
SAMPLE CHAPTER

GWT in Action

and Adam Tacy

Copyright 2007 Manning Publications

Chapter 10

by Robert Hanson

vii

brief contents
PART 1 GETTING STARTED ...1

1 ■ Introducing GWT 3

2 ■ Creating the default application 38

3 ■ Advancing to your own application 64

PART 2 BUILDING USER INTERFACES107

4 ■ Working with widgets 109

5 ■ Working with panels 157

6 ■ Handling events 192

7 ■ Creating composite widgets 246

8 ■ Building JSNI components 277

9 ■ Modularizing an application 317

PART 3 ADVANCED TECHNIQUES ...345

10 ■ Communicating with GWT-RPC 347

11 ■ Examining client-side RPC architecture 375

12 ■ Classic Ajax and HTML forms 409

viii BRIEF CONTENTS

13 ■ Achieving interoperability with JSON 442

14 ■ Automatically generating new code 471

15 ■ Changing applications based on GWT properties 494

PART 4 COMPLETING THE UNDERSTANDING525

16 ■ Testing and deploying GWT applications 527

17 ■ Peeking into how GWT works 555

Part 4

Advanced techniques

Part 2 explored the user-interface components of GWT, explaining how to
create custom widgets and bundle them as a reusable library. Part 3 takes you
to the next step by looking at GWT’s advanced toolset for making remote
procedure calls, code generators, application configuration, and interna-
tionalization tools.

347

Communicating
with GWT-RPC

This chapter covers
■ Asynchronous communication
■ Overview of the GWT-RPC mechanism
■ Step-by-step instructions for using GWT-RPC
■ Building an example widget using GWT-RPC

348 CHAPTER 10

Communicating with GWT-RPC

When you’re building a rich Internet application, it’s likely you won’t get too far
before you need to contact the server. The reasons for doing so are numerous
and can range from updating the contents of a shopping cart to sending a chat
message. In this chapter, we’ll explore the primary remote procedure call (RPC)
mechanism that ships with the GWT toolkit. Throughout this chapter, and the
chapters that follow, we’ll refer to this mechanism as GWT-RPC to distinguish it
from other general RPC flavors.

 If you’re unfamiliar with RPC, it’s a term used to describe a mechanism that
allows a program to execute a program on another computer and return the
results of the calculation. This is a simplistic view of RPC, but this is essentially
what you’ll be doing in this chapter.

 Throughout this chapter, as well as the next, you’ll learn by building and
extending an example component. This component, once completed, periodi-
cally requests performance data from the server and displays the values to the
user. We call this example component the “Server Status” component.

 To make the task of writing RPC code as intuitive as possible, this chapter fol-
lows a strict organization. In the first section, we’ll define the component you’re
going to build, including a basic UI layout and defining the data that will be dis-
played in the component. In that context, we’ll discuss asynchronous communica-
tion and some security restrictions of browser-based RPC.

 In the second section, we’ll examine all the nuts and bolts of GWT-RPC. We’ll
define the data object that will be passed on demand between the client and server,
and the serialization of data objects. We’ll then get down to business and write the
code for the component from beginning to end.

 At the end of the chapter, we’ll wrap up the discussion with a detailed overview
of the project and a review of the core participants of the GWT-RPC mechanism.
But it doesn’t end there; chapter 11 extends the example component by applying
software patterns and polling techniques, providing for reusable and maintain-
able code.

 Without further delay, let’s begin the journey by defining the Server Status
example project and examining the fundamental concepts behind the GWT-RPC
mechanism.

10.1 Underlying RPC concepts

In this section, we’ll explain how the GWT-RPC mechanism works by building a
sample component. We wanted the component to be of interest to the widest audi-
ence possible, so we chose to create what we call the Server Status component. The

Underlying RPC concepts 349

purpose of the component is to provide up-to-date memory and thread usage for
the Java Virtual Machine (JVM). As you go through the process of building the
component, think about what other information you may want to add, like per-
haps the number of logged-in users or maybe disk usage. Once it’s completed,
you’ll be able to use this component in the GWT Dashboard project introduced in
chapter 3 or in any of your own GWT projects.

 You need to assemble three pieces of the puzzle to have a working RPC applica-
tion: the service that runs on the server, the client in the browser that calls the ser-
vice, and the data objects that are transported between the client and the server.
Both the server and the client have the ability to serialize and deserialize data so
the data objects can be passed between the two as ordinary text.

 Figure 10.1 provides a visual representation of what the completed Server Sta-
tus component will look like, along with an example service request and response.
The connection between client and server in figure 10.1 is initiated by the client
and passed through a proxy object provided by GWT. The proxy object then serial-
izes the request as a text stream and sends it to the server. On the server, the
request is received by a special Java servlet provided by GWT. The servlet then
deserializes the request and delegates the request to your service. Once your ser-
vice returns a value to the GWT servlet, the resulting object is serialized and sent
back to the client. On the client side, the response is received by the GWT proxy,
which deserializes the data back into a Java object and returns the object to the
calling code.

Figure 10.1 The completed GWT-RPC based Server Status component receiving serialized data
from the server. The three pieces of the RPC application include the service that runs on the
server, the client in the browser that calls the service, and the data objects that are transported
between the client and the server.

350 CHAPTER 10

Communicating with GWT-RPC

The important part to remember about the round trip of the request is that the
code deals with ordinary Java objects, and GWT handles serialization and deserial-
ization of the data automatically. The example transaction in figure 10.1 shows
the request and response data that is passed between the client and server; in
practice you’ll never deal with this data directly, although it may sometimes be
helpful to view the data when debugging a problem. In this book, we won’t
explain the serialization scheme; it isn’t a documented part of GWT and will likely
change in later GWT versions as performance enhancements are introduced.

