
M A N N I N G

Ken Rimple
Srini Penchikala

FOREWORD BY
BEN ALEX

Dottie
Text Box
SAMPLE CHAPTER

Spring Roo in Action
by Ken Rimple, Srini Penchikala

Chapter 3

Copyright 2012 Manning Publications

vii

brief contents

PART 1 STARTING SPRING APPS RAPIDLY WITH ROO...................1

1 ■ What is Spring Roo? 3

2 ■ Getting started with Roo 25

PART 2 DATABASES AND ENTITIES ... 55

3 ■ Database persistence with entities 57

4 ■ Relationships, JPA, and advanced persistence 93

PART 3 WEB DEVELOPMENT...125

5 ■ Rapid web applications with Roo 127

6 ■ Advanced web applications 156

7 ■ RIA and other web frameworks 173

8 ■ Configuring security 189

PART 4 INTEGRATION ...209

9 ■ Testing your application 211

10 ■ Enterprise services—email and messaging 243

11 ■ Roo add-ons 266

12 ■ Advanced add-ons and deployment 296

viii BRIEF CONTENTS

PART 5 ROO IN THE CLOUD...321

13 ■ Cloud computing 323

14 ■ Workflow applications using Spring Integration 337

Database persistence
with entities

This chapter covers
 Your business objects and persistence

 Working with entities

 What about validation?

 Searching with finders

In the last chapter, we discussed Spring Roo from a developer’s perspective. We
discussed the various component types, and how the Roo shell creates and main­
tains objects in your projects, hiding tedious, repetitive code behind AspectJ­
driven .aj files.

 In this chapter, you’ll learn how to store and load data from relational data­
bases. You’ll start by defining object-relational mapping (ORM) APIs and the stan­
dard Java Persistence API, and then learn how to configure persistence in a project
using the Roo shell. Next, you’ll define Roo entities, which are an enhanced version
of the standard JPA Entity class. You’ll create entity components in the shell, and
we’ll show you how to load, persist‚ and remove them, using Roo’s JUnit-based inte­
gration test framework.

57

58	 CHAPTER 3 Database persistence with entities

 Next, you’ll use the Bean Validation Framework to configure automatic data vali­
dation in your entities. We’ll discuss both built-in and custom validations, and how to
provide validation messages. We’ll discuss finders—methods that allow for searching
for properties within a Roo entity. We’ll wrap up by discussing JPA Repositories.

3.1 Your business objects and persistence
No matter how cool your application architecture is, it often boils down to loading
data from a database, editing it, and then saving it back again with changes from the
user or external system. The challenge is to get the data to flow between your object-
driven Java application server and the relationally mapped database server.

3.1.1 The Java Persistence API

The Java Persistence API, or JPA for short, was created to provide a standard program­
ming interface for object-oriented database mapping. Hibernate, EclipseLink, Open-
JPA‚ and other frameworks implement the JPA 2.0 specification, which allows
developers to write code to a single API regardless of the implementing vendor. JPA
defines the following components:

 The JPA entity —A Java class that’s mapped to a database table, using either anno­
tations or XML.

 The persistence context—A storage area assigned to an individual session or
thread, this is the workspace that keeps track of changes to relational data.

 Persistence annotations —The javax.persistence.* annotations define mapping
instructions such as tables, relationships, primary key generation techniques,
and query mapping.

 The EntityManager API—Provides access to a persistence context.
 The JPA configuration file —JPA-compliant ORMs are configured using the special

file, META-INF/persistence.xml.

JPA was originally developed as part of the Java EE 1.5 specification, as a replacement
for the more vendor-specific and heavyweight Enterprise JavaBeans. Spring provides a
factory to configure the JPA API, whether or not the Spring application is running as a
standalone application or within a Java EE application server like WebSphere or JBoss.

MORE ON THE JAVA PERSISTENCE API Although a full review of JPA is beyond
the scope of this book, Spring Roo uses JPA 2.0, which is documented as part
of the Java community process. The specification, JSR-317, is available at
http://mng.bz/FU7w. There are a number of books available on the subject
of JPA 2.0.

Now let’s use the Roo shell to set up JPA. Then you can get started coding against rela­
tional databases, Roo-style.

http://mng.bz/FU7w

Your business objects and persistence	 59

3.1.2 Setting up JPA in Roo

Configuring JPA in a traditional Spring project involves setting up various configura­
tion elements and programming directly to the JPA API. Spring Roo configures all of
these features for you using the jpa setup command. This command will configure a
JDBC DataSource, Spring transaction management features, the JPA 2.0 API, JPA enti­
ties, inter-type declarations, and validations via the Bean Validation Framework. You
don’t even have to manually wire up a configuration at all!

 In this chapter, you’ll begin to configure your application, the Course Manager,
which manages a set of courses for a fictitious training company. If you’re following
along, you can start by creating your own project with the project command, naming
the project coursemanager.

 Let’s use the jpa setup command to set up your database. We’ll assume you don’t
have a database engine installed on your machine; for simplicity, let’s use the Hyper­
sonic SQL standalone database. Here’s the proper Roo shell command. We’ll assume
you’ve already set up the project itself with the name of coursemanager and a base
package of org.rooinaction.coursemanager:

roo> jpa setup --database HYPERSONIC_PERSISTENT ➥

 --provider HIBERNATE

SAVE SOME TYPING Remember, in the shell, you can type the first two or three
characters of this command—for example‚ jp [TAB]—and Roo will complete
the command for you. This goes for your options and values as well. You can
type -- [TAB] to see what options are available, and when when an option such
as database is selected, you can hit [TAB] to get the available options.

As we described in the quick-start in chapter 2, the jpa setup command performs a
number of configuration steps. Roo will

 Include the dependent JAR files in your Maven pom.xml configuration file for
the selected JDBC driver, the JPA API, and a number of Hibernate JARs (and
their dependencies)

 Configure a JDBC data source, Spring transaction manager, and a Spring JPA
configuration in META-INF/spring/applicationContext.xml

 Configure META-INF/persistence.xml with settings relating JPA to the database
using Hibernate configuration settings

 Install the JSR-303 Bean Validation Framework, which provides annotation-
based validations

Let’s look at the jpa setup command in a little more depth. Listed in table 3.1 are the
key parameters.

 Using [TAB] completion, you’ll be prompted for the appropriate parameters. The
most useful options of course are --provider and --database. Of particular note,
when running Spring Roo on an application server such as WebSphere, WebLogic, or
JBoss, you can take direct advantage of a JNDI data source; just put the proper data
source name in the --jndiDataSource option.

--

60 CHAPTER 3 Database persistence with entities

Table 3.1 JPA setup command parameters

Option (prefixed with) Required Options/Notes

provider

database

applicationId

hostName, databaseName,
userName, password

jndiDataSource

persistenceUnit,
transactionManager

Yes

Yes

No

No

No

No

The JPA provider to configure. Includes HIBERNATE,
ECLIPSELINK, OPENJPA, and DATANUCLEUS (required
for use with Google App Engine).

The database to configure. DB2, DERBY, ORACLE,
SYBASE, MSSQL, HYPERSONIC_PERSISTENT‚ and
many more.
Please note: Oracle and some other proprietary database
drivers aren’t provided by the Maven public repository.
You’ll have to manually install the Oracle driver by down­
loading it, installing it into Maven manually‚ and adjusting
the pom.xml file to reference the appropriate groupId,
artifactId, and version of the installed JAR.

For Google App Engine (DATANUCLEUS) provider, the
Google application ID.

Values to override that are set in src/main/resources/
database.properties.

If using JNDI, the data source to reference in your Java
EE application server. For JDBC data sources this isn’t
required.

Advanced usage. You can use several data sources, 
each linked to individual transaction managers. For 
each one, a separate JPA environment is set up. The
--persistenceUnit parameter names the JPA envi­
ronment, and the --transactionManager specifies
which Spring transaction manager to use. We don’t cover
this configuration in the book.

Rerun jpa setup to change your database configuration
You can run the jpa setup command over and over again. Each time it will replace
the configuration entry and reconfigure JPA to support whatever settings you’d like to
change. This makes the ORM implementation changeable without affecting your
code, and lets you mix and match combinations of the various persistence providers
and JDBC drivers to find the best fit for your application. Note that this will rewrite
your database.properties file, so be prepared to reenter your connection information.

One way this makes your life easier as a developer is that you can quickly get going
using HIBERNATE against a HYPERSONIC_PERSISTENT database to provide a simple
relational database. Later, you can modify your persistence provider by running again
and selecting another JPA vendor such as ECLIPSELINK or OPENJPA. Later, when set­
ting up your desired environment’s database, you may switch to ORACLE, MYSQL‚ or
any other database supported by your ORM provider.

When using Google’s cloud database, you would use DATANUCLEUS to support run­
ning Roo on Google App Engine.

61Your business objects and persistence

Your database properties are configured and stored in database.properties, located
in src/main/resources/META-INF/spring. Colons (:) may be escaped in the file with
a preceding backslash (\). To view, change‚ or set properties, either edit the file your-
self, or use the Roo properties shell commands. To view properties, issue the
properties list command:

roo> properties list --name database.properties ➥
--path SPRING_CONFIG_ROOT

databasedriverClassName = org.hsqldb.jdbcDriver
databasepassword =
database.url = jdbc:hsqldb:file:coursemanager;shutdown=true
database.username = sa

To add a property, use properties set:

roo> properties set --name database.properties ➥
--path SPRING_CONFIG_ROOT --key password --value f00b@r

Updated SRC_MAIN_RESOURCES/META-INF/spring/database.properties

To remove a property, use properties remove:

roo> properties remove --name database.properties ➥
--path SPRING_CONFIG_ROOT --key password

Updated SRC_MAIN_RESOURCES/META-INF/spring/database.properties

The properties shell command can manipulate any properties file, and takes a sym-
bolic --path attribute for the various paths in a Roo application. Explore it with tab
completion to view various files in your application.

