FOREWORD BY

SAMPLE CHAPTER

/ll MANNING

OSG1 in Action
by Richard S. Hall,
Karl Pauls,

Stuart McCulloch,
and David Savage

Chapter 6

Copyright 2011 Manning Publications

brief contents

ParT 1 INTRODUCING OSGI: MODULARITY, LIFECYCLE, AND SERVICES 1

1 = OSGirevealed 3
2 = Mastering modularity 24
3 = Learning lifecycle 69
4 = Studying services 117
5 = Delving deeper into modularity 154
PART 2 OSGI IN PRACTICE euveerereereceeceesecesssssscsssssssssssssssssssassnns 189
6 = Moving toward bundles 191
7 = Testing applications 230
8 = Debugging applications 258
9 = Managing bundles 292
10 = Managing applications 319
PART 3 ADVANCED TOPICS «eeececeeeececerercececescscecscssescacssessscssssoscans 343
11 = Component models and frameworks 345

12 = Advanced component frameworks 373

BRIEF CONTENTS

13 = Launching and embedding an OSGi framework 412
14 = Securing your applications 438
15 = Web applications and web services 477

Part 2

OSGt in practice

In the first part of the book, we focused on the details and theory behind the
OSGi specifications, which can be a little daunting when you’re first getting
started. In this second part, you’ll put your newfound OSGi knowledge into prac-
tice. We’ll look at approaches for converting JAR files into bundles. After that,
we’ll explore how to test and debug bundles using tried-and-true techniques.
We’ll finish by explaining how to manage different aspects of bundles and OSGi-
based applications, such as versioning, configuring, and deploying them. Upon
completing this part of the book, you should have all the knowledge you need to
successfully use OSGi technology in your own projects.

Moving toward bundles

This chapter covers

Choosing a bundle identity for a JAR file
Determining which packages a bundle should
export and/or import

Migrating an application to OSGi

Dividing an application into a set of bundles

The first part of this book introduced the three layers of OSGi: module, lifecycle,
and service. We’ll now take a more practical look at how you can migrate existing
code to OSGi by using one or more of these layers, beginning with examples of
turning real-world JAR files into bundles. After that, we’ll examine different ways of
migrating a complete application to OSGi and finish up with a short discussion of
situations where you might decide not to bundle.

By the end of this chapter, you’ll know how to take your current application
and all of its third-party libraries and turn them into bundles, step by step. You’ll
be able to move existing projects to OSGi, plan new projects with OSGi in mind,
and understand when it may not be the right solution for you. In other words, you
should be able to explain in detail to your manager and co-workers how OSGi will
affect your project. But before we reach that stage, we first need to consider a
simple question that often comes up on the OSGi mailing lists: how can you turn
your JAR file into a bundle?

191

192

6.1

6.1.1

CHAPTER 6 Moving toward bundles

Turning JARs into bundles

As you saw in chapter 2, a bundleis a JAR file with additional metadata. So to turn a JAR
file into a bundle, you need to add metadata giving it a unique identity and describing
what it imports and exports. Simple, right? For most business-domain JAR files, it is;
but for others (such as third-party GUI or database libraries), you’ll need to think care-
fully about their design. Where is the line between what’s public and what’s private,
which imports are required and which are optional, and which versions are compati-
ble with one another?

In this section, we’ll help you come up with this metadata by taking a series of com-
mon library JAR files and turning them into working bundles. We’ll also consider
some advanced bundling techniques, such as embedding dependencies inside the
bundle, as well as how to manage external resources and background threads.

Before you can even load a bun-
dle into an OSGi framework, it must
have an identity. This identity foo1.0
should be unique, at least among
the set of bundles loaded into the 020 foobar 2.0
framework. But how should you
choose such an identity? If you pick egieD 0
names at random, you may clash

org.bar 1.0

foo.bar 1.0

foo.bar 1.0

with other projects or other devel-
opers, as shown in figure 6.1. Figure 6.1 A bundle must have a unique identity.

Choosing an identity

Each bundle installed into an OSGi framework must have a unique identity, made up
of the Bundle-SymbolicName and Bundle-Version. We’ll look into approaches for
defining both of these now.

CHOOSING A SYMBOLIC NAME
One of the first steps in turning a JAR file into a bundle is to decide what symbolic
name to give it. The OSGi specification doesn’t mandate a naming policy but recom-
mends a reverse-domain naming convention. This is the same as Java package nam-
ing: if the bundle is the primary source of a particular package, it makes sense to use it
as the Bundle-SymbolicName.

Let’s look at a real-world example, the kXML parser (http://kxml.source-

forge.net/). This small JAR file provides two distinct top-level packages: the XmlPull
API org.xmlpull.vl and the kXML implementation org.kxml2. If this JAR was the only
one expected to provide the org.xmlpull.vl API, or if it only contained this package, it
would be reasonable to use this as the symbolic name. But this JAR file also provides a
particular implementation of the XmlPull API, so it makes more sense to use the name
of the implementation as the symbolic name because it captures the essence of what
the bundle provides:

Bundle-SymbolicName: org.kxml2

http://kxml.sourceforge.net/
http://kxml.sourceforge.net/

Turning JARs into bundles 193

Alternatively, you can use the domain of the project that distributes the JAR file. Here,
the domain is http://kxml.sourceforge.net/kxml2/:

Bundle-SymbolicName: net.sourceforge.kxml.kxml2

Or if Maven (http://maven.apache.org/) project metadata is available, you can use
the Maven groupId + artifactId to identify the JAR file:

Bundle-SymbolicName: net.sf.kxml.kxml2

Sometimes, you may decide on a name that doesn’t correspond to a particular pack-
age or distribution. For example, consider two implementations of the same service
API provided by two different bundles. OSGi lets you hide non-exported packages, so
these bundles can have an identical package layout but at the same time provide dif-
ferent implementations. You can still base the symbolic name on the main top-level
package or the distribution domain, but you must add a suffix to ensure that each
implementation has a unique identity. This is the approach that the Simple Logging
Facade for Java (SLF4J; www.slf4j.org/) project used when naming its various logging
implementation bundles:

Bundle-SymbolicName: slf4j.juli All of these
Bundle-SymbolicName: slf4j.log4j bundles export

Bundle-SymbolicName: slf4j.jcl org.slf4j.impl

If you’re wrapping a third-party library, you may want to prefix your own domain in
front of the symbolic name. This makes it clear that you’re responsible for the bundle
metadata rather than the original third party. For example, the symbolic name for the
SLF4] API bundle in the SpringSource Enterprise Bundle Repository (www.spring-
source.com/repository/app/) clearly shows that it was modified by SpringSource and
isn’t an official SLF4] JAR:

Bundle-SymbolicName: com.springsource.slf4j.api

Don’t worry too much about naming bundles—in the end, you need to give each bun-
dle a unique enough name for your target deployment. You're free to rename your
bundle later if you wish, because by default the framework wires import packages to
export packages regardless of bundle symbolic names. It’s only when someone uses
Require-Bundle (see section 5.3) that consistent names become important. That’s
another reason why package dependencies are preferred over module dependencies:
they don’t tie you to a particular symbolic name forever.

CHOOSING A VERSION

After you’ve decided on a symbolic name, the next step is to version your bundle.
Determining the Bundle-Version is more straightforward than choosing the symbolic
name, because pretty much every JAR file distribution is already identified by some
sort of build version or release tag. On the other hand, version-numbering schemes
that don’t match the recognized OSGi format of major minormicro. qualifier must be con-
verted before you can use them. Table 6.1 shows some actual project versions and
attempts to map them to OSGi.

http://kxml.sourceforge.net/kxml2/
http://maven.apache.org/
www.slf4j.org/
www.springsource.com/repository/app/
www.springsource.com/repository/app/

194

CHAPTER 6 Moving toward bundles

Project version Suggested 0SGi equivalent

2.1-alpha-1 2.1.0.alpha-1

1.4-m3 1.4.0.m3

1.0_0O1-ea 1.0.1.ea

1.0-2 1.0.2

1.0.b2 1.0.0.b2

1.0al1 1.0.0.a1

2.1.7c 21.7.c

1.12-SNAPSHOT 1.12.0.SNAPSHOT
0.9.0-incubator-SNAPSHOT 0.9.0.incubator-SNAPSHOT
3.3.0v20070604 3.3.0.v20070604
4aug2000r7-dev 0.0.0.4aug2000r7-dev 'T)f;':c‘: ':ers':"')?";"ti:% ’:g:"“"d

Not every version is easily converted to the OSGi format. Look at the last example in
the table; it starts with a number, but this is part of the date rather than the major ver-
sion. This is the problem with free-form version strings—there’s no standard way of
comparing them or breaking them into component parts. OSGi versions, on the other
hand, have standardized structure and well-defined ordering. (Later, you’ll use a tool
called bnd that makes a good attempt at automated mapping based on common-sense
rules, but even bnd has its limits.)