 The idea of GWT doing most of the work for you sounds great, but the devil is
in the details. You must understand a few things before you start coding, the first
of which is the asynchronous nature of browser-based communication.

10.1.1 Understanding asynchronous communication

Calling a remote service with GWT-RPC is just like calling a local method with a cou-
ple additional lines of code. There is one caveat: The call is made in an asynchro-
nous manner. This means that once you call the method on the remote service, your
code continues to execute without waiting for a return value. Figure 10.2 shows this
graphically; a gap of time exists between the call to the server and the response.

 Asynchronous communication works much like an event handler in that you
provide a callback routine that is executed when the event occurs. In this case, the
event is the return of the call to the service. If you haven’t dealt with this sort of
behavior before, it may feel foreign at first, and it can require some additional
planning when building applications. GWT uses this type of communication due
to the way the underlying XMLHttpRequest object works. The reason why the
XMLHttpRequest object behaves this way is beyond the scope of the book, but in

Figure 10.2 A visual representation of the time-delay of asynchronous communication
used in browser-based communication

Underlying RPC concepts 351

part it’s due to the nature of JavaScript implementations. This asynchronous
nature, though, has some advantages.

 The first advantage is that network latency and long-running services can slow
down communication. By allowing the call to happen asynchronously, the call
won’t hold up execution of the application waiting for a response; plus it feels less
like a web application and more like a desktop application. The other benefit is
that you can use some tricks with this to emulate a server-push.

DEFINITION Server-push is a mechanism where the server pushes data out to the client
without it being requested. This is used in applications like chat, where
the server needs to push messages out to its clients. We’ll look at how to
emulate server-push along with some polling techniques in chapter 11.

Besides asynchronous communication, another RPC issue we need to deal with is
security, which affects how you use any browser-based RPC mechanism.

10.1.2 Restrictions for communicating with remote servers

Security is always a concern on the Internet, especially when a call can be made to
a server that potentially returns sensitive data to the client, or perhaps provides
access to secure systems. We have no intention of conducting a complete exami-
nation of security for web servers, which we leave to the experts. We do, though,
want to explain one feature of making remote calls from the browser, which may
seem like more of an annoyance than a feature. When you make a remote call
from the browser, it must make the call to the same server from where the Java-
Script code originated.

 This means your GWT application running in the browser, which was loaded
from your web server, can’t call services hosted by other sites. For some people,
this is more than an annoyance; it’s a problem that means they may not be able to
deploy their code in the manner they intend. Before we explain why this is truly a
feature, understand that there are ways around it by providing a proxy on your
server that calls the remote server. In chapter 13, you’ll use such a proxy to com-
municate with a third-party search service.

 Note that some browsers may let you override this behavior. For example, with
Internet Explorer, you can tell the browser to allow the remote connection to pro-
ceed, even though it’s attempting to contact a foreign server. Requiring your users
to bypass restrictions like this is never a good idea, and it can make your users vul-
nerable to attacks. This is a strong statement; but as you’ll see shortly with cross-
site request forgery, there is a good reason for this.

352 CHAPTER 10

Communicating with GWT-RPC

 To help you better understand how an attack like this might play out, let’s
examine a hypothetical situation. Pretend you’re a high-ranking executive for
company X-Ray Alpha Delta, and you’re logged in to the top-secret extranet appli-
cation doing some product research. Once you log in to the top-secret applica-
tion, it keeps track of who you are by giving you a web cookie. The connection
between the client and server is an encrypted connection provided by SSL. Using
cookies as a way of handling user sessions and SSL are common tools used by most
secure web applications.

 While working on the top-secret extranet, you receive an email prompting you
to review some competitor content on the Internet. You click the link and start
reading the page, which seems to be a legitimate news site. Unknown to you, the
“news” site is running JavaScript in your browser and is making requests against
your top-secret extranet. This is possible because your browser automatically
passes your session information contained in a cookie to the top-secret extranet
server, even though the JavaScript calling the server originated from the “news”
site. Figure 10.3 shows the order of events in such an attack, allowing the mali-
cious JavaScript access to the “protected” site.

 This scenario is plausible and has been proven to work when the web browser
allows JavaScript to call foreign servers. At the Black Hat convention in 2006, the
security firm iSEC Partners provided details about how they used this technique to
remove $5,000 from a stock account. The user was logged in to a financial site and
then viewed a foreign site, which contained the malicious JavaScript code. The
JavaScript code in question was contained in five separate hidden iframes. Each
script ran in turn, making one call to the financial service. The scripts changed
the user’s email notification settings, added a new checking account for transfer-

Figure 10.3
Cross-site scripting attack,
using JavaScript to break in
to a “secure” application

Underlying RPC concepts 353

ring funds, transferred $5,000 out of the account, deleted the checking account,
and restored the email notification settings. All of this occurred while the user was
viewing the malicious site. This is a scary scenario, and it’s why browsers don’t typ-
ically allow JavaScript code to contact foreign hosts.

 We’ve gotten far off track and need to get back to where we started: an overview
of RPC architecture of GWT. So far, we’ve discussed its asynchronous nature and
automatic data serialization, and addressed why the service must be provided by the
same host that served the GWT application (for critical security reasons). To get
back on track, you’ll create a new GWT project that will be used to house the Server
Status component.

10.1.3 Creating the Server Status project

By now, you know how to set up a new GWT project, but this one will be a little dif-
ferent. When you create a GWT project that will perform RPC, you need to
account for the fact that it will contain both server-side and client-side code. The
GWT compiler should compile only the client-side code to JavaScript without
including the server-side portion of the code. You’ll be including code for both
the client and server in this project, so you need to do a few extra things to inform
the GWT compiler which source files it needs to compile.