3.1.3 Schema management settings

Another file Roo creates for you is the standard JPA configuration file, META-INF/per-
sistence.xml. JPA uses this file to configure the persistence unit, or JPA configura-
tion, to use when accessing the database. In the current example, this file passes along
configuration parameters to your selected ORM API, Hibernate. You can use this file to
send configuration information to the ORM layer, controlling settings such as schema
generation.

 When using Hibernate, the hibernate.hbm2ddl.auto property controls whether
the tables are re-created on startup. It can be found within a <properties> tag:

<property name="hibernate.hbm2ddl.auto" value="create"/>

The settings available include create, create-drop, update, validate‚ and none.
Here’s a list of the settings:

 create—This creates the database tables on startup. Drops them first if they
already exist.

 create-drop—This creates the database tables on startup. On shutdown,
Hibernate will attempt to drop the tables.

 update—Only adds new fields and tables to the schema; doesn’t remove exist-
ing columns or tables if removed from the Hibernate table definitions.

62	 CHAPTER 3 Database persistence with entities

 validate—Uses the discovered table definitions to validate the database model.
If any table or field is incorrectly named, typed, or configured, throws an excep­
tion and reports the problem. This is good if you’re using Hibernate against a
preconfigured database.

 none—Does no validation or modification of the database on startup. Can
speed startup against a known database but often developers choose validate
to spot changes in the database that may cause problems against the defined
schema.

The default setting, create, drops and re-creates tables on startup. Change this value
to update to allow restarting your application and preserving existing data, since
Hibernate won’t delete the data from the tables for you automatically. Note that this
option won’t delete columns you remove from your mappings; it will only add or alter
existing columns.

 Other persistence APIs have differing options. For example, when configuring
EclipseLink, Roo defines this property to determine whether to drop or create tables:

<property name="eclipselink.ddl-generation" ➥

 value="drop-and-create-tables"/>

As you switch JPA drivers, Roo will define the appropriate DDL generation configura­
tion syntax for you automatically.

 Now you’re ready to start creating some entities and writing some code. You’ll start
by defining the courses for your Course Manager application.

3.2 Working with entities
The Course Manager application primarily focuses on delivering courses to students.
In this section, you’ll define the Course class as a persistent entity and configure it
with the appropriate fields. We’ll then discuss how to use and test the Course in a Roo
application.

3.2.1 Creating your first entity

Let’s define the Course entity, which will hold your course definitions. If you were
doing this by hand, you would have to annotate a class with @Entity and define pri­
mary key attributes such as @Id and perhaps a @GeneratedValue annotation to handle
key generation. Also, you’d have to define field settings, table names‚ and other set­
tings via the javax.persistence annotations.

 But here’s some good news! The Roo shell has a command for that, jpa entity.
You can open up the Roo shell and execute this:

roo> entity jpa --class ~.model.Course --testAutomatically

Created SRC_MAIN_JAVA/o.r.c/model

Created SRC_MAIN_JAVA/o.r.c/model/Course.java

Created SRC_TEST_JAVA/o.r.c/model

Created SRC_TEST_JAVA/o.r.c/model/CourseDataOnDemand.java

Created SRC_TEST_JAVA/o.r.c/model/CourseIntegrationTest.java

63 Working with entities

Created SRC_MAIN_JAVA/o.r.c/model/Course_Roo_Configurable.aj

Created SRC_MAIN_JAVA/o.r.c/model/Course_Roo_ToString.aj

Created SRC_MAIN_JAVA/o.r.c/model/Course_Roo_Jpa_Entity.aj

Created SRC_MAIN_JAVA/o.r.c/model/Course_Roo_Jpa_ActiveRecord.aj

...

~.model.Course roo>

Roo just created your Course entity, a suite of AspectJ ITDs to manage it, and a set of
files for testing purposes. This includes the integration test and a strangely named
series of files labeled DataOnDemand—we'll get to those later. For now, we'll focus on
adding fields to the generated Course entity. Here it is:

package org.rooinaction.coursemanager.model;

import o.s.roo.addon.javabean.RooJavaBean;

import o.s.roo.addon.jpa.activerecord.RooJpaActiveRecord;

import o.s.roo.addon.tostring.RooToString;

@RooJavaBean

@RooToString

@RooJpaActiveRecord

public class Course {

}

Rather short, isn't it? We've abbreviated org.springframework to o.s. in the imports
to save space. We'll cover the Roo annotations and what they mean shortly, but for
now, you need to define the fields in order for this class to be useful to anybody.

WHAT’S WITH THE EXTRA STUFF IN THE ROO> PROMPT? See how the Roo shell
prompt moves from roo> to ~.model.Course roo> when you create the
Course entity? That's because the shell keeps the context of the last entity it’s
been working on, known as the focus. Any modifications you make, such as
adding additional fields, will take place with that entity by default. You can set
the focus on a particular entity by using the focus command, or use the
--class option when creating a field element.

Even though you don't know how Roo does it, you probably figured out from the
annotations that Roo provides several automatic services for this entity: something
about JavaBean support, a toString() method, the JPA code, and an equals method.
Each of these resides in a separate ITD:

Course_Roo_Configurable.aj

Course_Roo_Jpa_ActiveRecord.aj

Course_Roo_Jpa_Entity.aj

Course_Roo_ToString.aj

We'll talk about all of those things in a little bit. But for now, let's go ahead and add
some fields to this entity.

http:Course_Roo_ToString.aj
http:Course_Roo_Jpa_Entity.aj
http:Course_Roo_Jpa_ActiveRecord.aj
http:Course_Roo_Configurable.aj
http:SRC_MAIN_JAVA/o.r.c/model/Course_Roo_Jpa_ActiveRecord.aj
http:SRC_MAIN_JAVA/o.r.c/model/Course_Roo_Jpa_Entity.aj
http:SRC_MAIN_JAVA/o.r.c/model/Course_Roo_ToString.aj
http:SRC_MAIN_JAVA/o.r.c/model/Course_Roo_Configurable.aj

64 CHAPTER 3 Database persistence with entities

3.2.2 Adding fields to the Course

To add database fields to the Course entity, you use the field shell command. This
command adds the appropriate variables to your Course.java class, and also main­
tains the various generated methods in your Course ITD files.

 Let’s add five fields to the Course:

field string --fieldName name
field number --fieldName listPrice --type java.math.BigDecimal
field string --fieldName description
field number --fieldName maximumCapacity --type java.lang.Integer
field date --fieldName runDate --type java.util.Date ➥
 --persistenceType JPA_DATE --dateFormat SHORT

With these five commands, you’ve just added five fields to the Course class: name,
description, listPrice, maximumCapacity, and runDate. Let’s take a bird’s-eye view
of the Course.java entity Roo just updated.

Listing 3.1 The Course entity

package org.rooinaction.coursemanager.model;

...

@RooJavaBean

@RooToString

@RooJpaActiveRecord

@RooEquals

public class Course {

 private String name;

 private BigDecimal listPrice;

 private String description;

 private Integer maximumCapacity;

 @Temporal(TemporalType.DATE)

 @DateTimeFormat(style = "S-")

 private Date runDate;

}

Feature
annotations

JPA fields

Date formatting

Let’s walk through each of the key features of the Roo entity defined in the listing. For
each feature, we’ll show the code snippet that corresponds to the feature itself.

JAVABEAN SUPPORT

All Roo entities are automatically Java beans. For example, the fields you’ve defined
via your command are implemented as private member variables:

private String name;

private BigDecimal listPrice;

private String description;

private Integer maximumCapacity;

...

65 Working with entities

Though you see no getters or setters, Roo has generated them, in the Course_Roo
_JavaBean.aj file:

privileged aspect Course_Roo_JavaBean {

 public String Course.getName() {

 return this.name;

 }

 public void Course.setName(String name) {

 this.name = name;

 }

 public String Course.getDescription() {

 return this.description;

 }

 public void Course.setDescription(String description) {

 this.description = description;

 }

...

}

Roo built this file when it detected at least one private member variable in your class
definition, which was annotated with @RooJavaBean.

DATE CONVERSION

Roo can handle date conversion issues. For example, the runDate field uses two anno­
tations, @Temporal and @DateTimeFormat:

@Temporal(TemporalType.DATE)

@DateTimeFormat(style = "S-")

private Date runDate;

The @Temporal annotation tells JPA that this is a date field. Roo did this for you when
you defined the field with field date. Roo also added the TemporalType.DATE
parameter when you used the field option --persistenceType JPA_DATE. Finally, the
@DateTimeFormat annotation was generated based on the --dateFormat SHORT
option, which will help Spring MVC and other user interfaces parse and format the
date. We’ll discuss this in more detail in chapter 6.

DATABASE CODE

Roo also detected the @RooJpaActiveRecord annotation, added as part of the stan­
dard jpa entity command:

@RooJpaActiveRecord

public class Course {

 ...

