
A1

appendix A:
Working with Struts

A2 APPENDIX A

Working with Struts

From among the many Java-based web server frameworks available, we settled on a
Struts/Hibernate/MySQL solution as our representative framework for develop-
ing enterprise-class Java EE web applications. Because Laszlo only requires XML
documents as its input, this dramatically simplifies the presentation services, thus
reducing the differences between alternative frameworks. As a result, past criteria
for selecting a particular framework are irrelevant with Laszlo.

 In this appendix, we’ll examine Struts’s overall architecture and how to repur-
pose existing Struts applications to support Laszlo applications.

A.1 Creating our Struts application

Struts is an open source framework implementing the model-view-controller
(MVC) architecture to develop Java EE web applications. The central purpose of
every web application is to receive an HTTP request for processing and return an
HTTP response. When a web container receives an incoming URI, it checks for a
.do extension indicating that the request is to be forwarded to Struts’s front control-
ler servlet (known as the ActionServlet). A front controller is a singleton servlet that
fields all requests for subsidiary controllers. Although the ActionServlet performs
several services, its main task is to route URI requests to these other controllers,
known as Actions.

 The struts-config.xml file contains a roadmap for our Struts application that
maps the URI, known as ActionMappings, to their Actions. The ActionServlet looks
through this file for an entry with a matching URI path. In our case, there is only a
single matching URI: /products.do. The ActionServlet executes this Action with
its set of ActionForward objects that represent the various processing outcomes.
The eventual outcome—which ActionForward object is selected—is determined
by processing the request.

 Let’s next look at how to create a struts-config roadmap.

A.1.1 Creating the struts-config roadmap

A struts-config.xml file is composed of three collections of objects:

■ global-forwards containing ActionForward objects
■ form-beans containing ActionForm objects

■ action-mappings containing Actions and their forward objects

Listing A.1 shows the struts-config file that supplies products to the Laszlo Market.

APPENDIX A

Working with Struts A3

<struts-config>
 <global-forwards>
 <forward name="success" path="/jsp/results.jsp"/>
 <forward name="failure" path="/jsp/error.jsp"/>
 </global-forwards>

 <form-beans>
 <form-bean name="productForm"
 type="com.laszlomarket.ProductForm"/>
 </form-beans>
 <action-mappings>
 <action path="/products"
 type="com.laszlomarket.ProductAction"
 name="productForm" validate="true">
 <forward name="status" path="/pages/status.jsp"/>
 <forward name="add_product"
 path="/jsp/add_product.jsp"/>
 <forward name="display_products"
 path="/jsp/display_products.jsp"/>
 </action>
 </action-mappings>
</struts-config>

Our struts-config.xml file contains a single mapping action with a /products path,
which specifies

■ The name of the ActionForm object to use—a ProductForm

■ The Action object to use—a ProductAction

■ A list of possible forward destinations

Figure A.1 illustrates the overall architecture of our Struts application. The appli-
cation is accessed through the /product.do URI, which matches the Action object
identified by the product path. Both our Action and ActionForm will have a prod-
uct prefix, so we’ll have a productAction and a productForm. Also associated with
this action are two sets of ActionForward objects, global and local. A global
ActionForward is used by all Actions, while a local ActionForward is only used by
our ProductAction.

 Rather than diving straight in and creating all of these software modules, let’s
start by looking at how to retrofit an existing Struts application to interface to
Laszlo.

Listing A.1 struts-config.xml to support Laszlo

A4 APPENDIX A

Working with Struts

A.1.2 Retrofitting Struts applications

The Struts MVC architecture confines the generation of XML or HTML output to
its (JSP code) view layer. So a Struts application’s existing Action, ActionForm,
and business objects don’t need to be modified, but rather can be made to work
with Laszlo just by adding another set of JSP files. These JSP files generate an XML
document instead of HTML. Your struts-config.xml file will need to be updated to
provide an additional Action Mapping path. Figure A.2 shows the additional
Action Mapping /loginlzx and results-xml.jsp file for adding Laszlo support for
an existing /login action.

