
Kito Mann

M A N N I N G

JavaServer
Faces

IN ACTION

JavaServer
Faces

IN ACTION

Foreword by Ed Burns S A M P L E C H A P T E R

JavaServer Faces in Action
by Kito Mann

 Sample Chapter 1

Copyright 2004 Manning Publications

PART 1 EXPLORING JAVASERVER FACES1

1 ■ Introducing JavaServer Faces 3

2 ■ JSF fundamentals 38

3 ■ Warming up: getting around JSF 88

4 ■ Getting started with the standard components 137

5 ■ Using the input and data table components 185

6 ■ Internationalization, validators, and converters 234

PART 2 BUILDING USER INTERFACES275

7 ■ Introducing ProjectTrack 277

8 ■ Developing a user interface without Java code:
the Login page 287

9 ■ Developing a user interface without Java code:
the other pages 316

10 ■ Integrating application functionality 354

brief contents

PART 3 DEVELOPING APPLICATION LOGIC407

11 ■ The JSF environment 409

12 ■ Building an application: design issues and
foundation classes 456

13 ■ Building an application: backing beans, security,
and internationalization 499

14 ■ Integrating JSF with Struts and
existing applications 568

PART 4 WRITING CUSTOM COMPONENTS, RENDERERS,
VALIDATORS, AND CONVERTERS603

15 ■ The JSF environment: a component
developer’s perspective 605

PART 5 WRITING CUSTOM COMPONENTS, RENDERERS,
VALIDATORS, AND CONVERTERS: EXAMPLES703

16 ■ UIInputDate: a simple input component 705

17 ■ RolloverButton renderer: a renderer
with JavaScript support 727

18 ■ UIHeadlineViewer: a composite,
data-aware component 756

19 ■ UINavigator: a model-driven toolbar component 794

20 ■ Validator and converter examples 839

ONLINE EXTENSION

The five chapters in part 5 (plus four additional
appendixes) are not included in the print edition.
They are available for download in PDF format from
the book’s web page to owners of this book. For free
access to the online extension please go to www.
manning.com/mann.

3

Introducing
JavaServer Faces

This chapter covers
■ What JavaServer Faces is, and what it’s not
■ Foundation technologies (HTTP, servlets, portlets,

JavaBeans, and JSP)
■ How JavaServer Faces relates to existing web

development frameworks
■ Building a simple application

4 CHAPTER 1
Introducing JavaServer Faces

Welcome to JavaServer Faces in Action. JavaServer Faces (JSF, or simply “Faces”)
makes it easy to develop web applications by bringing support for rich, powerful
user interface components (such as text boxes, list boxes, tabbed panes, and data
grids) to the web development world. A child of the Java Community Process,1

JSF is destined to become a part of Java 2 Enterprise Edition (J2EE). This book
will help you understand exactly what JSF is, how it works, and how you can use it
in your projects today.

1.1 It’s a RAD-ical world

A popular term in the pre-Web days was Rapid Application Development (RAD). The
main goal of RAD was to enable you to build powerful applications with a set of
reusable components. If you’ve ever used tools like Visual Basic, PowerBuilder,
or Delphi, you know that they were a major leap forward in application develop-
ment productivity. For the first time, it was easy to develop complex user inter-
faces (UIs) and integrate them with data sources.

 You could drag application widgets—UI controls and other components—
from a palette and drop them into your application. Each of these components
had properties that affected their behavior. (For example, font is a common
property for any control that displays text; a data grid might have a dataSource
property to represent a data store.) These components generated a set of events,
and event handlers defined the interaction between the UI and the rest of the
application. You had access to all of this good stuff directly from within the inte-
grated development environment (IDE), and you could easily switch between
design and code-centric views of the world.

 RAD tools were great for developing full-fledged applications, but they were
also quite useful for rapid prototyping because they could quickly create a UI
with little or no code. In addition, the low barrier to entry allowed both experi-
enced programmers and newbies to get immediate results.

 These tools typically had four layers:

■ An underlying component architecture
■ A set of standard widgets
■ An application infrastructure
■ The tool itself

1 The Java Community Process (JCP) is the public process used to extend Java with new application programming
interfaces (APIs) and other platform enhancements. New proposals are called Java Specification Requests (JSRs).

It’s a RAD-ical world 5

The underlying component architectures were extensible enough to spawn an in-
dustry of third-party component developers like Infragistics and Developer Express.

 Of course, the RAD philosophy never went away—it just got replaced by other
hip buzzwords. It’s alive and well in some Java IDEs and other development envi-
ronments like Borland Delphi and C++Builder. Those environments, however,
stop short of using RAD concepts for web projects. The adoption of RAD in the
web development world has been remarkably slow.

 This sluggishness is due in part to the complexity of creating such a simple,
cohesive view of application development in a world that isn’t simple or cohe-
sive. Web applications are complex if you compare them to standard desktop
applications. You’ve got a ton of different resources to manage—pages, configu-
ration files, graphics, and code. Your users may be using different types of brows-
ers running on different operating systems. And you have to deal with HTTP, a
protocol that is ill suited for building complex applications.

 The software industry has become good at masking complexity, so it’s no sur-
prise that many RAD web solutions have popped up over the last few years.
These solutions bring the power of visual, component-oriented development to
the complex world of web development. The granddaddy is Apple’s WebOb-
jects,2 and Microsoft has brought the concept to the mainstream with Visual Stu-
dio.NET and ASP.NET Web Forms. In the Java world, many frameworks have
emerged, several of them open source. Some have tool support, and some don’t.

 However, the lack of a standard Java RAD web framework is a missing piece of
the Java solution puzzle—one that Microsoft’s. NET Framework has covered from
day one. JavaServer Faces was developed specifically to fill in that hole.

1.1.1 So, what is JavaServer Faces?
In terms of the four layers of a RAD tool, JavaServer Faces defines three of them:
a component architecture, a standard set of UI widgets, and an application infra-
structure. JSF’s component architecture defines a common way to build UI widgets.
This architecture enables standard JSF UI widgets (buttons, hyperlinks, check-
boxes, text fields, and so on), but also sets the stage for third-party components.
Components are event oriented, so JSF allows you to process client-generated
events (for instance, changing the value of a text box or clicking on a button).

 Because web-based applications, unlike their desktop cousins, must often
appease multiple clients (such as desktop browsers, cell phones, and PDAs), JSF

2 WebObjects has a full-fledged environment that includes a J2EE server, web services support, and ob-
ject persistence, among other things.

6 CHAPTER 1
Introducing JavaServer Faces

has a powerful architecture for displaying components in different ways. It also
has extensible facilities for validating input (the length of a field, for example)
and converting objects to and from strings for display.

 Faces can also automatically keep your UI components in synch with Java
objects that collect user input values and respond to events, which are called
backing beans. In addition, it has a powerful navigation system and full support
for multiple languages. These features make up JSF’s application infrastruc-
ture—basic building blocks necessary for any new system.

 JavaServer Faces defines the underpinnings for tool support, but the imple-
mentation of specific tools is left to vendors, as is the custom with Java. You have

Figure 1.1 IBM’s WebSphere Application Developer (WSAD) has been expanded to support JSF
applications in addition to the seemingly endless amount of other technologies it supports. You can
visually build JSF applications, and mix-and-match other JSP tag libraries using WSAD’s familiar
Eclipse-based environment.

It’s a RAD-ical world 7

a choice of tools from industry leaders that allow you to visually lay out a web UI
in a way that’s quite familiar to users of RAD development tools such as Visual Stu-
dio. NET. (Figures 1.1, 1.2, and 1.3 show what Faces development looks like in
IDEs from IBM, Oracle, and Sun, respectively.) Or, if you prefer, you can develop
Faces applications without design tools.

