Sample Chapter

INACTI

Chris Hay
Brian H. Prince

/lll MANNING

Azure in Action

by Chris Hay and Brian H. Prince

Chapter 3

Copyright 2011 Manning Publications

10

brief contents

Getting to know Windows Azure 3

Your first steps with a web role 27

How Windows Azure works 51
It’s time to run with the service 78

Configuring your service 94

Scaling web roles 113

Running full-trust, native, and other code 139

The basics of BLOBs 155
Uploading and downloading BLOBs 181
When the BLOB stands alone 209

11
12
13
14

15
16
17
18

The Table service, a whole different entity 239
Working with the Table service REST API 265
SQL Azure and relational data 296

Working with different types of data 315

Processing with worker roles 335

Messaging with the queue 357

Connecting in the cloud with AppFabric 379
Running a healthy service in the cloud 404

Part 2

Understanding the
Azure service model

-b ‘ ith the cloud basics and Windows Azure concepts under your belt, we

dial it up a notch. In part 2, we look at all the parts of the service model.
Chapter 3 explains what the service model is, how Azure uses it, and how
Azure works behind the scenes. A brilliant chapter if there ever was one.
The quality only gets better as we move into chapter 4, which discusses how
to reference the Azure APIs in your code and how to exploit the service runtime.
In chapter 5, we trot out how to configure your service model using the con-

figuration files and the portal. An exciting chapter, especially if you like XML
and angle braces.

How Windows
Azure works

This chapter covers

How Microsoft built Azure
What a cloud operating system is

How your application is provisioned and
managed in the cloud

Now that you have a basic understanding of what you can do with Azure, let’s drill
deeper into the pieces of Azure and how to best work with them. In this chapter,
we’ll discuss how Windows Azure is architected and how it does the cloud magic
that it does. Understanding this background will help you develop better services,
be a better person, and get the most out of your Azure infrastructure.

The big shift

When Azure was first announced at the PDC in 2008, Microsoft wasn’t a recognized
player in the cloud industry. It was the underdog to the giants Google and Ama-
zon, which had been offering cloud services for years by that time. Building and

51

52

3.1.1

CHAPTER 3 How Windows Azure works

deploying Azure was a big bet for Microsoft. It was a major change in the company’s
direction, from where Microsoft had been and where it needed to go in the future.
Up until that time, Microsoft had been a product company. It designed and built a
product, burnt it to CD, and sold it to customers. Over time, the product was
enhanced, but the product was installed and operated in the client’s environment.
The trick was to build the right product at the right time, for the right market.

With the addition of Ray Ozzie to the Microsoft culture, there was a giant shift
toward services. Microsoft wasn’t abandoning the selling of products, but it was
expanding its expertise and portfolio to offer its products as services. Every product
team at Microsoft was asked if what they were doing could be enhanced and extended
with services. They wanted to do much more than just put Exchange in a data center
and rent it to customers. This became a fundamental shift in how Microsoft developed
code, how the code was shipped, and how it was marketed and sold to customers.

This shift toward services wasn’t an executive whim, thought up during an exclu-
sive executive retreat at a resort we’ll never be able to afford to even drive by. It was
based on the trends and patterns the leaders saw in the market, in the needs of their
customers, and on the continuing impact of the internet on our world. Those in
charge saw that people needed to use their resources in a more flexible way, more
flexible than even the advances in virtualization were providing. Companies needed
to easily respond to a product’s sudden popularity as social networking spread the
word. Modern businesses were screaming that six months was too long to wait for an
upgrade to their infrastructure; they needed it now.

Customers were also becoming more sensitive to the massive power consumption
and heat that was generated by their data centers. Power and cooling bills were often
the largest component of their total data-center cost. Coupling this with a concern
over global warming, customers were starting to talk about the greening of IT. They
wanted to reduce the carbon footprint that these beasts produced. Not only did they
want to reduce the power and cooling waste, but also the waste of lead, packing mate-
rials, and the massive piles of soda cans produced by the huge number of server
administrators that they had to employ.

The data centers of yore

Microsoft is continually improving all the important aspects of its data centers. It
closely manages all the costs of a data center, including power, cooling, staff, local
laws, risk of disaster, availability of natural resources, and many other factors. While
managing all this, it has designed its fourth generation of data centers. Microsoft
didn’t just show up at this party; it planned it by building on a deep expertise in build-
ing and running global data centers over the past few decades.

The first generation of data centers is still the most common in the world. Think of
the special room with servers in it. It has racks, cable ladders, raised floors, cooling,
uninterruptable power supplies (UPSs), maybe a backup generator, and it’s cooled to
a temperature that could safely house raw beef. The focus is placed on making sure

3.1.2

The big shift 53

the servers are running; no thought or concern is given to the operating costs of the
data center. These data centers are built to optimize the capital cost of building them,
with little thought given to costs accrued beyond the day the center opens. (By the
way, the collection of servers under your desk doesn’t qualify as a Generation 1 data
center. Please be careful not to kick a cord loose while you do your work.)

Generation 2 data centers take all the knowledge learned by running Generation 1
data centers and apply a healthy dose of thinking about what happens on the second
day of operation. Ongoing operational costs are reduced by optimizing for sustain-
ability and energy efficiency. To meet these goals, Microsoft powers its Quincy, Wash-
ington, data center with clean hydroelectric power. Its data center in San Antonio,
Texas, uses recycled civic gray water to cool the data center, reducing the stress on the
water sources and infrastructure in the area.

The Ilatest Azure data centers

Even with the advances found in Generation 2 data centers, companies couldn’t find
the efficiencies and scale needed to combat rising facility costs, let alone meet the
demands that the cloud would generate. The density of the data center needed to go
up dramatically, and the costs of operations had to plummet. The first Generation 3
data center, located in Chicago, Illinois, went online on June 20, 2009. Microsoft con-
siders it to be a mega data center, which is a class designation that defines how large
the data center is. The Chicago data center looks like a large parking deck, with park-
ing spaces and ramps for tractor trailers. Servers are placed into containers, called
CBlox, which are parked in this structure. A smaller building that looks more like a tra-
ditional data center is also part of the complex. This area is for high-maintenance
workloads that can’t run in Azure.

CBlox are made out of the shipping containers that you see on ocean-going vessels
and on eighteen wheelers on the highways. They’re sturdily built and follow a standard
size and shape that are easy to move around. One CBlox can hold anywhere from 1,800
to 2,500 servers. This is a massive increase in data-center density, 10 times more dense
than a traditional data center. The Chicago mega data center holds about 360,000 serv-
ers and is the only primary consumer of a dedicated nuclear power plant core run by
Chicago Power & Light. How many of your data centers are nuclear powered?

Each parking spot in the data center is anchored by a refrigerator-size device that
acts as the primary interconnect to the rest of the data center. Microsoft developed a
standard coupler that provides power, cooling, and network access to the container.
Using this interconnect and the super-dense containers, massive amounts of capac-
ity can be added in a matter of hours. Compare how long it would take your com-
pany to plan, order, deploy, and configure 2,500 servers. It would take at least a year,
and a lot of people, not to mention how long it would take to recycle all the card-
board and extra parts you always seem to have after racking a server. Microsoft’s goal
with this strategy is to make it as cheap and easy as possible to expand capacity as
demand increases.

54

3.1.3

CHAPTER 3 How Windows Azure works

The containers are built to Microsoft’s specifications by a vendor and delivered on
site, ready for burn-in tests and allocation into the fabric. Each container includes net-
working gear, cooling infrastructure, servers, and racks, and is sealed against the weather.