After you’ve uniquely identified your bundle by name and version, you can
add more information: a human-friendly Bundle-Name, a more detailed Bundle-
Description, license details, vendor details, a link to online documentation, and so
on. Most if not all of these details can be taken from existing project information,
such as the following example from the second release of Google Guice (http://
code.google.com/p/google-guice/):

Bundle-SymbolicName: com.google.inject

Bundle-Version: 2.0

Bundle-Name: guice

Bundle-Copyright: Copyright (C) 2006 Google Inc.

Bundle-Vendor: Google Inc.

Bundle-License: http://www.apache.org/licenses/LICENSE-2.0

Bundle-DocURL: http://code.google.com/p/google-guice/

Bundle-Description: Guice is a lightweight dependency injection
framework for Java 5 and above

Remember that new OSGi bundles should also have this header:
Bundle-ManifestVersion: 2

This tells the OSGi framework to process your bundle according to the latest specifica-
tion. Although this isn’t mandatory, it’s strongly recommended because it enables

http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/

6.1.2

Turning JARs into bundles 195

additional checks and support for advanced modularity features offered by OSGi R4
specifications and beyond.

After you’ve captured enough bundle details to satisfactorily describe your JAR file,
the next thing to decide is which packages it should export to other bundles in the
framework.

Exporting packages

Most bundles export at least one package, but a bundle doesn’t have to export any.
Bundles providing service implementations via the service registry don’t have to
export any packages if they import their service API from another bundle. This is
because their implementation is shared indirectly via the service registry and accessed
using the shared API, as illustrated in figure 6.2. But what about the package contain-
ing the Bundle-Activator class? Doesn’t that need to be exported? No, you don’t
need to export the package containing the bundle activator unless you want to share it
with other bundles. Best practice is to keep it private. As long as the activator class has
a public modifier, the framework can load it, even if it belongs to an internal, non-
exported package. The question remains: when is it necessary for you to export pack-
ages, and which packages in your JAR file do you need to export?

Activator getServiceReference m registerService Activator

registry

getService

] D EEEEEEEES > = API LR TEEEEEEEEE -

Figure 6.2 Sharing implementations without exporting their packages

SELECTING EXPORTED PACKAGES
The classic, non-OSGi approach is to export everything and make the entire con-
tents of the JAR file visible. For API-only JAR files, this is fine; but for implementation
JAR files, you don’t want to expose internal details. Clients might then use and rely
on these internal classes by mistake. As you’ll see in a moment, exporting everything
also increases the chance of conflicts among bundles containing the same package,
particularly when they provide a different set of classes in those packages. When
you’re new to OSGi, exporting everything can look like a reasonable choice to begin
with, especially if you don’t know precisely where the public API begins or ends. On
the contrary: you should try to trim down the list of exported packages as soon as
you have a working bundle.

Let’s use a real-world example to demonstrate how to select your exports. Here are
some of the packages containing classes and resources inside the core BeanUtils 1.8.0
library from Apache Commons (http://commons.apache.org/beanutils/):

http://commons.apache.org/beanutils/

196

CHAPTER 6 Moving toward bundles

org.apache.commons.beanutils
org.apache.commons.beanutils.converters
org.apache.commons.beanutils.locale
org.apache.commons.beanutils.locale.converters
org.apache.commons.collections

None of these packages seem private; there isn’tan impl or internal package in the list,
but the org.apache.commons . collections package isin factan implementation detail.
If you look closely at the BeanUtils Javadoc (http://commons.apache.org/beanutils/

v1.8.2/apidocs/index.html), you’ll see that this package contains a subset of the origi-

nal Apache Commons Collections API (http://commons.apache.org/collections/).
BeanUltils uses only a few of the Collections classes; and rather than have an execution-
time dependency on the entire JAR file, the project embeds a copy of whatitneeds. What
happens when your application requires both the BeanUtils and Collections JAR files?

This typically isn’t a problem in a non-OSGi environment because the application
class loader exhaustively searches the entire class path to find a class. If both BeanUtils
and Collections were on the same class path, they would be merged together, with
classes in BeanUltils overriding those from Collections or vice versa depending on
their ordering on the class path. Figure 6.3 (based on the class path diagram from
chapter 2) shows an example.

One important caveat is that this only works if the BeanUtils and Collections ver-

sions are compatible. If you have incompatible versions on your class path, you’ll get
runtime exceptions because the merged set of classes is inconsistent.

OSGi tries to avoid this incompatibility by isolating bundles and only exposing
packages by matching imports with exports. Unfortunately for the current example,
this means that if you export org.apache.commons.collections from the BeanUtils
bundle, and the framework wires another bundle that imports org.apache . commons .
collections to it, it only sees the handful of Collections classes from BeanUltils. It
doesn’t see the complete set of classes sitting in the Commons Collections bundle. To
make sure this doesn’t happen, you must exclude the partial org.apache.commons.
collections package from the BeanUtils exports:

Export-Package: org.apache.commons.beanutils,
org.apache.commons.beanutils.converters,
org.apache.commons.beanutils.locale,
org.apache.commons.beanutils.locale.converters

You can do this because the Collections package doesn’t belong to the main Bean-

Utils API. Now, if it was purely an implementation detail that was never exposed to

A

Apache BeanUtils Apache Collections

Figure 6.3 The classic application
class loader merges JAR files into a

single class space.

Class path

http://commons.apache.org/beanutils/v1.8.2/apidocs/index.html
http://commons.apache.org/beanutils/v1.8.2/apidocs/index.html
http://commons.apache.org/collections/

Turning JARs into bundles 197

clients, your job would be complete. But there’s a hitch: a class from the Collections
package is indirectly exposed to BeanUltils clients via a return type on some depre-
cated methods. What can you do? You need to find a way to guarantee that the Bean-
Utils bundle uses the same Commons Collections provider as its clients. The simplest
solution would be to make this dependency explicit by importing org.apache.
commons.collections into the BeanUtils bundle, but then your bundle wouldn’t
resolve unless the Commons Collections bundle was also installed. Perhaps you could
you use an optional import instead:

Import-Package: org.apache.commons.collections;resolution:=optional

Now, if the full package is available, you’ll import it; but if it’s not available, you can still
use your internal private copy. Will this work? It’s better, butitstill isn’t entirely accurate.

Unfortunately, the only correct way to resolve this situation is to refactor the
BeanUtils bundle to not contain the partial private copy of org.apache.commons.
collections. See the sidebar “Revisiting uses constraints” if you want more details
as to why an optional import won’t work.

Revisiting uses constraints

We hypothesized about modifying the example BeanUtils bundle to optionally import
org.apache.commons.collections. The idea was that your bundle would import it
if an exporter was available, but would use its private copy if not. This doesn’t work,
but why not? It’s all about uses constraints, as discussed in section 2.7.2.

As we mentioned, BeanUtils exposes a type from the Collections package in a return
type of a method in its exported types; this is a uses constraint by definition. To deal
with this situation, you must express it somehow. Let’s assume you follow the op-
tional import case and try to model the uses constraint correctly, like this:

Export-Package:

org.apache.commons.beanutils;
uses:="org.apache.commons.collections",
org.apache.commons.beanutils.converters,
org.apache.commons.beanutils.locale;
uses:="org.apache.commons.collections",
org.apache.commons.beanutils.locale.converters

Import-Package: org.apache.commons.collections;resolution:=optional

This may work in some situations; for example, it would work if you deployed your
BeanUtils bundle, another bundle importing BeanUtils and Collections, and a bundle
exporting the Collections package. In this case, all the bundles would be wired up to
each other, and everyone would be using the correct version of the Collections pack-
ages. Great!

But what would happen if the BeanUtils bundle was installed and resolved by itself
first? In that case, it wouldn’t import the Collections package (because there isn’t
one) and would use its private partial copy instead. Now, if the other bundles were
installed and resolved, you’d end up with the wiring depicted here:

198

CHAPTER 6 Moving toward bundles

(continued)
import import
org.apache.commons.collections org.apache.commons.beanutils
import
org.apache.collections
Collections Importing BeanUtils eeolution:=optional
bundle
= — - - mmmmea [—

EXPO rt

export .
p org.apache.commons.beanutils

org.apache.commons.collections

A uses constraint on an optionally imported package is ignored if the optionally imported
package isn’t wired to an exporter.

This means the BeanUtils bundle is using its own private copy of the Collections
types, whereas the importing bundle is using its imported collections types, so it will
receive a ClassCastException if it uses any methods from BeanUtils that expose
Collections types. In the end, there’s no way to have a private copy of a package if
its types are exposed via exported packages. As we’ve concluded already, you must
refactor your bundle to export preferably the whole package or to import the package.

A surprising number of third-party libraries include partial packages. Some want to
reuse code from another large library but don’t want to bloat their own JAR file. Some
prefer to ship a single self-contained JAR file that clients can add to their class path
without worrying about conflicting dependencies. Some libraries even use tools such
as Jar Jar Links (http://code.google.com/p/jarjar/) to repackage internal dependen-
cies under different namespaces to avoid potential conflicts. This leads to multiple
copies of the same class all over the place, because Java doesn’t provide modularity
out of the box! Renamed packages also make debugging harder and confuse develop-
ers. OSGi removes the need for renaming and helps you safely share packages while
still allowing you to hide and embed implementation details.