 Just in case all of this sounds like magic, we should point out a key difference
between JavaServer Faces and desktop UI frameworks like Swing or the Standard
Widget Toolkit (SWT): JSF runs on the server. As such, a Faces application will run

Figure 1.2 Oracle’s JDeveloper [Oracle, JDeveloper] will have full-fledged support for JSF, complete
with an extensive array of UIX components, which will integrate with standard JSF applications. It will
also support using JSF components with its Application Development Framework (ADF) [Oracle, ADF].
(This screen shot was taken with UIX components available with JDeveloper 10g, which are the basis
of JSF support in the next version of JDeveloper.)

8 CHAPTER 1
Introducing JavaServer Faces

Widget Toolkit (SWT): JSF runs on the server. As such, a Faces application will run
in a standard Java web container like Apache Tomcat [ASF, Tomcat], Oracle
Application Server [Oracle, AS], or IBM WebSphere Application Server [IBM,
WAS], and display HTML or some other markup to the client.

 If you click a button in a Swing application, it will fire an event that you can
handle directly in the code that resides on the desktop. In contrast, web browsers
don’t know anything about JSF components or events; they just know how to

Figure 1.3 Sun’s Java Studio Creator [Sun, Creator] is an easy-to-use, visually based environment
for building JavaServer Faces applications. You can easily switch between designing JSF pages
visually, editing the JSP source, and writing associated Java code in an environment that should seem
familiar to users of Visual Studio.NET, Visual Basic, or Delphi.

It’s a RAD-ical world 9

display HTML.3 So when you click on a button in a Faces application, it causes a
request to be sent from your web browser to the server. Faces is responsible for
translating that request into an event that can be processed by your application
logic on the server. It’s also responsible for making sure that every UI widget
you’ve defined on the server is properly displayed to the browser.

 Figure 1.4 shows a high-level view of a Faces application. You can see that the
application runs on the server and can integrate with other subsystems, such as En-
terprise JavaBeans (EJB) services or databases. However, JSF provides many addi-
tional services that can help you build powerful web applications with less effort.

 JavaServer Faces has a specific goal: to make web development faster and eas-
ier. It allows developers to think in terms of components, events, backing beans,
and their interactions, instead of requests, responses, and markup. In other
words, it masks a lot of the complexities of web development so that developers
can focus on what they do best—build applications.

3 Technically, they do a lot of other things, like execute JavaScript or VBScript, display XML and
XHTML, and so on.

Figure 1.4 A high-level view of a JavaServer Faces application. JSF makes web development easy
by providing support for UI components and handling a lot of common web development tasks.

10 CHAPTER 1
Introducing JavaServer Faces

NOTE JSF is a technology, and this book covers it as thoroughly as possible in
several hundred pages. Tools sugarcoat a lot of pieces of the develop-
ment puzzle with graphical user interface (GUI) designers that generate
JSP, screens that edit configuration files, and so forth. Throughout this
book, we’ll show you the real Java, JSP, and XML code and configuration
that JSF uses, while giving you a sense of where the tools can make your
life easier. With this approach, you’ll have a full understanding of what
an IDE does behind the scenes, which is extremely useful for mainte-
nance of your application after it’s built, and also for situations where
you need to move from one IDE vendor to another. And, of course, if
you don’t like IDEs at all, knowing how things actually work is essential.
(If you are a big IDE fan, don’t worry—we show screen shots of different
tools throughout the book, and online extension appendix B covers
three of them in detail).

1.1.2 Industry support

One of the best things about the Java Community Process (JCP), Sun Microsys-
tems’s way of extending Java, is that a lot of great companies, organizations, and
individuals are involved. Producing a spec through the JCP isn’t exactly speedy,
but the work can be quite good. JavaServer Faces was introduced as Java Specifi-
cation Request (JSR) 127 by Sun in May 2001; the final version of the specifica-
tion, JSF 1.0, was released on March 3, 2004, and JSF 1.1 (a maintenance release)
arrived on May 27th, 2004. The companies and organizations (other than Sun)
involved in developing Faces include the Apache Software Foundation, BEA Sys-
tems, Borland Software, IBM, Oracle, Macromedia, and many others.

 The products developed by these companies can be put into three categories
(many fit in more than one): J2EE containers, development tools, and UI frame-
works. Because JavaServer Faces is a UI component framework that works with tools
and runs inside J2EE containers, this makes good sense. What’s significant is the
fact that the group includes many industry heavyweights. This means that you
can expect JSF to have a lot of industry support. And if your vendor doesn’t sup-
port JSF, you can download Sun’s reference implementation for free [Sun, JSF RI].

 To keep up with the latest JSF news, articles, products and vendors, check out
JSF Central [JSF Central], a community site run by the author.

1.2 The technology under the hood

All JSF applications are standard Java web applications. Java web applications
speak the Hypertext Transfer Protocol (HTTP) via the Servlet API and typically

The technology under the hood 11

use some sort of display technology, such as JavaServer Pages (JSP), as shown in
figure 1.4. The display technology is used to define UIs that are composed of
components that interact with Java code. Faces applications can also work inside
of portlets, which are similar to servlets. JSF’s component architecture uses Java-
Beans for exposing properties and event handling.

 In this section, we briefly describe these technologies and explain how they
relate to JSF. If you’re already familiar with Java web development basics and
understand how they relate to JSF, you may want to skip this section.

1.2.1 Hypertext Transfer Protocol (HTTP)

Diplomats and heads of state come from many different cultures and speak
many different languages. In order to communicate, they follow specific rules of
ceremony and etiquette, called protocols. Following protocols helps to ensure that
they can correspond effectively, even though they come from completely differ-
ent backgrounds.

 Computers use protocols to communicate as well. Following an established set
of rules allows programs to communicate regardless of the specific software,
hardware, or operating system.

 The World Wide Web (WWW) started as a mechanism for sharing documents.
These documents were represented via the Hypertext Markup Language (HTML)
and allowed people viewing the documents to easily move between them by sim-
ply clicking on a link. To serve up documents and support this hyperlinking
capability, the Hypertext Transfer Protocol (HTTP) was developed. It allowed
any web browser to grab documents from a server in a standard way.

DEFINITION The Web was originally designed for static content such as academic
documents, which do not change often. In contrast, dynamic content,
such as stock information or product orders, changes often. Dynamic
content is what applications usually generate.

HTTP is a simple protocol—it’s based on text headers. A client sends a request to a
server, and the server sends a response back to the browser with the requested doc-
ument attached. The server is dumb4—it doesn’t remember anything about the cli-
ent if another document is requested. This lack of memory means that HTTP is a
“stateless” protocol; it maintains no information about the client between requests.

4 Web servers have grown to be quite sophisticated beasts, but initially they were pretty simple.

12 CHAPTER 1
Introducing JavaServer Faces

 The stateless nature of HTTP means that it’s able to scale well (it is, after all,
the protocol of the Internet, and the Internet is a huge place). This property isn’t
a problem for the static documents that HTTP was originally developed to serve.

 But imagine what it’d be like if a valet parked your car but didn’t give you a
ticket and didn’t remember your face. When you came back, he’d have a hard
time figuring out which car to retrieve. That’s what it’s like to develop an appli-
cation in a stateless environment. To combat this problem, there are two possibil-
ities: cookies and URL rewriting. They’re both roughly the same as the valet
giving you a ticket and keeping one himself.

 No matter what language you use, if you’re writing a web application, it will
use HTTP. Servlets and JSP were developed to make it easier to build applications
on top of the protocol. JavaServer Faces was introduced so that developers can
forget that they’re using the protocol at all.