Not only are the servers now packaged and deployed in containers, but the neces-
sary generators and cooling machinery are designed to be modular as well. To set up
an edge data center, one that’s located close to a large-demand population, all that’s
needed is the power and network connections, and a level paved surface. The trucks
with the power and cooling equipment show up first, and the equipment is deployed.
Then the trucks with the computing containers back in and drop their trailers, leaving
the containers on the wheels that were used to deliver them. The facility is protected
by a secure wall and doorway with monitoring equipment. The use of laser fences is
pure speculation and just a rumor, as far as we know. The perimeter security is impor-
tant, because the edge data center doesn’t have a roof! Yes, no roof! Not using a roof
reduces the construction time and the cooling costs. A roof isn’t needed because the
containers are completely sealed.

Microsoft opened a second mega data center, the first outside the United States, in
Dublin, Ireland, on July 1, 2009. When Azure became commercially available in Janu-
ary 2010, the following locations were known to have an Azure data center: Texas, Chi-
cago, Ireland, Amsterdam, Singapore, and Hong Kong. Although Microsoft won’t tell
where all its data centers are for security reasons, it purports to have more than 10 and
fewer than 100 data centers. Microsoft already has data centers all over the world to
support its existing services, such as Virtual Earth, Bing Search, Xbox Live, and others.
If we assume there are only 10, and each one is as big as Chicago, then Microsoft
needs to manage 3.5 million servers as part of Azure. That’s a lot of work.

How many administrators do you need?

Data centers are staffed with IT pros to care and feed the servers. Data centers need a
lot of attention, ranging from hardware maintenance to backup, disaster recovery,
and monitoring. Think of your company. How many people are allocated to manage
your servers? Depending on how optimized your IT center is, the ratio of person-to-
servers can be anywhere from 1:10 to 1:100. With that ratio, Microsoft would need
35,000 server managers. Hiring that many server administrators would be hard, con-
sidering that Microsoft employs roughly 95,000 people already.

To address this demand, Azure was designed to use as much automation as possi-
ble, using a strategy called lights-out operations. This strategy seeks to centralize and
automate as much of the work as possible by reducing complexity and variability. The
result is a person-to-servers ratio closer to 1:30,000 or higher.

Microsoft is achieving this level of automation mostly by using its own off-the-shelf
software. Microsoft is literally eating its own dog food. It’s using System Center Opera-
tions Manager and all the related products to oversee and automate the management
of the underlying machines. It’s built custom automation scripts and profiles, much
like any customer would do.

3.14

The big shift 55

One key strategy in effectively managing a massive number of servers is to provi-
sion them with identical hardware. In traditional data centers where we’ve worked,
each year brought the latest and greatest of server technology, resulting in a wide vari-
ety of technology and hardware diversity. We even gave each server a distinct name,
such as Protoss, Patty, and Zelda. With this many servers, you can’t name them; you
have to number them. Not just by server, but by rack, room, and facility. Diversity is
usually a great thing, but not when you’re managing millions of boxes.

The hardware in each Azure server is optimized for power, cost, density, and man-
agement. The optimization process drives exactly which motherboard, chipset, and
every other component needs to be in the server; this is truly bang for your buck in
action. Then that server recipe is kept for a specific lifecycle, only moving to a new bill
of materials when there are significant advantages to doing so.

Data center: the next generation

Microsoft isn’t done. It’s already spent years planning the fourth generation of data
centers. Much like the edge data center we described previously, the whole data cen-
ter is located outside. The containers make it easy to scale out the computing
resources as demand increases; prior generations of data centers had to have the com-
plete data center shell built and provisioned, which meant provisioning the cooling
and power systems as if the data center were at maximum capacity from day one. The
older systems were too expensive to expand dynamically. The fourth generation data
centers are using an extendable spine of infrastructure that the computing containers
need, so that both the infrastructure and the computing resources are easily scaled
out (see figure 3.1). All of this is outside, in a field of grass, without a roof. They’ll be
the only data centers in the world that need a grounds crew.

SIS s 5SS |BISISIIR ISISIISIS
SHISHSHISINSHRSH] SIS SHISHISINSHISH SIS
ny?'x 7x77’xxﬂ7 <X x]1%
S|(8]|8]|8] |8]|8]|8]|8 |8]|8]|8l|8l |8]|8||8l|s
IR B o o B o N e o B N e o U o L B U B
SRR LRl LRl LRl
[Fower |[Chiller| [Fower | [Chiller| [Poml [Chiller] [Power | [Chiller|
Data spine 1 |- e
[Chil[ﬂﬂf’omg[] [Chil[ﬂﬂf’omg[] [Chlllsr\ Fower\ [Ch[llerHPoM]
e |I= s 15 |8/|s!|S! _n‘ U R g o Y
SHISHSHSINSHISH] IS S 3 SHISHIS)
Office space
and traditional
data center <[5 % a =E afg‘ 2 g‘ %Tg g‘ afg—a Figure 3.1 Generatu_)n
sEEE BEEE 5EiEE 58 EE 4 data centers are built
LRE BREEE BBEE © 0‘3 = on extensible spines.
’Chlllem“’ower\]C*L”@HPOXVE\ IC@@HFO!/Q\ ’Chi”cllhyoﬂﬂl This configuration
Data spine 2 |- makes it easy to add
[Power | [Chiller| [Power | [Chiller| [Power | [Chiller| [Power] [Chiller| ! y .
S o o o o o _]) ;TE not only computational
‘— 2 E‘; 2| S| capacity, but the
o = = = required infrastructure

as well, including power
and cooling.

[Chlox]

[Chlox]
[Chlox] [Cblox) 2|

Chlox]|

[Chlox]

[Chlox]

blox|

blox

[Cblox| &

[Chlox] @

Chlox]
Cblox] [C
Cblox
Chlox] [C
Cblox
Cblox]
Cblox Cblox
Cblox
Cblox| |Cbl
Chlox]
Cblox

Cblox
Chiox|

56

3.2

CHAPTER 3 How Windows Azure works

OK, you’re impressed. Microsoft has a lot of servers, some of them are even outside, and
all the servers are managed in an effective way. But how does the cloud really work?

Windows Azure, an operating system for the cloud

Think of the computer on your desk today. When you write code for that computer,
you don’t have to worry about which sound card it uses, which type of printer it’s con-
nected to, or which or how many monitors are used for the display. You don’t worry, to
a degree, about the CPU, about memory, or even about how storage is provided (solid-
state drive [SSD], carrier pigeon, or hard disk drive). The operating system on that
computer provides a layer of abstraction away from all of those gritty details, frees you
up to focus on the application you need to write, and makes it easy to consume the
resources you need. The desktop operating system protects you from the details of the
hardware, allocates time on the CPU to the code that’s running, makes sure that code
is allowed to run, plays traffic cop by controlling shared access to resources, and gen-
erally holds everything together.

Now think of that enterprise application
you want to deploy. You need a DNS, network-

77"7Y5u-riapp J Your app ‘

ing, shared storage, load balancers, plenty of
servers to handle load, a way to control access
and permissions in the system, and plenty of
other moving parts. Modern systems can get
complicated. Dealing with all of that complex-
ity by hand is like compiling your own video

Windows Server

Windows Azure

Security ‘ Security
Management | ‘WM;@@emth | |

Kernel

Task 5cheduler?

Fabric Controller
}Taak scheduler

1

driver; it doesn’t provide any value to the busi-
ness. Windows Azure does all this work, but on
a much grander scale and for distributed
applications (see figure 3.2) by using some-
thing called the fabric. Let’s look into this fab-
ric and see how it works.

Hardware ‘ Hardware |
abstraction | abstraction

{
layer | layer

| Disk [CPU | GPU | Memory

Figure 3.2 The Fabric Controller is like
the kernel of your desktop operating
system. It’s responsible for many of the
same tasks, including resource sharing,
code security, and management.

Windows Azure takes care of the whole
platform so you can focus on your application.
The term fabric is used because of the similar-
ity of the Azure fabric to a woven blanket. Each thread on its own is weak and can’t do
a lot. When they’re woven together into a fabric, the whole blanket becomes strong
and warm. The Azure fabric consists of thousands of servers, woven together and
working as a cohesive unit. In Azure, you don’t need to worry about which hardware,
which node, what underlying operating system, or even how the nodes are load bal-
anced or clustered. Those are just gritty details best left to someone else. You just need
to worry about your application and whether it’s operating effectively. How much time
do you spend wrangling with these details for your on-premises projects? It’s probably
at least 10-20 percent of the total project cost in meetings alone. There are savings to
be gained by abstracting away these issues.