 The first step is to use the projectCreator and/or applicationCreator
command-line tool to create a new project. If you need a refresher on how to do this,
consult chapter 2. For our purposes, this chapter assumes you already know how to
do this. The following command and subsequent output creates the project:

applicationCreator -out ServerStatus org.gwtbook.client.ServerStatus

Created directory ServerStatus\src
Created directory ServerStatus\src\org\gwtbook
Created directory ServerStatus\src\org\gwtbook\client
Created directory ServerStatus\src\org\gwtbook\public
Created file ServerStatus\src\org\gwtbook\ServerStatus.gwt.xml
Created file ServerStatus\src\org\gwtbook\public\ServerStatus.html
Created file ServerStatus\src\org\gwtbook\client\ServerStatus.java
Created file ServerStatus\ServerStatus-shell.cmd
Created file ServerStatus\ServerStatus-compile.cmd

Next, you need to remove the sample Java code provided by the applicationCre-
ator tool. The following code is ServerStatus.java after removing the sample
application:

354 CHAPTER 10

Communicating with GWT-RPC

package org.gwtbook.client;

import com.google.gwt.core.client.EntryPoint;

public class ServerStatus implements EntryPoint
{
 public void onModuleLoad ()
 {
 // code
 }
}

You also want to start with a new HTML page. Listing 10.1 shows the ServerSta-
tus.html page in the project. You can remove the various comments, provide a bet-
ter page title, and add an empty style block. Once you finish the component, we’ll
provide some style code you can use to make the component look like figure 10.1.

<html>
 <head>
 <title>Server Status</title>

 <!-- used to load module in GWT versions through 1.3 -->
 <meta name='gwt:module' content='org.gwtbook.ServerStatus'>

 <!-- used to load module in GWT versions 1.4+ -->
 <script language='javascript'
 src='org.gwtbook.ServerStatus.nocache.js'></script>

 <style type="text/css">
 </style>
 </head>
 <body>

 <!-- used to load module in GWT versions through 1.3 -->
 <script language="javascript" src="gwt.js"></script>
 </body>
</html>

NOTE Because GWT is thriving, it’s subject to regular improvements. In list-
ing 10.1, we’ve inserted HTML comments to identify the lines that are
required to load the Server Status module in the current 1.3 release of
GWT as well as the proposed loading method that will be used in GWT
version 1.4. The older module-loading method, using gwt.js, will still
work in GWT version 1.4, but it has been deprecated.

Listing 10.1 The minimal HTML page you’ll use to host the Server Status project

Underlying RPC concepts 355

The CSS styles in listing 10.2 style the Server Status component to look like the
example look and feel provided in figure 10.1. Feel free to adjust the styles to your
liking or use your own. You can place the following CSS code into the <style> ele-
ment in the HTML page or put the CSS code into an external file and reference it
with the HTML <link> element.

.server-status {
 width: 200px;
 height: 200px;
 border: 1px solid black;
}

.server-status td {
 font-family: Arial;
 font-size: 12px;
}

.server-status .title-bar {
 text-align: center;
 background: #666;
 padding: 2px 0;
 color: white;
 font-weight: bold;
}

.server-status .stats-grid {
 width: 200px;
}

.server-status .stats-grid td {
 border-bottom: 1px solid #ccc;
}

.server-status .stat-name {
 font-weight: bold;
}

.server-status .stat-value {
 text-align: right;
}

.server-status .last-updated,
 .server-status .update-button {
 font-size: 10px;
 margin: 0 5px;
}

Listing 10.2 A CSS file for styling the Server Status component

Set component
width and height

Set font
style

Set title-bar
styles

Set inner data-
grid width

Add row lines
to data-grid

Set statistic
title styles

Right justify
data values

Set styles of status label
and update button

356 CHAPTER 10

Communicating with GWT-RPC

Now that you have a new project to work with, you can get down to writing some
code. In the next section, you begin by creating a data object that will be passed
from the server to the client and then get into creating the service and calling it
from the client.

10.2 Implementing GWT-RPC

As we stated at the beginning of this chapter, there are three parts to the GWT-RPC
mechanism, as you can see in figure 10.4. The first is the service that runs on the
server as a servlet, the second is the web browser that acts as a client and calls the
service, and last are the data objects that pass between the client and server.

 We’ll start with the last of these, the data objects, and explain what types of
objects GWT can serialize for you. Following this, we’ll look at the server side of
the threesome and how you implement the service on the server. Finally, you’ll
call the service from your browser.

 During the course of the discussion, we’ll reference the Server Status project
that you started in the previous section. We’ll also provide code examples not
related to the Server Status project when doing so helps explain details of the
GWT-RPC mechanism that aren’t explicitly used by the Server Status component.
By the end of this section, you’ll have completed the Server Status component,
and you’ll be able to reuse it with any of your own GWT projects. Now, let’s look at
the serializable data objects.

10.2.1 Understanding serializable data objects

We need to begin our discussion of GWT-RPC with data objects because the data is
what gives GWT-RPC life. Describing the functionality of GWT-RPC without data
would be akin to describing the function of the human heart without first under-
standing the purpose of life-giving blood.