1.2.2 Servlets

HTTP is great for serving up static content, and web servers excel at that function
out of the box. But creating dynamic content requires writing code. Even though
HTTP is simple, it still takes some work to write programs that work with it. You
have to parse the headers, understand what they mean, and then create new
headers in the proper format. That’s what the Java Servlet application program-
ming interface (API) is all about: providing an object-oriented view of the world
that makes it easier to develop web applications.5 HTTP requests and responses
are encapsulated as objects, and you get access to input and output streams so
that you can read a user’s response and write dynamic content. Requests are han-
dled by servlets—objects that handle a particular set of HTTP requests.

 A standard J2EE web application is, by definition, based on the Servlet API.
Servlets run inside a container, which is essentially a Java application that per-
forms all of the grunt work associated with running multiple servlets, associating
the resources grouped together as a web application, and managing all sorts of
other services. The most popular servlet container is Tomcat [ASF, Tomcat], but
J2EE application servers such as IBM WebSphere [IBM, WAS] and the Sun Java
System Application Server [Sun, JSAS] provide servlet containers as well.

 As we mentioned in the previous section, one of the big problems with HTTP
is that it’s stateless. Web applications get around this problem through the use of

5 Technically, the Servlet API can be used to provide server functionality in any request/response envi-
ronment—it doesn’t necessarily have to be used with HTTP. In this section, we’re referring to the
java.servlet.http package, which was designed specifically for processing HTTP requests.

The technology under the hood 13

sessions—they make it seem as if the users are always there, even if they’re not.
Sessions are one of the biggest benefits that the Servlet API provides. Even
though behind the scenes they make use of cookies or URL rewriting, the pro-
grammer is shielded from those complexities.

 The Servlet API also provides lots of other goodies, like security, logging, life-
cycle events, filters, packaging and deployment, and so on. These features all
form the base of JavaServer Faces. As a matter of fact, JSF is implemented as a
servlet, and all JSF applications are standard J2EE web applications.

 JSF takes things a bit further than the Servlet API, though. Servlets cover the
basic infrastructure necessary for building web applications. But at the end of the
day, you still have to deal with requests and responses, which are properties of the
underlying protocol, HTTP. JSF applications have UI components, which are asso-
ciated with backing beans and can generate events that are consumed by applica-
tion logic. Faces uses the Servlet API for all of its plumbing, but the developer gets
the benefit of working at a higher level of abstraction: You can develop web appli-
cations without worrying about HTTP or the specifics of the Servlet API itself.

1.2.3 Portlets

Most web applications serve dynamic content from a data store—usually a data-
base. (Even if the business logic is running on another type of server, like an EJB
or Common Object Request Broker Architecture [CORBA] server, eventually
some code talks to a database.) Since the early days of the Web, however, there
has been a need for software that aggregates information from different data
sources into an easy-to-use interface. These types of applications, called portals,
were originally the domain of companies like Netscape and Yahoo! However,
more and more companies now realize that the same concept works well for
aggregating information from different internal data sources for employee use.

 So a variety of vendors, including heavyweights like IBM, BEA, and Oracle,
offer portal products to simplify this task. Each data source is normally displayed
in a region within a web page that behaves similarly to a window—you can close
the region, customize its behavior, or interact with it independent of the rest of
the page. Each one of these regions is called a portlet.

 Each of these vendors developed a completely different API for writing portlets
that work with their portal products. In order to make it easier to develop portlets
that work in multiple portals, the JCP developed the Portlet specification [Sun,
Portlet], which was released in late 2003. All of the major portal vendors (including
Sun, BEA, IBM, and Oracle) and open source organizations like the Apache Software
Foundation have announced support for this specification in their portal products.

14 CHAPTER 1
Introducing JavaServer Faces

 The Portlet specification defines the Portlet API, which, like the Servlet API,
defines a lot of low-level details but doesn’t simplify UI development or mask
HTTP. That’s where JSF comes into the picture; it was developed so that it can
work with the Portlet API (which is similar in many ways to the Servlet API). You
can use ordinary JSF components, event handling, and other features inside
portlets, just as you can inside servlets.

NOTE Throughout this book, we mostly talk about JSF in relation to servlets.
However, most of our discussions apply to portlets as well.

1.2.4 JavaBeans

Quite a few Java web developers think that JavaBeans are simply classes with
some properties exposed via getter and setter methods (accessors and mutators).
For example, a Java class with the methods getName and setName exposes a read-
write property called name. However, properties are just the tip of the iceberg;
JavaBeans is a full-fledged component architecture designed with tool support
in mind.

 This is significant, because it means there’s a lot more to it than just proper-
ties. JavaBeans conform to a set of patterns that allow other Java classes to
dynamically discover events and other metadata in addition to properties. As a
matter of fact, JavaBeans is the technology that enables Swing and makes it pos-
sible for IDEs to provide GUI builders for desktop applications and applets.
Using JavaBeans, you can develop a component that not only cooperates nicely
with a visual GUI builder but also provides a specialized wizard (or customizer) to
walk the user through the configuration process. JavaBeans also includes a pow-
erful event model (the same one used with Swing and JSF components), persis-
tence services, and other neat features.

 Understanding the power of JavaBeans will help you comprehend the full
power of JSF. Like Swing components, every JSF component is a full-fledged Java-
Bean. In addition, Faces components are designed to work with backing beans—
objects that are implemented as JavaBeans and also handle events.

 If you’re just planning to write application code or build UIs, then a basic
knowledge of JavaBeans (mutators and accessors) is sufficient. If you’re going to
be developing custom components, a deep understanding of JavaBeans will
make your life much easier.

The technology under the hood 15

1.2.5 JSP and other display technologies

Servlets are great low-level building blocks for web development, but they don’t
adequately simplify the task of displaying dynamic content. You have to manu-
ally write out the response to every request.

 Let’s say that every line of HTML you were sending was written as a separate
line of Java code. You have about 30 pages in your application, and each page
has about 80 lines of HTML. All of the sudden, you have 2400 lines of code that
looks a lot like this:

out.println("This is a really repetitive task, and \"escaping\"" +
 " text is a pain. ");

This is really tedious work, especially because you have to escape a lot of charac-
ters, and it’s hard to quickly make changes. Clearly there has to be a better way.

 To solve this problem, Sun introduced JavaServer Pages (JSP) as a standard
template mechanism. JavaServer Pages look like an HTML page, but they have
special tags that do custom processing or display JavaBean values, and can also
have Java code embedded in them.6 Ultimately, they behave like a servlet that
looks a lot like the previous code snippet. The JSP translator does the boring
work so that you don’t have to.

 You can create your own custom tags7 to perform additional processing (such
as accessing a database), and there’s a useful set of standard tags called the Java-
Server Pages Standard Tag Library (JSTL) [Sun, JSTL]. The idea is that you can
define the UI with HTML-like tags, not Java code.

 Even though JSP is the industry standard display technology, you can choose
among many alternatives. You could use a full Extensible Markup Language/
Extensible Style Sheet Language Transformations (XML/XSLT) approach with
something like Cocoon [ASF, Cocoon], or a stricter template-based approach like
Velocity [ASF, Velocity] or WebMacro [WebMacro]. Many other options are avail-
able as well.

 One of the key design goals of JSF was to avoid relying on a particular display
technology. So JSF provides pluggable interfaces that allow developers to integrate

6 The ability to have Java code embedded in JSPs is considered bad design (and a bad practice) by many
and is the topic of one of those huge religious wars. The main argument is that it doesn’t enforce sep-
aration between display and business logic. That “feature” is one of the main reasons there are differ-
ent choices for display technologies. In JSP 2.0, you can turn off this feature.