At this point, you may decide it’s a good time to refactor the API to make it more mod-
ular. Separating interfaces from theirimplementations can avoid the need for partial (or

so-called split) packages. This helps you reduce the set of packages you need to export
and make your bundle more manageable. Although this may not be an option for third-
party libraries, it’s often worth taking time to contact the original developers to explain
the situation. This happened a few years ago with the SLF4] project, which refactored its
API to great effect (www.slf4j.org/pipermail/dev/2007-February/000750.html). You
should also be careful to avoid accidentally leaking implementation types via method sig-

natures. As you saw with the BeanUltils example, the more internal details are exposed
through your API, the harder it is to modularize your code.

VERSIONING EXPORTED PACKAGES
After you have your list of exported packages, you should consider versioning them.
Which version should you use? The common choice is to use the bundle version,

http://code.google.com/p/jarjar/
www.slf4j.org/pipermail/dev/2007-February/000750.html

6.1.3

Turning JARs into bundles 199

which implies that the packages change at the same rate as the bundle, but some pack-

ages inevitably change faster than others. You may also want to increment the bundle

version because of an implementation fix while the exported API remains at the same
level. Although everything starts out aligned, you’ll probably find that you need a sep-
arate version for each package (or at least each group of tightly coupled packages).

We’ll take an in-depth look at managing versions in chapter 9, but a classic exam-
ple is the OSGi framework itself, which provides service APIs that have changed at dif-
ferent rates over time:

Export-Package: org.osgi.framework;version="1.4",
org.osgi.service.packageadmin;version="1.2",
org.osgi.service.startlevel;version="1.1",
org.osgi.service.url;version="1.0",
org.osgi.util.tracker;version="1.3.3"

Knowing which packages to export is only half of the puzzle of turning a JAR into a bun-

dle—you also need to find out what should be imported. This is often the hardest piece

of metadata to define and causes the most problems when people migrate to OSGi.

Discovering what to import

Do you know what packages a given JAR file needs at execution time? Many developers
have tacit or hidden knowledge of what JAR files to put on the class path. Such knowl-
edge is often gained from years of experience getting applications to run, where you
reflexively add JAR files to the class path until any ClassNotFoundExceptions disap-
pear. This leads to situations where an abundance of JAR files is loaded at execution
time, not because they’re all required, but because a developer feels they may be nec-
essary based on past experience.

The following lines show an example class path for a Java EE client. Can you tell
how these JAR files relate to one another, what packages they provide and use, and
their individual versions?
concurrent.jar:getopt.jar:gnu-regexp.jar:jacorb.jar:\
jbossall-client.jar:jboss-client.jar:jboss-common-client.jar:\
jbosscx-client.jar:jbossha-client.jar:jboss-iiop-client.jar:\
jboss-j2ee.jar:jboss-jaas.jar:jbossjmx-ant.jar:jboss-jsr77-client.jar:\
jbossmg-client.jar:jboss-net-client.jar:jbosssx-client.jar:\
jboss-system-client.jar:jboss-transaction-client.jar:jcert.jar:\
jmx-connector-client-factory.jar:jmx-ejb-connector-client.jar:\
jmx-invoker-adaptor-client.jar:jmx-rmi-connector-client.jar:jnet.jar:\
jnp-client.jar:jsse.jar:1log4j.jar:xdoclet-module-jboss-net.jar
With OSGi, you explicitly define which packages your bundle needs, and this knowledge
is then available to any developer who wants it. They no longer have to guess how to com-
pose their class path—the information is readily available in the metadata! It can also
be used by tools such as the OSGi Bundle Repository (OBR; http:/ /felix.apache.org/
site/apache-felix-osgi-bundle-repository.html) to automatically select and validate col-

lections of bundles for deployment.
This means any developer turning a JAR file into a bundle has a great responsibil-
ity in defining the correct set of imported packages. If this list is incomplete or too

http://felix.apache.org/site/apache-felix-osgi-bundle-repository.html
http://felix.apache.org/site/apache-felix-osgi-bundle-repository.html

200

CHAPTER 6 Moving toward bundles

excessive, it affects all users of the bundle. Unfortunately, standard Java tools don’t
provide an easy way to determine which packages a JAR file may use at execution
time. Manually skimming the source for package names is time consuming and unre-
liable. Byte-code analysis is more reliable and repeatable, which is especially impor-
tant for distributed teams, but it can miss classes that are dynamically loaded by
name. For instance, this could load a class from any package:

String name = someDynamicNameConstruction (someSortOfContext) ;

Class<?> clazz = someClassLoader.loadClass (name) ;

The ideal solution is to use a byte-code analysis tool like bnd (http://aqute.biz/
Code/Bnd) followed by a manual review of the generated metadata by project devel-
opers. You can then decide whether to keep generating the list of imported packages

for every build or generate the list once and save it to a version-controlled file some-
where so it can be pulled into later builds. Most tools for generating OSGi manifests
also let you supplement or override the generated list, in case the manual review finds
missing or incorrect packages.

After you're happy with the metadata, you should run integration tests on an OSGi
framework to verify that the bundle has the necessary imported packages. You don’t
want to get a ClassNotFoundException in production when an obscure but impor-
tant piece of code runs for the first time and attempts to access a package that hasn’t
been imported!

USING TOOLS TO GENERATE IMPORTS

Let’s continue with the BeanUtils example and use bnd to discover what imports you
need. The bnd tool was developed by the OSGi director of technology, Peter Kriens,
and provides a number of Ant tasks and command-line commands specifically
designed for OSGi. Bnd uses a pull approach to divide a single class path into separate
bundles based on a set of instructions. This means you have to tell bnd what packages
you want to pull in and export, as well as those you want to pull in and keep private.

Bnd instructions use the same format as OSGi directives, which means you can mix
normal manifest entries along with bnd instructions. In addition to accepting OSGi
manifest headers as instructions, bnd adds some of its own, such as Include-Resource
and Private-Package, to give you more control over exactly what goes into the bun-
dle. These instructions aren’t used by the OSGi framework at execution time.

The following instructions select the exported and non-exported (or so-called pri-
vate) packages that should be contained in your final BeanUtils bundle. You start by
exporting all of the BeanUtils API, as discussed in section 6.1.2. Remember that you
also want to remove the partial Collections package from the internals and import it
instead. Finally, you let bnd decide what this bundle needs to import. Let’s put these
instructions in a file named beanutils.bnd, which you can find under chapter06/
BeanUltils-example/ in this book’s examples:

Export-Package: org.apache.commons.beanutils.*

Private-Package: !org.apache.commons.collections.*, *
Import-Package: *

http://aqute.biz/Code/Bnd
http://aqute.biz/Code/Bnd

Turning JARs into bundles 201

Notice that unlike the standard OSGi headers, bnd package instructions can contain
wildcards and negative patterns. Bnd expands these patterns at build time according
to what it finds in the project byte code on the class path, saving you the hassle of typ-
ing everything in minute detail.

After you’ve chosen your exported and internal packages, you invoke the bnd
build task by passing it the original BeanUtils JAR file along with your custom bnd
instructions:

$ cd chapter06/BeanUtils-example
$ java -jar ../../lib/bnd-0.0.384.jar \

build -classpath commons-beanutils-1.8.0.jar beanutils.bnd
Bnd processes the given class path using your instructions and generates a new JAR
alongside the instructions file, called beanutils.jar. You can extract the OSGi-enhanced
manifest from the newly created BeanUtils bundle like so:

$ java -jar ../../lib/bnd-0.0.384.jar \
print -manifest beanutils.jar

As you can see, it contains the following generated list of imported packages:

Import-Package:
org.apache.commons.beanutils;version="1.8",
org.apache.commons.beanutils.converters;version="1.8",
org.apache.commons.beanutils.expression;version="1.8",
org.apache.commons.beanutils.locale;version="1.8",
org.apache.commons.beanutils.locale.converters;version="1.8",
org.apache.commons.collections,
org.apache.commons.collections.comparators,
org.apache.commons.collections.keyvalue,
org.apache.commons.collections.list,
org.apache.commons.collections.set,
org.apache.commons.logging

There are a couple of interesting points about this list. First, bnd has added imports for
all the BeanUltils packages that you want to export. As we discussed in section 5.1.1, this
is usually good practice when exporting an API that has multiple implementations,
because it means that if (for whatever reason) an existing bundle already exports these
packages, you’ll share the same class space for the API. Without these imports, your bun-
dle would sit on its own little island, isolated from any bundles already wired to the pre-
vious package exporter. But if you don’t expect alternative implementations of
Commons Collections, you can always turn off this feature with a special bnd directive:

Export-Package: org.apache.commons.beanutils.*;-noimport:=true

Bnd has also found byte code references to the Apache Collections and Logging pack-
ages, which aren’t contained in the BeanUtils bundle and must therefore be
imported. Just think: you can now tell what packages a JAR file needs at execution
time by checking the imported package list in the manifest. This is extremely useful
for automated deployment of applications. Such a system knows that when deploying

202

CHAPTER 6 Moving toward bundles

BeanUtils, it should also deploy Commons Collections and Commons Logging (or
another bundle that provides the same logging package, like SLF4]). But which partic-
ular version of Logging should it deploy?