3.3

The Fabric Controller 57

In fact, Azure manages much more than just servers. There are plenty of other
assets that are managed. Azure manages routers, switches, IP addresses, DNS servers,
load balancers, and dynamic virtual local area networks (VLANS). In a static data cen-
ter, managing all these assets is a complex undertaking. It’s even more complex when
you’re managing multiple data centers that need to operate as one cohesive pool of
resources, in a dynamic and real-time way.

If the fabric is the operating system, then the Fabric Controller is the kernel.

The Fabric Controller

Operating systems have at their core a kernel. This kernel is responsible for being the
traffic cop in the system. It manages the sharing of resources, schedules the use of pre-
cious assets (CPU time), allocates work streams as appropriate, and keeps an eye on
security. The fabric has a kernel called the Fabric Controller (FC). Figure 3.3 shows
the relationship between Azure, the fabric, and the FC. Understanding these relation-
ships will help you get the most out of the platform.

The FC handles all of the jobs a normal operating system’s kernel would handle. It
manages the running servers, deploys code, and makes sure that everyone is happy
and has a seat at the table.

The FC is an Azure application in and of itself, running multiple copies of itself for
redundancy’s sake. It’s largely written in managed code. The FC contains the com-
plete state of the fabric internally, which is replicated in real time to all the nodes that
are part of the FC. If one of the primary nodes goes offline, the latest state informa-
tion is available to the remaining nodes, which then elect a new primary node.

The FC manages a state machine for each service deployed, setting a goal state
that’s based on what the service model for the service requires. Everything the FC does
is in an effort to reach this state and then to maintain that state when it’s reached. We’ll
go into the details of what the service model is in the next few pages, but for now, just
think of it as a model that defines the needs and expectations that your service has.

The FC is obviously very busy. Let’s look at how it manages to seamlessly perform

all these tasks.
§TA'/5?|<EF7 !’vvela an-ah D
i role f role \\EOB& Queues
S .

Fa bric

WE’E[L TITT | D Q| Sovween azrs, e fabicy ane
444444444444444444 l the Fabric Controller (FC). The

UL S UL LD UEELL | morcis an sbetrat mocei o

44444444444444444 the massive number of servers

e | NENNEEEEEEEEEEEE "} | in the Azure data center. The

444444444444444444 FC manages everything. For

\coiltroller i “’">l D U U U U U‘M U U U U U U U U U U U example, it recovers failed

servers and moves your
Wmdows Azure application to a healthy server.

58

3.3.1

3.3.2

CHAPTER 3 How Windows Azure works

How the FC works: the driver model

The FC follows a driver model, just like a conventional OS. Windows has no idea how
to specifically work with your video card. What it does know is how to speak to a video
driver, which in turn knows how to work with a specific video card. The FC works with
a series of drivers for each type of asset in the fabric. These assets include the
machines, as well as the routers, switches, and load balancers.

Although the variability of the environment is low today, over time new types of
each asset are likely to be introduced. The goal is to reduce unnecessary diversity, but
you’ll have business needs that require breadth in the platform. Perhaps you’ll get a
software load balancer for free, but
you’ll have to pay a little bit more per
month to use a hardware load bal-
ancer. A customer might choose a cer-

¢ Development
*Models
Developer | «New services and updates

C

«Provisions for runtime configuration tain option, such as a hardware load

o) balancer, to meet a specific need. The
1 FC would have a different driver for

Deployer

¢

¢ Allocation of Azure resources

Deployment | *NePwork is configured each piece of infrastructure it con-

¢

*Monitor health
*Take action to fix issues

R The FC uses these drivers to send
commands to each device that help
these devices reach the desired run-
ning state. The commands might cre-

municate with that infrastructure.

‘ trols, allowing it to control and com-

Goal state

v

Figure 3.4 How the lifecycle of an Azure service)
progresses towards a running state. Each role on ate a new VLAN to a switch or allocate

your team has a different set of responsibilities. a pool of virtual IP addresses. These
From here the FC does what it needs to make sure

A commands help the FC move the state
your servers are always running.

of the service towards the goal state.

Figure 3.4 shows how a service progresses to the goal state, from the developer writing

the code and defining the service model to the FC allocating and managing the
resources the service requires.

While the FC is moving all your services toward the running state, it’s also allocat-

ing resources and managing the health of the nodes in the fabric and of your services.

Resource allocation

One of the key jobs of the FC is to allocate resources to services. It analyzes the service
model of the service, including the fault and update domains, and the availability of
resources in the fabric. Using a greedy resource allocation algorithm, it finds which
nodes can support the needs of each instance in the model. When it has reserved the
capacity, the FC updates its data structures in one transaction. After the update, the
goal state of each node is changed, and the FC starts moving each node towards its goal
state by deploying the proper images and bits, starting up services, and issuing other
commands through the driver model to all the resources needed for the change.

3.3.3

34

34.1

The service model and you 59

Instance management

The FC is also responsible for managing the health of all of the nodes in the fabric, as
well as the health of the services that are running. If it detects a fault in a service, it
tries to remediate that fault, perhaps by restarting the node or taking it offline and
replacing it with a different node in the fabric.

When a new container is added to the data center, the FC performs a series of
burn-in tests to ensure that the hardware delivered is working correctly. Part of this
process results in the new resource being added into the inventory for the data center,
making it available to be allocated by the FC.

If hardware is determined to be faulty, either during installation or during a fault,
the hardware is flagged in the inventory as being unusable and is left alone until later.
When a container has enough failures, the remaining workloads are moved to differ-
ent containers and then the whole container is taken offline for repair. After the prob-
lems have been fixed, the whole container is retested and returned into service.

The service model and you
The driving force behind what the FC does is the service model that you define for

your service (see figure 3.5). You define the service model indirectly by defining the
following things when you’re developing a service:

= Some configuration about what the pieces to your service are
= How the pieces communicate
= Expectations you have about the availability of the service

The service model is broken into T
£ Y
two pieces of configuration and ('”ﬁ‘aﬁtrjcfure/‘ «ServiceDefinition.cedef
. . . e «Mmodel
is deployed with your service. y NS =
Each piece focuses on a different (L AT
Service model . fi ion; *ServiceConfiguration.cecf:
aspect of the model. In the fol- | v)“"“ffo”fo“dr:'f'on' " guratt g
lowing sections, you're going to \\ T
L3 N~ // """ '\\\\
le'arn about these conﬁgurau.on GO ... \icrosots sauce
pieces and how to customize \\m"de' y

them. We’ll also show you how

. Figure 3.5 The service model consists of several different
best to manage all the pieces of

pieces of information. This model helps Azure run your
your configuration. application correctly.

Defining configuration

Your solution in Visual Studio contains these two pieces of configuration in different
files, both of which are found in the Azure Service project in your solution:

» Service definition file (ServiceDefinition.csdef)
= Service configuration file (ServiceConfiguration.cscfg)

The service definition file defines what the roles and their communication endpoints
are in your service. This includes public HTTP traffic for a website, or the endpoint

60

3.4.2

CHAPTER 3 How Windows Azure works

details for a web service. You can also configure your service to use local storage
(which is different from Azure storage) and any custom configuration elements of the
service configuration file. The service definition can’t be changed at runtime; any
change requires a new deployment of your service. Your service is restricted to using
only the network endpoints and resources that are defined in this model. We’re going
to look at the service definition file in depth in chapter 4; for now you can think of
this piece of the configuration as defining what the infrastructure of your service is,
and how the parts fit together.