7 Custom tags are technically called “custom actions,” but we use the more common term “custom tags”
throughout this book.

16 CHAPTER 1
Introducing JavaServer Faces

it with various display technologies. However, because JSF is a standard Java
technology, and so is JSP, it’s no surprise that Faces comes with a JSP implementa-
tion (via custom tags) right out of the box. And because JSP is the only display
technology that must be integrated with JavaServer Faces, most of the examples
in this book use JSP as well.

1.3 Frameworks, frameworks, frameworks

Earlier, we said that JavaServer Faces is a “framework” for developing web-based
UIs in Java. Frameworks are extremely common these days, and for a good rea-
son: they help make web development easier. Like most Java web frameworks,
JSF enforces a clean separation of presentation and business logic. However, it
focuses more on the UI side of things and can be integrated with other frame-
works, like Struts.

1.3.1 Why do we need frameworks?

As people build more and more web applications, it becomes increasingly obvi-
ous that although servlets and JSPs are extremely useful, they can’t handle many
common tasks without tedious coding. Frameworks help simplify these tasks.

 The most basic of these tasks is form processing. HTML pages have forms,
which are collection of user input controls like text boxes, lookup lists, and
checkboxes. When a user submits a form, all of the data from the input fields is
sent to the server. A text field in HTML might look like this:

<input maxLength=256 size=55 name="userName" value="">

In a standard servlet application, the developer must retrieve those values directly
from the HTTP request like this:

String userName = (String)request.getParameter("userName");

This can be tedious for large forms, and because you’re dealing directly with the
value sent from the browser, the Java code must also make sure all of the request
parameters are valid. In addition, each one of these parameters must be manu-
ally associated with the application’s objects.

 Forms are just one example of tasks that servlets and JSP don’t completely
solve. Web applications have to manage a lot of pages and images, and referenc-
ing all of those elements within larger applications can become a nightmare if
you don’t have a central way of managing it.

 Management of the page structure is another issue. Although JSP provides a
simple mechanism for creating a dynamic page, it doesn’t provide extensive support

Frameworks, frameworks, frameworks 17

for composing a page out of smaller, reusable parts. Other fun things that servlets
don’t handle include internationalization, type conversion, and error handling.

 To handle all of these tasks in a simplified manner, several frameworks have
emerged. Some of the more popular ones are Struts [ASF, Struts] and WebWork
[OpenSymphony, WebWork]. The goal of any framework is to facilitate develop-
ment by handling many common tasks.

1.3.2 She’s a Model 2

Basic organization and management services are a necessity for larger web appli-
cations, but they need structure as well. Most web frameworks, including JSF,
enforce some variation of the Model-View-Controller (MVC) design pattern. To
understand exactly what MVC is, let’s look at a driving analogy.

 When you’re driving down the highway in one direction, there’s usually a
median between you and the traffic heading in the opposite direction. The
median is there for a good reason—fast traffic moving in opposite directions
doesn’t mix too well. Without the median, a rash of accidents would inevita-
bly result.

 Applications have similar issues: Code for business logic doesn’t mix too well
with UI code. When the two are mixed, applications are much harder to main-
tain, less scalable, and generally more brittle. Moreover, you can’t have one team
working on presentation code while another works on business logic.

 The MVC pattern is the standard solution to this problem. When you watch a
story on the news, you view a version of reality. An empirical event exists, and the
news channel is responsible for interpreting the event and broadcasting that
interpretation. Even though you see the program on your TV, a distinct differ-
ence lies between what actually took place, how people doing the reporting
understand it, and what you’re seeing on your TV. The news channel is controlling
the interaction between the TV program—the view—and the actual event—the
model. Even though you may be watching the news on TV, the same channel
might be broadcasting via the Internet or producing print publications. These
are alternate views. If the pieces of the production weren’t separate, this wouldn’t
be possible.

 In software, the view is the presentation layer, which is responsible for inter-
acting with the user. The model is the business logic and data, and the controller
is the application code that responds to user events and integrates the model
and view. This architecture ensures that the application is loosely coupled, which
reduces dependencies between different layers.

18 CHAPTER 1
Introducing JavaServer Faces

Model 2 (shown in figure 1.5) is a variation of MVC that’s specific to web applica-
tions. The basic point is that:

■ The model can consist of plain old Java objects (POJOs), EJBs, or some-
thing else.

■ The view can be JSPs or some other display technology.
■ The controller is always implemented as a servlet.

So if the JSP page contains an error, it doesn’t affect the application code or the
model. If there’s an error in the model, it doesn’t affect the application code or
the JSP page. This separation allows for unit testing at each layer, and also lets
different parties work with the layers independently. For instance, a front-end
developer can build a JSP before the business objects and the application code
are complete. Portions of some layers can even be integrated before all three
have been completed.

 These benefits are exactly why most frameworks, including JSF, support some
variation of the MVC design pattern.

1.3.3 JSF, Struts, and other frameworks

Let’s face it: there are a lot of Java web frameworks available. Some of them, like
Struts [ASF, Struts] and WebWork [OpenSymphony, WebWork], help with form
processing and other issues such as enforcing Model 2, integrating with data
sources, and controlling references to all of the application’s resources centrally via

Figure 1.5 Most web frameworks use some variation of the Model 2 design pattern.

Components everywhere 19

XML configuration files. These foundation frameworks provide extensive under-
pinnings but don’t mask the fundamental request/response nature of HTTP.

 Other frameworks, like Tapestry [ASF, Tapestry], Oracle’s Application Devel-
opment Framework (ADF) UIX [Oracle, ADF UIX], and SOFIA [Salmon, SOFIA],
provide a UI component model and some sort of event processing. The purpose
of these UI frameworks, which include JSF, is to simplify the entire programming
model. Often, foundation and UI frameworks have overlapping functionality.

 To understand this overlap, you can think of web application infrastructure as
a stack of services. The services close to the bottom of the stack don’t abstract too
many details of the underlying protocol; they’re more like plumbing. The ser-
vices toward the top of the stack hide more of the gory details; they provide
higher levels of abstraction. The lowest services are handled by web servers, the
Servlet API, and JSP. Most frameworks provide some subsection of the additional
services. Figure 1.6 shows this stack in relation to JSF, Struts, servlets, JSP, and a
traditional web server.

 You can see from the figure that JSF supports enough services to make it quite
powerful by itself, and in many cases, it’s all you’ll need. Subsequent releases of
Faces will most likely cover additional services as well.

 However, even though Faces overlaps with frameworks like Struts, it doesn’t
necessarily replace them. (As a matter of fact, the lead developer of Struts, Craig
McClanahan, was instrumental in the development of JavaServer Faces.) If you inte-
grate the two, you get access to all the services of the stack (chapter 14 covers Struts
integration). You can also use JSF with other frameworks like Spring [Spring-Faces].

 For UI-oriented frameworks, JSF may overlap with a large set of their func-
tionality. Some of those projects have pledged support for JSF in future versions.
Faces has the distinction of being developed by a consortium of industry heavy-
weights through the JCP and will be part of J2EE. As a result, it enjoys heavy tool
support and will ship standard with many J2EE servers.

1.4 Components everywhere

Sadly, overuse of the term “component” is rampant in the industry today. An
operating system is a component, an application is a component, EJBs are com-
ponents, a library is a component, and so is the kitchen sink. Numerous books
about components are available, and the good ones point out that many defini-
tions exist.

 The excessive use of this word isn’t that strange if you know what it really
means. If you look up “component” in the dictionary, you’ll see that it’s a

20 CHAPTER 1
Introducing JavaServer Faces

synonym for constituent—a part of a whole. So, if you use the literal meaning of
the word, an operating system really is a component in the context of a distrib-
uted application.