IMPORTING THE CORRECT VERSION

Just as with exported packages, you should consider versioning your imports. Chap-
ter 2 explained how versioning helps ensure binary compatibility with other bun-
dles. You should try to use ranges rather than leave versions open-ended, because
doing so protects you against potentially breaking API changes in the future. For
example, consider the following:

Import-Package: org.slf4j;version="1.5.3"

This matches any version of the SLF4] API from 1.5.3 onward, even unforeseen future
releases that could be incompatible with your code.

One recommended practice is to use a range starting from the minimum accept-
able version up to, but not including, the next major version. (This assumes a change
in major version is used to indicated that the API isn’t binary compatible.) For exam-
ple, if you tested against the 1.5.3 SLF4] API, you might use the following range:

Import-Package: org.slf4j;version="[1.5.3,2)"

This ensures that only versions from the tested level to just before the next major
release are used.

Not all projects follow this particular versioning scheme—you may need to tweak
the range to narrow or widen the set of compatible versions. The width of the import
range also depends on how you’re using the package. Consider a simple change like
adding a method to an interface, which typically occurs during a point release (such
as 1.1 to 1.2). If you’re just calling the interface, this change doesn’t affect you. If, on
the other hand, you’re implementing the interface, this will definitely break, because
you now need to implement a new method.

Adding the correct version ranges to imported packages takes time and patience,
but this is often a one-time investment that pays off many times over during the life of
a project. Tools such as bnd can help by detecting existing version metadata from
dependencies on the class path and by automatically applying version ranges accord-
ing to a given policy.

Unfortunately, tools aren’t perfect. While you’re reviewing the generated list of
imported packages, you may notice a few that aren’t used at execution time. Some
code may only be executed in certain scenarios, such as an Ant build task that’s
shipped with a library JAR file for convenience. Other JAR files may dynamically test
for available packages and adapt their behavior at execution time to match what’s
installed. In such cases, it’s useful to mark these imports as optional to tell the OSGi
framework that the bundle can still work even when these packages aren’t available.
Table 6.2 shows some real-world packages that are often consid-ered optional.

As you saw back in section 5.2, OSGi provides two ways to mark a package as
optional. You can either mark packages with the resolution:=optional directive or

6.14

Turning JARs into bundles 203

Table 6.2 Common optional imported packages found in third-party libraries

Package Used for

javax.swing. * GUI classes (could be interactive tests)

org.apache.tools.ant.* ANT taskdefs (build time)

antlr.* Parsing (maybe build/test related)
sun.misc. * Sun implementation classes (like BASE64)
com.sun.tools.* Sun tool support (javac, debugging, and so on)

list them as dynamically imported packages. For packages you never expect to be used
at execution time, like the Ant packages, we suggest that you either use the optional
attribute or remove them from the list of imported packages. Use resolution:=
optional when you know the bundle will always be used the same way after it’s
installed. If you want a more adaptive bundle that reacts to the latest set of available
packages, you should list them as dynamic imports.

If you’re new to OSGi and unsure exactly what packages your JAR file uses, consider
using
DynamicImport-Package: *

This makes things similar to the classic model, where requests to load a new class
always result in a query to the complete class path. It also allows your bundle to suc-
cessfully resolve regardless of what packages are available. The downside is that you’re
pushing the responsibility of finding the right set of bundles onto users, because you
don’t provide any metadata defining what you need! This approach should only be
considered as a stopgap measure to get you started.

You’ve now chosen the exports and imports for your new bundle. Every non-
optional, nondynamic package you import (but don’t export) must be provided by
another bundle. Does this mean that for every JAR file you convert into a bundle, you
also need to convert each of its dependencies into bundles? Not necessarily, because
unlike standard JAR files, OSGi supports embedding JAR files inside bundles.

Embedding vs. importing

Sometimes a JAR file has a close dependency on another JAR file. Maybe they only
work together, or the dependency is an implementation detail you want to keep pri-
vate, or you don’t want to share the static member fields in the JAR file with other bun-
dles. In these situations, it makes more sense to embed the dependencies inside the
primary JAR file when you turn it into a bundle. Embedding the JAR file is easier than
converting both JAR files to bundles because you can ignore packages that would oth-
erwise need to be exported and imported between them. The downside of embedding
is that it adds unnecessary weight for non-OSGi users, who can’t use the embedded JAR
file unless the bundle is first unpacked. Figure 6.4a shows how a CGLIB bundle might
embed ASM, a small utility for processing byte code.

204

6.1.5

CHAPTER 6 Moving toward bundles

a) Bundle-ClassFath: .asm.jar b) Bundle-ClassPath: cglibjarasm.jar

CcGeLIB CcoLIB
Figure 6.4

ASM ASM Embedding tightly
coupled dependen-
cies in a bundle

Alternatively, you can consider creating a new bundle artifact that embeds all the
related JAR files together instead of turning the primary JAR file into a bundle. This
aggregate bundle can then be provided separately to OSGi users without affecting
users of the original JAR files. Figure 6.4b shows how you can use this approach for the
CGLIB library. Although this means you have an extra deliverable to support, it also
gives you an opportunity to override or add classes for better interoperability with
OSGi. You'll see an example in a moment and also later on in section 6.2.1. This often
happens when libraries use external connections or background threads, which ide-
ally should be managed by the OSGi lifecycle layer. Such libraries are said to have state.

Adding lifecycle support

You may not realize it when you use a third-party library, but a number of them have a
form of state. This state can take the form of a background thread, a file system cache,
or a pool of database connections. Libraries usually provide methods to manage this
state, such as cleaning up resources and shutting down threads. Often, you don’t
bother calling these methods because the life of the library is the same as the life of
your application. In OSGi, this isn’t necessarily the case; your application could still be
running after the library has been stopped, updated, and restarted many times. On
the other hand, the library could still be available in the framework long after your
application has come and gone. You need to tie the library state to its bundle lifecycle;
and to do that, you need to add a bundle activator (see section 3.4.1).

The original HttpClient library from Apache Commons (http://hc.apache.org/
httpclient-3.x/apidocs/index.html) manages a pool of threads for multithreaded con-

nections. These threads are started lazily so there’s no need to explicitly initialize the
pool, but the library provides a method to shut down and clean everything up:

MultiThreadedHttpConnectionManager.shutdownAll () ;

To wrap the HttpClient library JAR file up as a bundle, you can add an activator that
shuts down the thread pool whenever the HttpClient bundle is stopped. This
approach is as follows:

package org.apache.commons.httpclient.internal;

import org.apache.commons.httpclient.MultiThreadedHttpConnectionManager;
import org.osgi.framework.*;

public class Activator implements BundleActivator ({
public void start (BundleContext ctx) {}

http://hc.apache.org/httpclient-3.x/apidocs/index.html
http://hc.apache.org/httpclient-3.x/apidocs/index.html

6.1.6

Turning JARs into bundles 205

public void stop (BundleContext ctx) {
MultiThreadedHttpConnectionManager.shutdownAll () ;

}
}

You have to tell OSGi about this activator by adding metadata to the manifest:
Bundle-Activator: org.apache.commons.httpclient.internal.Activator
You can see this in action by building and running the following example:

$ cd chapter06/HttpClient-example

$ ant dist

$ java -jar launcher.jar bundles

You should see it start and attempt to connect to the internet (ignore log4j warnings):

GET http://www.google.com/
GOT 5500 bytes

->

If you use jstack to see what threads are running in the JVM, one of them should be
"MultiThreadedHttpConnectionManager cleanup" daemon

Stop the HttpClient bundle, which should clean up the thread pool, and check again:
-> stop 5

The MultiThreadedHttpConnectionManager thread should now be gone. Unfortu-
nately, this isn’t a complete solution, because if you stop and restart the test bundle,
the thread pool manager reappears—even though the HttpClient bundle is still
stopped! Restricting use of the HttpClient library to the bundle active state would
require all calls to go through some sort of delegating proxy or, ideally, the OSGi ser-
vice registry. Thankfully, the 4.0 release of the HttpClient library makes it much easier
to manage connection threads inside a container such as OSGi and removes the need
for this single static shutdown method.

Bundle activators are mostly harmless because they don’t interfere with non-OSGi
users of the JAR file. They’re only referenced via the bundle metadata and aren’t con-
sidered part of the public API. They sit there unnoticed and unused in classic Java
applications until the bundle is loaded into an OSGi framework and started. When-
ever you have a JAR file with implicit state or background resources, consider adding
an activator to help OSGi users.

We’ve now covered most aspects of turning a JAR file into a bundle: identity, exports,
imports, embedding, and lifecycle management. How many best practices can you
remember? Wouldn’t it be great to have them summarized as a one-page cheat sheet?

Look no further than the following section.

JAR file to bundle cheat sheet

Figure 6.5 presents a cheat sheet that gives you a handy summary of converting JAR
files into bundles.