 The mapping capability of the struts-config.xml file is used to support both
HTML and XML output. We’ll add a new action mapping, /loginlzx, to generate
an XML response. This new mapping will use the existing LoginForm and Login-
Action objects, but it forwards the request to a different JSP file, result-xml.jsp, to
generate an XML response. The affected areas of the struts-config.xml file are
shown in bold.

Figure A.1 The shaded objects within the dotted area are the objects defined by the matching
ActionMapping. These objects are called by the ActionServlet.

APPENDIX A

Working with Struts A5

<action-mappings>
 <action path="/login" type="com.laszlomarket.LoginAction"
 name="loginForm" validate="true">
 <forward name="success" path="/result.jsp"/>
 </action>
 <action path="/loginlzx" type="com.laszlomarket.LoginAction"
 name="loginForm" validate="true">
 <forward name="success" path="/result-xml.jsp"/>
 </action>
</action-mappings>

The original JSP files can be used to get a jumpstart on these new XML-based JSP
files, since most of the iterative tag logic can be reused.

A.1.3 Creating our Struts controller

Let’s start with a technical overview of the entire progression through Struts. Once
an ActionMapping match is found for our URI, another search begins for a match-
ing form-bean within the form-beans tag. This matching entry contains the loca-
tion of the ActionForm class, which is instantiated as a ProductForm object. Before
the ProductForm is populated, Struts calls its reset method to clear its data fields.
Afterward, the ProductForm object is populated by the request parameters.

 Next, the ActionServlet invokes the execute method of the Action object
passing the ActionMapping, ActionForm, and the HTTP request and response
objects as arguments. Depending on the result of the action, an ActionForward
object is used to inform the ActionServlet controller where the request object
should be forwarded to next. This destination could be either a JSP file to produce

Figure A.2 Existing Struts applications can be modified to support Laszlo
applications by adding another set of JSP files to generate XML rather than HTML.

A6 APPENDIX A

Working with Struts

an XML response or another Action for further processing. The JSP file sets the
HTTP response’s context type to XML to ensure that the body of the response con-
tains XML, and this response is sent back to Laszlo.

 So let’s take the first step by creating our ProductForm.

Creating our ProductForm
An ActionForm provides a buffer to validate the input data. If the validate
attribute of the action is true, which is the default, the validate method is called
to perform field and form validation by checking relationships between fields.
Before a data form is submitted to the server, a Laszlo application should perform
its own validation to ensure that all data is valid. But it is still necessary to perform
validation on the server to ensure that data fields are not corrupted in transit.

Creating a validate method
A validate method must be strict about validating all data inputs. For demonstra-
tion purposes, we provide only validation for the action parameter. In a real-
world situation, every input parameter should be checked. The action parameter
specifies the action to be performed by the Action controller. Listing A.2 shows
our example validate method.

public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {
ActionErrors errors = new ActionErrors();
String action = request.getParameter("action");

 if ("add".equals(action)) {
 if (id == null || id.intValue() < 0) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.required", "id"));
 return errors;
 }
 }
 else if ("delete".equals(action)) {
 if (id == null || id.intValue() < 0) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.required", "id"));
 return errors;
 }
 }
 else if ("get".equals(action)) {
 if (id == null || id.intValue() < 0) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.required", "id"));

Listing A.2 A validate method for input data validation

B

C

APPENDIX A

Working with Struts A7

 return errors;
 }
 }
 else if ("update".equals(action)) {
 if (id == null || id.intValue() < 0) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.required", "id"));
 return errors;
 }
 }
 else {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.unknownaction"));
 return errors;
 }
 return errors;
}

Listing A.2 first creates an ActionErrors object B to hold any errors. We’ll
require that each action must have an id C that has a positive value. If the vali-
date method returns null or an empty ActionErrors collection, then we con-
tinue on to our ProductAction’s execute method. Otherwise, we’re routed to a
JSP file to display an error message. Now we’ll start creating our ProductAction.

