
SAMPLE CHAPTER

Hello Scratch!

by Gabriel Ford, Sadie Ford, and Melissa Ford

Sample Chapter 7

Copyright 2018 Manning Publications

PART 1 SETTING UP THE ARCADE 1
1 Getting to know your way around Scratch 3
2 Becoming familiar with the Art Editor 23
3 Meeting Scratch’s key blocks through

important coding concepts 47

PART 2 TURNING ON THE MACHINES 79
4 Designing a two-player ball-and-paddle game 81
5 Using conditionals to build a two-player

ball-and-paddle game 95

PART 3 CODING AND PLAYING GAMES 125
6 Designing a fixed shooter 127
7 Using conditionals to build your fixed shooter 144
8 Designing a one-player ball-and-paddle game 175
9 Using variables to build your one-player

ball-and-paddle game 194

Brief contents

10 Designing a simple platformer 221
11 Using X and Y coordinates to make a simple

platformer 239
12 Making a single-screen platformer 278
13 Using arrays and simulating gravity in a

single-screen platformer 297
14 Becoming a game maker 339

7
Using conditionals
to build your
fixed shooter

You’ve probably figured out by now that the way people invent new
video games is to look at old video games. If a video game is a big success,
other game companies try to imitate it, making small changes to the visu-
als or goals of the game while keeping the same mechanics. That’s what
happened when Intellivision noticed the popularity of Atari’s Asteroids.

Asteroids was released in 1979 and was a huge success. The player con-
trolled a space cannon flying in outer space that could spin around and
shoot at the rocks falling around them. Intellivision made its version—
Astrosmash—in 1981, moving the space cannon to the ground, the colorful
rocks to the sky, and adding a few extra enemies such as spinning bombs.

But don’t think that Intellivision is just a copycat. Asteroids was based on
the game Spacewar! And Spacewar! probably would have been based on
something else if it wasn’t one of the first video games. The game industry
has a long history of creating similar games, which makes it easy for play-
ers to pick up a new game and immediately understand their goal and
how to move their sprite.

Like Astrosmash, the goal of Wizards vs. Ghosts is to shoot the ghosts
coming at you with sparks from your wand while trying not to get hit by
any of the apparitions. The ghosts won’t break apart like the rocks in
144

145
Asteroids or Astrosmash but instead disappear from the screen when
blasted by the wizard’s spell, as shown in figure 7.1.

Wizards vs. Ghosts is a fixed shooter, which means the sprite doing the
blasting (in this case, the wizard) can only move back and forth on one
fixed plane on the screen. You can’t make the wizard fly above the
ghosts, and you can’t get him to hide in the grass. He can only move
across the ground while fighting the ghosts. Additionally, the scenery is
fixed and remains the same—a big, open field—throughout the whole
game rather than changing as the player moves through a larger uni-
verse. The player is looking at the action from the side as if it is hap-
pening in front of them.

There are lots of types of shoot-em-ups, all of them named based on the
way you’re viewing the action or the abilities of the main sprite, such as
side-scrolling shooters (games where the action makes the player keep
flying in the same direction), rail shooters (where the game moves the
sprite so you can concentrate on the single action of blasting away the
enemy), and multidirectional shooters (where the main sprite can move
in any direction).

You’ll notice that all of these types of games include the word shooter.
Violence plays a big role in video games, and it’s common to have the
player fighting against an enemy. Although games can be a safe way to
explore something you would never do in real life (such as shoot at

Figure 7.1 In Wizards vs. Ghosts, the player
moves the wizard back and forth while blasting
ghosts with his wand. The player loses a life when-
ever he touches a ghost, loses points whenever a
ghost touches the ground, and gains points
whenever he blasts one away.

146 CHAPTER 7 Using conditionals to build your fixed shooter
rocks!), you also don’t have to make your game violent. The most cre-
ative fixed shooters move away from guns and cannons and use other
methods for fighting the enemy. For instance, in this game you’ll use a
magic wand to blast your enemy, the ghosts.

In this chapter, you will learn

 How to use conditionals to check whether the player is pressing the
spacebar

 How to use loops to keep sprites continuously moving
 How to use the same variable to reward and remove points

If you didn’t get your letter from Hogwarts, here is your chance to not
only get to be a wizard, but to rid the world of pesky ghosts like
Peeves. Open up your Wizards vs. Ghosts project where you made
your sprites in chapter 6 and get ready to code.

Preparing to program
You are steps away from being ready to write the code for this pro-
gram, but there are a few small tasks you must complete before you’re
ready to go.

Missing sprites
If you skipped chapter 6, either flip back and complete it or go to the
Manning site and download the background and sprites for Wizards
vs. Ghosts. The directions for importing are the same as chapter 5. You
should have a wizard, a ghost, a group of sparks, and a barrier line, as
well as the nighttime background.

Preparing the Stage
You’ll need to increase the size of your wizard and ghost. The wizard
needs eight clicks with the Grow tool from the Grey Toolbar, and the
ghost needs six clicks. The sparks and line are both the correct size.

If your wizard is not already standing on the grass, click and drag the
wizard on the Stage to pull him onto the green third of the screen. You
don’t need to move any other sprite because they will all be coded into
position.