206

6.2

6.2.1

CHAPTER 6 Moving toward bundles

Bundle-ManifestVersion: 2

Bundle-SymbolicName: =—— primary package I
Bundle-Version: <—— normalized X.Y.Z Qualifier version
Bunlde-{Name/Description/License}:«——other project details
Export-Package: «—— public API; version="api.version" S —
Import-Package: «— public API ; on="[api.version,next.major.version)",
dependency API ; ve "[tested.version,next.major.version)", =~ -

optional install-time API ; resolution:=optiona
Dynamiclmport-Package: = optional request-time API (supports wildcard) = =" "‘?
Bundle-ClassPath:=—— . embedded.jar
Bundle-Activator: -——— resource management class (start/stop) O

Figure 6.5 JAR-to-bundle cheat sheet

OK, you know how to take a single JAR file and turn it into a bundle, but what about a
complete application? You could take your existing JAR, EAR, and WAR files and turn
them all into bundles; or you could choose to wrap everything up as a single application
bundle. Surely you can do better than that. What techniques can you use to bundle up
an application, and whatare the prosand cons? For the answers to thisand more, read on.

Splitting an application into bundles

Most applications are made up of one or more JAR files. One way to migrate an appli-
cation to OSGi is to take these individual JAR files and convert each of them into a
bundle using the techniques discussed in the previous section. Converting lots of JAR
files is time consuming (especially for beginners), so a simpler approach is to take
your complete application and wrap it up as a single bundle. In this section, we’ll show
you how to start from such a single application bundle and suggest ways of dividing it
further into multiple bundles. Along the way, we’ll look at how you can introduce
other OSGi features, such as services, to make your application more flexible. Finally,
we’ll suggest places where it doesn’t make sense to introduce a bundle.
Let’s start with the single application bundle or so-called mega bundle.

Making a mega bundle

A mega bundle comprises a complete application along with its dependencies. Any-
thing the application needs on top of the standard JDK is embedded inside this bundle

Splitting an application into bundles 207

Bundle-ClassFath: WEB-INF/classes, WEB-INF/lib/velocity-1.4.jar,...

classes

WEB-INF

lib/velocity-1.4.jar
Figure 6.6 Turning a

WAR file into a bundle

and made available to the application by extending the Bundle-ClassPath (2.5.3). This
is similar to how Java Enterprise applications are constructed. In fact, you can take an
existing web application archive (WAR file) and easily turn it into a bundle by adding an
identity along with Bundle-ClassPath entries for the various classes and libraries con-
tained within it, as shown in figure 6.6.

The key benefit of a mega bundle is that it drastically reduces the number of pack-
ages you need to import, sometimes down to no packages at all. The only packages you
may need to import are non-java. * packages from the JDK (such as javax. * packages)
or any packages provided by the container itself. Even then, you can choose to access
them via OSGi boot delegation by setting the org.osgi.framework.bootdelegation
framework property to the list of packages you want to inherit from the container class
path. Boot delegation can also avoid certain legacy problems (see section 8.2 for the
gory details). The downside is that it reduces modularity, because you can’t override
boot-delegated packages in OSGi. A mega bundle with boot delegation enabled is close
to the classic Java application model; the only difference is that each application has its
own class loader instead of sharing the single JDK application class loader.

JEDIT MEGA-BUNDLE EXAMPLE

Let’s shelve the theoretical discussion for the moment and create a mega bundle
based on jEdit (www.jedit.org/), a pluggable Java text editor. The sample code for this
book comes with a copy of the jEdit 4.2 source, which you can unpack like so:

$ cd chapter06/jEdit-example

$ ant jEdit.unpack

$ cd jEdit

The jEdit build uses Apache Ant (http://ant.apache.org/), which is good news because
it means you can use bnd’s Ant tasks to generate OSGi manifests. Maven users shouldn’t
feel left out, though: you can use maven-bundle-plugin (http://felix.apache.org/site/
apache-felix-maven-bundle-plugin-bnd.html), which also uses bnd under the covers.

How exactly do you add bnd to the build? The following listing shows the main tar-
get from the original (non-OSGi) jEdit build.xml.

Listing 6.1 Default jEdit build target

<target name="dist" depends="compile,compilel4"
description="Compile and package jEdit.">

<jar jarfile="jedit.jar"

http://ant.apache.org/
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
www.jedit.org/

208

CHAPTER 6 Moving toward bundles

manifest="org/gjt/sp/jedit/jedit .manifest"
compress="false">

<fileset dir="${build.directory}">
<include name="bsh/**/* . class"/>
<include name="com/**/* class"/>
<include name="gnu/**/*.class"/>
<include name="org/**/*.class"/>
</fileset>

<fileset dir=".">

<include name="bsh/commands/*.bsh"/>

<include name="gnu/regexp/MessagesBundle.properties"/>

<include name="org/gjt/sp/jedit/**/*.dtd"/>

<include name="org/gjt/sp/jedit/icons/*.gif"/>

<include name="org/gjt/sp/jedit/icons/*.jpg"/>

<include name="org/gjt/sp/jedit/icons/*.png"/>

<include name="org/gjt/sp/jedit/*.props"/>

<include name="org/gjt/sp/jedit/actions.xml"/>

<include name="org/gjt/sp/jedit/browser.actions.xml"/>

<include name="org/gjt/sp/jedit/dockables.xml"/>

<include name="org/gjt/sp/jedit/services.xml"/>

<include name="org/gjt/sp/jedit/default.abbrevs"/>

</fileset>
</jar>

</target>
The jar task is configured to take a static manifest file: org/gjt/sp/jedit/jedit.mani-
fest. If you don’t want to change the build process but still want an OSGi-enabled man-
ifest, you can take the jEdit binary, run it through an analyzer like bnd, and add the
generated OSGi headers to this static manifest. As we mentioned back in section 6.1.3,
this approach is fine for existing releases or projects that don’t change much. On the
other hand, integrating a tool such as bnd with your build means you get feedback
about the modularity of your application immediately rather than when you try to
deploy it.
REPLACING THE JAR TASK WITH BND
Let’s make things more dynamic and generate OSGi metadata during the build. This is
the recommended approach because you don’t have to remember to check and regen-
erate the metadata after significant changes to the project source. This is especially use-
ful in the early stages of a project, when responsibilities are still being allocated.

There are several ways to integrate bnd with a build:

= Use bnd to generate metadata from classes before creating the JAR file.
= Create the JAR file as normal and then post-process it with bnd.
= Use bnd to generate the JAR file instead of using the Ant jar task.

If you need certain features of the jar task, such as indexing, you should use the first
or second option. If you're post-processing classes or need to filter resources, choose
either the second or third option. Let’s go with the third option to demonstrate how
easy it is to switch your build over to bnd. It will also help you later, in section 6.2.2,
when you start partitioning the application into separate bundles.

Splitting an application into bundles 209

First, comment out the jar task:

<!-- jar jarfile="jedit.jar"
manifest="org/gjt/sp/jedit/jedit .manifest"
compress="false">

</jar -->
The first line above shows where to put the JAR file, and the second lists fixed manifest
entries.

Next, add the bnd definition and target task:

<taskdef resource="aQute/bnd/ant/taskdef.properties"
classpath="../../../1ib/bnd-0.0.384.jar" />

<bnd classpath="${build.directory}"
files="jedit-mega.bnd" />
Here, you first give the location of the bnd JAR file to tell Ant where it can find the
bnd task definition. Then you specify a bnd task to create your bundle JAR file, giving
it the project class path and the file containing your bnd instructions.
There’s one key difference between the jar and bnd tasks that you must remember:

= The jar task takes a list of files and directories and copies them all into a single
JAR file.

= The bnd task takes a class path and a list of instruction files (one file per bun-
dle) that tell it which classes and/or resources to copy from the class path into
each bundle.

If you don’t tell bnd to pull a certain package into the bundle, don’t be surprised if
the package isn’t there. You're building a single mega bundle, so you need only one
instruction file: call it jeditmega.bnd. The first thing you must add is an instruction to
tell bnd where to put the generated bundle:

-output: jedit.jar

The bnd task can also copy additional manifest headers into the final manifest, so let’s
ask bnd to include the original jEdit manifest rather than duplicate its content in your
new file:

-include: org/gjt/sp/jedit/jedit.manifest

You could have left the manifest file where it was, added your instructions to it, and
passed that into bnd, but this would make it harder for people to separate out the new
build process from the original. It’s also better to have the bnd instructions at the
project root where they’re more visible. You can now try to build the project from
inside the jEdit directory:

$ ant dist

[bnd] Warnings

[bnd] None of Export-Package, Private-Package, -testpackages, or -
exportcontents is set, therefore no packages will be included

210

CHAPTER 6 Moving toward bundles

[bnd] Did not find matching referal for *
[bnd] Errors
[bnd] The JAR is empty

ADDING BND INSTRUCTIONS

‘What went wrong? You forgot to tell bnd what packages to pull into your new bundle!
Using the JAR-to-bundle cheat sheet from section 6.1.6, add the following bundle
headers to jedit-mega.bnd along with a bnd-specific instruction to pull in all classes
and resources from the build class path and keep them private:

Bundle-Name: jEdit

Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Private-Package: *

Take care with wildcards

Remember that bnd supports wildcard package names, So you can use * to represent
the entire project. Although this is useful when creating mega bundles, you should be
careful about using wildcards when separating a class path into multiple, separate
bundles, or when already bundled dependencies appear on the class path. Always
check the content of your bundles to make sure you aren’t pulling in additional pack-
ages by mistake!