A.1.4 Creating the ProductAction

An Action is a coordinator between the model and the view layers to dictate the
flow of an application. The request’s action parameter specifies an operation—
add, delete, and update for updating and replacing—that maps to one of the
CRUD operations. If the CRUD operation succeeds, then the ActionForward is set
to success; otherwise an exception is thrown and the ActionForward object is set
to failure. Listing A.3 shows the code for this action, where each of the CRUD
operations is represented by stubs.

public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {
 ActionErrors errors = new ActionErrors();

 String action =
 request.getParameter("action");
 try {
 if ("add".equals(action)) { … }
 else if ("delete".equals(action)) { … }
 else if ("update".equals(action)) { … }

Listing A.3 Overview of the Struts Action

Gets action for
processing

A8 APPENDIX A

Working with Struts

 else if ("get".equals(action)) { … }
 else if (action == null || "list".equals(action)) { … } }
 catch (Exception e) {
 log.warn("productAction exception: " + e.getMessage());
 errors.add(ActionErrors.GLOBAL_ERROR, new
 ActionError("errors.invalidDBOp"));
 saveErrors(request, errors);
 return mapping.findForward("failure"); }
 return mapping.findForward("success"); } }

Let’s next look at the model layer, since it returns the value that controls which
ActionForward is returned by the controller.

A.2 Creating the model

Hibernate is an open source object/relational mapping (ORM) framework for
Java, supporting the persistence of Java objects in a relational database. Once a
mapping between a Java class and a database table has been created, complex
objects, such as our class instances, can be saved and retrieved from a database
without having to perform low-level SQL operations.

 Hibernate acts as a buffer between these two worlds, providing persistent
classes to support object-oriented idioms like inheritance and polymorphism.
This allows developers to work with objects in a completely object-oriented way
and to ignore the persistence issues of databases.

 Next, we’ll see the steps to configure Hibernate.

A.2.1 Configuring Hibernate

Configuring Hibernate requires updating its two configuration files: the hiber-
nate.properties file that contains database settings and a Hibernate mapping file
that contains class and database table-mapping files to support persistence. We’ll
start by updating Hibernate’s properties file.

Creating the hibernate.properties file
This hibernate.properties file contains all the configuration parameters to a
MySQL database. This includes specifying the database to use, its driver’s name
and location, and the name and password of the user:

hibernate.dialect org.hibernate.dialect.MySQLDialect
hibernate.connection.driver_class org.gjt.mm.mysql.Driver
hibernate.connection.url jdbc:mysql://localhost:3306/market
hibernate.connection.username laszlo
hibernate.connection.password laszlo

Puts errors
into request

APPENDIX A

Working with Struts A9

We’ll assume that we have a product database table that is described by this
schema:

create table products (
 id int not null auto_increment,
 sku varchar(12) not null,
 title varchar(100) not null,
 description text not null,
 specs text not null,
 image varchar(200) not null,
 video varchar(200) not null,
 category varchar(100) not null,
 price decimal(10,2) not null,
 primary key (id)
);

Now that Hibernate is connected to a database, we’ll examine how it creates its
mappings.

Creating the Hibernate mapping file
Hibernate’s mapping file for our Product object is called Product.hbm.xml. This
file maps the properties of our Product class to the fields of a product database
table. Whenever either the Java object or the database table is updated, this file
must also be updated:

<hibernate-mapping package="com.laszlomarket">
 <class name="Product" table="product">
 <id name="id" column="id" type="java.lang.Long"
 unsaved-value="0">
 <generator class="identity"/>
 </id>
 <property name="title" column="title" type="java.lang.String"/>
 <property name="image" column="image" type="java.lang.String"/>
 <property name="video" column="video" type="java.lang.String"/>
 <property name="price" column="price" type="java.lang.Double"/>
 <property name="sku" column="sku" type="java.lang.String"/>
 <property name="description" column="description"
 type="java.lang.String"/>
 <property name="specs" column="specs" type="java.lang.String"/>
 </class>
</hibernate-mapping>

First, we specify B that a class with the name com.laszlomarket.Product is
associated with the database table product. The name id C is a special property
that represents the database identifier—the primary key—of this class. A simple
mapping D can be used between each of the property names and their data-
base fields.