 At the beginning of section 10.1, we mentioned that with the GWT-RPC mecha-
nism, you can call methods that are executed on the server, and a resulting value

Figure 10.4 The three parts of GWT-RPC: client, server, and data objects

Implementing GWT-RPC 357

is passed back to the client. Just like any Java method, you may pass arguments to
the method, which may be a primitive like an int, an object like a String, or an
array of values. The list of value types that GWT can serialize, though, is finite:

■ Java primitive types—boolean, byte, char, double, float, int, long, short

■ Java primitive wrapper types—Boolean, Byte, Character, Double, Float, Inte-
ger, Long, Short

■ Subset of JRE objects—Only ArrayList, Date, HashMap, HashSet, String, Vec-
tor (future versions of GWT may add to this)

■ User-defined classes—Any class that implements IsSerializable

■ Arrays—An array of any of the serializable types

Added in GWT 1.4 is the ability to have your GWT serializable classes
implement the java.io.Serializable interface instead of the GWT-specific
IsSerializable interface. The change is being introduced to make it easier
to share data objects with server-side persistence frameworks like Hiber-
nate, which require data objects to implement java.io.Serializable. It's
important to note that this change in GWT 1.4 is only intended to make it
easier to integrate with persistence frameworks; it doesn’t imply that GWT
serialization follows any of the semantics of java.io.Serializable.

The first two groups of value types—primitives and their wrapper counterparts—
are self explanatory, and all are supported. Only a limited number of Java data types
are supported. In chapter 1, we discussed the JRE Emulation Library provided by
GWT, and how GWT allows only certain Java classes to be used in client-side code.
The list of supported Java classes here includes all of the value object types from the
emulation library.

 The first three groups consist of types that are part of standard Java, but what
about user-defined types? The IsSerializable interface answers this question.

Implementing the IsSerializable Interface
The second from the last of the list of serializable types is any class that imple-
ments the IsSerializable interface. This interface is part of the GWT library,
and it’s used to signify that a class may be serialized. This serves a similar purpose
as Java’s own java.io.Serializable interface but is specific to GWT applications.
Most of this section will be about using the IsSerializable interface.

 The IsSerializable interface has no methods. It’s only used to let the GWT
compiler know that this object may be serialized, and it implies that you created
the class with serialization rules in mind:

CHANGES
IN GWT

1.4

358 CHAPTER 10

Communicating with GWT-RPC

■ The class implements com.google.gwt.user.client.rpc.IsSerializable.

■ All non-transient fields in the class are serializable.

■ The class has a zero-argument constructor.

By non-transient field we mean any field not using the transient modifier. GWT also
won’t serialize fields that have been marked as final; but don’t rely on this, and be
sure to mark all final fields as transient. That isn’t to say that bad things will happen
if you don’t mark the final fields as transient, but you want the intention of the code
to be clear if you or someone else ever needs to revisit the code for maintenance:

private transient String doNotCopy = "some value";

GWT serialization also traverses relationships between parent and child classes.
You could have a superclass that implements IsSerializable and a subclass that
doesn’t; but, because the superclass is serializable, so are all of its subclasses:

public class Person implements IsSerializable {
 String name;
 Date birthday;
}

public class Programmer extends Person {
 String favoriteLanguage;
}

Another thing to consider when working with serializable data objects is that they
will be used by both the client and server code, and, therefore, must adhere to the
rules for client-side code. This includes being compliant with the Java 1.4 lan-
guage syntax and may only reference classes that are part of the JRE Emulation
Library or are user created classes.

 In terms of optimizations for the GWT compiler, it’s good to be as specific as
possible when specifying the types of your fields in the data object. For example,
it’s common practice to specify java.util.List as a type instead of either Array-
List or Vector. The benefit of using a generalized type is that it allows you to
change the underlying implementation without changing the type declaration.
The problem is that when you generalize the type, it’s harder for the GWT com-
piler to optimize the code, and you often end up with larger JavaScript files. The
rule of thumb it to try to be as specific as possible in your typing.

 You may have noticed the catch-22 situation we’ve run into. You’re limited to
the Java 1.4 syntax, which rules out using generics. If you’re to be as specific as
possible, you need a way to let the GWT compiler know what types of objects are
contained in an ArrayList or Vector. This leads us to the typeArgs annotation.

Implementing GWT-RPC 359

Using the typeArgs annotation
Specific typing isn’t possible when your data object has a member that is a collec-
tion of objects. Collections in Java 1.4 hold values of type java.lang.Object, and
this is as generic of a type you can get. This would be an issue if, for example, your
data class had a member type of ArrayList, Vector, HashSet, or any other type
that implements java.util.Collection.
In the following example, the GWT compiler has no way of knowing what types of
objects are held by either listOfNames or listOfDates, so it won’t be able to
properly optimize the client-side JavaScript:

private ArrayList listOfNames;
private Vector listOfDates;

GWT provides an annotation that allows you to let
the compiler know what types of objects are in a
collection. This isn’t a Java 5 annotation, so it isn’t
part of the Java language; instead, you provide the
annotation inside a Java comment. Figure 10.5
shows the syntax of the typeArgs annotation.

 There are two variations of this annotation, the
second of which will be described later in this chap-
ter when you define the service interface. In this
first variation, the only parameter is the contained
object type inside angled brackets. The contained
type is specified using its full package and class
name. When you apply this to the two fields
listOfNames and listOfDates, it looks like this:

/**
 * @gwt.typeArgs <java.lang.String>
 */
private ArrayList listOfNames;

/**
 * @gwt.typeArgs <java.util.Date>
 */
private Vector listOfDates;

Now that you understand the basics, let’s apply that knowledge to the example
component.

Figure 10.5 The typeArgs
annotation is specified in a Java
comment preceding a field in the
class to provide a hint to the GWT
compiler about the contents of a
java.util.Collection.

360 CHAPTER 10

Communicating with GWT-RPC

Implementing the Server Status data object
To get back to the Server Status component we introduced at the beginning of
this chapter, you need a data object that will be used to hold server statistics data
that will be requested by and sent to the client browser. Here is the complete data
object:

package org.gwtbook.client;

import com.google.gwt.user.client.rpc.IsSerializable;

public class ServerStatusData implements IsSerializable
{
 public String serverName;
 public long totalMemory;
 public long freeMemory;
 public long maxMemory;
 public int threadCount;
}

The class complies with both rules of serializable objects: It implements IsSerial-
izable, and all the fields are also serializable. We built this class with only public
fields, but it would be just as appropriate to provide private or protected fields with
associated getter and setter methods, which is common in Java programming.