}

In response, Roo generated three files:

 Course_Roo_Configurable.aj, which provides basic Spring bean support when
creating new instances of the Course automatically

http:Course_Roo_Configurable.aj
http:JavaBean.aj

66	 CHAPTER 3 Database persistence with entities

 Course_Roo_Jpa_ActiveRecord.aj, which provides helpful JPA-based methods
such as findAll(), countCourses(), and persist()

 Course_Roo_Jpa_Entity.aj, which provides an automatically defined JPA pri­
mary key, id, and a version field to detect changes made to stale data

You’ll see later in the chapter how Roo can also generate true JPA repositories, in a
more traditional tiered approach to application software development. In that case, a
different combination of ITDs are generated.

STRING REPRESENTATIONS OF ENTITIES

A common task in programming involves printing the string representation of data
within a given object. Roo provides this feature using the @RooToString annotation:

@RooToString

This annotation tells the Roo shell to generate a toString() method in the
Course_Roo_toString.aj ITD. This a typical informational method, useful for log­
ging or diagnostic information. Here’s the one generated for the Course entity:

privileged aspect Course_Roo_ToString {

 public String Course.toString() {

 return ReflectionToStringBuilder.toString(

 this, ToStringStyle.SHORT_PREFIX_STYLE);

 }

}

Roo 1.2 uses the Apache commons-lang3 library to generate the string using reflec­
tion. If you don’t like this strategy, you can push-in the toString() method and/or
remove the annotation, and write your own.

PUTTING IT ALL TOGETHER

Let’s take a bird’s-eye view of the ITDs as they relate to the Course entity. Figure 3.1
shows how the generated ITD files relate to the Course class.

 Roo provides you convention-over-configuration, but without doing it dynamically.
All of these files are viewable, and with Roo’s support for push-in refactoring, you can
migrate any generated method to the Course Java source file itself and override the
implementation.

This approach gives the developer visibility of the key details, such as the course
fields themselves, and relegates the boilerplate code to the ITDs; an elegant, but acces­
sible approach.

BROWSE SOURCE IN ECLIPSE/SPRINGSOURCE TOOL SUITE If using STS/Eclipse,
use CTRL-SHIFT-T (CMD-SHIFT-T on Mac) to bring up the class browser and
type in the Course class name. You can enter fragments of your class name to
look up the entries (even using the capital letters only) to locate a class. And
you can use this shortcut (or CTRL/CMD clicking on a class name) to browse
the open source frameworks (JPA, Bean Validation, Spring) the entity is
based on.

http:Course_Roo_toString.aj
http:Course_Roo_Jpa_Entity.aj
http:Course_Roo_Jpa_ActiveRecord.aj

67Working with entities

3.2.3 Adding the course type enum

Let’s add one more field: an enumerated data type, courseType. You’ll support semi-
nars, courses for college credit, and continuing education seminars:

enum type --class ~.model.CourseTypeEnum
Created SRC_MAIN_JAVA/➥
 org/rooinaction/coursemanager/model/CourseTypeEnum.java

~.modelCourseTypeEnum roo>

When you create the CourseTypeEnum field, you’ll see Roo change the shell’s focused
type to ~.model.CourseTypeEnum, so that your next command, enum constant, oper-
ates on that type.

 Now, let’s add the fields:

enum constant --name SEMINAR
enum constant --name CREDIT
enum constant --name CONTINUING_EDUCATION

Browse to the class, which looks like

package org.rooinaction.coursemanager.model;

public enum CourseTypeEnum {
SEMINAR, CREDIT, CONTINUING_EDUCATION

}

DO I NEED TO USE ROO TO CREATE SIMPLE CLASSES LIKE ENUMS? No, but for set-
ting up model objects it’s a way to script the creation process. You can just
build your Java classes normally, even adding Roo annotations, and the Roo
shell will keep up, manipulating ITDs as needed.

name
listPrice
description
maximumCapacity
runDate

Course

persist()
merge()
remove()
countCourses()

clear()
...

entityManager
JPA ActiveRecord ITD

getId()
setId(Long)
getVersion()
setVersion(Long)
...

id
version

JPA Entity ITD
getName()
setName(String)
getListPrice()
setListPrice(BigDecimal)
getDescription()
setDescription(String)
getMaximumCapacity()
setMaximumCapacity(int)
getRunDate()
setRunDate(Date)

JavaBean ITD

class annotation
toString()

toString ITD

Figure 3.1 Course ITDs

68 CHAPTER 3 Database persistence with entities

Now you’ll add the field to your entity, using that enum type. First, you’ll switch the
focus back to your Course,

focus --class ~.model.Course

and then you’ll add the field:

field enum --fieldName courseType --type ~.model.CourseTypeEnum ➥
 --enumType STRING

Roo adds the following field definition to Course:

@Enumerated(EnumType.STRING)

private CourseTypeEnum courseType;

DO IT BY HAND! You can also skip the Roo commands and add this property
by hand. Roo will update the Course_Roo_JavaBean.aj ITD to add the appro­
priate getters and setters.

Now you can use CourseTypeEnum to define values for your courseType field. While
not always practical, this is handy for values that don’t often expand, such as Boolean
selections and static discrete values (active/inactive, normal, warning, error). In com­
ing chapters you’ll see how to establish relationships between Course and other tables,
and how to use the user interface to expose lists of values to select from.

ISN’T ALL OF THIS CODE SLOW? No. Remember, all of these ITD files are woven
into the class at compile time using the Maven AspectJ compiler. As such, the
code is compiled into the Course directly. Roo projects have the same run­
time dependencies as normal JPA projects, with no Roo runtime libraries.

So far, so good. Now let’s actually write some code to use our Course. As you’ve seen
above, the @RooJpaActiveRecord annotation generated all of the JPA code we need.
In fact, technically it is already built into the class itself.

3.2.4 Exercising the Course entity

In chapter 5, we’ll explore how Spring Roo can help you quickly build web applica­
tions to interact with your newly created JPA Course entity. But rather than make you
wait, and in the spirit of testing early and often, let’s use the power of Roo’s Active
Record persistence API to interact with your model.

 Let’s write some code in the automatically generated JUnit test class, Course­
IntegrationTest.java, to exercise the API. The Roo shell created this class when
you specified --testAutomatically on the entity jpa command. Here’s the class
definition:

package org.rooinaction.coursemanager.model;

import org.junit.Test;

import org.springframework.roo.addon.test.RooIntegrationTest;

@RooIntegrationTest(entity = Course.class)

http:Course_Roo_JavaBean.aj

69 Working with entities

public class CourseIntegrationTest {

 @Test

 public void testMarkerMethod() {

 }

}

Looks pretty empty, doesn’t it? Actually, it’s backed by an AspectJ ITD, Course­
IntegrationTest_Roo_IntegrationTest.aj, which is chock-full of tests against the
methods in the entity ITDs, thanks to the Roo shell and the @RooIntegrationTest
annotation.

 Here’s a small fragment of generated test ITD code for one of the methods,
testPersist():

@Test

public void CourseIntegrationTest.testCountCourses() {

 Assert.assertNotNull(

 "Data on demand for 'Course' failed to initialize correctly",

 dod.getRandomCourse());

 long count =

 org.rooinaction.coursemanager.model.Course.countCourses();

 org.junit.Assert.assertTrue(

 "Counter for 'Course' incorrectly reported there were no entries",

 count > 0);

}

This method woven into CourseIntegrationTest, checks to see that the test data is
initialized, calls the Course entity ITD method countCourses(), and then checks to
make sure that courses are returned.

 We’ll get to how this all works in a moment. First, you should probably run the
tests:

 Maven users —Issue an mvn test OS shell command from the root of the Roo
project, or issue the Roo shell command, perform tests.

 STS/Eclipse—Right-click on the CourseIntegrationTest class, select Run As...
and then select JUnit Test. The more adventurous among you may want to use
Debug As... instead and set breakpoints, tracing through the code. We encour­
age this!

You’ll see a number of tests execute (and hopefully pass). To review the test output,
Maven users can browse the project’s target/surefire-reports directory and review files
for each test, ending in .txt, and STS users can review the JUnit Runner output in STS,
illustrated in figure 3.2 in the STS JUnit test results view.

We’ll discuss the Roo integration test framework in greater detail in chapter 9. For
now, you’ll use it to form a base for running your own integration tests, so that you can
exercise your newly created Course entity.

http:IntegrationTest_Roo_IntegrationTest.aj

70	 CHAPTER 3 Database persistence with entities

Figure 3.2 Tests
from the Roo entity
test framework

Roo shell and the perform command
Not only can you run your tests without leaving the shell with perform tests, but
Roo provides some other very useful perform commands:

 perform package—This packages up your application. In this stage, being only
a JAR file, the application will merely be a JAR of all classes and resources, but
when deploying to the web, this command will create a WAR file. The packaged
JAR will live in the target directory.

 perform assembly—If you’ve configured the Maven assembly plug-in (to dis­
tribute a ZIP file for example), this command will perform that action.

 perform clean—This will clean the project by removing the target directory.
 perform command—Executes a specific Maven lifecycle command or plug-in

goal (for example, perform command --mavenCommand pmd:pmd will run the
PMD code metrics report).

Roo 1.2 also includes the handy ! command to execute any operating system com­
mand. For example,
roo> ! ls target

on Unix-like systems will execute the ls command to list files in the target directory.

3.2.5 Exploring the Course entity API

You might be thinking that this is all smoke and mirrors. You may also be concerned
that the code isn’t optimally written. To allay your fears, we’ll dig a bit deeper and
review the JPA code that Roo generates.