B

C

D

A10 APPENDIX A

Working with Struts

 Now that we have Hibernate configured, we can start using it. But rather than
scattering Hibernate calls throughout the application, a better approach is to
encapsulate them in a special object. The data access objects (DAO) design pat-
tern was created for just this purpose.

A.2.2 Creating the DAO methods

Data access objects (DAO) is a core design pattern in Java EE, providing an inter-
face between the controller and model layers. The purpose of the DAO pattern is
to locate all the code dealing with Hibernate persistence in one place, and to free
business objects from data persistence issues. In general, a DAO is created for each
class. Since our DAO works with the Product class, it is called ProductDAO. For easy
access, it is implemented as a global singleton service. Before any objects can be
made persistent, a DAO instance is obtained with the getInstance method:

 public class ProductDAO {
 private static ProductDAO instance = null;
 private ProductDAO() { }

 public static synchronized ProductDAO getInstance() {
 if (instance == null) {
 instance = new ProductDAO(); }
 return instance; } }

The private access modifier B precludes this constructor from being invoked out-
side this class. If there is no instance, then a ProductDAO object is instantiated C.
Otherwise, the instance is returned. This ensures that there is only a single instance
of this object.

 But before this ProductDAO class can perform any persistence operations,
Hibernate needs to perform runtime initialization for the class.

Runtime initialization for Hibernate
Every Hibernate request results in the creation and destruction of a session. To
allow session objects to be inexpensively created and destroyed, we build an
instance of the SessionFactory class. But first we need a Configuration instance.

 A Configuration object contains all the classes to be persisted by Hibernate.
Configuring a class to be persisted requires that we add this class to the Configu-
ration declaration through its addClass method. Multiple classes can be
declared by concatenating their declarations, like this:

Configuration cfg = new Configuration().addClass(apple.class)
 .addClass(berry.class)
 .addClass(cherry.class);

B

C

APPENDIX A

Working with Struts A11

The purpose of the Configuration object is to build a SessionFactory, which
must be provided for each database. Since we have only a MySQL database, only a
single SessionFactory object is needed:

private static ConnectionFactory instance = null;
private SessionFactory sessionFactory = null;

private ConnectionFactory() {
 try {Configuration cfg = new
 Configuration().addClass(Product.class);
 sessionFactory =
 cfg.buildSessionFactory(); }
 catch (MappingException e) {
 log.warn("Mapping Exception" + e.getMessage());
 throw new RuntimeException(e); }
 catch (HibernateException e) {
 log.warn("Hibernate Exception" + e.getMessage());
 throw new RuntimeException(e); } }

The sessionFactory needs to be built only once and should be easily accessible.
Consequently, it is also executed within the ConnectionFactory constructor that
is implemented as a singleton:

public static synchronized ConnectionFactory
 getInstance() {
 if (instance == null) {
 instance =
 new ConnectionFactory(); }
 return instance; }

public Session getSession() {
 try {
 Session s =
 sessionFactory.openSession();
 return s; }
 catch (HibernateException e) {
 log.warn("Hibernate Exception" + e.getMessage());
 throw new RuntimeException(e); } }

In the first line, getInstance B returns the instance of the ConnectionFactory
singleton. If an instance of the singleton C has not been created, one is created
and returned. At D the Hibernate sessionFactory returns a session to the caller.

 All operations in Hibernate start with a session. Before we can do anything,
we must retrieve an open session through the getInstance singleton method:

Session session = ConnectionFactory.getInstance().getSession();

Now that Hibernate’s runtime configuration is complete, we’re ready to imple-
ment CRUD functionality with our DAOProduct class.

Establishes
sessionFactory

B

C

D

A12 APPENDIX A

Working with Struts

A.2.3 Building our ProductDAO Object

We’ll use the same coding outline for all our DAO operations. All Hibernate oper-
ations must be enclosed within a set of try and catch brackets, to capture Hiber-
nate exceptions. Whenever a HibernateException occurs, the error message is
directed to a system log and an uncatchable RuntimeException is thrown to prop-
agate the exception up one level, where a more contextually specific error mes-
sage can be generated. When the Hibernate operation has successfully
completed, a finally clause ensures that the Hibernate session is closed. Failure
to close the session correctly causes a Hibernate exception to be generated,
which is handled as before.