Getting back to the task at hand, when you rebuild the jEdit project you now see this:

$ ant dist

[bnd] # org.gjt.sp.jedit (jedit.jar) 849

Success! Try to run your new JAR file:

$ java -jar jedit.jar

Whoops, something else went wrong:

Uncaught error fetching image:

java.lang.NullPointerException

at sun.awt.image.URLImageSource.getConnection (Unknown Source)
at sun.awt.image.URLImageSource.getDecoder (Unknown Source)

at sun.awt.image.InputStreamImageSource.doFetch (Unknown Source)

at sun.awt.image.ImageFetcher.fetchloop (Unknown Source)
at sun.awt.image.ImageFetcher.run (Unknown Source)

ADDING RESOURCE FILES

It seems your JAR file is missing some resources. Can you see why? Look closely at the
jar task in listing 6.1; notice how classes come from ${build.directory}, but the
resource files come from . (the project root). You could write a bnd-specific Include-
Resource instruction to tell bnd to pull in these resources, but there’s an easier solu-
tion that lets you reuse instructions from the jEdit build file. Take the existing
resource file set from the old jar task, and put it inside a copy task to copy matching
resources to the build directory before the bnd task runs:

Splitting an application into bundles 211

<copy todir="${build.directory}">

<fileset dir=".">
<include name="bsh/commands/*.bsh"/>
<!-- and so on... -->
</fileset>
</copy>

The resource files can now be found on the build class path. Rebuild, and run jEdit
again:
$ ant dist

[bnd] # org.gjt.sp.jedit (jedit.jar) 1003
$ java -jar jedit.jar
Bingo! You should see the main jEdit window appear, as shown in figure 6.7.

4 jEdit - Untitled-1 =% EcH =)

File Edit Search Markers Folding Yiew Ulilities Macros Plugins Help
Tm®s &8 0008 AKX JEd HEl 5 @

Untitled-1 (h\Documents\OSGilnAction\privateitrunkicode\ch apter0B\Edit-examplel) | b4

LH|
[1,1 41 (text,none,Cp1252) - - - -

Figure 6.7
Main jEdit window

Your bundle works as a classic JAR file, but will it work as a bundle? Let’s review the
manifest.

Listing 6.2 jEdit mega bundle manifest

Manifest-Version: 1.0

Created-By: 1.6.0_13 (Sun Microsystems Inc.)
Bnd-LastModified: 1250524748304

Tool: Bnd-0.0.384

Main-Class: org.gjt.sp.jedit.jEdit
Bundle-ManifestVersion: 2

212

CHAPTER 6 Moving toward bundles

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2
Private-Package:

bsh,

bsh.collection,
bsh.commands,

bsh.reflect,
com.microstar.xml,
gnu.regexp,

installer,
org.gjt.sp.jedit,
org.gjt.sp.jedit.browser,
org.gjt.sp.jedit.buffer,
org.gjt.sp.jedit.gui,
org.gjt.sp.jedit.help,
org.gjt.sp.jedit.icons,
org.gjt.sp.jedit.io,
org.gjt.sp.jedit.menu,
org.gjt.sp.jedit.msg,
org.gjt.sp.jedit.options,
org.gjt.sp.jedit.pluginmgr,
org.gjt.sp.jedit.print,
org.gjt.sp.jedit.proto.jeditresource,
org.gjt.sp.jedit.search,
org.gjt.sp.jedit.syntax,
org.gjt.sp.jedit.textarea,
org.gjt.sp.util,
org.objectweb.asm
Import-Package:
javax.print.attribute,
javax.print.attribute.standard,
javax.swing,
javax.swing.border,
javax.swing.event,
javax.swing.filechooser,
javax.swing.plaf,
javax.swing.plaf.basic,
javax.swing.plaf.metal,
javax.swing.table,
javax.swing.text,
javax.swing.text.html,
javax.swing.tree

Your jEdit bundle doesn’t export any packages, but it does use packages from Swing.
These should come from the system bundle, which is typically set up to export JDK pack-
ages (although this can be overridden). You may wonder if you should add version
ranges to the packages imported from the JDK. This isn’t required, because most system
bundles don’t version their JDK packages. You only need to version these imports if you
want to use another implementation that’s different from the stock JDK version.

We should also mention that the final manifest contains some bnd-specific head-
ers that aren’t used by the OSGi framework (such as Private-Package, Tool, and
Bnd-LastModified). They're left as a useful record of how bnd built the bundle, but

Splitting an application into bundles 213
if you don’t want them, you can remove them by adding this bnd instruction to
jeditmega.bnd:

-removeheaders: Private-Package,Tool,Bnd-LastModified

The new manifest looks correct, but the real test is yet to come. You must now try to
deploy and run your bundle on an actual OSGi framework. Will it work the first time
or fail with an obscure exception?

RUNNING JEDIT WITH O0SGI

You can deploy your jEdit bundle by using the same simple launcher used to launch
the earlier paint examples. Remember, this launcher first installs any bundles found
in the directory and then uses the first Main-Class header it finds to bootstrap the
application. Your manifest already has a Main-Class, so you need to point the
launcher at the jEdit directory, like so:

S ed ..

$ cp ../../launcher/dist/launcher.jar .

$ java -jar launcher.jar jEdit

Unfortunately, something’s not quite right. The bundle installs and the application
starts, but it hangs at the splash screen shown in figure 6.8, and the main jEdit window
never appears.

If you look closely at the top of the stack trace, you see the following warning
message:

java.net.MalformedURLException: Unknown protocol: jeditresource

Why did this work when the bundle was run as a classic application, but not when the
bundle was installed in an OSGi framework? The answer lies in the URL Handlers Service
we discussed briefly back in section 4.6.1. To implement this service, the OSGi frame-
work installs its own URLStreamHandlerFactory, which delegates requests to handlers
installed via the service registry. Unlike the default URLStreamHandlerFactory, this
implementation doesn’t automatically scan the class path for URL handlers. Instead, all

lon not found: jedit-icon.gif

va et Meformedbit o —Yrmomowmprotocob—jedi i re

at 1ava net .URL . (1nit> Unknown Source]

!t 1ava ot lnla\ ™ PR

st java.net.URL.<init>(Unknown Source

at org g_lt sp.Jedlt.G.' I ilidicme looal "“""“{:“r“_"‘llltleﬁ.

st org.gjt.sp. jedit.Gl AGUIULi1id

it org.gjt.sp. jedit.V

st org.gjt.sp. jedit. \ 41)

it org.gjt.sp. jedit. j 7)

it org.gjt.sp. jedit. J 7)

it org.gjt.sp. jedit.

at Java.swt.event Inv own Sourt

it java.awt.EventQueu| urce)

it java.awt.EventDisp Filters(l

it java.awt.EventDisp ter(Unk

it java.awt.EventDisp erarchy (l

st java.awt.EventDisp own Sourt

it java.awt.EventDisp own_ Sourt

at éava. wt .EventDisp rce)

2: Exception in threa Figure 6.8 jEdit when
2: java.lang. oin X X
: at org.g]t.sp.]ed con(GUIWA first run as 0SGi bundle

214

CHAPTER 6 Moving toward bundles

URL handlers must be registered as OSGi services, which also means the handlers are
tied to their bundle lifecycle.

FIXING THE URL HANDLER ISSUE

Your first thought may be to try to disable the URL Handlers Service so it doesn’t
install this factory. Unfortunately, there’s no standard switch for this; but to disable it
in Felix, you set the felix.service.urlhandlers framework property to false. Turn-
ing off the global URL Handlers Service also has serious implications. It means no
bundle can contribute dynamic protocol handlers, which would break applications
that rely on the URL Handlers Service. It also won’t fix this particular problem
because the jeditresource handler isn’t visible to the default URLStreamHandler-
Factory when you run jEdit as a bundle. The JDK’s URL Handler factory uses
Class.forName () to search the application class path for valid handlers, but your
jeditresource handler is hidden from view inside the jEdit bundle class loader.

The solution is to register the jeditresource handler as a URLStreamHandler-
Service when the jEdit bundle is started and remove it when the bundle is stopped.
But how can you add OSGi-specific code without affecting classic jEdit users? Cast your
mind back to section 6.1.5, where we talked about using lifecycles to manage external
resources. This is exactly the sort of situation that requires a bundle activator, such as
the one shown next.