Programming the wizard 147
Programming the wizard
The wizard is the equivalent to the space cannon in Astrosmash. You
will move him back and forth along the grass using the arrow keys
while you press the spacebar to fire spells from his wand. Three pro-
grams power the wizard: a movement script, a life deducting script,
and a game ending script. All scripts in this section are applied to the
wizard, so go put the blue box around the wizard sprite in the Sprite
Zone and don’t move the blue box until you program the ghost in the
next section. Remember, the names or values on your blocks may be
slightly different from time to time, so use the completed script images
to make sure you choose the correct block.

Making a movement script
The wizard is standing in the grass,
but he can’t go anywhere. It’s going
to be hard to catch that falling ghost
in figure 7.2 if he’s unable to move.

You need to write a script that will
give the player the ability to move
the wizard left and right when the
arrow keys are pressed.

To give the wizard the ability to
move

1 Start with a When Flag Clicked
(Motion) block.

2 Snap a Forever (Control) block underneath to start a loop.

3 Move two If/Then (Control) blocks inside the Forever block. Stack
them atop one another. You’re going to set two conditions.

4 Slide a Key Space Pressed (Sensing) block into each of the empty,
hexagonal spaces in the If/Then block. Change the top Key Space
Pressed block to Left Arrow using the drop-down menu and the bot-
tom Key Space Pressed block to Right Arrow. This sets what will
happen if the left or right arrow keys are pressed on the keyboard.

Figure 7.2 The wizard is currently unable to
move beneath the ghosts in order to shoot
sparks at them.

148 CHAPTER 7 Using conditionals to build your fixed shooter
5 Place a Change X by 10 (Motion) block inside each If/Then block.
Change the number in the first Change X by 10 block to –10. This
will move the wizard 10 coordinate spaces to the left. You don’t need
to make any changes to the second Change X by 10 block because
positive numbers move toward the right.

The first script is now complete. Does your script match the one in
figure 7.3?

Figure 7.3 The movement script allows the player to move the wizard left and right along
the grass.

WHY 10 COORDINATES?
Question: why have the wizard move ten spaces at a time

instead of one space?
Answer: you know that negative numbers move to the left and positive num-
bers move to the right, but you also need to think about the speed at which
you’re setting the wizard to move. The lower the number, the slower the wiz-
ard will move across the Stage. The higher the number, the faster the wizard
will move. Jumping eight coordinate spaces at a time ensures that the wizard
doesn’t miss a falling ghost by overshooting the space, nor does he inch for-
ward at a glacial speed. Ten is good for this game, though you can experiment
with other numbers at the end of the chapter.

You’ve set the wizard to jump 10 coordinates at a time. Remember,
the higher the coordinate number, the faster the sprite will move.

First condition: If the
left arrow key is pressed...

Everything inside the Forever
block runs on a loop.

Second condition: If the right
arrow key is pressed...

...then move 10 coordinates to the right.

...then move 10 coordinates to the left.

On switch

ANSWER THISANSWER THIS

Programming the wizard 149
Making a life deducting script
Currently, the ghosts can swoop straight through our wizard without
anything happening. But the ghost is the wizard’s sworn enemy!
Shouldn’t something happen if the ghost touches the wizard, as in
figure 7.4?

You need to write a script that will deduct a “life” every time a ghost
touches the wizard. The player will start out the game with three lives,
or turns.

To make this life deducting script

1 Start with a When Flag Clicked (Events) block.
2 Add a Forever (Control) block underneath to start a loop.
3 Slide an If/Then (Control) block inside the Forever block to set a

condition.
4 Place a Touching (Sensing) block in the empty hexagonal space on the

If/Then block. Use the drop-down menu to set the sprite to Ghost.
You’ve now set a condition: if the wizard is touching the ghost sprite.

5 Go to Data and create a variable called Lives. Keep it on the default
For All Sprites setting. Position the variable in the top left corner of
the Stage.

6 Drag a Change Lives by 1 (Data) block inside the If/Then block.
Change the 1 to a –1 because you want to deduct, not add, a life.

Lives need to be
deducted when
the ghost touches
the wizard.

The ghost
is touching
the wizard.

Figure 7.4 The ghost is touching the wizard, but nothing is happening.

150 CHAPTER 7 Using conditionals to build your fixed shooter
You’ve now set the action that will happen if the condition is met:
change the value of the variable Lives by –1.

7 Slip a Wait 1 Secs (Control) block under the Change Lives by –1
block. Change the 1 to a 2, which will give the game two seconds to
get rid of the ghost so the same ghost doesn’t glitch and remove mul-
tiple lives at a time.

You now have the script, shown in figure 7.5, that will remove one of
the player’s three chances whenever a ghost sprite touches the wizard.

Figure 7.5 The completed life deducting script removes one of the player’s
three chances when a ghost touches the wizard.

Making a game ending script
This is the final script for the wiz-
ard, and it solves a big problem:
the game currently doesn’t have an
end point. Sure, you’re planning on
giving the player three chances to
get the ghosts, but currently, they
can keep going long after they’ve
used up their three chances, like
the scoreboards in figure 7.6.

This script will check how many
lives the player has left, and once it
is less than 1, it will stop the game.

Everything inside the Forever
block runs on a loop.