 Listing A.4 shows a complete example. In subsequent examples, we provide
only an abridged version of the Hibernate calls.

Adding a product
Since a Product object is transient, its data would be lost if the server shut down.
To make this data persistent, the Product object is passed to the Hibernate ses-
sion, which generates SQL statements to save it. The Hibernate session uses
transparent write-behind, which combines many changes into a smaller number of
database requests, thus increasing efficiency. This also generates the SQL state-
ments asynchronously. During development, we prefer to see the generated SQL
statements, so a flush statement is added to force their immediate generation.
These flush statements can easily be commented out later.

public void addProduct(Product product) {
 Session session = ConnectionFactory.
 getInstance().getSession();
 try {
 session.save(product);
 session.flush(); }
 catch (HibernateException e) {
 log.warn("Hibernate Exception" + e.getMessage());
 throw new RuntimeException(e); }
 finally {
 if (session != null) {
 try {
 session.close(); }
 catch (HibernateException e) {
 log.warn("Hibernate Exception" + e.getMessage());
 throw new RuntimeException(e); } } } }

Next, we’ll look at implementing each of the DAO operations for products.

Listing A.4 Adding a Product with Hibernate

Gets open
session Persists

transient
instance

Ends
session

Logs warning,
throws runtime

exception

Synchronizes
persistent
store with
memory

APPENDIX A

Working with Struts A13

Listing products
Hibernate features HQL, an object-oriented variant of the relational query lan-
guage SQL, to simplify object retrieval. Queries are created with HQL to retrieve
objects of a particular class. Selections can be filtered by adding a where clause
that restricts selections to match certain class properties. To list a single Product,
we retrieve it by a matching id value. This is a multistep procedure; the first step
creates the query, then the identifier value is bound to a named parameter, and,
finally, the result is returned. An advantage of using named parameters is that it is
not necessary to know the numeric index of each parameter:

public List getProduct(Product product) {
 …
 try {
 Query query = session.createQuery(
 "select from Product i where i.id = :id");
 query.setParameter("id", product.getId(), Hibernate.LONG);
 return query.list(); }
 … }

This select query returns all the products. When multiple products are listed,
they should be ordered by a field. Here they are ordered by the name field:

public List getProducts(Product product) {
 …
 try {
 Query query =
 session.createQuery("from Product i order by i.name");
 return query.list(); }
 … }

In both examples, a list of the results is returned. There is no need for a flush
statement, since results are being read from the database. The Action is responsi-
ble for storing these results in a list-based object, so it can be iterated for display in
the view.

Updating a product
The update method updates the persistent state of the object in the database with
the contents of the transient object. Hibernate executes a SQL UPDATE to perform
this operation:

public void updateProduct(Product product) {
 …
 try {
 session.update(product);
 session.flush (); }
 … }

A14 APPENDIX A

Working with Struts

This results in the database record corresponding to this object being updated
with the contents of its fields.

Deleting a product
The get method is used to retrieve a Product instance by its identifier. Once we
have the Product instance, it is passed to the delete method to schedule a SQL
delete operation:

 public void deleteProduct(Product product) {
 …
 try {
 Product product = (Product) session.get(Product.class, id);
 session.delete (product);
 session.flush(); }
 … }

Now that we’ve defined all of the DAO methods, we can begin putting all of the
pieces together within the Action controller. The values returned from the DAO
methods are used to update the request, which is later accessed by the view’s JSP
pages for display.

A.2.4 Using the ProductDAO with our ProductAction

The Action controller performs some setup operations before beginning its main
task of routing the action parameter to invoke the appropriate DAO method. If
the DAO returns a value, the request object must be updated with this value. This
makes these values available to the JSP files for display within an XML file. Finally,
the ActionForward is set to cause the invocation of a JSP file to display this infor-
mation. Listing A.5 shows the Action controller.