The service configuration file, which we’ll discuss in detail in chapter 5, includes
the entire configuration needed for the role instances in your service. Each role has
its own dedicated part of the configuration. The contents of the configuration file can
be changed at runtime, which removes the need to redeploy your application when
some part of the role configuration changes. You can also access the configuration in
code, similar to how you might read a web.config file in an ASP.NET application.

Adding a custom configuration element

In many applications, you store connection strings, default settings, and secret pass-
words (please don’t!) in the app.config or web.config file. You’ll often do the same
with an Azure application. First, you need to declare the format of the new configura-
tion setting in the .csdef file by adding a ConfigurationSettings node inside the role
you want the configuration to belong to:
<ConfigurationSettings>
<Setting name="BannerText"/>

</ConfigurationSettingss>
Adding this node defines the schema of the .cscfg file for that role, which strongly
types the configuration file itself. If there’s an error in the configuration file during a
build, you’ll receive a compiler warning. This is a great feature because there’s nothing
worse than deploying code when there’s a simple little problem in a configuration file.

Now that you’ve told Azure the new format of your configuration files, namely, that
you want a new setting called BannerText, you can add that node to the service config-
uration file. Add the following XML into the appropriate role node in the .cscfg file:
<ConfigurationSettings>

<Setting name="BannerText" value="KlatuBaradaNikto"/>

</ConfigurationSettingss>
During runtime, you want to read in this configuration data and use it for some pur-
pose. Remember that all configuration settings are stored as strings and must be cast
to the appropriate type as needed. In this case, you want a string to assign to your label
control text, so that you can use it as is.

txtPassword.Text = RoleEnvironment.GetConfigurationSettingValue ("BannerText") ;

Having lines of code like this all over your application can get messy and hard to man-
age. Sometimes developers consolidate their configuration access code into one class.
This class’s only job is to be a facade into the configuration system.

3.4.3

The service model and you 61

Centralizing file-reading code

It’s a best practice to move your entire configuration file-reading code from wherever
it’s sprinkled into a ConfigurationManager class of your own design. Many people use
the term service instead of manager, but we think that the term serviceis too overloaded
and that manager is just as clear. Moving your code centralizes all the code that knows
how to read the configuration in one place, making it easier to maintain. More impor-
tantly, it removes the complexity of reading the configuration from the relying code,
which illustrates the principle of separation of concerns. Moving the code to a central-
ized location also makes it easier to mock out the implementation of the Configura-
tionManager class for easier testing purposes (see figure 3.6). Over time, when the
APIs for accessing configuration change or if the location of your configuration
changes, you’ll have only one place to go to make the changes you need.

Reading configuration data in this manner might look familiar to you. You've
probably done this for your current applications, reading in the settings stored in a
web.config or an app.config file. When migrating an existing application to Azure,
you might be tempted to keep the configuration settings where they are. Although
keeping them in place reduces the amount of change to your code as you migrate it to
Azure, it does come at a cost. Unfortunately, the configuration files that are part of
your roles are frozen and are read-only at runtime; you can’t make changes to them
after your package is deployed. If you want to change settings at runtime, you’ll need
to store those settings in the .cscfg file. Then, when you want to make a change, you
only have to upload a new .cscfg file or click Configure on the service management
page in the portal.

The FC takes these configuration files and builds a sophisticated service model that
it uses to manage your service. At this time, there are about three different core model
templates that all other service models inherit from. Over time, Azure will expose
more of the service model to the developer, so that you can have more fine-grained
control over the platform your service is running on.

e — . Figure 3.6 A well-designed
Interface ConfigurationManager
class can centralize the busy

= Methods work of managing the

Vv GetDotabaseConnectionSiring

Fo— configuration system.
% GetlogProvider =
Consu 3
% GetMinimumPurchasePrice Class e
% GetTaxTables
) leonfigurationManager
ConfigurationManager £
Class ' ConfigurationManager
| © Methods Consumer2 3|
** ConfigurationManager Class
% GetDatabaseConnectionString * |
% GetEndDate |
% GetlogProvider . m
% GetMinimumPurchasePrice * ConfigurationManager Class
¥ GetTaxTables [y |

62

3.4.4

CHAPTER 3 How Windows Azure works

The many sizes of roles

Each role defined in your service model is basically a template for a server you want to
be deployed in the fabric. Each role can have a different job and a different configura-
tion. Part of that configuration includes local storage and the number of instances of
that role that should be deployed. How these roles connect and work together is part
of why the service model exists.

Because each role might have different needs, there are a variety of VM sizes that
you can request in your model. Table 3.1 lists each VM size. Each step up in size dou-
bles the resources of the size below it.

Table 3.1 The available sizes of the Azure VMs

VM size Dedicated CPU cores Available memory Local disk space
Small 1 1.7 GB 250 GB
Medium 2 3.5GB 500 GB
Large 4 7 GB 1,000 GB
Extra large 8 15 GB 2,000 GB

Each size is basically a slice of how big a physical server is, which makes it easy to allo-
cate resources and keeps the numbers round. Because each physical server has eight
CPU cores, allocating an extra-large VM to a role is like dedicating a whole physical
machine to that instance. You’ll have all the CPU, RAM, and disk available on that
machine. Which size you want is defined in the ServiceDefinition.csdef file on a role-
by-role basis. The default size, if you don’t declare one, is small. To change the default
size, add the following code, substituting ExtraLarge with the size that you want:

<WorkerRole name="ImageCompresser" vmsize="Extralarge">

If you’re using Visual Studio 2010, you can define the role configuration by double-
clicking the name of your web role in the Roles folder of your Cloud Service project.
Choose Properties and click the Configuration tab, as shown in figure 3.7.

The service model is also used to de-

fine fault domains and update domains, Configuration | -NET trust level
which we’ll look at next. Settings © Full trust
Windows Azure partial trust
Endpoints

Instances
Local Storage

5 Instance count: 1
Certificates e
VM size: Small x|
Startup action

Figure 3.7 Configuring your role doesn’t have to
be a gruesome XML affair. You can easily do it in
Visual Studio 2010 when you view the properties
information for the role you want to configure.

Launch browser for:

[¥] HTTP endpoint
HTTPS endpoint

3.5

3.5.1

3.5.2

It’s not my fault 63

It’s not my fault

Fault domains and update domains determine what portions of your service can be
offline at the same time, but for different reasons. They’re the way that you define
your uptime requirements to the FC and how you describe how your service updates
will happen when you have new code to deploy.

Let’s examine each type of domain in detail. Then we’ll present a service model
scenario that shows you how fault and update domains help increase fault tolerance in
your cloud service.

Fault domains

Fault domains are used to make sure that a set of elements in your service isn’t tied to a
single point of failure. Fault domains are based more on the physical structure of the
data center than on your architecture. Your service should typically have three or
more fault domains. If you have only one fault domain, all the parts of your service
could potentially be running on one rack, in the same container, connected to the
same switch. If there’s any failure in that chain, there’s a high likelihood of cata-
strophic failure for your service. If that rack fails, or the switch in use fails, then your
service is completely offline. By breaking your service into several fault domains, the
FC ensures that those fault domains don’t share any dependent infrastructure, which
protects your service against single points of failure.

In general, the FC will define three fault domains, meaning that only about a third
of them can become unavailable because of a single fault. In a failure scenario, the FC
immediately tries to deploy your roles to new nodes in the fabric to make up for the
failed nodes. Currently, the Azure SDK and service model don’t let you define your
own number of fault domains; the default number is thought to be three domains.

Update domains

The second type of domain defined in the service model is the wupdate domain. The
concept of an update domain is similar to a fault domain. An update domain is the
unit of update you’ve declared for your service. When performing a rolling update,
code changes are rolled out across your service one update domain at a time. Cloud
services tend to be big and tend to always need to be available. The update domain
allows a rolling update to be used to upgrade your service, without having to bring the
entire service down. These domains are usually defined to be orthogonal to your fault
domains. In this manner, if an update is being pushed out while there’s a massive
fault, you won’t lose all of your resources, just a piece of them.