Sets a condition: If the wizard
touches the ghost sprite...

...and wait two seconds.

...then remove a life...

On switch

The player has taken 39 turns!

Figure 7.6 The game can go on forever
unless you set an end point.

Programming the wizard 151
To make the game ending script

1 Start with a When Flag Clicked (Events) block.

2 Add a Forever (Control) block underneath to start a loop.
3 Slide an If/Then (Control) block inside the Forever block to set a

condition.
4 Place a Square < Square (Operators) block inside the empty hexag-

onal space in the If/Then block. Fill the left square with a Lives
(Data) block and type a 1 in the right square. You’ve set a condition:
if the value of the variable Lives is less than 1, then do something.
You’ll define that “something” with the next step.

5 Slide a Stop All (Control) block inside the If/Then block. That is the
action that will happen if the condition is met: all the scripts will
stop, and the game will end.

The game ending script shown in figure 7.7 is now complete. Check
your work against the image because this is the final script for the wiz-
ard sprite.

Figure 7.7 The completed game ending script tells Scratch when to
end the game of Wizards vs. Ghosts.

There are three scripts for the wizard sprite and three loops. Wizards
vs. Ghosts is a fast-paced game, and loops enable a set of actions to run
indefinitely with the click of a single on switch—in this case, the When
Flag Clicked block.

The ghost will have its own set of loops because you’ll want the ghosts
to continuously generate and fall during the game.

Everything inside the Forever
block runs on a loop.

Sets a condition: If the player’s
lives are less than 1...

...then stop all the scripts
and end the game.

On switch

152 CHAPTER 7 Using conditionals to build your fixed shooter
Programming the ghosts
Once again, you only have one ghost, but I keep using the plural:
ghosts. This is your clue that you’re about to make many copies of the
ghost, by cloning them with code. The ghosts are the equivalent to the
asteroids that fall during Astrosmash, and they require three scripts: a
positioning script, a cloning script, and a movement script. Put the blue
box around the ghost in the Sprite Zone and leave it there for all three
scripts.

Making a positioning script
Where do ghosts hang out when
they’re not swooping down and
haunting the wizard? In this game,
they live in the sky, so they’re in the
perfect position to descend on our
wizard, as you can see in figure 7.8.

This script will make the ghost
sprites generate at a random point
at the top of the Stage.

To create the positioning script

1 Start with a When Flag Clicked
(Events) block.

2 Add a Forever (Control) block underneath to start a loop.

3 Place a Go to X/Y (Motion) block inside the Forever block. This will
set the coordinate (or point on the screen) where the ghost will go.
But you want the ghosts to pop out from different places at the top of
the Stage, not the same place, so you’re going to slip a block into the
X slot.

4 Put a Pick Random 1 to 10 (Operators) block inside the first circle
for the X coordinate, as in figure 7.9. This will allow you to set a
range of coordinates and have Scratch choose a different one each
time a ghost forms. Change the two numbers in the Pick Random
block to –240 and 240 to indicate the range of coordinates along the

Generates copies of the ghost
anywhere along the top of the Stage

Figure 7.8 Watch out, wizard! The ghosts
are coming down from the top of the Stage!

Programming the ghosts 153
top of the Stage. Type 180 in the Y coordinate slot because you want
all the ghosts to generate from the top of the Stage and not random
spots along the Y-axis.

You now have your first script for your ghosts and yet another script
using a loop. This time, the loop in figure 7.9 is causing Scratch to
choose a new spot for each ghost sprite to use as a starting point at the
top of the Stage.

Figure 7.9 The completed positioning script sets a random starting point for each
ghost sprite.

Making a cloning script
You currently only have one ghost. It’s going to be a brief game unless
you make some more. Right now, once the wizard blasts away that one
ghost (as seen in figure 7.10), he’s not going to have a lot to do.

Everything inside the Forever
block runs on a loop.

Sends each ghost sprite
to a random place along
the top of the Stage

On switch

Unless more ghosts start falling,
the wizard will not have a lot to do
after it blasts away the single
ghost sprite and gets 10 points.

Figure 7.10 The wizard scores 10 points for shooting down the ghost and then stands in
the field indefinitely with nothing more to do.

154 CHAPTER 7 Using conditionals to build your fixed shooter
You can make the game a lot more exciting by cloning the ghost and
making the enemy constantly regenerate new copies during the game.
This script will make copies of the ghost sprite, one every second.

To make this cloning script

1 Start with a When Flag Clicked (Events) block.

2 Slide a Hide (Looks) block underneath the When Flag Clicked
block. This block hides the ghost while it generates so the player
can’t predict where the ghost will start falling.

3 Add a Forever (Control) block underneath to start a loop.

4 Place a Create Clone of Myself (Control) block and a Wait 1 Secs
(Control) block inside the Forever block, one on top of the other.
The task happens on a continuous loop while the game is in action,
creating a clone and then pausing for a second.

The brief script in figure 7.11 gives the wizard plenty of ghosts to fight
during the game.

Figure 7.11 The completed cloning script creates new copies of the ghost sprite.