 What’s funny is that conceptually, a kitchen sink has more in common with
Faces components than an operating system does. If you remodel your kitchen,
you get to pick out a kitchen sink. You don’t have to build it from scratch—you
just have to pick a sink that fulfills your requirements: size, color, material, num-
ber of bowls, and so on. The same thing goes for other kitchen items, like cabi-
nets and countertops. All of these components have specific interfaces that allow
them to integrate with one another, but they depend on specific environmental
services (plumbing, for instance). The end result may be unique, but the whole is
made up of independent, reusable parts.

Figure 1.6 Web application infrastructure can be viewed as a stack of services. The services on the
bottom provide basic plumbing but little abstraction. The services at the top of the stack provide
more abstraction. Having all of the services together is extremely powerful.

Components everywhere 21

 If we take the concepts of kitchen components and apply them to software, we
end up with this definition:

DEFINITION A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to composition by
third parties [Szyperski].

The “context dependencies” in a kitchen are things like the room itself, plumb-
ing, and electrical circuits. In essence, the context is the container for all of the
components. A container is a system that hosts components and provides a set of
services that allow those components to be manipulated. Sometimes that manip-
ulation is within an IDE (during design time); sometimes it’s in a deployment envi-
ronment, like a J2EE server (during runtime).

 The phrase “deployed independently” means that a component is a self-
contained unit and can be installed into a container. Kitchen sinks are individ-
ual, self-contained items made to fit into a countertop.

 When you remodel your kitchen, you hire a contractor, who assembles the
components you’ve selected (cabinets, drawers, sink, and so on) into a full-
fledged kitchen. When we build software using component architectures, we
assemble various components to create a working software system.

 JSF components, Swing components, servlets, EJBs, JavaBeans, ActiveX con-
trols, and Delphi Visual Component Library (VCL) components all fit this defini-
tion. But these components concentrate on different things. JSF and Swing
components are aimed solely at UI development, while ActiveX and VCL controls
may or may not affect the UI. Servlets and EJBs are much more coarse-grained—
they provide a lot of functionality that’s more in the realm of application logic
and business logic.

 Because JSF is focused on UI components, let’s narrow our component defini-
tion appropriately:

DEFINITION A UI component, or control, is a component that provides specific func-
tionality for interacting with an end user. Classic examples include tool-
bars, buttons, panels, and calendars.

If you’ve done traditional GUI development, then the concept of a UI compo-
nent should be quite familiar to you. What’s great about JavaServer Faces is that
it brings a standard UI component model to the web world. It sets the stage for

22 CHAPTER 1
Introducing JavaServer Faces

things desktop developers take for granted: a wide selection of packaged UI
functionality with extensive tools support. It also opens the door for creating cus-
tom components that handle tasks specific to a particular business domain—like
a report viewer or an interest calculator.

1.5 Hello, world!

Now that you have a basic understanding of the problems JavaServer Faces is
meant to solve, let’s begin with a simple Faces application. This section assumes
you’re familiar with Java web applications and JSP. (For more about these tech-
nologies, see section 1.2 for an overview.) We’ll dissect a simple HTML-based
web application that has two pages: hello.jsp and goodbye.jsp.

 The hello.jsp page does the following:

■ Displays the text “Welcome to JavaServer Faces!”
■ Has a single form with a text box that requires an integer between 1 and 500
■ Stores the last text box value submitted in a JavaBean property called

numControls

■ Has a grid underneath the text box
■ Has a button labeled “Redisplay” that when clicked adds numControls output

UI components to the grid (clearing it of any previous UI components first)
■ Has a button labeled “Goodbye” that displays goodbye.jsp if clicked

The goodbye.jsp page does the following:

■ Displays the text “Goodbye!”
■ Displays the value of the JavaBean property numControls

JSF performs most of the work of our Hello, world! application, but in addition
to the JSP pages, there are a few other requirements:

■ The HelloBean backing bean class
■ A Faces configuration file
■ A properly configured deployment descriptor

Some tools will simplify creation of some or all of these requirements, but in this
section, we’ll examine the raw files in detail.

 Before we get into those details, let’s see what Hello, world! looks like in a web
browser. The application starts with hello.jsp, as shown in figure 1.7. The text
box on this page is associated with a JavaBean property of the HelloBean class;

Hello, world! 23

when someone enters a value into this box, the property will be updated auto-
matically (if the value is valid).

 If you enter the number “64” into the text box and click the Redisplay button,
the page redisplays as shown in figure 1.8—a total of 64 UI components are dis-
played in the grid. If you clear the text box and click the Redisplay button, you’ll
get a validation error, as shown in figure 1.9. You’ll also get a validation error if

Figure 1.7 The Hello, world! application before any data has been submitted.

Figure 1.8 The Hello, world! application after you enter "64" and click the Redisplay
button. The grid is populated with 64 UI components.

24 CHAPTER 1
Introducing JavaServer Faces

you enter the number “99999” into the text box and click the Redisplay button,
as shown in figure 1.10.

 Don’t worry about the text of the error messages—in your own applications
you can customize it. The important point is that in both cases, when the form
was submitted the associated JavaBean property wasn’t modified.

 If you click the Goodbye button, you see the goodbye.jsp page, shown in fig-
ure 1.11. Even though this is an entirely different page, the value of the Java-
Bean property is displayed. JSF components can reference a JavaBean living in
any application scope.

 Our Hello, world! example is a standard Java web application, as specified by
the Servlet API (it does require the standard Faces libraries, though). All five of
these figures were generated with two JSPs. Let’s look at them in detail.

1.5.1 Dissecting hello.jsp

Our main page, hello.jsp, provides the interface for figures 1.7 to 1.10. JSF is
integrated with JSP through the use of custom tag libraries. The JSF custom tags
enable JSPs to use Faces UI components. Tools will often allow you to design JSF
pages by dragging and dropping JSF components from a palette. As a matter of

Figure 1.9 The Hello, world! application after you submit a blank value for the
required text box field and click the Redisplay button. Because a validation error
occurred, the value of the associated JavaBean property didn’t change.

Hello, world! 25

Figure 1.10 The Hello, world! application after you enter in the value "99999" into
the text box and click the Redisplay button. The field only accepts numbers between
1 and 500, so a validation error is shown. Because a validation error occurred, the
value of the associated JavaBean property didn’t change.

Figure 1.11 The Hello, world! application after you click the Goodbye button. Note
that the JavaBean property, which was synchronized with the text box of the first
page, is displayed on this page.

