format-Table
dir | Format-Table | Out-Default

This is because the formatter knows how to get the default outputter, the default out-
putter knows how to find the default formatter, and the system in general knows how
to find the defaults for both. The Möbius strip of subsystems!

As with the formatters, there are several outputter cmdlets available in PowerShell
out of the box. You can use the Get-Command command to find them:

PS> Get-Command Out-* | Format-Wide -Column 3

Out-Default Out-File Out-GridView
Out-Host Out-Null Out-Printer
Out-String

Here there’s a somewhat broader range of choices. We’ve already talked about
Out-Default. The next one we’ll talk about is Out-Null. This is a simple outputter; any-
thing sent to Out-Null is discarded. This is useful when you don’t care about the output
for a command; you want the side effect of running the command.

NOTE  Piping to Out-Null is the equivalent to redirecting to $null but invokes
the pipeline and can be up to forty times slower than redirecting to $null.

Next, we have Out-File. Instead of sending the output to the screen, this command
sends it to a file. (This command is also used by I/O redirection when doing output to

	 Formatting and output	 43

a file.) In addition to writing the formatted output, Out-File has several flags that con-
trol how the output is written. The flags include the ability to append to a file instead
of replacing it, to force writing to read-only files, and to choose the output encodings
for the file. This last item is the trickiest. You can choose from a number of text encod-
ings supported by Windows. Here’s a trick—enter the command with an encoding you
know doesn’t exist:

PS> Out-File -encoding blah
Out-File : Cannot validate argument on parameter 'Encoding'. The argument
"blah" does not belong to the set "unknown,string,unicode,bigendianunicode,ut
f8,utf7,utf32,ascii,default,oem" specified by the ValidateSet attribute.
Supply an argument that is in the set and then try the command again.
At line:1 char:20
+ Out-File -encoding blah
+ ~~~~
 + CategoryInfo : InvalidData: (:) [Out-File],

ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationError,Microsoft.

PowerShell.Commands.OutFileCommand

You can see in the error message that all the valid encoding names are displayed.

NOTE  Tab completion can be used to cycle through the valid encodings. Type
Out-File -Encoding and then keep pressing the tab key to view the options.
Tab completion works with cmdlet names, parameters, and values where
there’s a predefined set of acceptable values.

If you don’t understand what these encodings are, don’t worry about it, and let the
system use its default value.

NOTE  Where you’re likely to run into problems with output encoding (or
input encoding for that matter) is when you’re creating files that are going to
be read by another program. These programs may have limitations on what
encodings they can handle, particularly older programs. To find out more
about file encodings, search for “file encodings” on http://msdn.microsoft.com.
Microsoft Developer’s Network (MSDN) contains a wealth of information on
this topic. Chapter 5 also contains additional information about working with
file encodings in PowerShell.

The Out-Printer cmdlet doesn’t need much additional explanation; it routes its text-
only output to the default printer instead of to a file or to the screen.

The Out-Host cmdlet is a bit more interesting—it sends its output back to the host.
This has to do with the separation in PowerShell between the interpreter or engine,
and the application that hosts that engine. The host application has to implement a
special set of interfaces to allow Out-Host to render its output properly. (We see this
used in PowerShell v2 to v5, which include two hosts: the console host and the Inte-
grated Scripting Environment (ISE).)

NOTE  Out-Default delegates the work of outputting to the screen to Out-Host.

44	 Chapter 1  Welcome to PowerShell

The last output cmdlet to discuss is Out-String. This one’s a bit different. All the other
cmdlets terminate the pipeline. The Out-String cmdlet formats its input and sends it
as a string to the next cmdlet in the pipeline. Note we said string, not strings. By default,
it sends the entire output as a single string. This isn’t always the most desirable behav-
ior—a collection of lines is usually more useful—but at least once you have the string,
you can manipulate it into the form you want. If you do want the output as a series of
strings, use the -Stream switch parameter. When you specify this parameter, the output
will be broken into lines and streamed one at a time.

Note this cmdlet runs somewhat counter to the philosophy of PowerShell; once
you’ve rendered the object to a string, you’ve lost its structure. The main reason for
including this cmdlet is for interoperation with existing APIs and external commands
that expect to deal with strings. If you find yourself using Out-String a lot in your
scripts, stop and think if it’s the best way to attack the problem.

PowerShell v2 introduced one additional output command: Out-GridView. As you
might guess from the name, this command displays the output in a grid, but rather
than rendering the output in the current console window, a new window is opened
with the output displayed using a sophisticated grid control (see figure 1.7).

Figure 1.7 Displaying output with Out-GridView

The underlying grid control used by Out-GridView has all the features you’d expect
from a modern Windows interface: columns can be reordered by dragging and drop-
ping them, and the output can be sorted by clicking a column head. This control also
introduces sophisticated filtering capabilities. This filtering allows you to drill into a
dataset without having to rerun the command.

That’s it for the basics: commands, parameters, pipelines, parsing, and presenta-
tion. You should now have a sufficient foundation to start moving on to more advanced
topics in PowerShell.

	 Summary	 45

1.7	 Summary

■■ PowerShell is Microsoft’s command-line/scripting environment that’s at the
center of Microsoft server and application management technologies. Micro-
soft’s most important server products, including Exchange, Active Directory, and
SQL Server, now use PowerShell as their management layer.

■■ PowerShell incorporates object-oriented concepts into a command-line shell
using the .NET object model as the base for its type system, but can also access
other object types like WMI.

■■ Shell operations like navigation and file manipulation in PowerShell are similar
to what you’re used to in other shells.

■■ Use the Get-Help command to get help when working with PowerShell.
■■ PowerShell has a full range of calculation, scripting, and text-processing capabilities.
■■ PowerShell supports a comprehensive set of remoting features to allow you to do

scripted automation of large collections of computers.
■■ PowerShell has a number of command types, including cmdlets, functions, script

commands, and native commands, each with slightly different characteristics.
■■ PowerShell supports an elastic syntax—concise on the command line and com-

plete in scripts. Aliases are used to facilitate elastic syntax.
■■ PowerShell parses scripts in two modes—expression mode and command

mode—which is a critical point to appreciate when using PowerShell.
■■ The PowerShell escape character is a backtick (`), not a backslash.
■■ PowerShell supports both double quotes and single quotes; variable and expres-

sion expansion is done in double quotes, not in single quotes.
■■ Line termination is handled specially in PowerShell because it’s a command

language.
■■ PowerShell has two types of comments: line comments that begin with # and

block comments that start with <# and end with #>. The block comment notation
was introduced in PowerShell v2 with the intent of supporting inline documenta-
tion for scripts and functions.

■■ PowerShell uses a sophisticated formatting and outputting system to determine
how to render objects without requiring detailed input from the user.

Now that you have the basics, we’ll start digging into the details starting in the next
chapter with how PowerShell works with types.

Bruce Payette ● Richard Siddaway

I
n 2006, Windows PowerShell reinvented the way admin-
istrators and developers interact with Windows. Today,
PowerShell is required knowledge for Windows admins and

devs. This powerful, dynamic language provides command-
line control of the Windows OS and most Windows servers,
such as Exchange and SCCM. And because it’s a fi rst-class
.NET language, you can build amazing shell scripts and tools
without reaching for VB or C#.

Windows PowerShell in Action, Third Edition is the defi nitive
guide to PowerShell, now revised to cover PowerShell 6. Writ-
ten by language designer Bruce Payette and MVP Richard
Siddaway, this rich book offers a crystal-clear introduction
to the language along with its essential everyday use cases.
Beyond the basics, you’ll fi nd detailed examples on deep topics
like performance, module architecture, and parallel execution.

What’s Inside
● The best end-to-end coverage of PowerShell available
● Updated with coverage of PowerShell v6
● PowerShell workfl ows
● PowerShell classes
● Writing modules and scripts
● Desired State Confi guration
● Programming APIs and pipelines

Written for intermediate-level developers and administrators.

Bruce Payette is codesigner and principal author of the Power-
Shell language. Richard Siddaway is a longtime PowerShell
MVP, author, speaker, and blogger.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/windows-powershell-in-action-third-edition

$59.99 / Can $79.99 [INCLUDING eBOOK]

Windows PowerShell IN ACTION
THIRD EDITION

WINDOWS ADMINISTRATION

M A N N I N G

“This comprehensive guide
to PowerShell just gets better

with every revision!”
—Wayne Boaz, Nike

“Excellent coverage of the
new features in PowerShell.

Recommended for all
 levels of users.”

—Lincoln Bovee, Proto Labs

“Deep technical discussions
of the inner workings of
PowerShell. Many useful
examples. Up to date!”—Dr. Edgar Knapp

ISIS Papyrus Europe

“If you’re serious about
PowerShell, you need to
read this book. Seriously:

 Read this book!”
—Stephen Byrne, Dell

SEE INSERT