WHAT DOES THE ONE SECOND DELAY DO?
Question: the script ends with a Wait 1 Secs block, but do

you need it?
Answer: let’s put it this way: would you rather fight an army of ghosts that are
coming at you one per second, or would you rather deal with a million ghosts
at once? Be kind to the little wizard and give him a fighting chance against the

Hides the new sprite while
it is being cloned

Makes a new copy of the sprite

On switch

Everything inside the Forever
block runs on a loop.

Pause for one second.

ANSWER THISANSWER THIS

Programming the ghosts 155
ghosts by staggering them one per second. Without that delay, the ghost
copies will start generating one on top of the other and falling in clumps. You
can change the length of the delay by typing a new number in the bubble.
Changing the 1 to a 2 would make the game a little easier for young players.
Changing the 1 to a .5 would make the game more intense.

Making a movement script
You’ve made a lot of ghosts, and they’re positioned at the top of the
Stage, but right now they’re only hiding. Our little wizard is waiting
nervously at the ready, as you can see in figure 7.12.

This movement script will do dou-
ble duty, not only sending the
ghosts down from the top of the
Stage but setting up a scoring sys-
tem, too.

This is the final script for the
ghost, and it’s a long one. Check
your script against the one in the
book every few steps. This script
uses two variables and a compli-
cated loop to keep track of where
the ghost is on the screen and
whether it is touching the wizard
or the sparks:

1 Start with a When I Start as a
Clone (Control) block. I bet you
thought I was going to send you to the Events menu, but this script only
kicks into action if the ghost clone has been made by the last script.

2 Snap a Show (Looks) block under the When I Start as a Clone
block. This will make the clone visible.

3 Place a Repeat Until (Control) block under the Show block. This is
a new kind of loop. You’re going to have an action repeat until a con-
dition is met.

The ghosts are hidden at the top
of the Stage. You need to make
them visible and start moving.

Figure 7.12 The wizard is ready, but the
ghosts have no way to move.

156 CHAPTER 7 Using conditionals to build your fixed shooter
4 Drag a Touching (Sensing) block into the empty space on the
Repeat Until block. Use the drop-down menu to set it to Barrier
Line. This means that everything you put inside the Repeat Until
block will keep happening until the ghost sprite reaches the bottom
of the screen and therefore touches the barrier line.

5 Slide a Change Y by 10 (Motion) block and place it inside the
Repeat Until block. Change the 10 to –3. Any negative number will
make it move down the Stage, and –3 is a good speed for the ghost.
You can play with this number once your game is done. Low num-
bers, such as –1, will make the ghost fall slower, and higher numbers,
such as –5, will make the ghost fall faster.

6 Stack three If/Then (Control) blocks underneath the Change Y by
–3 block, as seen in figure 7.13. You’re going to set up three
conditions.

Figure 7.13 Stacking three If/Then blocks inside the Repeat Until block allows
the game maker to set three different conditions.

7 Grab three Touching (Sensing) blocks and place one each inside the
empty hexagonal space in the If/Then blocks. Use the drop-down

Three conditions for
the ghost sprite

Programming the ghosts 157
menu to change the first one to Touching Barrier Line, the second
one to Touching Sparks, and the third one to Touching Wizard, as
shown in figure 7.14.

8 Click Data and make a variable called Score. Position the variable in
the top right corner of the Stage. Right-click (or control-click, if
you’re using a Mac) the score bubble to bring up the menu. Choose
Large Readout so the score appears as a number on the screen.

9 Drag three Change Score by 1 (Data) blocks and place one in each
of the If/Then blocks. Keep the variable set to Score in the first
block, but change the value to –10. If the ghost reaches the barrier
line without being shot down by the sparks, it will deduct 10 points
from the player’s score. Keep the variable set to Score in the second
block, but change the value to 10. If the sparks make contact with
the ghost, it will add 10 points to the player’s score. Change the vari-
able to Lives in the third block and change the value to –1. If the

Different actions will happen
depending upon whether
the ghost is touching the
barrier line, sparks, or wizard.

Figure 7.14 The loop contains three different conditions: if the ghost is touching the bar-
rier line, sparks, or wizard.

158 CHAPTER 7 Using conditionals to build your fixed shooter
ghost touches the wizard, it will remove a life. You can see all these
variables and their values in figure 7.15.

Figure 7.15 Each condition changes the variable and its value.

10 Slide a Delete This Clone (Control) block underneath each of the
Change Score by –10 blocks (or whatever the variable and value is
on the block). This will delete the copy of the ghost after it touches
the barrier line, sparks, or wizard.

11 Place a fourth Delete This Clone (Control) sprite underneath the
Repeat Until Touching Barrier Line block at the very bottom of the
script. Just in case the If/Then inside the Repeat Until block misses
deleting the sprite, this backup block will get rid of the ghost so you
don’t have copies lingering at the bottom of the screen.

You can see in figure 7.16 that it’s a long script, but it gives the ghosts
the ability to move and it sets up a scoring system.

Each condition
changes a variable
in a different way.

Programming the ghosts 159
Figure 7.16 The completed movement script not only allows the ghosts to fall but also sets up a
scoring system.

The Repeat Until is another type of loop. It’s one that comes with a
condition rather than being open-ended.