 Also note that this class is in the org.gwtbook.client package, and it will be
compiled into JavaScript to allow it to be used in the browser. On the server, you’ll
also use this class, but the server will use a compiled Java version of the class. As
part of the data serialization handled by GWT, it will handle the mapping for the
fields of the client-side JavaScript version to the server-side Java version of this
same class.

 Now that you have your data object, the next step is to define and implement
your service. You need to define a service by using a Java interface and then imple-
ment a servlet that adheres to that interface.

10.2.2 Defining the GWT-RPC service

The next step in using the GWT-RPC mechanism is to define and implement the
service that will live and be executed on the server. This consists of one Java inter-
face which describes the service, and the service implementation. When you write
a server-side service, you’ll probably want to integrate it with other backend sys-
tems like databases, mail servers, and other services. In addition to the basics of
using GWT-RPC, we’ll touch on how you might do some of these things. First, we’ll
look at the GWT RemoteService interface.

Implementing GWT-RPC 361

Extending the RemoteService interface
To define your service, you need to create a Java interface and extend the GWT
RemoteService interface. This is as easy as it sounds. If you recall, the Server Sta-
tus project calls an RPC service method that returns a ServerStatusData object,
which contains various server metrics. The interface looks like the following:

package org.gwtbook.client;

import com.google.gwt.user.client.rpc.RemoteService;

public interface ServerStatusService extends RemoteService
{
 ServerStatusData getStatusData ();
}

That is all there is to it: Provide a name for the interface, in this case ServerSta-
tusService, and have it extend GWT’s RemoteService interface. The RemoteSer-
vice interface doesn’t define any methods, so you won’t need to implement
anything special to get the service running. There are some additional fairly sub-
tle requirements when defining this interface:

■ The interface must extend com.google.gwt.user.client.rpc.RemoteSer-
vice.

■ All method parameters and return values must be serializable.

■ The interface must live in the client package.

We have covered the first of these, but we want to explain it a little further. GWT
automatically generates proxy classes for the client-side application and forwards
to methods using reflection on the server. To put it another way, GWT goes out of
its way to make RPC easy by minimizing the amount of code you need to write.
The RemoteService interface is used to signal which interfaces define the remote
service. This is important because this may not be the only interface the server
implementation implements.

 The second requirement is that all parameters and return values must be seri-
alizable. As we mentioned in the previous section, this includes all primitive Java
types, certain objects that are part of the standard Java library, and classes that
implement the IsSerializable interface. For the ServiceStatusService inter-
face, the only method, getStatusData(), returns a ServerStatusData object
that you created in the last section, and it implements IsSerializable. Here are
some more examples, all of which include parameters and return values that can
be serialized:

362 CHAPTER 10

Communicating with GWT-RPC

boolean serviceOne (String s, int i, Vector v);
String[] serviceTwo (float f, Integer o);

The last requirement is that the interface must be in the client package—the inter-
face code must be in your project where it’s compiled by GWT into JavaScript. Typ-
ically, this is in a package name ending in .client unless you have configured your
project differently. This interface needs to be compiled to JavaScript because it’s
used by both the client and the server. On the server, the service implementation
will implement this interface. We’ll look at how you reference this interface from
the client side when we get to the next section and call the service.

Using the typeArgs annotation
We introduced you to the typeArgs annotation in the previous section when you
used it to define the contents of collections in a serializable object. Here, we’ll
introduce an alternate syntax, but with the same purpose—to provide a hint to
the GWT compiler about what type of object a collection is holding. The specific
collection types that GWT supports are ArrayList, Vector, HashSet, and their
respective interfaces List and Set.

 You should provide the typeArgs annotation for each parameter and return
value that is a collection. Figure 10.6 shows the syntax, which differs in what you
saw in the last section, because it also allows you to specify the parameter name.
When you add an annotation for the return value, you don’t specify the parame-
ter name.

 Theh following code defines a method that takes a List of Integer values and
a Vector of Date values, and returns an ArrayList of String values:

/**
 * @gwt.typeArgs arg1 <java.lang.Integer>
 * @gwt.typeArgs arg2 <java.util.Date>
 * @gwt.typeArgs <java.lang.String>
 */
ArrayList operationThree (List arg1, Vector arg2);

In practice, you can probably leave off the typeArgs and everything will run fine.
If you decide to leave it off, you may end up with additional JavaScript code being
generated for the client because the GWT compiler won’t be able to optimize the
serialization code for handling Collection parameters and return values.

Figure 10.6 The second version of the
typeArgs syntax, which is used to provide
hints to the GWT compiler about the underlying
data types contained by Collection arguments
to the service

Implementing GWT-RPC 363

This covers serialization. But if you want remote calls to be able to pass Java
objects, you also want them to have the ability to pass exceptions.

Throwing exceptions
Often, it’s desirable to let a method throw an exception that will be handled by
the calling code. For example, you may have a login function that returns a user-
data object on success but, on failure, throws an appropriate exception:

UserData loginUser (String username, String password)
 throws FailedAuthenticationException;

When GWT calls the service method and throws an exception, it serializes the
exception and returns it to the client browser. The only requirement is that the
exception be serializable just like any data object. In other words, it must imple-
ment IsSerializable, all of its fields must be serializable, and the class must be
in the client package. See the previous section, “Understanding serializable data
objects,” for a complete discussion of creating serializable objects.