 For example, the testPersist(Course) and testFindCourse(Long id) methods
in the CourseIntegrationTest ITD exercise the methods persist(Course) and
findCourse(Long id). But if you look inside Course.java you don’t see anything but
your attributes. You need to find and review the generated code. As we mentioned
before, this code is hidden within AspectJ ITD files.

71 Working with entities

 Let’s review a JPA entity method. Look at Course_Roo_Jpa_ActiveRecord.aj,
located in the org.rooinaction.coursemanager.model package of the src/main/java
directory. Review the Course.persist() method, which should be similar to the fol­
lowing code:

@Transactional

public void Course.persist() {

 if (this.entityManager == null) this.entityManager = entityManager();

 this.entityManager.persist(this);

}

This is a simple method that calls the persist() JPA method. JPA developers will note
that the entityManager is held as a member variable, which is defined in the ITD. This
means each instance of a Course can persist itself. Although this method looks simple,
the key benefit of Roo’s entity ITD code is that you’re not directly writing JPA code
yourself.

THE ACTIVE RECORD PATTERN By default, Roo uses a design pattern for enti­
ties called Active Record. This pattern was defined by Martin Fowler in the
book, Patterns of Enterprise Application Architecture (see http://mng.bz/7pG8).
In this pattern the entities are treated as first-class objects that contain their
own data, and know how to load and persist themselves. You’ll see later how
they can even implement their own validation rules.

If Spring Roo needs to modify the code for persisting the data in a future version,
your calling code doesn’t have to change. And although this is code you’d normally
have to write yourself, why should you? It is purely mechanical. Another method
findCourse(Long id), looks like this:

public static Course Course.findCourse(Long id) {

 if (id == null) return null;

 return entityManager().find(Course.class, id);

}

This static method fetches a Course by the primary key value. Roo works a little harder
here; JPA stipulates that if the row isn’t found, it returns null, but Roo also returns
null if the primary key passed in is null as well.

WHAT IS THIS STATIC ENTITYMANAGER() METHOD? This method constructs an
empty Course and then returns the Spring-injected entityManager instance. If
you write static helper methods for your entities, you can just use the entity-
Manager() method to fetch a valid entity manager to use for persistence.

How was Roo able to inject a JPA entity manager into a brand-new,
developer-created Course instance? The secret is that Roo entities are anno­
tated with the @Configurable annotation, woven into the definition by the
Roo_Jpa_ActiveRecord.aj ITD. The @Configurable annotation, coupled
with Spring’s <context:component-scan /> configuration element, triggers
Spring’s dependency injection when an instance is instantiated by a construc­
tor, rather than by Spring itself.

http://mng.bz/7pG8
http:Roo_Jpa_ActiveRecord.aj
http:Course_Roo_Jpa_ActiveRecord.aj

 Course

72 CHAPTER 3 Database persistence with entities

How many times do you think you’ve written methods like that by hand? Roo automat­
ically defines it for you, assuming you’ll likely need to use it in the future. And it does
it the same way for all Roo entities‚ by default.

3.2.6 Roo’s Active Record entity methods

Let’s review the complete list of Active Record–driven JPA entity methods (as of
Roo 1.2) provided in your sample Course_Roo_Entity.aj ITD in table 3.2.

Table 3.2 Some Spring Roo entity methods (example uses as the entity)

Method Usage Comments

countCourses()

findAllCourses()

findCourse(Long id)

findCourseEntries
(int firstResult,
int maxResults)

flush()

clear()

merge()

persist()

remove()

entityManager()

Counts the number of rows in the
table that backs the Course entity.

Queries the entire table and returns
as a list.

Returns a single Course by primary
key id.

Returns a range of courses, starting
with the row position (not primary
key value) of firstResult, for
maxResults rows.

Forces the persistence provider to
issue any SQL statements to update
data changed within the persistence
context. Note, this includes any enti­
ties, not just Course.

Resets the persistence context and
clears any cached entity rows.

Updates the data in the persistence
context using data provided in the
entity.

Marks an entity as ready to persist
in the persistence context.

Marks a course for removal in the
persistence context.

Provides access to the JPA entity
manager.

Issues a select count(o) from Course
o query and returns the result.

Be careful not to use this method against
tables with many rows.

If not found, returns null.

If no rows found, returns an empty list. Used
to paginate results in Roo web applications
by default.

May throw validation exceptions if any modi­
fied entities have not yet been flushed.

Useful for testing purposes. Also useful in
conditions where you want to cancel any
potential changes that may have been made
in the cache before it is flushed.

The merge operation loads data from the
database matching the primary key of the
detached entity. It then replaces any data 
in the loaded entity with data from the
detached class. Keep in mind that it over­
writes data from the data in the database
that may have changed since the detached
instance was loaded.

May throw validation exceptions if the data
scheduled is persisted at the time of this call
(see section 3.3).

May cause errors if data constraints are vio­
lated. This may not happen when calling this
method, as JPA may remove at flush time.

You may use this API to provide your own 
JPA methods in the Course.java source
code file.

http:Course_Roo_Entity.aj

Working with entities 73

The Roo product developers may add more methods in the future. You’ll get them
automatically when you upgrade to the newest version of Roo by running the new Roo
shell against your existing project.

 Other ITDs provide additional generated code. For example, the Course_Roo
_Jpa_Entity.aj ITD contains the definition of the primary key and version fields, as
well as their getters and setters. You should review all Roo ITDs and become familiar
with their APIs, since you can use them directly in code that accesses these classes.

REPOSITORIES AND SERVICES—TRADITIONAL SPRING DEVELOPMENT IN ROO? If
you’re not enamored of the Active Record pattern, you don’t have to work
this way. More advanced users can take advantage of Roo 1.2’s repository and
service features. We’ll discuss using Spring-based JPA repositories in
section 3.5, and transactional Spring services in chapter 4.

Now let’s write some code against the entity API, using Roo’s support for JUnit testing.

3.2.7 Using the entity API

Writing code against the Roo entity API is a cinch. Beyond the automatically gener­
ated calls you’ll see when you wire up a Roo web application in chapter 5, you can get
started coding right away using JUnit.

 Conceptually, working with Roo entities is a straightforward process. For example,
to get a list of all Course objects in a method, you’d simply have to write

List<Course> courses = Course.findAllCourses();

To load a Course by ID, modify the class capacity, and update it, you could do this:

Course course = Course.findCourse(1L);

course.setMaximumCapacity(500);

course.merge();

To create a new Course, you only need to construct it, set the fields, and call persist():

Course course = new Course();

course.setName("Stand-up Comedy");

course.setMaximumCapacity(8);

course.setDescription("It'll make you laugh...");

c.setCourseType(CourseTypeEnum.CONTINUING_EDUCATION);

c.persist();

To delete the Course you’ve built, you just call the remove() method:

c.remove();

By now, you should see where we’re going. Roo provides a useful API for the CRUD-
based work you usually end up doing in most data-driven applications.

3.2.8 Writing a JUnit Roo entity test

Let’s try adding a course and retrieving it from the database using your pregenerated
JUnit test. Add the following method to the CourseIntegrationTest.java class as

http:Jpa_Entity.aj

74 CHAPTER 3 Database persistence with entities

shown here (use your IDE’s Fix Imports feature to discover the org.junit.Assert
static import as well as the org.springframework.transaction.annotation

.Transactional annotation):

@Test
@Transactional
public void addAndFetchCourse() {

Course c = new Course();
c.setCourseType(CourseTypeEnum.CONTINUING_EDUCATION);
c.setName("Stand-up Comedy");
c.setDescription(

"You'll laugh, you'll cry, it will become a part of you.");
c.setMaximumCapacity(10);
c.persist();

c.flush();
c.clear();

Assert.assertNotNull(c.getId());

Course c2 = Course.findCourse(c.getId());
Assert.assertNotNull(c2);
Assert.assertEquals(c.getName(), c2.getName());
Assert.assertEquals(c2.getDescription(), c.getDescription());
Assert.assertEquals(

c.getMaximumCapacity(), c2.getMaximumCapacity());
Assert.assertEquals(c.getCourseType(), c2.getCourseType());

}

In the preceding sample, you create a new Course, set the fields to valid values, and
persist it to the database. You flush and clear your persistence context B‚which exe-
cutes the SQL INSERT statement to persist the data to the database and clears the
cached entity. This detaches the Course instance, c, but at the same time fills in the
primary key value in the id field.

 Finally, you query for the same data using the Course.findCourse(Long id)

method, and make sure that it was saved appropriately using assertions to check the
field values. Not too shabby for just a few lines of code.

 Roo marks the test class as @Transactional (which you can find in the Test ITD),
so that the unit tests automatically roll back any changes. You can test this code again
and again without worrying about adding duplicate data rows. This is a Spring Frame-
work test best practice, automatically implemented by Roo.

 Now that you’ve seen some of the power of Roo for creating entities, and some of
the code generated by the tool, let’s discuss how to add validation logic to your entity
using the Bean Validation Framework.

3.3 Validating Courses with Bean Validation
Validation is a difficult topic for any application architecture. You may ask yourself a
bevy of questions, such as these:

Listing 3.2 Adding and fetching a Course

Save
Course

Flush/
Clear JPAB

Verify PK

Load
Course

Validating Courses with Bean Validation	 75

 Where do I perform validation—at the web layer, in the middle tier, or in my
database?

 How do I validate? Should I use a validation rules engine, scripted code, data-
driven rules, or annotations?

 How will my errors be returned? Should I localize the messages?