 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {
 ActionErrors errors = new ActionErrors();
 ProductDAO dao = ProductDAO.getInstance();

 String action =
 request.getParameter("action");
 Product product = new Product();
 BeanUtils.copyProperties(product, form);
 try {
 if ("add".equals(action)) {
 dao.addProduct(product);
 return mapping.findForward(
 "status"); }

Listing A.5 Updated ProductAction using the ProductDAO

Gets DAO
instance

Determines
CRUD operation

Copies parameters
to product object

Adds
product

APPENDIX A

Working with Struts A15

 else if ("delete".equals(action)) {
 dao.deleteProduct(product);
 return mapping.findForward(
 "status"); }
 else if ("update".equals(action)) {
 dao.updateProduct(product);
 return mapping.findForward(
 "status"); }
 else if ("get".equals(action)) {
 List products = new ArrayList();
 products.add(
 dao.getProducts(product));
 request.setAttribute(
 "products", products);
 return mapping.findForward(
 "display_products"); }
 else if (action == null ||
 "list".equals(action)) {
 List products =
 dao.getProducts(product);
 request.setAttribute(
 "products", products);
 return mapping.findForward(
 "display_products"); } }
 catch (Exception e) {
 log.warn("productAction exception: " + e.getMessage());
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.invalidDBOp"));
 saveErrors(request, errors);
 return mapping.findForward("failure"); }
 return mapping.findForward("success"); } }

In each case, after calling the ProductDAO to complete each CRUD-related opera-
tion ActionForward directs the Action controller to display a JSP page. This page
contains either a status or the product listing.

 Now the only task left is to write the JSP files to read the information stored in
the request and product objects and create a response containing an XML docu-
ment.

A.3 Outputting XML content

Laszlo requires that its HTTP response contain an XML document. This XML out-
put can be easily created by setting the response’s MIME type to text/xml. We do
this by updating the page directive’s contentType attribute within the JSP file:

<%@ page contentType="text/xml" %>

Deletes
product

Updates
product

Gets
product

Lists all
products

A16 APPENDIX A

Working with Struts

When returning a successful status, a JSP can simply contain a hard-coded XML
response like this:

<%@ page contentType="text/xml" %>
<result>
 <status>SUCCESS</status>
</result>

When products are returned by the product.jsp file, the Struts iterate tag is
used to display both single and multiple product listings:

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<%@ page contentType="text/xml" %>
<response>
 <products>
 <logic:iterate id="product"
 name="products"
 scope="request"
 type ="com.laszlomarket.Product">
 <product sku="<bean:write name='product' property='sku'/>"
 id="<bean:write name='product' property='id'/>"
 title="<bean:write name='product'
 property='title'/>"
 price="<bean:write name='product'
 property='price'/>"
 image="<bean:write name='product'
 property=’image’/>">
 video="<bean:write name='product'
 property='video'/>">
 <description><![CDATA[
 <bean:write name="product" property="description"/>
]]></description>
 <outline><![CDATA[
 <bean:write name="product" property="outline"/>
]]></outline>
 <specs><![CDATA[
 <bean:write name="product" property="specs"/>
]]></specs>
 </product>
 </logic:iterate>
 </products>
</response>

When the following code is executed, it produces the identical XML output to the
sample data used in our local dataset, but now it’s wrapped within a response
node:

Iterates over
products array

APPENDIX A

Working with Struts A17

<response>
 <products>
 <product sku="SKU-001" title="The Unfolding"
 price="3.99" image="dvd/unfold.png" id="1"
 video="video/unfold.flv" category="new">
 <description><![CDATA[A man calling himself "Simon"
 …]]>
 </description>
 <outline><![CDATA[This film deals with
 …]]>
 </outline>
 <specs><![CDATA[<p>Regional Code: 2 (Japan, Europe,
 …</p>]]>
 </specs>
 </product>
 <product sku="SKU-002" …>
 …
 </product>
 </products>
</response>

We’ve now completed our Struts web application to support the product listing as
required by the Laszlo Market application. Chapter 16 contains further informa-
tion on how a Laszlo application can generate an HTTP request to invoke this web
service and how it will process the returned response.