 As an alternative to writing your own serializable exception class from scratch,
GWT supplies an exception class SerializableException, in the package
com.google.gwt.user.client.rpc. You can use this exception class instead of
writing your own, or you can use this as the base class for your exceptions.

 Next, let’s look at how you can implement the service interface.

Implementing the service
With the service interface defined for your service, you need to implement its
methods. You do this by creating a servlet that extends GWT’s RemoteService-
Servlet and implements the service interface. Listing 10.3 shows the complete
ServerService implementation.

package org.gwtbook.server;

import org.gwtbook.client.ServerStatusData;
import org.gwtbook.client.ServerStatusService;
import com.google.gwt.user.server.rpc.RemoteServiceServlet;

public class ServerServiceImpl
 extends RemoteServiceServlet
 implements ServerStatusService
{
 public ServerStatusData getStatusData () {

Listing 10.3 Server Status server-side implementation

364 CHAPTER 10

Communicating with GWT-RPC

 ThreadGroup parentThread =
 Thread.currentThread().getThreadGroup();
 while (parentThread.getParent() != null) {
 parentThread = parentThread.getParent();
 }

 ServerStatusData result = new ServerStatusData();

 result.serverName = getThreadLocalRequest().getServerName();
 result.totalMemory = Runtime.getRuntime().totalMemory();
 result.freeMemory = Runtime.getRuntime().freeMemory();
 result.maxMemory = Runtime.getRuntime().maxMemory();
 result.threadCount = parentThread.activeCount();

 return result;
 }

}

The benefit of using GWT-RPC, which listing 10.3 shows, is that there is nothing
special you need to do to make your class a service other than extend the Remote-
ServiceServlet and implement an interface that extends RemoteService. When
the service is called, the underlying RemoteServiceServlet parses the request,
converting the serialized data back into Java objects, and calls the service method.
When the method returns a value, it is returned to the RemoteServiceServlet
that called the method, and it in turn serializes the result and returns it to the cli-
ent browser.

 Unlike what you’ve seen with the rest of GWT, there are
no restrictions on the server-side code. You can use any Java
class, you can use Java 5 syntax, and there are no special
annotations you need to use. There is one restriction, how-
ever: the package name. Because the server-side code con-
tains Java code that can’t be compiled into JavaScript, and
because there is no need for this to be served to the client,
you need to make sure this class lives outside the client pack-
age. To refresh your memory, figure 10.7 shows what the
current project directory layout looks like.

 The root of the project is the Java package org.gwtbook, and that package con-
tains the client package and the public folder. The public folder contains any
non-Java assets for the project, like the HTML file, and the client package con-
tains Java classes that will be compiled to JavaScript. For the server-side code, it’s

Find root Java
server thread

Create
result object

Populate
result object

return
result

Figure 10.7 Reviewing
the current project
directory layout

Implementing GWT-RPC 365

the standard practice to create a server package just beneath the root package,
which for this project is org.gwtbook.server. Don’t get too hung up on this;
depending on what you’re building, it may be more appropriate to use a different
package name, and this is fine as long as it isn’t in the client package.

 Next, we’ll look at how to configure the development environment to use the
new servlet.

Setting up your service for hosted-mode testing
There is one last step: registering your service with GWT by adding it to the project
configuration file. The project configuration file is located in the root package,
and it’s named the same as the entry-point class with a .gwt.xml extension; in this
case, it’s found under org.gwtbook and named ServerStatus.gwt.xml. By default, it
contains both an <inherits> element to provide access to the core GWT libraries
and an <entry-point> element indicating the runnable class for this project. To
this, you need to add a <servlet> element to register your new service. The com-
pleted ServerStatus.gwt.xml file looks like this:

<module>
 <inherits name='com.google.gwt.user.User'/>
 <entry-point class='org.gwtbook.client.ServerStatus'/>

 <servlet path="/server-status"
 class="org.gwtbook.server.ServerServiceImpl"/>
</module>

We’ve stripped out the comments that the GWT application creator added, to
shorten the example, so it may not look exactly like yours. The <servlet> ele-
ment has two attributes: path to indicate the URL of your service, and class to
indicate the servlet that should be run when this URL is requested. Note that just
like a Java application server, the path to the servlet is relative to the web project
root and not the root of the server. With this project, the default project URL in
hosted mode is the following:

http://localhost:8888/org.gwtbook.ServerStatus/ServerStatus.html

When you specify /server-status as the path to the servlet, it’s accessible with the
following URL:

http://localhost:8888/org.gwtbook.ServerStatus/server-status

If you’ve worked with the servlet path setting before, this will be the expected
behavior; but for some, this is a common cause of frustration when configuring a
servlet.

366 CHAPTER 10

Communicating with GWT-RPC

 With your service defined, implemented, and configured on the server, the
next step is to address the client-side issues and finally call the service from the
client.

10.2.3 Preparing the client side of a GWT-RPC call

When you call the remote service from the client, GWT does most of the work for
you; however, you need to create one last interface. The GWT compiler uses this
interface when it generates the service proxy object. A proxy object is an object
instance that forwards the request to another target. In this case, you’ll call a local
method, and the proxy object is responsible for serializing the parameters, calling
the remote service, and handling the deserialization of the return value. You
don’t write the code for the proxy class; the GWT compiler handles this for you. In
the client-side code, you create the proxy object by writing the following:

GWT.create (ServerStatusService.class)

Here you call the static method create() of the com.google.gwt.core.cli-
ent.GWT class, passing it the class object of the remote service interface. This
returns a proxy object that you can use to set the service URL and call the remote
methods. The proxy object returned implements two interfaces: one that you
need to create, and one supplied by GWT (as shown in figure 10.8).