HOW DO YOU DECIDE THE NUMBERS IN A SCORING SYSTEM?
Question: each game sets a guideline for how points are

gained or lost, but how do you decide how many points to reward or remove?
Answer: this is a decision in the hands of the game maker, and there are no
right or wrong answers. In fact, feel free to change the values in the Change
Score blocks. Maybe you want to deduct only 10 points if the player misses

On switch Reveal the hidden ghost sprite.

Everything inside the Repeat Until
block runs on a loop until the ghost
touches the barrier line.

Falls three coordinate spaces at a time

Sets first condition: If the ghost
touches the barrier line...

...then deduct 10 points from the score...

...and delete the ghost sprite.

Sets second condition: If the
ghost touches the sparks...

...then add 10 points to the score...

...and delete the ghost sprite.

Sets third condition: If the ghost
touches the wizard...

...then remove one chance (or "life")...

Deletes the ghost sprite in case
an earlier block skips that step

...and delete the ghost sprite.

ANSWER THISANSWER THIS

160 CHAPTER 7 Using conditionals to build your fixed shooter
the ghost but reward 20 points if the player gets the ghost. Or you can take the
opposite path, deducting more points than you reward. Think about whether
you want to make it easy, medium, or hard to rack up points.

The ghost is now complete. It’s time to look at the sparks and set up
scripts that will allow them to shoot from the wizard’s wand.

Programming the sparks
The wizard is always holding his wand, but nothing comes out of it
until he casts a spell. You need to code this sprite so the sparks will
shoot up toward the ghosts when the player presses the spacebar on
the keyboard. Once again, you’ll use cloning to make unlimited sparks
for your wizard to use. The sparks for the wand use four scripts: a posi-
tioning script, a cloning script, a movement script, and a clone deletion
script. Place the blue box around the red sparks in the Sprite Zone.

Making a positioning script
The wizard can move back and forth, so
he can dodge out of the way of the fall-
ing ghosts. But right now, he can’t cast a
spell and get rid of the ghosts. The wand
in figure 7.17 is dormant—only a little
stick of wood.

This script will send the sparks to the
wand. The wand is drawn as part of the
wizard sprite, whereas the sparks are a
separate sprite. This script brings the
two sprites together.

To create the positioning script

1 Start with a When Flag Clicked (Events) block.

2 Slide a Hide (Looks) block under the When Flag Clicked block.
This will keep the sparks invisible until the player is ready to use
them.

3 Add a Forever (Control) block underneath to start a loop.

The wand is just a stick
until sparks can fly out.

Figure 7.17 The wand is part of the
wizard sprite, but the sparks oper-
ate with their own scripts.

Programming the sparks 161
4 Drag a Go to Mouse Pointer (Motion) block inside the Forever
block. You don’t want the sparks to go to the mouse pointer. You
want them to go to the wizard, so open the drop-down menu and
choose the Wizard option.

Figure 7.18 shows the whole script. It’s a small but important script
that gives the wizard a lot of power in his fight against the ghosts.

MY SPARKS ARE COMING FROM THE WIZARD’S HEAD! When
you sent the sparks to the wizard, you sent them to the center

of the sprite, which could be anywhere on the wizard and not necessarily
where you want them, such as coming from the wand. Remember how the
sprite is the size of that canvas, with some parts in color and other parts trans-
parent? The center of the canvas is the center of the sprite. Knowing that, you
can draw your sprite so it’s near that little grey plus sign always seen in the
center of the Art Editor (figure 7.19).

On switch

Makes the sprite invisible

Everything inside the Forever
block runs on a loop.

Sends the sparks sprite to the
center of the wizard sprite

Figure 7.18 The completed
positioning script sends the
sparks to the wizard’s wand.

FIX ITFIX IT

The grey plus sign indicates
the center of canvas, which
is also the center of the sprite.

Figure 7.19 The light grey plus sign marks the center of both the canvas and the sprite.

162 CHAPTER 7 Using conditionals to build your fixed shooter
But don’t worry if you drew your sprite somewhere else on the canvas. You
can always center it. Go to the Sprite Zone and click the wizard. Navigate to
the tab marked Costumes in the middle of the Block Menu. Look at the plus
sign in the top right corner of the Art Editor, marked in figure 7.20. Click it,
and a cross should appear on the canvas.

Zoom in using the magnifying glass to enlarge the wizard if you have trouble
seeing his wand. Now click the top of the wand (also marked in figure 7.20) to
set that space as the new center. You should see the grey plus sign on the can-
vas over the wand, as in figure 7.21. Now the sparks will come out of the wand
and not the wizard’s head.

Second, click over
the wand to set it
as the new center.

First, click the
plus sign to set
a new sprite center.

Figure 7.20 First click the plus sign in the top right corner, and then click a
point on the screen to set a new center.

The plus sign is now
over the top of the wand.

Figure 7.21 The center of the sprite is now the
space over the wand, which is where the sparks
will be sent from once you clone the sprite.

Programming the sparks 163
Making a cloning script
Right now, you have one spark.
But the wizard is going to need an
unlimited number of sparks in
order to fight the ghosts so the
sparks can continuously shoot
from the wand, as in figure 7.22.

This script will clone the sparks
that will come out of the wand. It
will make a new copy of the
sparks every time the spacebar is
pressed. This is the only script so
far that doesn’t contain a loop.