There are many APIs available to implement validation rules. Spring MVC has it’s own
validation API, but it’s MVC-based, and doesn’t necessarily suit itself to embedding
rules within the entities. You want to do this, as it helps you to encapsulate the behav­
ior of validation within the entity tier. A more object-driven approach is needed. Enter
the Bean Validation API.

 The Bean Validation API is a recent standard. Created by the Java EE Expert
Group, it was developed to address the lack of a standard validation API on the Java EE
platform. This API uses Java annotations to define specific rules, which are attached to
attributes of a Java bean. Some validations are built in to the framework, such as @Not-
Null, @Null, @Min, @Max, @Past, @Future, @Pattern, and @Size. You can also define
your own classes for validation purposes, and register custom validation methods
using @AssertTrue or @AssertFalse.

3.3.1 Validating Courses

Spring Roo supports automatic validation of Roo entities, if annotated with Bean Vali­
dation annotations. Roo entities are automatically validated when a persist or merge
method call is executed. Any errors will result in the throw of a Constraint-
ViolationException, which contains all ConstraintViolation instances for errors
encountered during the validation process.

 Let’s redefine the Course entity fields. With the Roo shell already fired up, open
up a source code editor and delete all of the field definitions in the Course entity.
Then add them back in, this time with Bean Validations:

field string --fieldName name --sizeMin 1 --sizeMax 60 ➥
 --column course_name

field string --fieldName description --notNull --sizeMax 1000

field number --fieldName listPrice --type java.math.BigDecimal ➥
 --decimalMin 0.0 --decimalMax 99999.99 ➥
 --digitsFraction 2 --digitsInteger 5 --notNull

field number --fieldName maximumCapacity --type java.lang.Integer➥
 --min 1 --max 9999➥
 --notNull --column max_capacity
field date --fieldName runDate --type java.util.Date ➥
 --dateTimeFormatPattern MM/dd/yyyy
field enum --fieldName courseType --type ~.model.CourseTypeEnum ➥
 --enumType STRING --notNull

You’ve just added back in your fields, but this time you set some constraints, as out­
lined in table 3.3.

http:99999.99

76 CHAPTER 3 Database persistence with entities

Table 3.3 Course entity constraints

Field Constraint Annotation Notes

name

description

listPrice

maximumCapacity

courseType

--notNull
--sizeMin 1
--sizeMax 60

--notNull
--sizeMax 1000

--notNull
--decimalMin 0.0
--decimalMax 9999.99
--digitsFraction 2
--digitsInteger 5

--notNull
--min 1 --max 9999

--notNull

@NotNull
@Size(min = 1, max =
60)

@NotNull
@Size(max = 1000)

@NotNull
@DecimalMin("0.0")
@DecimalMax("99999.99")
@Digits(integer = 5,
fraction = 2)

@NotNull
@Min(1L)
@Max(9999L)

@NotNull

Sets the minimum and
maximum characters of
text.

Must contain a value,
and cannot exceed
1000 characters. Note:
an empty or all-spaces
string is still a value.

Use --decimalMin
and --decimalMax
annotations to define
validation constraints,
and 
--digitsInteger
and 
--digitsFraction
to provide JPA column
data settings.

Note this is a numeric
range‚ whereas
sizeMin/sizeMax
are text-based.

Must contain a value.
Values are defined by
the enum and can only
be set as Enum values.

And now the entity contains Bean Validation annotations, as shown next.

Listing 3.3 Course entity fields—with Bean Validation annotations

@Column(name = "course_name")

@Size(min = 1, max = 60)

private String name;

@NotNull

@Size(max = 1000)

private String description;

@NotNull

@DecimalMin("0.0")

@DecimalMax("99999.99")

@Digits(integer = 5, fraction = 2)

private BigDecimal listPrice;

@NotNull

@Column(name = "max_capacity")

@Min(1L)

http:DecimalMax("99999.99

77Validating Courses with Bean Validation

@Max(9999L)
private Integer maximumCapacity;

@Temporal(TemporalType.TIMESTAMP)
@DateTimeFormat(pattern = "MM/dd/yyyy")
private Date runDate;

@NotNull
@Enumerated(EnumType.STRING)
private CourseTypeEnum courseType;

Each option in the Roo shell turns into a similar annotation in the Java source code.
From the @NotNull annotation to force an entered value, to @Min and @Max for the
numeric range in maximumCapacity, to @Size to define a String length range for name
and description, the Roo command options are merely ways to get Roo to generate
the appropriate Bean Validation annotations. If you forget to set them during cre-
ation, you can edit the source file and add them later.

3.3.2 Testing Course validations

To test failure cases, you can write some tests in your CourseIntegrationTest class.
First, you’ll build a simple test to prove that you’re running validations. You’ll just cre-
ate a test that defines a Course, and not set any field values, which should trigger the
@NotNull validations:

@Test(expected = ConstraintViolationException.class)
public void testInvalidCourse() {

Course c = new Course();
c.persist();

}

If you’re following along, use STS and choose to automatically fix/optimize imports
with CTRL-SHIFT-O. When resolving the exception class, choose the one from the
javax.validation package over the Hibernate one.

 The test should throw a ConstraintViolationException, which will contain a
series of ConstraintViolation instances, one for each error. In the preceding test,
the fact that the test threw this exception causes the test to pass.

 For a more detailed look at the errors returned by Bean Validation, look at the
more detailed test in the following listing.

@Test
public void testSpecificException() {

Course c = new Course();
c.setCourseType(CourseTypeEnum.CONTINUING_EDUCATION);
c.setMaximumCapacity(10);
c.setRunDate(new Date());
c.setName(null);
c.setDescription(null);
try {

c.persist();

Listing 3.4 Testing Course violations

Invalid
values

B

 ConstraintViolation

78 CHAPTER 3 Database persistence with entities

 } catch (ConstraintViolationException cve) {

 Assert.assertEquals(2,
 Should

have two cve.getConstraintViolations().size());
 Iterator<ConstraintViolation<?>> it =
 cve.getConstraintViolations().iterator(); C Review
 while (it.hasNext()) { violations
 ConstraintViolation<?> constraintViolation = it.next();

 ConstraintDescriptor<?> descriptor =

 constraintViolation.getConstraintDescriptor();

 Annotation annotation = descriptor.getAnnotation();

 if (!(annotation.annotationType()

 .getName().equals(D Is
 "javax.validation.constraints.NotNull"))) { @NotNull?

Assert.fail(

 "invalid error raised. Should be 'not null'");

 }

 }

 return;

 } catch (Exception e) {

 Assert.fail("Unexpected exception thrown " + e.getMessage());

 return;

 }

 Assert.fail("Exception not thrown.");

}

In the example, you trigger the validation exception by passing nulls to the name and
description fields B and attempting to persist the data. The Bean Validation throws
a ConstraintViolationException, and the framework loads each violation into that
exception as an implementation of the ConstraintViolation interface, held in the
constraintViolations property.

 You create an iterator C and fetch each ConstraintViolation, which contains a
constraintDescriptor member detailing the error. You then test the annotation
property of the descriptor, checking the annotation type name. If the name of the
annotation isn’t the class name of your annotation type, in this case javax
.validation.NotNull D‚ then the test fails.

A list of the available attributes of the ConstraintViolation is defined in table 3.4.

Table 3.4 attributes

Field Usage

invalidValue The value entered which caused the validation error. For @NotNull val­
idations, this field will be null.

message The interpolated message (after substituting parameter values).

messageTemplate The non-interpolated message (equal to the value specified in the anno­
tation itself).

 ConstraintViolation

79 Validating Courses with Bean Validation

Table 3.4 attributes (continued)

Field Usage

rootBean The top-level bean that triggered violation errors. In the case of a hierar­
chy of JPA entities, such as a department and all employees within, this
will be the top-level class, Department.

leafBean The bean that caused the violation, or contained the property that
caused the violation.

propertyPath The path of properties leading to the value, from the rootBean.

constraintDescriptor A class representing details about the annotation that caused the
violation.

As you’ll see in chapter 5, Roo can configure and generate a web application that
includes CRUD operations for your entities automatically. It generates automatic error
handling for form elements, populating the page with messages when these Bean Val­
idation errors occur. Further, Roo generates client-side validations based on these
annotations, which will appear whenever a user attempts to enter an invalid value.

3.3.3 Bean Validation annotations

There are a number of validation annotations available in the javax.validation
package. In addition, Hibernate Validator, the reference implementation, includes
several of its own in the org.hibernate.constraints package.

The validations in table 3.5 are built into the Bean Validation API.

Table 3.5 Built-in Bean Validation annotations

Annotation
(javax.validation)

Datatypes supported Description

@AssertTrue,
@AssertFalse

@DecimalMin and
@DecimalMax

@Digits

@Future, @Past

@NotNull

@Null

boolean and Boolean

BigDecimal, BigInteger, 
String, byte, short, int, long,
and wrappers

BigDecimal, BigInteger, 
String, byte, short, int, long,
and wrappers

java.util.Date or
java.util.Calendar

Any type

Any type

Item must evaluate to true/True or false/
False.

Define a lower and upper boundary for the
range of a number. Support datatypes such
as BigDecimal, BigInteger, String, byte,
short, int, long, and the wrapper types.

Defines the integer and fractional digits of a
given fixed-point decimal or scalar number.

Ensure the date is either later than or 
before the current system date at the time 
of validation.

Ensures the element is not null.

Ensures the element is null.