26 CHAPTER 1
Introducing JavaServer Faces

fact, figures 1.1 to 1.3 are screen shots of designing hello.jsp in different IDEs.
These IDEs ultimately generate something like listing 1.1 (and, of course, you
can create JSF pages by hand).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
 <html>
 <head>
 <title>
 JSF in Action - Hello, world!
 </title>
 </head>
 <body>
 <h:form id="welcomeForm">
 <h:outputText id="welcomeOutput"
 value="Welcome to JavaServer Faces!"
 style="font-family: Arial, sans-serif; font-size: 24;
 color: green;"/>
 <p>
 <h:message id="errors" for="helloInput" style="color: red"/>
 </p>
 <p>
 <h:outputLabel for="helloInput">
 <h:outputText id="helloInputLabel"
 value="Enter number of controls to display:"/>
 </h:outputLabel>
 <h:inputText id="helloInput" value="#{helloBean.numControls}"
 required="true">
 <f:validateLongRange minimum="1" maximum="500"/>
 </h:inputText>
 </p>
 <p>
 <h:panelGrid id="controlPanel"
 binding="#{helloBean.controlPanel}"
 columns="20" border="1" cellspacing="0"/>
 </p>
 <h:commandButton id="redisplayCommand" type="submit"
 value="Redisplay"
 actionListener="#{helloBean.addControls}"/>

 <h:commandButton id="goodbyeCommand" type="submit" value="Goodbye"
 action="#{helloBean.goodbye}" immediate="true"/>
 </h:form>

Listing 1.1 hello.jsp: opening page of our Hello, world! application (browser output
shown in figures 1.7–1.10)

JSF tag
libraries

 b

Tag enclosing
all JSF tags

 c

HtmlForm
component d

HtmlOutputText
component e

 HtmlMessage
component f

HtmlOutputLabel with
child HtmlOutputText g

HtmlInputText
component

 h

HtmlPanelGrid
component i

HtmlCommandButton
components

 j

Hello, world! 27

 </body>
 </html>
</f:view>

First, we import the core JavaServer Faces tag library. This library provides cus-
tom tags for such basic tasks as validation and event handling. Next, we import
the basic HTML tag library, which provides custom tags for UI components like
text boxes, output labels, and forms. (The prefixes “f ” and “h” are suggested, but
not required.)
The <f:view> custom tag must enclose all other Faces-related tags (from both the
core tag library and the basic HTML tag library).
The <h:form> tag represents an HtmlForm component, which is a container for
other components and is used for posting information back to the server. You
can have more than one HtmlForm on the same page, but all input controls must
be nested within a <h:form> tag.
The <h:outputText> tag creates an HtmlOutputText component, which simply dis-
plays read-only data to the screen. This tag has an id attribute as well as a value
attribute. The id attribute is optional for all components; it’s not required unless
you need to reference the component somewhere else. (Components can be ref-
erenced with client-side technologies like JavaScript or in Java code.) The value
attribute specifies the text you want to display.
The <h:message> tag is for the HtmlMessage component, which displays validation
and conversion errors for a specific component. The for attribute tells it to display
errors for the control with the identifier helloInput, which is the identifier for the
text box on the page (h). If no errors have occurred, nothing is displayed.
The <h:outputLabel> tag creates a new HtmlOutputLabel component, which is
used as a label for input controls. The for property associates the label with
an input control, which in this case is helloInput (h). HtmlOutputLabels don't
display anything, so we also need a child HtmlOutputText (created by the
nested <h:outputText> tag) to display the label's text.
The <h:inputText> tag is used to create an HtmlInputText component that accepts
text input. Note that the value property is "#{helloBean.numControls}", which is
a JSF Expression Language (EL) expression referencing the numControls property
of a backing bean, called helloBean. (The JSF EL is a based upon the EL intro-
duced with JSP 2.0.)

 Faces will automatically search the different scopes of the web application
(request, session, application) for the specified backing bean. In this case, it will
find a bean stored under the key helloBean in the application’s session. The
value of the component and helloBean’s numControls property are synchronized

 b

 c

 d

 e

 f

 g

 h

28 CHAPTER 1
Introducing JavaServer Faces

so that if one changes, the other one will change as well (unless the text in the
HtmlInputText component is invalid).

 Input controls have a required property, which determines whether or not
the field must have a value. In this case, required is set to true, so the compo-
nent will only accept non-empty input. If the user enters an empty value, the
page will be redisplayed, and the HtmlMessage (f) component will display an
error message, as shown in figure 1.9.

 JSF also supports validators, which are responsible for making sure that the user
enters an acceptable value. Each input control can be associated with one or more
validators. The <f:validateLongRange> tag registers a LongRange validator for
this HtmlInputText component. The validator checks to make sure that any input
is a number between 1 and 500, inclusive. If the user enters a value outside that
range, the validator will reject the input, and the page will be redisplayed with the
HtmlMessage (f) component displaying the error message shown in figure 1.10.

 Whenever the user’s input is rejected, the object referenced by the HtmlInput-
Text component’s value property will not be updated.
An HtmlPanelGrid component is represented by the <h:panelGrid> tag. HtmlPanel-
Grid represents a configurable container for other components that is displayed as
an HTML table.

 Any JSF component can be associated directly with a backing bean via its JSP
tag’s binding attribute. (Some tools will do this automatically for all of the com-
ponents on a page.) The tag’s binding attribute is set to "#{helloBean.control-
Panel}". This is a JSF EL expression that references helloBean’s controlPanel
property, which is of type HtmlPanelGrid. This ensures that helloBean always has
access to the HtmlPanelGrid component on the page.
The <h:commandButton> specifies an HtmlCommandButton component that’s displayed
as an HTML form button. HtmlCommandButtons send action events to the applica-
tion when they are clicked by a user. The event listener (a method that executes
in response to an event) can be directly referenced via the actionListener prop-
erty. The first HtmlCommandButton’s actionListener property is set to "#{hello-
Bean.addControls}", which is an expression that tells JSF to find the helloBean
object and then call its addControls method to handle the event. Once the method
has been executed, the page will be redisplayed.

 The second HtmlCommandButton has an action property set instead of an
actionListener property. The value of this property, "#{helloBean.goodbye}",
references a specialized event listener that handles navigation. This is why clicking
on this button loads the goodbye.jsp page instead of redisplaying the hello.jsp
page. This button also has the immediate property set to true, which tells JSF to

 i

 j

Hello, world! 29

execute the associated listener before any validations or updates occur. This way,
clicking this button still works if the value of the input control is incorrect.

That’s it for hello.jsp. Listing 1.2 shows the HTML output after a validation error
has occurred (the browser’s view is shown in figure 1.10).

 <html>
 <head>
 <title>
 JSF in Action - Hello, world!
 </title>
 </head>
 <body>
 <form id="welcomeForm" method="post"
 action="/jia-hello-world/faces/hello.jsp"
 enctype="application/x-www-form-urlencoded">

 <span id="welcomeForm:welcomeOutput"
 style="font-family: Arial, sans-serif; font-size: 24
 color: green;">Welcome to
JavaServer Faces!
 <p>

Validation Error: Specified attribute is not between the expected values
 of 1 and 500.
 </p>
 <p>
 <label for="welcomeForm:helloInput">

Enter number of controls to display:
 </label>
 <input id="welcomeForm:helloInput" type="text"
 name="welcomeForm:helloInput" value="99999"/>
 </p>
 <p>
 <table id="welcomeForm:controlPanel" border="1" cellspacing="0">
 <tbody>
 <tr>
 <td> 0 </td>
 ...
 <td> 19 </td>
 </tr>
 <tr>
 <td> 20 </td>
 ...
 <td> 39 </td>
 </tr>

Listing 1.2 The HTML output of hello.jsp (this code is the source for figure 1.10)

HtmlForm
component

 b

HtmlOutputText
component

HtmlMessage
component

 c

HtmlOutputLabel
with
HtmlOutputText

HtmlInputText
component

HtmlPanelGrid
component

 d

30 CHAPTER 1
Introducing JavaServer Faces

 <tr>
 <td> 40 </td>
 ...
 <td> 59 </td>
 </tr>
 <tr>
 <td> 60 </td>
 ...
 <td> 63 </td>
 </tr>
 </tbody>
 </table>
 </p>
 <input id="welcomeForm:redisplayCommand" type="submit"
 name="welcomeForm:redisplayCommand" value="Redisplay" />

 <input id="welcomeForm:goodbyeCommand" type="submit"
 name="welcomeForm:goodbyeCommand" value="Goodbye" />
 ...
 </form>
 </body>
 </html>

You can see from the listing that every component defined in the JSP has a repre-
sentation in the displayed HTML page. Note that the <h:form> tag (b), which rep-
resents an HtmlForm component, has an action attribute that actually points back
to the calling JSP but with the preface “faces”. This is an alias for the Faces servlet,
which is defined in the application’s deployment descriptor. Redisplaying the
calling page is the default behavior, but a Faces application can also navigate to
another page (which is what happens when the user clicks the Goodbye button).