If you checked the center of the wizard sprite with the last Fix It, make
sure you go back to the Sprite Zone and put the blue box around the
sparks. You’re still programming the sparks sprite. Click the Scripts
tab to continue programming.

To create the cloning script

1 Start with a When Space Key Pressed (Events) block. This is a differ-
ent type of on switch, and it runs the next part of the script whenever
the player presses the spacebar on the keyboard.

2 Slide a Create Clone of Myself (Control) block under the When
Space Key Pressed block. This creates a clone of the sparks every
time the player presses the spacebar.

And that’s it! The whole script in figure 7.23 is only two blocks long.
One block sets the starting point (pressing the spacebar) and the other
block clones the sprite.

Each time the spacebar is pressed,
red sparks jump out of the wand.

Figure 7.22 The wand emits sparks every
time the spacebar is pressed.

Makes a copy
of the sprite

On switch

Figure 7.23 The completed cloning
script is brief but is an important
part of the game.

164 CHAPTER 7 Using conditionals to build your fixed shooter
Making a movement script
Right now the sparks are ready to come
out of the wand, but the sprite has no
instructions to move. In figure 7.24, the
sparks are piling up on the tip of the wand,
unable to shoot toward the ghosts above.

This script will make the sparks that you
clone shoot upward, out of the wand. To
make the movement script

1 Start with a When I Start as a Clone
(Control) block.

2 Snap a Show (Looks) block under the
When I Start as a Clone block. This will
make the clone visible.

3 Place a Forever (Control) block under the Show block. You’re start-
ing a loop that will put the sparks into continuous motion until a con-
dition is met.

4 Drag a Repeat Until (Control) block inside the Forever block. It’s a
double loop! The outer loop (Forever block) controls how many
times the inner loop (Repeat Until block) runs through its actions.
The inner loop will run, and then the outer loop will check where
things are with the script and run again. Putting a loop inside a loop
is called a nested loop. In this case, the inner loop sets up a situation
for the individual copy of the sparks, and then the outer loop applies
those tasks to all the copies made of the sparks.

5 Place a Hexagon or Hexagon (Operators) block inside the empty
hexagonal space on the Repeat Until block.

6 Put a Touching (Sensing) block in each of the empty hexagons in the
green Operators block. Using the drop-down menu, choose Ghost
for the first block and choose Edge (as seen in figure 7.25) for the
second block. This sets a limit for the loop: repeat the actions inside
until the sparks are touching either the ghost or an edge. In this case,
the edge is always going to be the one at the top of the Stage because
the sparks go straight up.

The cloned sparks are piling
up on the end of the wand.
You need to make them move.

Figure 7.24 New copies of the
sparks are being cloned, but they
have nowhere to go.

Programming the sparks 165
Figure 7.25 Use the drop-down menu to set the two limits for the Repeat Until block.

7 Place a Change Y by 10 (Motion) block inside the Repeat Until
block. You can keep it as 10 because this will make the sparks
slightly faster than the ghosts. Because it’s a positive number, the
sparks will go up.

8 Slide an If/Then (Control) block under the Change Y by 10 block, as
in figure 7.26. You’re about to start setting a new condition that will
apply to the individual sparks.

9 Put a Touching (Sensing) block in the empty hexagonal space in the
If/Then block. Use the drop-down menu to set the option to Ghost.

Figure 7.26 The If/Then block goes under the Change Y by 10 block.

166 CHAPTER 7 Using conditionals to build your fixed shooter
This condition looks at what happens if the sparks make their target
and hit a ghost.

10 Snap a Wait 1 Secs (Control) block inside the If/Then block. A sec-
ond is a long time, so change that number to 0.01. You only need a
fraction of a second pause to ensure that Scratch has enough time to
recognize that the sparks have touched the ghost.

11 Slide a Delete This Clone (Control) block underneath the Wait 0.01
Secs block. If the sparks make contact with the ghost, you want the
sparks to disappear from the screen.

The movement script shown in figure 7.27 sends the sparks shooting
upward out of the wand and sets up what happens next if the sparks hit
a ghost.

Figure 7.27 The completed movement script contains a nested loop—a loop inside a loop.

Making a clone deletion script
You set up a way for the sparks to disappear from the screen if they hit
the ghost, but what about all the sparks that miss the ghost? After a few

On switch Makes the clone visible Everything inside
the Forever block
runs on a loop.

Repeat everything in
this loop until the
sparks are touching
the ghost or edge.

Moves the sparks
up 10 coordinates
at a time

Sets a condition:
If the sparks touch
the ghost...

...then wait
a fraction
of a second...

...and delete the
copy of the sprite.

Programming the sparks 167
minutes of playing, the top of your
Stage will be a sparks graveyard,
as in figure 7.28.

This script will make the sparks
disappear when they hit the top of
the Stage. This task has been sepa-
rated out from the last script to
give you space to create two differ-
ent situations when the sparks hit
the ghost or the top of the screen.

To make the clone deletion script

1 Start with a When I Start as a
Clone (Control) block.

2 Add a Forever (Control) block underneath to start a loop.
3 Place an If/Then (Control) block inside the Forever block to set a

condition.
4 Put a Touching (Sensing) block inside the empty hexagonal space in

the If/Then block and use the drop-down menu to change the option
to Edge. This will detect any edge, though the sparks will only come
in contact with the top of the Stage because they move upward.