80 CHAPTER 3 Database persistence with entities

Table 3.5 Built-in Bean Validation annotations (continued)

Annotation
(javax.validation)

Datatypes supported Description

@Pattern

@Size

String

String, Map, Collection, Array

Validates against a regular expression
pattern.

Validates against a minimum/maximum
size. For String, compares string length. For
Array, Map‚ and Collections, validates
against number of elements.

Some of these validations may not make sense on the surface—why would you want to
define a @Null validation if it makes the field unsettable? That’s because in the specifi­
cation, the Bean Validation Framework supports the concept of validation groups. In
the current release of Roo, the only validation group supported is Default, so unless
Roo entities begin to support validations with multiple groups, this particular valida­
tion won’t really be easily used.

 So far we’ve looked at implementing validations, and we’ve seen how Spring Roo
automatically executes validation checks before saving an entity. Now let’s take a look
at how you can create your own validator annotations.

3.3.4 Using the @AssertTrue annotation

The Bean Validation API provides an @AssertTrue annotation that can make express­
ing one-off rules like the one above quite easy. Instead of that three-step process we
discussed earlier, you can just build a Boolean method and annotate it with the
@AssertTrue annotation. If the method returns true, the entity is valid. If not, it fails
validation.

 Here’s the same validation logic, expressed with an @AssertTrue annotated
method within the Course entity:

public class Course {

 ...

 @NotNull

 @DecimalMin("0.0")

 @DecimalMax("99999.00")

 @Digits(integer = 5, fraction = 2)

 private BigDecimal listPrice;

 ...

 @AssertTrue(message =

 "Price is invalid. No fractional values allowed.")

 public boolean isPriceValid() {

 if (listPrice == null) return true;

 BigDecimal remainder = listPrice.remainder(new BigDecimal("1.0"));

 return remainder.compareTo(new BigDecimal("0")) == 0;

 .compareTo(new BigDecimal("0.0")) == 0;

 }

...

}

http:DecimalMax("99999.00

Validating Courses with Bean Validation	 81

Believe it or not, that’s it. You can also interrogate any field in the entity. This is the
easiest way to build multifield and one-off validations. But there are several rules you
must adhere to:

 The method must have no arguments and return a Boolean value. It can have
any visibility level, including private.

 The method must have a standard JavaBeans name compatible with a Boolean
getter. Specifically, the method name must start with get or is, as in get-
Validity() or isValid().

 The @AssertTrue annotation must provide an error message (which can be
localized, as you’ll see in chapter 5).

TIP If you define this validation you may have to modify any automatically
generated DataOnDemand tests to provide a valid value for your price. Push
in the setPrice method in the CourseDataOnDemand_Roo_DataOnDemand.aj
file and set a valid, nonfractional price. The rest of the samples assume this
has been done.

You can test this method with the same test suite; it has the same effect. Run your
CourseIntegrationTest suite to make sure you’re validating appropriately. As you
can see, this mechanism is much easier to deal with than defining your own Bean Val­
idation annotations and validators. But it may cause other tests to fail, because the
Roo test framework can’t introspect the valid values of any method marked with
@AssertTrue.1

Other validation options
There are still other ways to trigger validation in any Spring project. For example, you
could either implement your own custom bean validators, or use Spring’s program­
matic Validator framework.

To write your own bean validators in JSR-303 style, you define an annotation to rep­
resent your validation rule, attach it to a class that extends javax.validation
.ConstraintValidator, and implement the isValid() and initialize()
methods.

We’ll briefly discuss the Spring MVC validation framework in chapter 5.

3.3.5 Bean Validation in review

As you’ve just seen, if you need to validate your beans before persisting them, you can
use the Bean Validation Framework. Try to stick to a few simple rules:

1 To fix this, push-in refactor the getNewTransientCourse(int index) method of CourseDataOnDemand
_RooDataOnDemand.aj, and return a valid value for the fields you’re using for the assertion.

http:RooDataOnDemand.aj
http:CourseDataOnDemand_Roo_DataOnDemand.aj

82	 CHAPTER 3 Database persistence with entities

 Validation by composition—When building validation for a particular bean, go
ahead and stack validators on a field. If you’d like to compose your own
grouped validation, just build a validation annotation that’s comprised of the
validators you need. You can get a lot done by using a combination of @NotNull,
@Size‚ and @Pattern, for example.

 Be sparing in your processing power—Just because you can call a stored procedure
behind a service to validate an entry in that list, doesn’t mean that you should.
Realize that if you’re saving a collection of objects, this validation will be called
on each item within the list, thus causing many calls to the same procedure.

 Use @AssertTrue for multicolumn checks—A quick way to get your complex, logic-
based validation to work is to build a Boolean test method within your entity,
annotating it with @AssertTrue. Within this method you have access to other
fields in the entity.

 Use your own custom validations sparingly—When you have a cross-cutting valida­
tion rule, such as a business-driven primary key, complex part number, or other
complex validation, you can build your own validators and annotations. Use this
technique sparingly because these are more complex to build, and spread out
your validation away from the entities themselves.

MORE VALIDATION OPTIONS If you are familiar with Spring MVC’s programmatic
validation routines, you can use those in a Roo web application as well. See how
to build and apply Spring validators in the “Spring Framework Reference,” sec­
tions 5.2, “Validation using Spring’s Validation Interface,” and 5.7.4.2, “Config­
uring a Validator for use by Spring MVC” at http://mng.bz/B9G3.

Now that you’ve seen how to define well-validated entities with the Bean Validation
framework, let’s switch gears a bit and discuss how to enable users of your entities to
locate entities that they’ve created, using the finder Roo shell command.

3.4 Searching with finders
Searching for data in a database-centric application generally involves writing a lot of
queries: fetching a list of items, pulling back a single item by a particular key, joining
data together from various tables. In pre-ORM days, people wrote a lot of SQL to do
this task. But JPA aims to simplify the query process by providing the JPA-QL (JPA
Query Language) API.

 This API treats the database as an object graph, but still allows you to express que­
ries in a SQL-like language. Here’s an example query, which fetches all Courses within
a range of priorities:

Query q = entityManager.createQuery(

 "SELECT course FROM Course AS course " +

 "WHERE course.maximumCapacity BETWEEN :min AND :max",

 Course.class);

q.setParameter("min", 2);

q.setParameter("max", 3);

List<Course> results = q.getResultList();

http://mng.bz/B9G3

83 Searching with finders

There are some key differences in the way regular SQL and JPA-QL operate:

 SQL references tables, but JPA-QL references entities. Use the name of the entity
in the query and the mapped table will be substituted at query time.

 JPA-QL can dig deep into related entity graphs. For example, query patterns
such as course.catalog.name = "Fall Catalog" are completely acceptable. For
collections, developers can define JOIN statements to query between associa­
tions. JPA-QL will actually write out the proper SQL joins or queries to pull the
data from the related tables.

 Since JPA-QL runs on top of JPA, it manages all connection information for the
developer through the persistence context. Developers need not concern them­
selves with setting up and tearing down connections.

Now you can write your own JPA-QL queries and place them in methods on an entity
or service bean object. Let’s look at how easy it is to have Roo write them for you.

3.4.1 A sample Roo finder

Roo finders provide methods to search your entities, which are attached to the entities
automatically like the JPA methods defined in the beginning of this chapter. You cre­
ate them with the Roo shell using the finder command. There are generally two steps
involved in generating a finder: First‚ you get a list of all of the methods that Roo can
generate for your entity. Next‚ you tell Roo to generate a finder with a specific name
and‚ using that name, the Roo shell will write an ITD and weave it into the entity for
you.

CREATING A FINDER

Let’s take a look at an example that implements the search we just discussed, one that
searches the name field in your Course object. First you’ll ask Roo for a list of finders
that you can generate:

roo> focus ~.model.Course

~.model.Course roo> finder list --filter name

findCoursesByNameEquals(String name)

findCoursesByNameIsNotNull()

findCoursesByNameIsNull()

findCoursesByNameLike(String name)

findCoursesByNameNotEquals(String name)

 ~.model.Course roo>

This is simply a mechanical list of all finders Roo can generate for you, filtering on the
fields that contain the search term name. Let’s use finder add to create a method that
uses the SQL LIKE keyword, comparing the value passed to the name field, find-
CoursesByNameLike:

~.model.Course roo> finder add --finderName findCoursesByNameLike

Updated SRC_MAIN_JAVA/org/rooina/coursemanager/model/Course.java

Created SRC_MAIN_JAVA/[...]/Course_Roo_Finder.aj

84 CHAPTER 3 Database persistence with entities

Spring Roo adds a parameter to the @RooJpaActiveRecord annotation, finders, that

tells the Roo shell to generate a finder:

@RooJpaActiveRecord(finders = { "findCoursesByNameLike" })

The shell then generates the finder and places it in Course_Roo_Finder.aj, where it’s

immediately mixed into the Course object, as Course.findCoursesByNameLike.

REVIEWING THE FINDER CODE

Let’s take a look at the code that the Roo finder add method set up.