Listing 6.3 Bundle activator to manage the jeditresource handler

package org.gjt.sp.jedit;

import java.io.IOException;
import java.net.*;
import java.util.Properties;

import org.osgi.framework.*;
import org.osgi.service.url.*;

import org.gjt.sp.jedit.proto.jeditresource.Handler;

public class Activator implements BundleActivator {
private static class JEditResourceHandlerService

extends AbstractURLStreamHandlerService Real handler
private Handler jEditResourceHandler = new Handler () ; instance
public URLConnection openConnection (URL url)
throws IOException { Delegates to
return jEditResourceHandler.openConnection (url) ; real handler

}
}

public void start (BundleContext context) {
Properties properties = new Properties() ;
properties.setProperty (URLConstants.URL_HANDLER PROTOCOL,

n= 1 "y . .
Jeditresourcet); Publishes URL
context.registerService (handler service

URLStreamHandlerService.class.getName (),
new JEditResourceHandlerService(),

Splitting an application into bundles 215

properties) ;

}

public void stop(BundleContext context) {}

}

After you’ve added this activator class to the build, you must remember to declare it in
the OSGi metadata—otherwise, it will never be called. This is a common cause of
head-scratching for people new to OSGi, because the framework can’t tell when you
accidentally forget a Bundle-Activator header. When you’ve added an activator, but
it’s having no effect, always check your manifest to make sure it’s been declared—it
saves a lot of hair!

Bundle-Activator: org.gjt.sp.jedit.Activator

Your activator code uses OSGi constants and interfaces, so you must add the core OSGi
API to the compilation class path in the jEdit build.xml. Otherwise, your new code
won’t compile:
<javac ... >

<classpath path="../../../lib/osgi.core.jar"/>

<!-- the rest of the classpath -->
This API is only required when compiling the source; it isn’t necessary at execution
time unless the activator class is explicitly loaded. One more build, and you now have
a JAR file that can run as a classic Java application or an OSGi bundle! The following
snippet shows the final set of bnd instructions for the jEdit mega bundle:

-output: jedit.jar
-include: org/gjt/sp/jedit/jedit.manifest

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Private-Package: *
Bundle-Activator: org.gjt.sp.jedit.Activator

One last wrinkle: you have to tell jEdit where its installation directory is by using the
jedit.home property. Normally, jEdit can detect the installation directory containing
its JAR file by peeking at the application class path, but this won’t work when running
it as a bundle on OSGi because the JAR file is loaded via a different mechanism:

$ ant dist

$ ecd ..

$ java -Djedit.home=jEdit -jar launcher.jar jEdit

With this last piece of configuration in place, you should see jEdit start and the main

window appear, as you saw earlier in figure 6.8. It should also still work as a classic Java
application.

216

6.2.2

CHAPTER 6 Moving toward bundles

REVISITING MEGA BUNDLES

You've successfully created a mega bundle for jEdit with a small amount of effort.
What are the downsides of a mega bundle? Well, your application is still one single
unit. You can’t replace or upgrade sections of it without shutting down the complete
application, and doing so may shut down the entire JVM process if the application
calls System.exit (). Because nothing is being shared, you can end up with duplicate
content between applications.

Effectively, you're in the same situation as before moving to OSGi, but with a few
additional improvements in isolation and management. This doesn’t mean the mega
bundle approach is useless—as a first step, it can be reassuring to be able to run your
application on an OSGi framework with the minimum of fuss. It also provides a solid

foundation for further separating (or slicing) your application into bundles, which is
the focus of the next section.

Slicing code into bundies

You now have a single mega bundle containing your entire application. The next step
toward a full-fledged flexible OSGi application is to start breaking it into bundles that
can be upgraded independently of one another. How and where should you draw the
lines between bundles?

Bundles import and export packages in order to share them, so it makes sense to
draw lines that minimize the number of imports and exports. If you have a high-level
design document showing the major components and their boundaries, you can take
each major component and turn it into a bundle. If you don’t have such a document,
you should look for major areas of responsibility such as business logic, data access,
and graphical components. Each major area can be represented by a bundle, as
depicted in figure 6.9.

Another way to approach this is to review the benefits of modularity (described in
section 2.2) and think about where they make the most sense in your application. For
example, do any areas need to be upgraded or fixed independently? Does the applica-
tion have any optional parts? Are common utilities shared throughout the application?

ul ul g A .
| “‘
Logic '
Logic
Data ‘ ~~~~~ :
Data

Figure 6.9 Slicing
code into bundles

Splitting an application into bundles 217

CUTTING ALONG THE DOTTED LINES

Returning to the jEdit example, what areas suggest themselves as potential bundles?
The obvious choice to begin with is to separate the jEdit code from third-party librar-
ies and then try to extract the main top-level package. But how do you go about divid-
ing the project class path into different bundles?

Recall what we said about bnd back in section 6.1.3, that it uses a pull approach to
assemble bundles from a project class path based on a list of instruction files. All you
need to do is provide your bnd task with different instruction files for each bundle.
The following example divides the class path into three bundles:
<bnd classpath="${build.directory}"

files="jedit-thirdparty.bnd, jedit-main.bnd, jedit-engine.bnd" />
The first bundle contains all third-party classes—basically, any package from the build
directory that doesn’t start with org.gjt.sp. Bnd makes this easy by allowing negated
packages. For example:

Private-Package: l!org.gjt.sp.*, *
This copies all other packages into the bundle and keeps them private.

Using the earlier jedit-mega.bnd file as a template, you can flesh out the rest to get
the following jedit-thirdparty.bnd file:

-output: jedit-thirdparty.jar

Bundle-Name: jEdit Third-party Libraries
Bundle-SymbolicName: org.gjt.sp.jedit.libs
Bundle-Version: 4.2

Private-Package: !org.gjt.sp.*, !installer.*, *
You also exclude the installer package because it isn’t required at execution time
and doesn’t belong in the third-party library bundle.

The second bundle contains the top-level package containing the main jEdit class.
You should also add the org.gjt.sp.jedit.proto package containing the URL han-
dler code because it’s only used by the bundle activator in the top-level package.
Here’s an initial attempt at jedit-main.bnd:

-output: jedit.jar
-include: org/gjt/sp/jedit/jedit.manifest

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Private-Package: org.gjt.sp.jedit, org.gjt.sp.jedit.proto.*
Bundle-Activator: org.gjt.sp.jedit.Activator

Notice that the only difference between this file and the mega bundle instructions
shown earlier is the selection of private packages; everything else is exactly the same.
The main bundle also replaces the mega bundle as the executable JAR file.

218

CHAPTER 6 Moving toward bundles

The third and final bundle contains the rest of the jEdit packages, which we’ll call
the engine for now. It should contain all packages beneath the org.gjt.sp namespace,
except the top-level jEdit package and packages under org.gjt.sp.jedit.proto. The
resulting jedit-engine.bnd file is as follows:

-output: jedit-engine.jar

Bundle-Name: jEdit Engine
Bundle-SymbolicName: org.gjt.sp.jedit.engine
Bundle-Version: 4.2

Private-Package:\ Excludes main
lorg.gjt.sp.jedit, !org.gjt.sp.jedit.proto.*,\ packages
org.gjt.sp.*

Notice how the same packages listed in the main instructions are negated in the

engine instructions. Refactoring packages between bundles is as simple as moving

entries from one instruction file to another.

STITCHING THE PIECES TOGETHER

You now have three bundles that together form the original class path, but none of
them share any packages. If you tried to launch the OSGi application at this point, it
would fail because of unsatisfied imports between the three bundles. Should you go
ahead and export everything by switching all Private-Package instructions to
Export-Package? You could, but what would you learn by doing that? Let’s try to
export only what you absolutely need to share, keeping as much as possible private.

There are three ways you can find out which packages a bundle must export:

= Gain an understanding of the code base and how the packages relate to one
other. This can involve the use of structural analysis tools such as Structurel01
(www.headwaysoftware.com/products/structurel01/index.php).

= Read the Import-Package headers from generated manifests to compile a list of
packages that “someone” needs to export. Ignore JDK packages like
javax.swing. You can use the bnd print command to avoid having to unpack
the manifest.

= Repeatedly deploy the bundles into a live framework, and use any resulting
error messages and/or diagnostic commands (such as the diag command on
Equinox) to fine-tune the exported packages until all bundles resolve.

The first option requires patience, but the reward is a thorough understanding of the
package structure. It also helps you determine other potential areas that can be
turned into bundles. The third option can be quick if the framework gives you the
complete list of missing packages on the first attempt, but sometimes it feels like an
endless loop of “deploy, test, update.” The second option is a good compromise
between the other two. The bnd tool has already analyzed the code base to come up
with the list of imports, and you already know that the framework will follow the
import constraints listed in the manifest. The structured manifest also means you can
write a script to do the hard work for you.

www.headwaysoftware.com/products/structure101/index.php

Splitting an application into bundles 219

For example, consider this rather obscure command on Linux:

$ java -jar ../../lib/bnd-0.0.384.jar print jEdit/*.jar \

| awk '/“Import-Package$/ {getline;ok=1} /*["* 1/ {ok=0} \

{if (ok) print $1}' | sort -u

It uses bnd to print a summary of each jEdit bundle, extracts the package names from
the Import-Package part of the summary, and sorts them into a unique list. (You
could also use the bnd print -uses command to get a tabular view of what packages
use other packages.) After you remove the JDK and OSGi framework packages, you get
the following:
bsh
com.microstar.xml
gnu.regexp
org.gjt.sp.jedit

org.gjt.sp.jedit.browser
org.gjt.sp.jedit.buffer
org.gjt.sp.jedit.gui
org.gjt.sp.jedit.help
org.gjt.sp.jedit.io
org.gjt.sp.jedit.menu
org.gjt.sp.jedit.msg
org.gjt.sp.jedit.options
org.gjt.sp.jedit.pluginmgr
org.gjt.sp.jedit.search
org.gjt.sp.jedit.syntax
org.gjt.sp.jedit.textarea
org.gjt.sp.util

The first group includes third-party packages, next is the main jEdit package, and the
long group contains other jEdit packages.