5 Drag a Delete This Clone (Control) block inside the If/Then block.
This will remove the copy of the sparks from the screen.

Figure 7.29 shows the final script for the sparks. Does your script
match the one in the figure?

Figure 7.29 The completed clone deletion script detects the edge of the Stage.

The sparks need to delete when
they reach the top of the Stage.

Figure 7.28 The sparks are collecting at
the top of the Stage.

Everything inside the Forever
block runs on a loop.

Sets a condition: If the sparks are
touching the top of the screen...

...then delete the sparks.

On switch

168 CHAPTER 7 Using conditionals to build your fixed shooter
Programming the odds and ends
You have two more scripts to write, both of them brief. One applies to
the line, and the other script applies to the background. Yes, even the
background is programmable in Scratch.

Making a positioning script for the line
Although there is a bottom edge on
the Stage, marked by a Y coordi-
nate number of –180, you’re going
to use a boundary line to ensure
that Scratch always knows when
the ghosts have reached the bottom
of the screen. Right now your line
is probably somewhere random on
the screen, as in figure 7.30.

This script will position the line at
the bottom of the Stage. Place the
blue box around the line sprite in
the Sprite Zone.

To make the line positioning script

1 Start with a When Flag Clicked (Events) block.

2 Add a Forever (Control) block underneath to start a loop.

3 Place a Go to X/Y (Motion) block inside the Forever block
and change both numbers to zero (0). This will send the center of the
sprite to the center of the Stage.

WHY SET THE X AND Y COORDINATES TO ZERO WITH THE BAR-
RIER LINE?

Question: isn’t X:0 and Y:0 the center of the Stage? Why use those numbers if
you want the line to be at the bottom of the screen?
Answer: remember that every sprite comes with a transparent background.
The barrier line sprite may look like a tiny two-dimensional line, but the
sprite is the size of the whole Stage (or Art Editor). To imagine this with real
objects, cut out a tiny strip of black paper and put it at the bottom of a square

You need to position the barrier
line at the bottom of the Stage.

Figure 7.30 It’s going to be hard for those
sparks to reach the ghost with the barrier
line in the way.

ANSWER THISANSWER THIS

Programming the odds and ends 169
piece of plastic wrap. That’s how Scratch processes your sprite. Because you
drew the line at the bottom of the Art Editor, exactly where you wanted it to
be for the game, you can use that as the transparent center of the sprite,
which matches the center of the Stage.

The script in figure 7.31 sends
the line to the bottom of the
Stage because the line was
drawn at the bottom of the
Art Editor. It is matching the
center of the sprite with the
center of the Stage, and there-
fore the line is positioned
exactly where it is drawn.

Making a scoring script for the background
You can also program the background, which may sound a little odd. It’s
not that you want your background to be able to run around the screen,
but there are times when you’ll want to tuck pieces of code into the back-
drop. Sprites aren’t the only programmable piece in your game.

Sometimes assigning too many starting tasks to a single sprite can slow
down a game. Imagine your game as a swim race, and all the sprites are
the swimmers. They all have a starting task, lining up on the side of the
pool and getting into position. They can do their single task and be
ready at the same time. But what if you asked one swimmer to pass out
goggles to all the other swimmers before the race as well as get in posi-
tion? Now that swimmer is going to be delayed and unable to start the
race at the same time as the other swimmers.

That’s what can happen if you load one sprite with too many “getting
ready” tasks that start a game. Because you’re already giving almost
every sprite a starting task—from cloning to positioning—you can give
this setting-the-initial-score task to the backdrop. While the sparks are
cloning and the ghosts are hiding up at the top of the screen, your game
can simultaneously set the score to 0 and the lives (or game chances) to
3. And now every part of your game is ready to run at the same time.

Everything inside
the Forever block
runs on a loop.

Sends the center
of the sprite to the
center of the Stage

On switch

Figure 7.31 The completed positioning script sends
the line to the bottom of the Stage.

170 CHAPTER 7 Using conditionals to build your fixed shooter
To program the backdrop, navigate to the Sprite Zone and click the
picture of your backdrop on the left side so the blue box is around the
thumbnail, as it is in figure 7.32.

You will now build your scoring
script in the Script Zone, the same
as programming any sprite. You
need to set the starting values of
your Lives and Score variables.
The value of Lives should be set
to three to give the player three
chances to get a high score fight-
ing the ghosts. The value of Score
should be set to zero (0), as in fig-
ure 7.33, so the player can start
building their points as they shoot
down ghosts.

You may notice as you look at the
Block Menu that certain blocks
are missing. Don’t worry—you still have them. Scratch doesn’t display
them with the backdrop to streamline the menu, including only the
blocks you’re able to use. Click around the menus for a moment and
see what’s missing. All those blocks will be back when you return to
programming sprites; they’re only missing when you program the
backdrop because the backdrop can’t move or touch anything.

Figure 7.32 The blue box is around the Stage thumbnail in the Sprite Zone.

The lives variable
needs to begin
with a value of 3.

The score variable
needs to begin
with a value of 0.

Figure 7.33 The two variables of Lives and
Score need to be set before the game
begins.