Listing 3.5 The Course_Roo_Finder.aj ITD

package org.rooinaction.coursemanager.model;

import java.lang.String;

import javax.persistence.EntityManager;

import javax.persistence.TypedQuery;

import org.rooinaction.coursemanager.model.Course;

privileged aspect Course_Roo_Finder {

 public static TypedQuery<Course>

 Course.findCoursesByNameLike(String name) {

 if (name == null || name.length() == 0)

 throw new IllegalArgumentException(

 "The name argument is required");

 name = name.replace('*', '%');

 if (name.charAt(0) != '%') {

 name = "%" + name;

 }

 if (name.charAt(name.length() -1) != '%') {

 name = name + "%";

 }

 EntityManager em = Course.entityManager();

 TypedQuery<Course> q = em.createQuery(

 "SELECT Course FROM Course AS course

 WHERE LOWER(course.name) LIKE LOWER(:name)", Course.class);

 q.setParameter("name", name);

 return q;

 }

}

The finder rejects null or empty parameters, allows using * or % at the end of the
search string, and prefixes % to the beginning. This makes the like command search
anywhere in the name field. Instead of writing the JPA-QL queries yourself, Roo can
generate them for you, saving you a significant amount of activity. But what about mul­
tifield queries?

TESTING THE FINDER

Here’s the test that exercises the finder, which we’ve added to CourseIntegration-
Tests:

@Test

public void testFindByNameFinder() {

http:Course_Roo_Finder.aj

Searching with finders 85

 Course c = new Course();

 c.setName("Basket Weaving");

 c.setCourseType(CourseTypeEnum.SEMINAR);

 c.setDescription("Weaving baskets is an essential skill.");

 c.setMaximumCapacity(100);

 c.setRunDate(new Date());

 c.setListPrice(new BigDecimal("100"));

 c.persist();

 c.flush();

 c.entityManager().clear();

 List<Course> courses =

 c.findCoursesByNameLike("Bas").getResultList();

 Assert.assertEquals(1, courses.size());

}

Most of that test method involved test setup, but in the end it resulted in a one-line
call to your pregenerated finder. Note the fact that after you call the finder, you chain
a call to the QuerygetResultList() method; the finder doesn’t know whether you
want a single result or a list, so it lets you choose.

3.4.2 Multifield finder queries

Roo makes it easy to build multifield queries. The finder command includes the
--depth option, which lets you ask for combinations of finders for several fields at the
same time. Keep in mind that the output begins to get a bit voluminous after a depth
of two, or with entities that have a large number of attributes. You can use the
--filter method to list the attributes you wish to see, separated by commas, to limit
the output. Let’s see the finders Roo can generate for a combination of both the
courseType and runDate fields:

~.model.Course roo> finder list --depth 2 --filter courseType,runDate

findCoursesByCourseTypeAndRunDate(CourseTypeEnum courseType, Date runDate)

findCoursesByCourseTypeAndRunDateBetween(CourseTypeEnum courseType,

 Date minRunDate, Date maxRunDate)

findCoursesByCourseTypeAndRunDateEquals(...)

findCoursesByCourseTypeAndRunDateGreaterThan(...)

findCoursesByCourseTypeAndRunDateGreaterThanEquals(...)

...

The one you’re interested in is findCoursesByCourseTypeAndRunDateBetween, which
finds any course of a particular CourseTypeEnum within an offer date range. To install
that finder, issue the following command:

~.model.Course roo> finder add --finderName ➥

 findCoursesByCourseTypeAndRunDateBetween

Updated SRC_MAIN_JAVA/org/rooina/coursemanager/model/Course.java

Updated SRC_MAIN_JAVA/[...]/model/Course_Roo_Finder.aj

This command results in the following additional finder method in
Course_Roo_Finder.aj:

http:Course_Roo_Finder.aj

86 CHAPTER 3 Database persistence with entities

public static TypedQuery<Course> Course.➥
 findCoursesByCourseTypeAndRunDateBetween(

 CourseTypeEnum courseType,

 Date minRunDate,

 Date maxRunDate) {

 if (courseType == null)

 throw new IllegalArgumentException("courseType is required");

 if (minRunDate == null)

 throw new IllegalArgumentException("minRunDate is required");

 if (maxRunDate == null)

 throw new IllegalArgumentException("maxRunDate is required");

 EntityManager em = Course.entityManager();

 TypedQuery<Course> q = em.createQuery(

 "SELECT Course FROM Course AS course

 WHERE course.courseType = :courseType AND

 course.runDate BETWEEN :minRunDate AND :maxRunDate",

 Course.class);

 q.setParameter("courseType", courseType);

 q.setParameter("minRunDate", minRunDate);

 q.setParameter("maxRunDate", maxRunDate);

 return q;

}

Now finding all courses of a particular type, within a particular date range, is as simple
as calling the static Course method findCoursesByCourseTypeAndRunDateBetween,
passing three parameters, the CourseType enum value, and a minimum and maxi­
mum date to establish the search range.

3.4.3 More complex finders

Finders can make simple queries relatively easy to build. The finder list command
is simply there to make your job easier by showing you potential combinations. But if
you happen to understand the pattern, you can issue finder commands to build que­
ries like those in table 3.6.

 You can even tie three or four fields together, if you know the pattern. In this way,
you can save yourself from having to write boilerplate JPA query code. Since finders
are added to the entity along with the persistence code and validation rules, they help
you to contain your complex data query logic within the entities themselves.

Table 3.6 Sample finder query patterns

Pattern Query result

ByRunDateGreaterThan (Date) course.runDate > :runDate

ByDescriptionLike LOWER(course.description) like
LOWER(:description)

ByDescriptionIsNotNull course.description IS NOT NULL

ByDescriptionIsNullAndCourseTypeEquals course.description IS NULL and
course.courseType = :courseType

Leaving Active Record—JPA repositories 87

The finder feature is currently limited to defining finders on fields within the same
entity. But using the finder to generate the bulk of your code, you can always use push-
in refactoring to bring the code into the entity itself, and then modify it to suit your
needs. You could also use more advanced features of JPA, such as querying by exam­
ple, which are beyond the scope of this book.

3.5 Leaving Active Record—JPA repositories
What if you don’t like the approach of encapsulating your JPA code within each entity?
Perhaps you have a more complex model, one where the boundaries for queries and
transactions is a bit more blurred, and some of the code fits best manipulating or que­
rying more than one entity at a time? If this is your situation, or if you prefer a layered
approach that separates the data logic from your entity classes, you can tell Roo to
build JPA repositories for you.

 Roo repositories are built using the relatively new Spring Data API. Spring Data
provides support for dynamically generated proxy classes for a given entity, and those
classes handle all of the methods you’re used to coding by hand (or using in the
Active Record entities).

 It is quite easy to generate a repository. Let’s build a repository to back the Course
entity:

repository jpa --interface ~.db.CourseRepository ➥

 --entity ~.model.Course

This command generates a repository class:

package org.rooinaction.coursemanager.db;

import org.rooinaction.rooinaction.coursemanager.model.Course;

import org.springframework.roo.addon.layers.repository➥

 .jpa.RooJpaRepository;

@RooJpaRepository(domainType = Course.class)

public interface CourseRepository {

}

There are no methods defined in this interface; it exists merely as a holding place for
the @RooJpaRepository annotation. The interface is backed by an ITD. In this case,
the file is named CourseRepository_Roo_Repository.aj:

package org.rooinaction.rooinaction.coursemanager.db;

import java.lang.Long;

import org.rooinaction.rooinaction.coursemanager.model.Course;

import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.data.jpa.repository.JpaSpecificationExecutor;

import org.springframework.stereotype.Repository;

privileged aspect CourseRepository_Roo_Jpa_Repository {

 declare parents: CourseRepository ➥

 extends JpaRepository<Course, Long>;

http:org.rooinaction.rooinaction.coursemanager.db
http:CourseRepository_Roo_Repository.aj
http:org.rooinaction.coursemanager.db

88 CHAPTER 3 Database persistence with entities

 declare parents: CourseRepository ➥

 extends JpaSpecificationExecutor<Course>;

 declare @type: CourseRepository: @Repository;

}

These two files may be a bit baffling to you if you’re used to coding your own reposito­
ries. Roo uses the typical Spring pattern of annotating the repository with
@Repository, which marks it as a Spring bean and provides exception translation, but
it also extends it with two additional interfaces—JpaRepository and Jpa-

SpecificationExecutor. Let’s take a look at each one, starting with JpaRepository.

3.5.1 The JpaRepository API

Look at the methods implemented by the JpaRepository class:

java.util.List<T> findAll();

java.util.List<T> findAll(org.springframework.data.domain.Sort sort);

java.util.List<T> save(java.lang.Iterable<? extends T> iterable);

void flush();

T saveAndFlush(T t);

void deleteInBatch(java.lang.Iterable<T> tIterable);

These are all methods to search, save, and remove data from the entity. Note that the
<T> designation is a Java generic type. Since the CourseRepository is defined as
implementing JpaRepository<Course, Long>, all of the generic <T> methods will
take Course entities as arguments, and expect a Long-based primary key.

 Let’s test this API using a JUnit test. Add the following test to your Course-
IntegrationTest class:

@Test

@Transactional

public void addAndFetchCourseViaRepo() {

 Course c = new Course();

 c.setCourseType(CourseTypeEnum.CONTINUING_EDUCATION);

 c.setName("Stand-up Comedy");

 c.setDescription(

 "You'll laugh, you'll cry, it will become a part of you.");

 c.setMaximumCapacity(10);

 courseRepository.saveAndFlush(c);

 c.clear();

 Assert.assertNotNull(c.getId());

 Course c2 = courseRepository.findOne(c.getId());

 Assert.assertNotNull(c2);

 Assert.assertEquals(c.getName(), c2.getName());

 Assert.assertEquals(c2.getDescription(), c.getDescription());

 Assert.assertEquals(

 c.getMaximumCapacity(), c2.getMaximumCapacity());

 Assert.assertEquals(c.getCourseType(), c2.getCourseType());

}

Leaving Active Record—JPA repositories 89

So now you can use a Roo repository to implement your JPA code. The methods save-
AndFlush() and getOne(Long) are provided dynamically at runtime via the Spring
Data API.