You can define the number of update domains for your service in your ServiceDef-
inition.csdef file as part of the ServiceDefinition tag at the top of the file.

<ServiceDefinition xmlns="http://schemas.microsoft.com/ServiceHosting/
2008/10/ServiceDefinition™"

name="HawaiianShirtShop"

upgradeDomainCount="3">

64

3.5.3

3.6

CHAPTER 3 How Windows Azure works

If you don’t define your own update domain setting, the service model will default to
five update domains. Your role instances are assigned to update domains as they’re
started up, and the FC tries to keep the domains balanced with regard to how many
instances are in each domain.

A service model example Isolated lsolated lsolated

. . hardware hardware hardware
If you had a service running on _ hareware _

[Role C

Azure, you might need six role :Update | l
i 1| Instance 2

. : Domain 1
instances to handle the demand on

H Role A
i Instance 2

I Role C
Unstancc &

your service, but you should request Update
i Domain 2 {| Instance 1

nine instances instead. You request

more than you need because you Update iRoleC P Il i{RoleA i

. . i Domain 3 || Instance1 | || Instance?2 | Instance 3 !
want a high degree of tolerance in e B it el lime il
your architecture. As shown in fig- P Faut o jFaur o f o Pt

ure 3.8, you would have three fault
Figure 3.8 Fault and update domains help increase
fault tolerance in your cloud service. This figure shows
three instances of each of three roles.

domains and three update domains
defined. If there’s a fault, only a
third of your nodes are affected.
Also, only a third of the nodes will ever be updated at one time, controlling the num-
ber of nodes taken out of service for updates, as well as reducing the risk of any
update taking down the whole service.

In this scenario, a broken switch might take down the first fault domain, but the
other two fault domains would not be affected and would keep operating. The FC can
manage these fault domains because of the detailed models it has for the Azure data
center assets.

The cloud is not about perfect computing, it’s about deploying services and man-
aging systems that are fault tolerant. You need to plan for the faults that are inevitable.
The magic of cloud computing makes it easy to scale big enough so that a few node
failures don’t really impact your service.

All this talk about service models and an overlord FC is nice, but at the end of the
day, the cloud is built from individual pieces of hardware. There’s a lot of hardware,
and it all needs to be managed in a hands-off way. There are several approaches to
applying updates to a service that’s running. You’ll see in the next section that you can
perform either manual or automated rolling upgrades, or you can perform a full
static upgrade (also called a VIP swap).

Rolling out new code

No matter how great your code is, you’ll have to perform an upgrade at some point if
for no other reason than to deploy a new feature a user has requested. It’s important
that you have a plan for updating the application and have a full understanding of the
moving parts. There are two major ways to roll out an upgrade: a static upgrade or a roll-

ing upgrade.

3.6.1

Rolling out new code 65

When you perform a static upgrade, you do everything at once and you have to
take down your system, at least for a while. You should carefully plan your application
architecture to avoid a static upgrade because it impacts the uptime of your service
and can be more complicated to roll out. A rolling upgrade keeps your service up and
running the whole time. You should always consider performing the upgrade in the
staging environment first to make sure the deployment goes well. After a full battery
of end-to-end and integration tests are passed, you can proceed with your plans for
the production environment.

If the number of endpoints for a role has changed, or if the port numbers have
changed, you won’t be able to do either a static or a rolling upgrade. You’ll be forced
to tear down the deployment and redeploy.

Static upgrades

A static upgrade is sometimes referred to as a forklift upgrade because you're touching
everything all at once. You usually need to do a static upgrade when there’s a signifi-
cant change in the architecture and plumbing of your application. Perhaps there’s a
whole new architecture of how the services are structured and the database has been
completely redesigned. In this case, it can be hard to upgrade just one piece at a time
because of interdependencies in the system. This type of upgrade is required if you’re
changing the service model in any way.

This approach is also called a VIP swap because the FC is swapping the virtual IP
addresses that are assigned to your resources. When a swap is done, the old staging
environment becomes your new production environment and your old production
environment becomes your new staging environment (see figure 3.9). This can hap-
pen pretty fast, but your service will be down while it’s happening and you need to

Hosted Service
Production Staging
Hello Fabric vv2
NN NN
N S| —
Uparade... | [Suspend | [Configure... | [Uopgarade... | [Suspend | | Configure... |
HelloFabric WorkerRole: HelloFabric WebRole: WebRolel:
@ Ready 1 @ Ready 1 @ Ready 1
Web Site URL: Web Site URL:
http://azureinaction.cloudapp.net/ http://042e1971a4a3473a8ecal1202753f4020.cloudapp.net/

Figure 3.9 Performing a VIP swap, or static upgrade, is as easy as clicking the arrows. If things
go horribly awry, you can always swap back to the way things were. It’s like rewind for your
environment.

66

3.6.2

CHAPTER 3 How Windows Azure works

plan for that. The one great advantage to this approach is that you can easily swap
things back to the way they were if things don’t work out.

Your upgrade plan should consider how long the new staging (aka old produc-
tion) environment should stay around. You might want to keep it for a few days until
you know the upgrade has been successful. At that point, you can completely tear
down the environment to save resources and money.

To perform a VIP swap, log in to the Azure portal, choose the service that you want
to upgrade in the Windows Azure section, and then click the Summary tab. Next,
deploy your new application version to the staging environment. After everything is all
set up and you’re happy with it, click the circular button in the middle. The change-
over takes only a few minutes. If the new version isn’t working as expected, you can
easily click the button again and swap the two environments back where they came
from. Voila! The old version is back online.

You can also use the service management API to perform the swap operation. This
is one reason why you want to make sure that you’ve named your deployments clearly,
at least more clearly than we did in this example.

VIP swaps are nice, but some customers need more flexibility in the way they per-
form their rollouts. For them, there’s the rolling upgrade.

Rolling upgrades

If your roles are carrying state and you don’t want to lose that state as you completely
change to a new set of servers, then rolling upgrades are for you. Or maybe you want
to upgrade the instances of a specific role instead of all of the roles. For example, you
might want to deploy an updated version of the website, without impacting the pro-
cessing of the shopping carts that’s being performed by the backend worker roles.
Remember that when doing a rolling upgrade, you can’t change the service model of
the service that you’re upgrading. If you’ve changed the structure of the service con-
figuration, the number of endpoints, or the number of roles, you’ll have to do a VIP
swap instead.

There are two types of rolling upgrades: the automatic and the manual. When you
perform an automatic rolling upgrade, the FC drains the traffic to the set of instances
that’s in the first update domain (they’re numbered, starting with 0) by removing
them from the load balancer’s configuration. After the traffic is drained, the instances
are stopped, the new code is deployed, and then the instances are restarted. After
they’re back up and running, they’re added back into the load balancer’s list of
machines to route traffic to. At this point, the FC moves on to the next update domain
in the list. I’ll proceed in this fashion until all the update domains have been ser-
viced. Each domain should take only a few minutes.

If your situation requires that you control how the progression moves from one
domain to the next, you can choose to do a manual rolling upgrade. When you
choose this option, the FC stops after updating a domain and waits for your permis-
sion to move on to the next one. This gives you a chance to check the status of the
machines and the environment before moving forward with the rollout.

Rolling out new code 67

Production Deployment

Upgrade Mode
Y Automatic Upgrade: All upgrade domains will be upgraded in sequence.
“'Manual Upgrade: You can walk through each upgrade domain manually and retry a service upgrade.

Application Package

@Upload a file from your local storageCiUse a file from an Azure Storage account
Select a file:
Browse...

Configuration Settings

@Upload a file from your local storage”Use a file from an Azure Storage account
Select a file:

Browse...

Service Deployment Name

Choose a label for this deployment:

Service Upgrade
Do you want to upgrade the whole service?

QYes, | want to upgrade the whole service. all the web and worker roles will be upgraded in this
deployment.