 The output of the HtmlMessage component (c) is the text “Validation Error:
Specified attribute is not between the expected values of 1 and 500.” As you
might expect, this message was generated by the LongRange validator we regis-
tered in the JSP page. When the validator rejected the attempt to post an incor-
rect value, the validator created a new error message and the framework
refrained from updating the associated JavaBean property’s value.

 Each HTML element that maps to a JSF component has an id attribute that’s
derived from the id specified in the JSP (if no id is specified, one will be created
automatically). This is called the client identifier, and it’s what JSF uses to map an
input value to a component on the server. Some components also use the name
attribute for the client identifier.

 The output of the HtmlPanelGrid component (d) is an HTML table. Note that
the border and cellspacing properties specified in the JSP were passed through

HtmlPanelGrid
component

 d

HtmlCommandButton
components

Hello, world! 31

directly to the HTML. (Most of the standard HTML components expose HTML-
specific properties that are simply passed through to the browser.) Each cell in
the table is the output of an HtmlOutputText component that was added to the
HtmlPanelGrid in Java code, in response to a user clicking the Redisplay button.
(In the real HTML, there are 64 cells because that’s the number that was entered
into the text box; we left some of them out of the listing because, well, that’s a lot
of lot of extra paper!)

 We’ll examine the Java code soon enough, but let’s look at goodbye.jsp first.

1.5.2 Dissecting goodbye.jsp

The goodbye.jsp page, shown in figure 1.11, is displayed when the user clicks the
Goodbye button. The page (listing 1.3) contains some of the same elements as
the hello.jsp page: imports for the JSF tag libraries, an HtmlForm component, and
HtmlOutputText components. One of the HtmlOutputText components references
the same helloBean object as the previous page. This works fine because the object
lives in the application’s session and consequently survives between page requests.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
 <html>
 <head>
 <title>
 JSF in Action - Hello, world!
 </title>
 </head>
 <body>
 <h:form id="goodbyeForm">
 <p>
 <h:outputText id="welcomeOutput" value="Goodbye!"
 style="font-family: Arial, sans-serif; font-size: 24;
 font-style: bold; color: green;"/>
 </p>
 <p>
 <h:outputText id="helloBeanOutputLabel"
 value="Number of controls displayed:"/>
 <h:outputText id="helloBeanOutput"
 value="#{helloBean.numControls}"/>
 </p>

Listing 1.3 goodbye.jsp: Closing page of our Hello, world! application (the browser
output is shown in figure 1.11)

Same backing
bean as hello.jsp

32 CHAPTER 1
Introducing JavaServer Faces

 </h:form>
 </body>
 </html>
</f:view>

There’s nothing special about the HTML generated by this page that we didn’t
cover in the previous section, so we’ll spare you the details. What’s important is
that we were able to build a functional application with validation and page nav-
igation with only two simple JSPs. (If we didn’t want to show navigation, the first
page would have been good enough.)

 Now, let’s look at the code behind these pages.

1.5.3 Examining the HelloBean class

Both hello.jsp and goodbye.jsp contain JSF components that reference a backing
bean called helloBean through JSF EL expressions. This single JavaBean con-
tains everything needed for this application: two properties and two methods.
It’s shown in listing 1.4.

package org.jia.hello;

import javax.faces.application.Application;
import javax.faces.component.html.HtmlOutputText;
import javax.faces.component.html.HtmlPanelGrid;
import javax.faces.context.FacesContext;
import javax.faces.event.ActionEvent;

import java.util.List;

public class HelloBean
{
 private int numControls;
 private HtmlPanelGrid controlPanel;

 public int getNumControls()
 {
 return numControls;
 }

 public void setNumControls(int numControls)
 {
 this.numControls = numControls;
 }

Listing 1.4 HelloBean.java: The simple backing bean for our Hello, world! application

No required superclass b

Property
referenced on
both JSPs

 c

Hello, world! 33

 public HtmlPanelGrid getControlPanel()
 {
 return controlPanel;
 }

 public void setControlPanel(HtmlPanelGrid controlPanel)
 {
 this.controlPanel = controlPanel;
 }

 public void addControls(ActionEvent actionEvent)
 {
 Application application =
 FacesContext.getCurrentInstance().getApplication();
 List children = controlPanel.getChildren();
 children.clear();
 for (int count = 0; count < numControls; count++)
 {
 HtmlOutputText output = (HtmlOutputText)application.
 createComponent(HtmlOutputText.COMPONENT_TYPE);
 output.setValue(" " + count + " ");
 output.setStyle("color: blue");
 children.add(output);
 }
 }

 public String goodbye()
 {
 return "success";
 }
}

Unlike a lot of other frameworks, JSF backing beans don’t have to inherit from a
specific class. They simply need to expose their properties using ordinary Java-
Bean conventions and use specific signatures for their event-handling methods.
The numControls property is referenced by the HtmlInputText component on
hello.jsp and an HtmlOutputText component on goodbye.jsp. Whenever the user
changes the value in the HtmlInputText component, the value of this property is
changed as well (if the input is valid).
The controlPanel property is of type HtmlPanelGrid, which is the actual Java
class created by the <h:panelGrid> tag used in hello.jsp. That tag’s binding
attribute associates the component instance created by the tag with the control-
Panel property. This allows HelloBean to manipulate the actual code—a task it
happily performs in e.

Property
bound to
HtmlPanelGrid

 d

Executed by Redisplay
HtmlCommandButton e

Executed by Goodbye
HtmlCommandButton

 f

 b

 c

 d

34 CHAPTER 1
Introducing JavaServer Faces

addControls is a method designed to handle action events (an action listener
method); you can tell, because it accepts an ActionEvent as its only parameter. The
Redisplay HtmlCommandButton on hello.jsp references this method with its action-
Listener property. This tells JSF to execute the method when handling the action
event generated when the user clicks the Redisplay button. (Associating a compo-
nent with an event listener method may seem strange if you’re used to frameworks
like Swing that always require a separate event listener interface. JSF supports
interface-style listeners as well, but the preferred method is to use listener meth-
ods because they alleviate the need for adapter classes in backing beans.)

 When this method is executed, it adds a new HtmlOutputText component to the
controlPanel numControls times (clearing it first). So, if the value of numControls
is 64, as it is in our example, this code will create and add 64 HtmlOutputText
instances to controlPanel. Each instance’s value is set to equal its number in the
sequence, starting at zero and ending at 64. And finally, each instance’s style
property is set to "color: blue".

 Because controlPanel is an HtmlPanelGrid instance, it will display all of these
child controls inside an HTML table; each HtmlOutputText component wll be
displayed in a single cell of the table. Figure 1.8 shows what controlPanel looks
like after this method has executed.
Like addControls, the goodbye method is a type of event listener. However, it is
associated with JSF’s navigation system, so its job is to return a string, or a logical
outcome, that the navigation system can use to determine which page to load
next. These types of methods are called action methods.

 The goodbye method is associated with the Goodbye HtmlCommandButton on
hello.jsp via its action property. So when a user clicks the Goodbye button, the
goodbye method is executed. In this case, goodbye doesn’t do any work to deter-
mine the logical outcome; it just returns "success". This outcome is associated
with a specific page in a Faces configuration file, which we cover next.

 Because goodbye doesn’t perform any processing (as it would in a real applica-
tion), we could have achieved the same effect by hardcoding the text "success"
in the button’s action property. This is because the navigation system will either
use the literal value of an HtmlCommandButton’s action property or the outcome of
an action method (if the property references one).