3.5.2 Queries with JpaSpecificationImplementor

But wait, there are more features to explore here. What does the second interface,
JpaSpecificationImplementor, provide?

T findOne(Specification<T> tSpecification);

List<T> findAll(Specification<T> tSpecification

Page<T> findAll(Specification<T> tSpecification, Pageable pageable);

List<T> findAll(Specification<T> tSpecification, Sort sort);

long count(Specification<T> tSpecification);

This interface provides access to the Spring Data features for providing criteria-based
query and paging support. The methods accept a Specification class, which is used
to define the search criteria to pass to the repository to find, sort, and page through a
list of entities, or fetch a single entity. For example, to provide a predicate that expects
a non-null run date:

public class CourseSpecifications {

 public static Specification<Course> hasRunDate() {

 return new Specification<Course>() {

 @Override

 public Predicate toPredicate(
 Exposes

field types Root<Course> root,

 CriteriaQuery<?> query,

 CriteriaBuilder cb) {

Literate API return cb.isNotNull(

 root.get("runDate"));

 }

 };

 }

}

The toPredicate() method takes a Root<Course>, which provides access to the types
in the JPA entity, a JPA CriteriaQuery, which is built by Spring and passed into the
method automatically at runtime to be executed, and a CriteriaBuilder, which
allows you to add predicates to the query using English language–like calls‚ such as
cb.isNotNull above.

 To use the specification, you just need to call the static CourseSpecifications
.hasRunDate() method, and pass it to the appropriate finder:

List<Course> courses = courseRepository.findAll(

 CourseSpecifications.hasRunDate());

This approach is similar to writing criteria-based JPA queries, but is in marked contrast
to Roo finders, which are attached normally to Active Record entities annotated with
@RooJpaActiveRecord.

90 CHAPTER 3 Database persistence with entities

3.5.3 Annotation-driven queries with @Query

One of the most powerful features of the Spring Data JPA API is providing annotation-
driven queries. Since Spring Data builds the implementation class at runtime, you can
define methods in your interface that Roo can use to implement custom queries and
even updates.

 Let’s look at an example method. You can define a query method in your Course-
Repository interface to find all student registrations for a given student and date
range (we define the Registration entity in chapter 4, but this code shows you more
complex queries):

@Query("select distinct r from Registration as r " +

 "where r.student.id = :studentId " +

 "and r.offering.offerDate between :start and :end")

@Transactional(readOnly = true)

List<Registration> findStudentRegistrationForOfferingsInDateRange(

 @Param("studentId") long studentId,

 @Param("start") Date start,

 @Param("end") Date end);

Roo implements the code for this method at runtime, based on the Spring Data
@Query annotation. All parameters in the example above are defined using the @Param
annotation, and the type returned is defined as the return type of the method,
List<Registration>. Note that you’ve also passed the @Transactional annotation,
and marked the query as a read-only transaction.

You can perform updates using the @Query method as well, as long as you mark the
method as @Modifying:

@Query("update Registration r set attended = :attended " +

 "where r.student.id = :studentId")

@Modifying

@Transactional

void updateAttendance(

 @Param("studentId") long studentId,

 @Param("attended") boolean attended);

In this example, you’ve marked your interface method with @Modifying to signify that
you’re expecting a data manipulation statement, not just a simple SELECT statement.
You also define your method with @Transactional, so that it’s wrapped with a read/
write transaction.

 Spring Roo builds the implementation classes automatically, based on a Spring
configuration file in META-INF/spring named applicationContext-jpa.xml. This file
contains the Spring Data XML configuration element, <repositories/>, which scans
for and mounts interface-driven repositories:

<repositories base-package="org.rooinaction.coursemanager" />

The package defined in this Spring XML configuration element is your root project
package. You can now add repositories in whatever subpackage makes sense. You

http:r.student.id
http:r.student.id

Summary 91

don’t have to use Roo to generate your Spring Data classes either, so if you’re already
a Spring Data or JPA expert, just code away!

For more about the Spring Data JPA API, visit the project website at http://
mng.bz/63xp.

3.5.4 Repository wrap-up

As you’ve seen, you can use repositories in a more traditional Spring layered applica­
tion instead of applying the Active Record pattern. Roo even rewrites your automated
entity integration tests automatically, when it detects that you’ve added a repository
for a given entity. You can always fall back to the typical interface-and-implementation
JPA repository where necessary.

 As an added bonus, you can skip the Active Record generation for Roo entities by
issuing the --activeRecord false attribute when defining an entity:

roo> entity jpa --class ~.model.Course --activeRecord false

IF YOU’VE BEEN USING ACTIVE RECORD AND WANT TO MIGRATE... Just edit your
entity, and replace @RooJpaActiveRecord with @RooJpaEntity. Fire up the
Roo shell and watch it remove all of those Active Record ITDs. Follow up by
creating a JPA repository and you’re all set. If you take advantage of Roo’s web
interface scaffolding, Roo will even reroute calls in the controller to the
repository after you create one.

In the next chapter, we’ll show you how to use Roo’s service support to automatically
provide a wrapper service around your repositories.

3.6 Code samples
The examples we used around the Active Record Course object are contained in the
github samples repository under the directory /chapter-03-jpa/coursemanager. This
includes the Course ITD, the Course finder, the integration tests for Course, and the
finder. We also include the repository samples under /chapter-03-jpa/coursemanager­
repository.

All of these examples work against the Hypersonic SQL database by default, but
feel free to re-execute the jpa setup command and switch to your favorite database.

 Now let’s review the topics we covered in this chapter.

3.7 Summary
In this chapter, we discussed the two major ways that Roo provides access to database
entities—the Active Record pattern and via repositories. You’ve seen that Roo pro­
vides a rich database API called Spring Data, which is distributed as part of the Spring
JPA container beginning in Roo 1.2. With this container, you saw that you can define
queries using annotations and Java interfaces. You can also extend other interfaces,
such as JpaRepository, which provide automatically generated CRUD methods.

 Just think of all the things Roo does for you as a Spring developer:

http://mng.bz/63xp
http://mng.bz/63xp

92	 CHAPTER 3 Database persistence with entities

 Roo generates entities automatically using a simple entity command.
 Roo also uses AspectJ ITD files to wrap entities with JPA persistence code, adding

methods to entities such as persist, findCourse, merge‚ and flush.
 Roo gives you the ability to use your own JPA code, or to harness the power of

the Spring Data JPA API, to manage your persistence layer.
 Roo has a comprehensive system testing facility, enabled by the Spring JUnit

Test Runner. You can either execute the standard Spring JUnit Test Runner, or
allow Roo to scaffold tests automatically by using the @RooIntegrationTest
annotation.

 Roo supports JSR-303, the Bean Validation Framework API, and executes valida­
tion processing whenever an entity is persisted or updated.

 Roo supports adding finders to your entities, which provide results for various
searches enabled as simple Java methods.

In the next chapter, we’ll take a look at how to relate entities to each other. You’ll also
see some of the more advanced features of the JPA persistence framework and how
you can make them work in Roo.

3.8 Resources
 The online reference for the Spring Data JPA project: http://mng.bz/Q9X4
 The Spring Data JPA project home page, which includes references to blog entries by Oliver

Geirke, Gordon Dickens‚ and others: http://mng.bz/63xp

http://mng.bz/Q9X4
http://mng.bz/63xp

Rimple ● Penchikala

R
oo is a lightweight Java console shell that simplifi es
compile-time tasks. It improves productivity by enforcing
correct coding practices and patterns and integrates with

mainstream Java technologies including ActiveMQ, GWT, JPA,
and OSGi. And, when you fi nish coding, it gets out of the way
so there’s no runtime impact.

Spring Roo in Action teaches you to code Java more effi ciently
using Roo. With the help of many examples, it shows you how
to build application components from the database layer to the
user interface. Th e book takes a test-fi rst approach and points
out how Roo can help automate many of the mundane details of
coding Java apps. Along the way, you’ll address important topics
like security, messaging, and cloud computing.

What’s Inside
● Learn Roo from the ground up
● Integrate with existing projects
● Create custom add-ons
● Use Roo with Spring

Th is book is for Java developers who want to get more produc-
tive by using Roo.

Ken Rimple is a veteran Java developer, trainer, mentor, and head
of Chariot’s Education Services team, a VMWare training
partner. Srini Penchikala is a security architect with over
16 years of experience in soft ware design and development.

For access to the book’s forum and a free eBook for owners of this
book, go to manning.com/SpringRooinAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

Spring Roo IN ACTION

JAVA/SPRING

M A N N I N G

“An insightful and
comprehensive treatment.”—From the Foreword by Ben Alex

Project Founder, Spring Roo

“A great vehicle for learning
the ins and outs of Roo!”

—Al Scherer
eCommerce Technologies

“Just Roo it with this book
and increase your soft ware

development productivity.”—Santosh Shanbhag, Monsanto

“Helps you ‘quit the pouch’
and get beyond the basics.”—Audrey Troutt, Goodwin

College at Drexel University

SEE INSERT

	Rimple-SpringRoo-front
	CopyrightSamplePages
	TOC
	SpringRoo-Sample3
	Rimple-SpringRoo-back