ONo I only want to upgrade the selected role specificed below in this deployment.

=]

[__Deploy _]J[__Cancel]

Figure 3.10 Performing a rolling upgrade is easy. Click Upgrade on the Summary page
for the service to see this page and choose your options. You can upgrade all of the
roles or just one role during an upgrade.

To perform a rolling upgrade, log in to the Azure portal, choose the service that you
want to upgrade in the Windows Azure section, and then click the Summary tab. Click
the Upgrade button for the deployment you want to upgrade. You're presented with
some options, as shown in figure 3.10.

You can choose to perform an automatic or a manual upgrade. You can upgrade
all the roles in the package or just one of them. As in a normal deployment, you also
need to provide a service package, configuration, and a deployment name.

If you choose to upgrade a single role, then only the instances for that role in each
domain are taken offline for upgrading. The other role instances are left untouched.

You can also perform a rolling upgrade by using the service management APIL
When you use the management API, you have to store the package in BLOB storage
before starting the process. As with a VIP swap, you need to post a command to a spe-
cific URL (all these commands are covered in detail in chapter 18). Customize the
URL to match the settings for the deployment you want to upgrade:
https://management.core.windows.net/<subscription-id>/services/

hostedservices/<service-name>
/deployments/<deployment-names>/?comp=upgrade

68

3.7

3.7.1

CHAPTER 3 How Windows Azure works

The body of the command needs to contain the elements shown in the following
code. You need to change the code to supply the parameters that match your situa-
tion. The following sample performs a fully automatic upgrade on all the roles.
<?xml version="1.0" encoding="utf-8"?>
<UpgradeDeployment xmlns="http://schemas.microsoft.com/windowsazure">
<Mode>auto</Mode>
<PackageUrls>http://azureinaction.blob.core.windows.net/
deployment container/new code.cspkg </PackageUrls>
<Configuration>***the contents of the config file***</Configurations>
<Label>v3.2</Label>
</UpgradeDeployment >
Performing a manual rolling update with the service management API is a little trick-
ier, and requires several calls to the WalkUpgradeDomain method. The upgrades are
performed in an asynchronous manner; the first command starts the process. As the
upgrade is being performed, you can check on the status by using Get Operation
Status with the operation ID that was supplied to you when you started the operation.
We’ve covered how to upgrade running instances and talked about what the fabric
is. Now we’ll go one level deeper and explore the underlying environment.

The bare metal

No one outside of the Azure team truly knows the nature of the underlying servers
and other hardware, and that’s OK because it’s all abstracted away by the cloud OS.
But you can still look at how your instances are provisioned and how automation is
used to do this without hiring the entire population of southern Maine to manage it.

Each instance is really a VM running Windows Server 2008 Enterprise Edition x64
bit, on top of Hyper-V. Hyper-V is Microsoft’s enterprise virtualization solution, and it’s
available to anyone. Hyper-V is based on a hypervisor, which manages and controls the
virtual servers running on the physical server. One of the virtual servers is chosen to
be the host OS. The host OS is a virtual server as well, but it has the additional respon-
sibilities of managing the hypervisor and the underlying hardware.

Hyper-V has two features that help in maximizing the performance of the virtual
servers, while reducing the overall cost of running those servers. One of these features
is core-and-socket parking; the other is the reduced footprint of Hyper-V itself. Core-
and-socket parking needs to be supported by the physical CPU.

Let’s drill way down into the workings of Hyper-V, how the virtual servers connect
to it, and the processes of booting up these servers and getting your instances up and
running.

Free parking

The first feature of Hyper-V is core-and-socket parking. Hyper-V can monitor the use
of each core and CPU (which is in a socket on the motherboard) as a whole. Hyper-V
moves the processes around on the cores to consolidate the work to as few cores as
possible. Any cores not needed at that time are put into a low energy state. They can
come back online quickly if needed but consume much less power while they wait.

3.7.2

3.7.3

The bare metal 69

Hyper-V can do this at the socket level as well. If it notices that each CPU socket is
being used at only 10 percent of capacity, for example, it can condense the workload
to one socket and park the unused sockets, placing them in a low energy state. This
helps data centers use less power and require less cooling. In Azure, you have exclu-
sive access to your assigned CPU core. Hyper-V won’t condense your core with some-
one else’s. It will, however, turn off cores that aren’t in use.

A special blend of spices

The version of Hyper-V used by Azure is a special version that the team created by
removing anything they didn’t need. Their goal was to reduce the footprint of Hyper-
V as much as possible to make it faster and easier to manage. Because they knew
exactly the type of hardware and guest operating systems that will run on it, they could
rip out a lot of code. For example, they removed support for 32-bit hosts and guest
machines, support needed for other types of operating systems, and support for hard-
ware they weren’t supporting at all.

Not stopping there, they further tuned the hypervisor scheduler for better perfor-
mance while working with cloud data-center workloads. They wanted the scheduler to
be more predictable in its use of resources and fairer to the different workloads that
were running, because each would be running at the same priority level. They also
enhanced Hyper-V to support a heavier I/0 load on the VM bus.

Creating instances on the fly

When a new server is ready to be used, it’s booted. At this point, it’s a naked server
with a bare hard drive. You can see the steps involved in starting the server, adding an
instance to your service, and adding an additional server in figure 3.11.

D Maintenance 0S

Host partition Guest partition Guest partition Guest partition

Service 1 | Service 2) Service \
bits bits bits |

v

éﬂ"

Web | Worker | Worker)
VHD 1 VHD o VHD

W & \17
Host-differencing | Guest-differencing | Gueﬁt—differencingw Guest-differencing)
VYHD VHD ‘ VYHD VHD |

{ 4 i
L J]

: \

Ser\\/ﬁ_li”DC ore ‘ p E;;:;F\’/r |I—|5[§ | @ Server Core base VHD 1

Hypervisor

Physical Server Hardware
CPU, memory, disk, and network

Figure 3.11 The structure of a physical server and virtual instance servers in Azure. This figure
illustrates the process involved in starting the server (@ and @). It also shows the process of
starting an instance and adding it to your service (3] through 0), and adding another virtual
server (@). All these steps are coordinated by the FC and take only a few minutes.

70

CHAPTER 3 How Windows Azure works

During boot up, the server locates a maintenance OS on the network, using standard
Preboot Execution Environment (PXE) protocols. (PXE is a process for booting to an
operating system image that can be found on the network.) The server downloads the
image and boots to it (€ in figure 3.11).

The maintenance 0S

The maintenance 0S is based on Windows Preinstallation Environment (Windows PE).
It’s a thin 0S that’s used by many IT organizations for low-level troubleshooting and
maintenance. The tools and protocols for Windows PE are available on any Windows
server and are used by a lot of companies to easily distribute machine images and
automate deployment.

The maintenance OS connects with the FC and acts as an agent for the FC to execute
any local commands needed to prepare the disk and machine. The agent prepares the
local disk and streams down a Windows Server 2008 Server Core image to the local
disk @. This image is a virtual hard drive (VHD) and is a common file format used to
store the contents of hard drives for VMs. (VHDs are large files representing the com-
plete or partial hard drive for a VM.) The machine is then reconfigured to boot from
this core VHD. This image becomes the host OS that manages the machine and inter-
acts with the hypervisor. The host OS is Windows Server 2008 Core because almost all
but the most necessary modules have been removed from the operating system. You
might be running this in your own data center.

The Azure team worked with the Windows Server team to develop the technology
needed to boot a machine natively from a VHD that’s stored on the local hard drive.
The Windows 7 team liked the feature so much that they added it to their product as
well. Being able to boot from a VHD is a key component of the Azure automation.