Troubleshooting your game 171
To make the scoring script

1 Start with a When Flag Clicked (Events) block.

2 Move two Set Score to 0 (Data) blocks and stack them, one on top
of the other, under the When Flag Clicked block. Open the drop-
down menu on the top block and set it to Lives. Type a 3 in the value
box. This will give the player three chances to fight the ghosts. Open
the drop-down menu on the bottom block and set it to Score. Type a
zero (0) in the value box. This will give your player a blank slate for
points when the game opens.

This final script should match the one in figure 7.34.

Your game is finished and ready to be played! Click the flag and start
blasting those ghosts, and then keep reading in case you run into prob-
lems with your game.

Troubleshooting your game
Our game went off without a hitch, but that doesn’t mean that your
game will work the same way. Use the ideas in this section to get your
game working properly.

Checking your scripts
The first thing to do whenever a game doesn’t work according to plan
is to go back through the chapter and check your scripts against our
scripts. Look carefully at each block because there are many similarly
named blocks. Also look at values: do your numbers match the ones in
the book?

Starts the game by giving
the player three chances

Starts the game by giving the
player a blank slate for points

On switch

Figure 7.34 The completed
scoring script sets the initial
values for the two variables in
the game.

172 CHAPTER 7 Using conditionals to build your fixed shooter
Sprites not centered
You learned how to center your sprites when writing the scripts for the
sparks. Turn back a few pages and reread those instructions if sprites
are not behaving properly. If it’s not a layering issue, it may be a center-
ing issue, especially when it comes to the sparks lining up with the wiz-
ard’s wand.

Eliminating blocks
Sometimes you may be inclined to delete a block that seems redundant,
wondering if it’s necessary for making the game. But wait! There is
always a reason a block is included in a game, or code is broken up into
two or more chunks, so please go back and follow the directions in the
book if your game isn’t working properly. An example is the seemingly
redundant loop inside a loop that comes with the spark’s movement
script. When the Forever block is removed, it causes sparks to randomly
generate in strange places on the screen and then shoot off on their own
accord. Unless you’re looking to produce phantom sparks in your game,
stick to our instructions, because we’ve already troubleshot for you.

Learning in action
These challenges once again play with the existing code, making the
game function in new ways. By playing with values, you can see how
the script controls the various sprites.

Play with the code
This fixed shooter is also a reflex-testing game, and you can play with
the values to make the game harder or easier to play.

What happens if you slow down the wizard but speed up the
ghosts? Remember, the lower the number, the slower the

sprite will move. The higher the number, the faster the sprite will move. How
high can you score when the ghosts can fall 20 coordinates at a time but the
wizard can only glide 2 coordinates at a time?

This is your second game, and you’re ready to go beyond playing with
values and tweaking the speed. Can you figure out how to change the
way the ghosts move?

CHALLENGECHALLENGE

Learning in action 173
Each ghost currently moves in a straight line from the place
where it generates at the top of the screen toward the bottom

of the Stage. What if you want the ghost to move at a diagonal, so it’s more dif-
ficult to position the wizard underneath the target?

You can do this by adding a Change X by 10 block to the ghost move-
ment script, as in figure 7.35. By slipping in the extra block and chang-
ing the value to a much smaller number, such as –1, the ghost will
gently drift to the left as it falls. Additionally, you can change those val-
ues to have the ghost fall sharply to the side.

What did you learn?
Before you go back to your game and get a high score blasting down
ghosts, take a moment to reflect which common computer science ideas
from chapter 3 were used in this game:

 Using an on switch for every script in the game, including the more
unusual When I Start as a Clone block and the When Space Key
Pressed block

CHALLENGECHALLENGE

Adding the Change X by -1 block with the
Change Y by -3 block makes the ghost
move at an angle instead of straight down.

Figure 7.35 An extra block in the ghost’s
movement script causes it to move in a
diagonal line instead of straight down.

174 CHAPTER 7 Using conditionals to build your fixed shooter
 Moving the ghosts down and the sparks up with X and Y coordi-
nates

 Writing conditional statements to detect if the value of the Lives
variable is at zero (0) so the game will end

 Setting up a loop (in all but two scripts!) to accomplish many tasks,
including cloning the ghosts and giving the wizard unlimited sparks
for his wand

 Using a variable to keep track of the number of ghosts the wizard
blasts down with his wand

 Working with touching blocks and Booleans to check if the sparks
make contact with a ghost

 Cloning all the ghosts and sparks for the game from a single copy of
each sprite

Once again, you put into action seven out of eight common program-
ming ideas. You’ll continue to put these computer science ideas into
action in future games. Additionally, you learned

 How to make multiple clones occur in the same game
 How to apply loops to solve many varied coding tasks
 How to use a single variable to increase or decrease, depending upon

the situation in the game, to make a two-way point system
 How to make a fixed shooter

Okay, go blast away some ghosts. But after you’re done getting your
high score, turn the page because it’s time to make another game. This
one’s based on the Atari game Breakout. You’re back to working with
the ball and paddle format, only this time the game is one player, and
you need to remove pieces of a soccer net while bouncing a ball against
a shoe paddle. Goal!

	SCFord-front
	7SampleChapterPages
	chapter7
	Ford-back