 In figure 10.8, the proxy object is an instance of ServerStatusService_Proxy,
which implements two interfaces. The proxy class is created at compile time, so you
can’t reference this class directly in your code. Instead, you need to cast it to each
interface separately to be able to call its methods.

Figure 10.8 The client-side service proxy generated by the GWT compiler,
and the interfaces it implements

Implementing GWT-RPC 367

Of the two interfaces, ServiceDefTarget is part of the GWT library and includes a
method setServiceEntryPoint() for specifying the URL of the remote service.
The other interface, ServerStatusServiceAsync, provides asynchronous meth-
ods for calling the remote service. You’ll need to write this second asynchronous
service interface yourself, as we’ll discuss next.

 This asynchronous service interface always has the same name as your service,
with the name “Async” appended to it. The methods in the interface must match
all the method names in your original service interface, but the signatures need to
be changed. Specifically, for each method in the original interface, you must do
the following:

■ Set the return value to void.

■ Add an extra com.google.gwt.user.client.rpc.AsyncCallback
parameter.

Table 10.1 shows side-by-side examples of how a method in the service interface
looks in the asynchronous service interface.

This interface is used only by the client code and not the server. Because of this,
you don’t need to include this interface in any code deployed to the server, and
you must place the interface in the client package. Here is what you get when you
apply this to the ServerStatusService interface:

package org.gwtbook.client;

import com.google.gwt.user.client.rpc.AsyncCallback;
public interface ServerStatusServiceAsync {
 void getStatusData (AsyncCallback callback);

}

This sets you up for the last piece of the puzzle: calling the remote service from
the client.

Table 10.1 Comparing methods in the service interface to how they look in the asynchronous
 interface of GWT-RPC

Service interface Asynchronous service interface

String methodOne (int i);

List methodTwo ();

boolean methodThree (int a, int x);

void methodOne (int i,
AsynCallback cb);

void methodTwo (AsynCallback cb);

void methodThree (int a, int x,
AsynCallback cb)

368 CHAPTER 10

Communicating with GWT-RPC

10.2.4 Calling the remote server service

Now that you have the remote service interface defined and implemented, you’ve
created the remote asynchronous interface, and you’ve created a serializable
object to pass between the server and client, all that remains is to call the service
from the client browser. To do this, you need to do the following:

1 Instantiate a proxy object that will forward method calls to the server.

2 Specify the URL of the service.

3 Create a callback method to handle the result of the asynchronous method
call.

4 Call the remote method.

The first time you do this, it doesn’t feel natural, especially because you’re calling
the method asynchronously; but after a few tries, it becomes second nature. We’ll
examine each of these steps in turn and explain what needs to be done—and, per-
haps more important, why it needs to be done. We’ll also point out any areas of
common mistakes.

Step 1: Creating the proxy object
Step 1 is to create your proxy object. You do this by calling GWT.create(), passing
the remote service class as an argument. In return, the create() method returns
a proxy object that you need to cast to the asynchronous interface. A common
mistake is passing the wrong class as an argument to GWT.create(), so be sure to
pass the remote service interface and not the asynchronous interface that will be
implemented by the proxy object:

ServerStatusServiceAsync serviceProxy =
 (ServerStatusServiceAsync) GWT.create(ServerStatusService.class);

With the proxy object in hand, you can move on to the next step and use it to tar-
get the remote service.

Step 2: Casting the proxy object to ServiceDefTarget
The second step is to cast this same object to ServiceDefTarget so that you can
specify the remote service URL. As you saw in the last section, the proxy object
implements both the asynchronous service interface and ServiceDefTarget. All
you need to do is cast this same object to the ServiceDefTarget interface. Once
you do this, you can use setServiceEntryPoint() to set the URL for the service:

ServiceDefTarget target = (ServiceDefTarget) serviceProxy;
target.setServiceEntryPoint(GWT.getModuleBaseURL()
 + "server-status");

Implementing GWT-RPC 369

Or, alternatively, you can use a single-line syntax without creating a new variable:

((ServiceDefTarget)serviceProxy)
 .setServiceEntryPoint(GWT.getModuleBaseURL() + "server-status");

This sets the URL to /org.gwtbook.ServerStatus/server-status, which matches your
servlet definition in the .gwt.xml file but may not match your production environ-
ment when you deploy the application. The GWT.getModuleBaseURL() method
returns the location of the client-side code and appends a slash to the end, which
works fine for hosted-mode development; but when you deploy your service, this
may not be what you want.

 Instead, you can detect whether the code is being executed in hosted mode,
and use the appropriate service URL. You can do this by calling GWT.isScript(),
which returns true when the application isn’t running in hosted mode:

String serviceUrl = GWT.getModuleBaseURL() + "server-status";
if (GWT.isScript()) {
 serviceUrl = "/services/server-status.rpc";
}
((ServiceDefTarget)serviceProxy).setServiceEntryPoint(serviceUrl);

It may even be useful to take this a step further and define the web-mode service
path in a Constants file or as a Dictionary object. You can get more information
on how to use Constants and Dictionary in chapter 15.

 You’ve set up the proxy object, so now you need to construct your callback
object.

Step 3: Create a callback object
The third step in calling the RPC service is to create a callback object. This object
implements the GWT com.google.gwt.user.client.rpc.AsyncCallback inter-
face and is executed when a result is returned from the server. As you may recall,
you added an AsyncCallback parameter to every method in the asynchronous
service interface. The callback object is passed as this additional parameter. Here,
you create an anonymous object instance that implements AsyncCallback:

AsyncCallback callback = new AsyncCallback() {

 public void onFailure (Throwable caught) {
 GWT.log("RPC error", caught);

}

public void onSuccess (Object result) {
 GWT.log("RPC success", null);
 }

};

370 CHAPTER 10

Communicating with GWT-RPC

The AsyncCallback interface has two methods that must be implemented: onSuc-
cess() and onFailure(). If an error occurs where the service can’t be reached, or
if the server-side method throws an exception, the onError() method is called with
the exception that occurred. If the call is successful, then the onSuccess() method
is called, and it receives the return value of the remote method call. The previous
sample uses the GWT.log() method to log information to the hosted-mode console.
This would be replaced with code that does something with the resulting object and
handles the error in an appropriate manner for the application.