After the machine has rebooted using the host OS image, the maintenance OS is
removed and the FC can start allocating resources from the machine to services that
need to be deployed. A base OS image is selected from the prepared image library
that'll meet the needs of the service that’s being deployed €). This image (a VHD file)
is streamed down to the physical disk. The core OS VHDs are marked as read-only,
allowing multiple service instances to share a single image. A differencing VHD is
stacked on top of the read-only base OS VHD to allow for changes specific to that vir-
tual server @. Different services can have different base OS images, based on the ser-
vice model applied to that service.

On top of the base OS image and attached to it is an application VHD that contains
additional requirements for your service @. The bits for your service are downloaded
to the application VHD 0, and then the stack is booted. As it starts, the stack reports its
health to the FC. The FC then enrolls the stack into the service group, configuring the
VLAN assigned to your service and updating the load balancer, IP allocation, and DNS

3.7.4

The bare metal 71

configuration. When this process is completed, the new node is ready to service
requests to your application.

Much of the image deployment can be completed before the node is needed, cut-
ting down on the time it can take to start a new instance and add it to your service.

Each server can contain several VMs. This allows for the optimal use of computing
resources and the flexibility to move instances around as needed. As a second or third
virtual server is added, it might use the base OS VHD that has already been down-
loaded @ or it can download a different base OS VHD based on its needs. This second
machine then follows the same process of downloading the application VHD, booting
up, and enrolling into the cloud.

All these steps are coordinated by the FC and are usually accomplished in a few
minutes.

Image is everything

If the key to the automation of Azure is Hyper-V, then the base VM images and their
management are the cornerstone. Images are centrally created, also in an automated
fashion, and stored in a library, ready to be deployed by the FC as needed.

A variety of images are managed, allowing for the smallest footprint each role
might need. If a role doesn’t need IIS, then there’s an image that doesn’t have IIS
installed. This is an effort to shrink the size and runtime footprint of the image, but
also to reduce any possible attack surfaces or patching opportunities.

All images are deployed using an Xcopy deployment model. This model keeps
deployment simple. If the FC relied on complex scripts and tools, then it would never
truly know what the state of each server would be and it would take a lot longer to
deploy an instance. Again, diversity is the devil in this environment.

This same approach is used when deploying patches. When the OS needs to be
patched, Microsoft doesn’t download and execute the patch locally as you might on
your workstation at home. Doing so would lead to too much risk, having irregular
results on some of the machines. Instead, the patch is applied to an image and the
new image is stored in the library. The FC then plans a rollout of the upgrade, taking
into account the layout of the cloud and the update domains defined by the various
service models that are being managed.

The updated image is copied in the background to all of the servers used by the
service. After the files have been staged to the local disk, which can take some time,
each update domain group is restarted in turn. In this way, the FC knows exactly what’s
on the server. The new image is merely wired up to the existing service bits that have
already been copied locally. The old image is kept locally for a period of time as an
escape hatch in case something goes wrong with the new image. If that happens, the
server is reconfigured to use the old image and rebooted, according to the update
domains in the service model. This process dramatically reduces the service window of
the servers, increasing uptime and reducing the cost of maintenance on the cloud.

72

3.8

381

CHAPTER 3 How Windows Azure works

We’ve covered how images are used to manage the environment. Now we’re going
to explain what you can see when you look inside a running role instance.

The innards of the web role VM

Your first experience with roles in Azure is likely to be with the web role. To help you
develop your web applications more effectively, it’s worth looking in more detail at the
VM that your web role is hosted in. In this section, we’ll look at the following items:

= The details of the VM

= The hosting process of your web role (WaWebHost)

= The RDAgent process 72 it chrshayall cloud

G- - aE
Exploring the VM details g Favortes | (s 8 suggested Sites - B Get ocs Addons -
@ntoscrvishayk. coucepprerer.. | | il = B - Lm0 - Bage~ smy- Teok- @ 7

You can use the pOWer Of native MachineDetads aspx Mamfacturer: Microsoft Corporation

code execution to see some of the Miadel: Virtual Machine
System Type: x64-based PC

juicy details about the VM thatyour | et Fhysical Memony 1877766144

. OF Name: Microsoft® Windows Server® 2008 Enterprise
web role runs on. Figure 3.12 || 05 Versien 606002 131072

CLE Version: 2.0.50727.4016
shows an ASPNET web page that || Widows Drectory. Diwindows

Current Directory: EA

shows some of the internal details, Time Since Last Restart 00:58:31.0620000
including the machine name, Machine Mame: ED00155D316358
Domam Name: CIS
domain name, and the user name User Hame: 46e78684-75a9-4076-a0ca-c 50625676530
. . Archstecture: x64
that the code is running under. Processor Count: 1

. CPU Name: Quad-Core AMD Opteron(tm) Processor 2347 HE
If you want, you can easily gen-

erate the web page shown in fig-

[T T [[inkemet | Prokected Mode: On 7= [Fios -

ure 3.12 by creating a Slmple Figure 3.12 Using native code, you can see some of the

ASPX page with some labels that machine details of a web role in Windows Azure. In this

represent the text, as follows: example, Microsoft is using Windows Server 2008
Enterprise x64. Notice that the user name that the process
<div> is running as is a GUID.
ProcessorCount:

<asp:Label ID="lblProcessorCount" runat="server" />
</div>

Finally, you can display the internal details of the VM using the code-behind in the fol-
lowing listing.

using System.Management;

public partial class Default : System.Web.UI.Page

{

Class fetches
information
about server

protected void Page Load(object sender, EventArgs e)

{

// Initialize
var computer = new Microsoft.VisualBasic.Devices.Computer() ;
1lblMachineName.Text = computer.Name;

The innards of the web role VM 73

// OS Details
1blOSName.Text = computer.Info.OSFullName;
1blOSVersion.Text = computer.Info.OSVersion;
lblMachineName.Text = computer.Name;
Gets length of time

// Computer System Details server has been running
lblProcessorCount.Text =

System.Environment .ProcessorCount.ToString() ;
1blCLRVersion.Text = System.Environment.Version.ToString() ;
lblCurrentDirectory.Text = GetCurrentDirectory() ;
lblTimeSincelLastRestart.Text = GetTimeSincelLastRestart () ;
lblDomainName.Text = System.Environment.UserDomainName;
1blUserName.Text = System.Environment.UserName;
1blCPUName.Text = GetCPUName () ;

lblArchitecture.Text = GetArchitecture() ; Gets user

} name service

is running as
private string GetCurrentDirectory () Gets domain
{ name server
try is running on

{
}

catch

{

return System.Environment.CurrentDirectory;

return "unavailable";

}

private string GetTimeSinceLastRestart ()

try
TimeSpan time = new TimeSpan(0, 0, 0, O,
System.Environment .TickCount) ;
return time.ToString() ;

}

catch

{
}

return "unavailable";

}

private string GetCPUName ()

{

try

using (ManagementObject Mo = new
ManagementObject ("Win32 Processor.DeviceID='CPUO'"))

return (string) (Mo["Name"]) ;

}

catch

{

return "unavailable";

74 CHAPTER 3 How Windows Azure works

}

private string GetArchitecture ()

{

try
{
using (ManagementObject Mo = new
ManagementObject ("Win32 Processor.DeviceID='CPU0'"))
{
ushort result = (ushort) (Mo["Architecture"]) ;
switch (result)
{
case 0:
return "x86";
case 9:
return "x64";
default:
return "other";
}
}
1
catch

{
}

return "unavailable";

}

You can now, of course, deploy your web page to Windows Azure and see the inner
details of your web role, which were shown in figure 3.12. These machine details pro-
vide you with some interesting facts:

= Web roles run on Windows 2008 Enterprise Edition x64

= They run quad core AMD processors and one core is assigned
= The domain name of the web role is CIS

= This VM has been running for an hour

= The Windows directory lives on the D:\ drive

= The web application lives on the E\ drive

This is just the beginning; feel free to experiment and discover whatever information
you need to satisfy your curiosity about the internals of Windows Azure by using calls
similar to those shown in listing 3.1.