1.5.4 Configuration with faces-config.xml

Like most frameworks, Faces has a configuration file; it’s called, believe it or not,
faces-config.xml. (Technically, JSF supports multiple configuration files, but we’ll
keep things simple for now.) This XML file allows you to define rules for

 e

 f

Hello, world! 35

navigation, initialize JavaBeans, register your own custom JSF components and
validators, and configure several other aspects of a JSF application. This simple
application requires configuration only for bean initialization and navigation;
the file is shown in listing 1.5.

<?xml version="1.0"?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_0.dtd">

<faces-config>

 <managed-bean>
 <description>The one and only HelloBean.</description>
 <managed-bean-name>helloBean</managed-bean-name>
 <managed-bean-class>org.jia.hello.HelloBean
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>

 <navigation-rule>
 <description>Navigation from the hello page.</description>
 <from-view-id>/hello.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/goodbye.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

</faces-config>

First and foremost, a JSF configuration file is an XML document whose root node
is <faces-config> (b). In this file, you can declare one or more JavaBeans for
use in your application. You can give each one a name (which can be referenced
via JSF EL expressions), a description, and a scope, and you can even initialize its
properties. Objects declared in a configuration file are called managed beans. In
the listing, we have declared the helloBean object used throughout the Hello,
world! application (c). Note that the name of the object is “helloBean”, which is
the same name used in JSF EL expressions on the two JSPs. The class is org.
jia.hello.HelloBean, which is the name of the backing bean class we examined
in the previous section. The managed bean name and the object’s class name
don’t have to be the same.

Listing 1.5 faces-config.xml: The Faces configuration file for Hello, world!

Encloses all configuration elements b

Declares
HelloBean in
the session

 c

Declares
navigation
case

 d

36 CHAPTER 1
Introducing JavaServer Faces

 Declaring navigation is as simple as declaring a managed bean. Each JSF
application can have one or more navigation rules. A navigation rule specifies the
possible routes from a given page. Each route is called a navigation case. The
listing shows the navigation rule for Hello, world!’s hello.jsp page (d). hello.jsp
has a Goodbye button that loads another page, so there is a single navigation
case: if the outcome is "success", the page goodbye.jsp will be displayed. This
outcome is returned from helloBean’s goodbye method, which is executed when
a user clicks the Goodbye button.

 It’s worthwhile to point out that some aspects of JSF configuration, particu-
larly navigation, can be handled visually with tools. Now, let’s see how our appli-
cation is configured at the web application level.

1.5.5 Configuration with web.xml

All J2EE web applications are configured with a web.xml deployment descriptor;
Faces applications are no different. However, JSF applications require that you
specify the FacesServlet, which is usually the main servlet for the application. In
addition, requests must be mapped to this servlet. The deployment descriptor
for our Hello, world! application is shown in listing 1.6. You can expect some
tools to generate the required JSF-related elements for you.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3/

/EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>Hello, World!</display-name>
 <description>Welcome to JavaServer Faces</description>

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
</web-app>

Listing 1.6 web.xml: The deployment descriptor for our Hello, world! application

JSF
servlet

Standard JSF
mapping

Summary 37

That’s it—Hello, world! dissected. You can see that JSF does a lot of things for
you—validation, event handling, navigation, UI component management, and
so on. As we walk through the various aspects of JSF in more detail, you’ll gain a
deep understanding of all of the services it provides so that you can concentrate
on building the application and avoid that joyous thing they call grunt work.

1.6 Summary

JavaServer Faces (JSF, or “Faces”) is a UI framework for building Java web appli-
cations; it was developed through the Java Community Process (JCP) and will
become part of Java 2 Enterprise Edition (J2EE). One of the main goals of Faces
is to bring the RAD style of application development, made popular by tools like
Microsoft Visual Basic and Borland Delphi, to the world of Java web applications.

 JSF provides a set of standard widgets (buttons, hyperlinks, checkboxes, and
so on), a model for creating custom widgets, a way to process client-generated
events on the server, and excellent tool support. You can even synchronize a UI
component with an object’s value, which eliminates a lot of tedious code.

 All JSF applications are built on top of the Servlet API, communicate via
HTTP, and use a display technology like JSP. JavaServer Faces applications don’t
require JSP, though. They can use technologies like XML/XSLT, other template
engines, or plain Java code. However, Faces implementations are required to
provide basic integration with JSP, so most of the examples in this book are in JSP.

 The component architecture of Faces leverages JavaBeans for properties, fun-
damental tool support, an event model, and several other goodies. JSF is consid-
ered a web application framework because it performs a lot of common
development tasks so that developers can focus on more fun things like business
logic. One of the key features is support of the Model 2 design pattern, which
enforces separation of presentation and business logic code. However, Faces
focuses on UI components and events. As such, it integrates quite nicely with the
other frameworks like Struts, and overlaps quite a bit with the functionality of
higher-level frameworks.

 The Hello, world! example demonstrates the basic aspects of a JavaServer
Faces application. It shows how easy it is to define a UI with components like text
boxes, labels, and buttons. It also shows how Faces automatically handles input
validation and updating a JavaBean based on the value of a text control.

 In the next chapter, we’ll look at the core JSF concepts and examine how the
framework masks the request/response nature of HTTP.

JavaServer Faces IN ACTION

M A N N I N G $44.95 US/$62.95 Canada

JavaServer Faces is the new big thing in Java web development.
It improves your power and reduces your workload through the use
of UI components and events, instead of HTTP requests and
responses. JSF components—buttons, text boxes, checkboxes, data
grids, etc.—live between user requests, which eliminates the hassle
of maintaining state. JSF also synchronizes user input with
application objects, automating another tedious aspect of web
development.

JavaServer Faces in Action is an introduction, a tutorial, and a handy
reference. With the help of many examples, the book explains what
JSF is, how it works, and how it relates to other frameworks and
technologies like Struts, Servlets, Portlets, JSP, and JSTL. It provides
detailed coverage of standard components, renderers, converters, and
validators, and how to use them to create solid applications. This
book will help you start building JSF solutions today.

What’s Inside
■ A gentle introduction
■ JSF under the hood
■ Using JSF widgets
■ How to:

● integrate with Struts and existing apps
● benefit from JSF tools from Oracle, IBM, and Sun
● build custom components (lots of examples)
● build renderers, converters, validators
● put it all together in a JSF application

A developer for 16 years, Kito D. Mann is an enterprise architect who
has consulted for several Fortune 500 companies. He runs the
JSFCentral.com community site. Kito lives in Stamford,
Connecticut with his wife, two parrots, and four cats.

JAVA

JavaServer Faces IN ACTION
Kito Mann

“I can’t wait to make it available
to the people I teach.”
—Sang Shin, Java Technology Evangelist

Sun Microsystems Inc.

“This book unlocks the full
power of JSF ... It’s a necessity.”
—Jonas Jacobi

Senior Product Manager, Oracle

“Gets right into using JSF and
explains the advanced topics in
detail. Well-written and a quick
read.”
—Matthew Schmidt

Director, Advanced Technology
Javalobby

“A book written by a programmer
who knows what programmers
need.”
—Alex Kolundzija

Front-End Developer
Columbia House

“... an excellent job showing
that JSF can be used with other
technologies. A great reference
and tutorial!”
—Mike Nash, JSF Expert Group Member

Author, Explorer's Guide to Java Open
Source Tools

,!7IB9D2-djebcc!:P;o;m;t;P
ISBN 1-932394-12-5

www.manning.com/mann

Ask the Author Ebook edition

AUTHOR
✔

ONLINE

✔