Step 4: Make the remote service call
The fourth and final step in calling a remote service is to make the call. This is a
little anticlimatic because it all comes down to one line of code:

serviceProxy.getStatusData(callback);

This method kicks off a chain of events. Any parameters other than the callback
object are serialized and passed to the remote service, and the appropriate call-
back method is executed based on the server response.

10.3 Project summary

The GWT-RPC mechanism is simple; but with all the details, it’s easy to lose site of
the overall architecture. As promised earlier, we’ll provide a summary of GWT-
RPC, using a lot of visuals to make it easy to understand the system as a whole.
We’ll begin with an overview of the files in the project and then look at the server-
side code, followed by the code on the client.

10.3.1 Project overview

The entire project thus far includes only seven files. Figure 10.9 provides a list of
these files. It contains the usual configuration file, project HTML page, and entry
point. That leaves only four files that represent the concepts covered in this chapter.

 The service interface defines the remote service. It extends RemoteService and
may only reference parameters and return values that can be serialized by GWT.
When a method accepts arguments that implement java.util.Collection, or
returns a Collection, you use the @gwt.typeArgs annotation to provide a hint
for the GWT compiler, letting it know what types of objects it can contain. Your
methods may declare that they throw exceptions, as long as any exception thrown
can be serialized by GWT.

Project summary 371

The asynchronous service interface contains the same method names as the service
interface, but with altered method signatures. Each method’s return type is
changed to void, and an AsyncCallback parameter is added as the last argument
to each method.

 The project may contain serializable data objects, each of which implements the
IsSerializable interface. GWT serializes any field not marked as transient or
final in the class, and every field not marked as transient must be of a GWT serial-
izable type.

 The service implementation is in a package outside the other client-side code
because it doesn’t need to be compiled to JavaScript by the GWT compiler. Typi-
cally, server-side code lives in a package at the same level as the client side code, in
a package with the last part named server. The service implementation extends
the RemoteServiceServlet and implements the service interface.

 That is a description of each part of the project in a nutshell. In practice, the
only difference between this service and other services you write will be the num-
ber of serializable data objects. You may also find that, in a large project, you wish
to reorganize the package structure and place all the interfaces and data objects
relating to a single service into a package by themselves.

 Let’s take a closer look at the server side of the project.

10.3.2 Server-side service implementation

Figure 10.10 presents a class diagram of all the classes on the server and their rela-
tionship to each other. We’ve used the stereotype <<client-side>> to mark those
classes that are used on the client side as well as the server and need to be compiled

Figure 10.9 An overview of the Server Status project files you’ve created

372 CHAPTER 10

Communicating with GWT-RPC

by the GWT compiler. Those classes must meet the requirements for client-side
code, including referencing only classes that are a part of the JRE Emulation
Library, or client-side user-defined classes. All other classes may take advantage of
Java 5 syntax and use any classes that are available on the server.

 The server-side service implementation is just a servlet, because it extends
RemoteServiceServlet, which in turn extends HttpServlet. When you deploy
your service. you install it on the server just like any other servlet.

 Finally, let’s look at the client side of the project.

10.3.3 Calling the service from the client

You call the remote service by creating an instance of a service proxy object, spec-
ifying the URL of the service, and calling the server-side method on the object.

Figure 10.10 Overview of the server-side classes used for the Server Status project,
but user generated and GWT supplied

Project summary 373

The last parameter to any such method call is a callback handler, which is exe-
cuted following the server returning a result. Listing 10.4 is a complete listing of
the entry-point class that sets up and calls the remote service.

package org.gwtbook.client;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.core.client.GWT;
import com.google.gwt.user.client.rpc.AsyncCallback;
import com.google.gwt.user.client.rpc.ServiceDefTarget;

public class ServerStatus implements EntryPoint
{
 public void onModuleLoad ()
 {
 ServerStatusServiceAsync serviceProxy =
 (ServerStatusServiceAsync)
 GWT.create(ServerStatusService.class);

 ServiceDefTarget target = (ServiceDefTarget) serviceProxy;
 target.setServiceEntryPoint(GWT.getModuleBaseURL()
 + "server-status");

 AsyncCallback callback = new AsyncCallback()
 {
 public void onFailure (Throwable caught)
 {
 GWT.log("Error", caught);
 }

 public void onSuccess (Object result)
 {
 ServerStatusData data = (ServerStatusData) result;
 GWT.log("Server Name: " + data.serverName, null);
 GWT.log("Free Memory: " + data.freeMemory, null);
 GWT.log("Max Memory: " + data.maxMemory, null);
 }
 };

 serviceProxy.getStatusData(callback);
 }
}

Listing 10.4 Client-side implementation

374 CHAPTER 10

Communicating with GWT-RPC

10.4 Summary

In this chapter, you created an RPC service using the GWT-RPC mechanism and
called the service from the web browser, passing serialized Java objects. This chap-
ter covers the basics of how to call a remote service, but we haven’t yet discussed
how to solve common real-world problems. For instance, how do you continu-
ously poll a server for updates, and what is the best way to architect client-side
RPC? In chapter 11, we’ll answer both of these questions as we finish the Server
Status project and take a hard look at client-side architecture.