3.8.2 The process list

Now that we’re rummaging around the VM, it might be worth having a look at what
processes are actually running on the VM. To do that, you’ll build an ASPNET web
page that’ll return all the processes in a pretty little grid, as shown in figure 3.13.

To generate the list shown in figure 3.13, create a new web page in your web role
with a GridView component called processGridview:

3.83

The innards of the web role VM 75

@ http://chrishayuk.cloudapp.net/.. EERERX

|

@v - !@_ http '.f..!.'-.-’:sﬁ"... “| B | s : X |

¥

i iy Favorites | o5 @ Suggested Sites v

i € http://chrishayuk.cloud...)’; o :
msdtc 828 :
osdiag 1260
rdagent 1556 3

RDMonitorAgent 1292
WaWebHost 1208

services 584
SLsve 984
smss 396

Figure 3.13 The process list of a Windows Azure VM.
The RDAgent process is related to Red Dog, which was
the code name for Azure while it was being developed.

<asp:GridView ID="processGridView" runat="server"/>

Next, add a using System.Diagnostics statement at the top of the code-behind and
then add the following code to the Page Load event:

var processes = Process.GetProcesses(); 4—‘ Gets list of
o] running processes
processGridView.DataSource = from process in processes
orderby process.ProcessName
select new Uses LINQ
{ query to
Name = process.ProcessName, streamline
Id = process.Id.ToString() }; data returned
1
processGridview.DataBind() ; q—‘ Binds query result to
grid for screen output

This code will list all the processes on a server and bind the returned list to a Gridview
on a web page, as displayed in figure 3.13. If you look at the process list displayed in
figure 3.13, you'll see the two Windows Azure—specific services that we’re interested
in: WaWWebHost and RDAgent.

We’ll now spend the next couple of subtopics looking at these processes in more
detail.

The hosting process of your website (WaWebHost)

If you were to look at the process list for a live web role (shown in figure 3.13), or if
you were to fire up your web application in Windows Azure and click the Process tab,
you would notice that the typical IIS worker process (w3wp.exe) isn’t present when
your web server is running.

You would also notice that if you stop your IIS server by issuing IISReset - stop,
your web server continues to run. You know from installing the Windows Azure SDK

76

3.84

3.9

CHAPTER 3 How Windows Azure works

that web roles are run under IIS 7.0. So, why can’t you see your roles in IIS, or restart
the server using IISReset?

HOSTABLE WEB CORE

Although Windows Azure uses IIS 7.0, it makes use of a new feature, called hostable web
core, which allows you to host the IIS runtime in-process. In the case of Windows Azure,
the WaWebHost process hosts the IIS 7.0 runtime. If you were to look at the process list
on the live server or on the development fabric, you would see that as you interact
with the web server, the utilization of this process changes.

WHY IS AZURE RUN IN-PROCESS RATHER THAN USING PLAIN OLD IlIS?
The implementation of the web role is quite different from that of a normal web
server. Rather than using a system administrator to manage the running of the web
servers, the data center overlord—the FC—performs that task. The FC needs the abil-
ity to interact and report on the web roles in a consistent manner. Instead of attempt-
ing to use the Windows Management Instrumentation (WMI) routines of IIS, the
Windows Azure team opted for a custom Windows Communication Foundation
(WCF) approach.

This custom in-process approach also allows your application instances to interact
with the WaWebHost processing using a custom API via the RoleEnvironment class. You
can read more about the RoleEnvironment class in chapter 4.

The health of your web role (RDAgent)

The RDAgent process collects the health status of the role and the following manage-
ment information on the VM:

= Server time

= Machine name

= Disk capacity

= OS version

= Memory

= Performance statistics (CPU usage, disk usage)

The role instance and the RDAgent process use named pipes to communicate with each
other. If the instance needs to notify the FC of its current state of health, notification is
communicated from the web role to the RDAgent process using the named pipe.

All the information collected by the RDAgent process is ultimately made available
to the FC; it determines how to best run the data center. The FC uses the RDAgent pro-
cess as a proxy between itself, the VM, and the instance. If the FC decides to shut down
an instance, it instructs the RDAgent process to perform this task.

Summary

Hopefully, you’ve learned a little bit about how Azure is architected and how Microsoft
runs the cloud OS. You also know how data centers have changed over the generations

Summary 77

of their development. Microsoft has spent billions of dollars and millions of work hours
building these data centers and the OS that runs them.

Windows Azure truly is an operating system for the cloud, abstracting away the
details of the massive data centers, servers, networks, and other gear so you can simply
focus on your application. The FC controls what’s happening in the cloud and acts as
the kernel in the operating system. With the power of the FC and the massive data cen-
ters, you can define the structure of your system and dynamically scale it up or down
as needed. The infrastructure makes it easy to do rolling upgrades across your infra-
structure, leading to minimal downtime of your service.

The service model that you define consists of the service definition and service
configuration files and describes, to the FC, how your application should be deployed
and managed. This model is the magic behind the data center automation. New con-
figuration settings are held in the ServiceDefinition.csdef and ServiceConfigura-
tion.cscfg files. Centralizing all your configuration file-reading code into one neat,
handy ConfigurationManager class is a real time saver.

Fault and update domains describe how the group of servers running your applica-
tion should be separated to protect against failures and outages. Fault domains ensure
that your service is not tied to a single point of failure, which could be catastrophic to
your service. An update domain provides the ability to perform a rolling upgrade,
keeping you from having to take down your whole service to do an upgrade.

When you need to upgrade your application, you can perform either a static
upgrade or a rolling upgrade, which you can do via the Azure portal. All you do is
choose a few options and click a button, or you can use the service management APL

The automated nature of Azure is thanks to Hyper-V, Microsoft’s enterprise virtual-
ization solution. Hyper-V consolidates work to as few cores as possible by monitoring
the use of each core and CPU, all while maintaining a small footprint.

In the next few chapters, we’ll work much more closely with the service runtime.
We’ll look at how you know when you’re running in the fabric, and the configuration
magic of the service model.

MICROSOFT .NET/CLOUD

Azure INACTION
(hris Hay < Brian H. Prince

icrosoft Azure is a cloud service with good scalability,
pay-as-you-go service, and a low start-up cost. Based on

Windows, it includes an operating system, developer
services, and a familiar data model.

Azure in Action is a fast-paced tutorial that introduces cloud
development and the Azure platform. The book starts with the
logical and physical architecture of an Azure app, and quickly
moves to the core storage services—BLOB storage, tables, and
queues. Then, it explores designing and scaling frontend and
backend services that run in the cloud. Through clear, crisp
examples, you'll discover all facets of Azure, including the
development fabric, web roles, worker roles, BLOBs, table
storage, queues, and more.

This book requires basic C# skills. No prior exposure to cloud
development or Azure is needed.

What's Inside

¢ Data storage and manipulation
* Using message queues

* Deployment and management
* Azure’s data model

A Microsoft MVP specializing in high-transaction databases,
Chris Hay is a popular speaker and founder of the Cambridge, UK,
NET usergroup. Brian H. Prince is a Microsoft Architect Evange-
list who helps customers adopt the cloud.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/AzureinAction

$44.99 / Can $51.99 [INCLUDING eBOOK]

‘ee eb,
SEE IN

“Easy to read, easy to
recommend.”
— Eric Nelson, Microsoft UK

“I doubt even the Azure team

knows all of this.”
— Mark Monster, Rubicon

“An educational ride at an
amusement park—great
information and lots of
humor.”

—Michael Wood
Strategic Data Systems

“Highly recommended, like
all Manning books.”

— James Hatheway
i365, A Seagate Company

“This book will get you in the
cloud... and beyond.”

— Christian Siegers, Cap Gemini

ISBN 13: 978-1-935182-48-1
ISBN 10: 1.-9351.82-48-X

‘ ‘ 54499
oN7819351182481

	AzureSC-front.pdf
	Azure-SC-3brief
	Azure-SCh-03
	5-Hay-Azure-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