It’s clear that the third-party library bundle needs to export only three packages
and the main jEdit bundle just the top-level package. Unfortunately, the jEdit engine
bundle needs to export almost all of its packages, indicating a tight coupling between
the engine and the top-level jEdit package. This suggests that it would be better to
merge these two bundles back together, unless you were going to refactor the code to
reduce this coupling. Let’s ignore this for now and press on, because this separation
will eventually lead to an interesting class-loading issue that’s worth knowing about.
Anyone who’s curious can skip ahead to section 6.2.4.

What’s next on the JAR-to-bundle checklist? Ah, yes: versioning. You should version
all the exported jEdit packages with the current bundle version (4.2); but you won’t ver-
sion the individual third-party packages at the moment, because it’s not obvious what
releases are being used. You can always add the appropriate versions in the future, when
you divide the combined third-party bundle into separate library bundles.

You should also add version ranges to your imports, as suggested back in sec-
tion 6.1.3. Rather than endure the hassle of explicitly writing out all the ranges, you
can take advantage of another bnd feature and compute them:

-versionpolicy: [${version;==;${e}},${version;+;${e}})

220

CHAPTER 6 Moving toward bundles

This instruction (http://aqute.biz/Code/Bnd#versionpolicy) tells bnd to take the
detected version ${@} and turn it into a range containing the current major.minor ver-

sion ${version;==;...} up to but not including the next major version ${version;
+;...}. (See appendix A for more information about the various bnd instructions.)
So if the bnd tool knows that a package has a version of 4.1.8, it applies a version range
of [4.1,5) to any import of that package. You add this to each of your bnd files (you
can also put it in a shared common file) along with the changes to export the neces-
sary packages.

Following are the final bnd instructions for the jEdit third-party library bundle:

-output: jedit-thirdparty.jar

Bundle-Name: jEdit Third-party Libraries
Bundle-SymbolicName: org.gjt.sp.jedit.libs
Bundle-Version: 4.2

Export-Package: bsh, com.microstar.xml, gnu.regexp
Private-Package: !org.gjt.sp.*, !installer.*, *

-versionpolicy: [${version;==;%{e@}},${version;+;s{e@}})
And here are the final bnd instructions for the jEdit engine bundle:
-output: jedit-engine.jar

Bundle-Name: jEdit Engine
Bundle-SymbolicName: org.gjt.sp.jedit.engine
Bundle-Version: 4.2

Export-Package:\
lorg.gjt.sp.jedit, \
lorg.gjt.sp.jedit.proto.*,\
org.gjt.sp.*;version="4.2"

-versionpolicy: [${version;==;${@}},${version;+;s{@}})

You still have one more (non-OSGi) tweak to make to the main jEdit bundle instruc-
tions. Remember that you now create three JAR files in place of the original single JAR
file. Although you can rely on the OSGi framework to piece these together into a sin-
gle application at execution time, this isn’t true of the standard Java launcher. You
need some way to tell it to include the two additional JAR files on the class path when-
ever someone executes:

$ java -jar jedit.jar

Thankfully, there is a way: you need to add the standard Class-Path header to the
main JAR file manifest. The Class-Path header takes a space-separated list of JAR files,
whose locations are relative to the main JAR file. These final main-bundle instructions
allow jEdit to work both as a bundle and an executable JAR:

-output: jedit.jar

-include: org/gjt/sp/jedit/jedit.manifest
Class-Path: jedit-thirdparty.jar jedit-engine.jar

http://aqute.biz/Code/Bnd#versionpolicy

6.2.3

Splitting an application into bundles 221

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Export-Package:\
org.gjt.sp.jedit;version="4.2"

Private-Package:\
org.gjt.sp.jedit.proto.*

-versionpolicy: [${version;==;${@}},${version;+;${e}})
Bundle-Activator: org.gjt.sp.jedit.Activator

Update your three bnd files as shown, and rebuild. Or if you want a shortcut, use this:

S ecd ..

$ ant jEdit.patch dist

Congratulations—you’ve successfully separated jEdit into three JAR files that work with
or without OSGi! The following lines launch jEdit OSGi and jEdit classic, respectively:

S java -Djedit.home=jEdit -jar launcher.jar jEdit
$ java -jar jEdit/jedit.jar

As we hope this example demonstrates, after you have an application working in OSGi,
it doesn’t take much effort to start slicing it up into smaller, more modularized bun-
dles. But is this all you can do with jEdit on OSGi—keep slicing it into smaller and
smaller pieces?

Loosening things up

So far, we’ve focused on using the first two layers of OSGi: module and lifecycle.
There’s another layer you haven’t yet used in this chapter: service. The service layer is
different from the first two layers in that it can be hard to tell when or where you
should use it, especially when migrating an existing application to OSGi. Often, peo-
ple decide not to use services at all in new bundles, instead relying on sharing pack-
ages to find implementations. But as you saw in chapter 4, services make your
application more flexible and help reduce the coupling between bundles. The good
news is, you can decide to use services at any time; but how will you know when the
time is right?

There are many ways to share different implementations inside a Java application.
You can construct instances directly, call a factory method, or perhaps apply some
form of dependency injection. When you first move an application to OSGi, you'll
probably decide to use the same tried-and-tested approach you did before, except that
now some of the packages come from other bundles. As you saw in chapter 4, these
approaches have certain limitations compared to OSGi services. Services in OSGi are
extremely dynamic, support rich metadata, and promote loose coupling between the
consumer and provider.

222

CHAPTER 6 Moving toward bundles

If you expect to continue to use your application outside of OSGi—for example, as
a classic Java application—you may be worried about using the service layer in case it ties
you to the OSGi runtime. No problem! You can get the benefits of services without being
tied to OSGi by using component-based dependency injection. Chapters 11 and 12 intro-
duce a number of component models that transparently support services without forc-
ing you to depend on the OSGi API. If you already use dependency injection, moving to
these component models is straightforward; sometimes it’s only a matter of reconfigur-
ing the dependency bindings in your original application. If you’re itching to try out
these componentmodels, feel free to skip ahead to chapter 11. But make sure you come
back and read the intervening chapters; they’ll be an invaluable guide when it comes
to managing, testing, and debugging your new OSGi application.

Let’s get back to discussing services. Where might you use services in jEdit? Well,
jEdit has its own home-grown plugin framework for developers to contribute all sorts
of gadgets, tools, and widgets to the GUI In addition, jEdit uses its own custom class
loader org.gjt.sp.jedit.JARClassLoader to allow hot deployment and removal of
jEdit plugins. Plugins hook back into jEdit by accessing implementation classes and
calling static methods, such as jEdit.getSettingsDirectory (). These static method
calls are convenient, but they make it hard to mock out (or replace) dependencies for
testing purposes.

Instead of relying on static methods, you can change jEdit to use dependency injec-
tion. Plugins then have their dependencies injected, rather than call jEdit directly. After
you replace the static methods calls with dependency injection, it’s just another step to
replace the static bindings with dynamic OSGi services (see chapters 11 and 12). This
also simplifies unit testing, because you can swap out the real bindings and put in
stubbed or scripted test implementations. Unfortunately, refactoring jEdit to use
dependency injection throughout is outside the scope of this book, but you can
use chapters 11 and 12 as a general guide. With this in mind, is there a smaller task that
can help bridge the gap between OSGi bundles and jEdit plugins and make it easier to
use services?

You can consider replacing the jEdit plugin framework with OSGi, much as
Eclipse replaced its original plugin framework. To do this, you have to take the JAR-
ClassLoader and PluginJAR classes and extract a common API that you can then re-
implement using OSGi, as shown in figure 6.10. You use the original jEdit plugin
code when running in classic Java mode and the smaller OSGi mapping layer when
running on an OSGi framework.

Extracting the common plugin API is left as an interesting exercise for you; one
wrinkle is the fact that jEdit assumes plugins are located in the file system, whereas
OSGi supports bundles installed from opaque input streams. The new plugin API can
have methods to iterate over and query JAR file entries to avoid having to know where
the plugin is located. These methods will map nicely to the resource-entry methods
on the OSGi Bundle interface.

Splitting an application into bundles 223

JEdit ‘

JARClassloader

PMngAR‘

JEdit
Y
. -~ | JARClassLoader Flu@inJAR‘
Common plugin APl a 4,:"
M. = 0SGimapping layer Figure 6.10 Extracting a

common jEdit plugin API

How about being able to register OSGi bundles as jEdit plugins? This is a stepping
stone to using services, because you need a bundle context to access OSGi services.
The main jEdit class provides two static methods to add and remove plugin JAR files:

public static void addPlugindJdAR (String path) ;
public static void removePluginJAR (PluginJAR jar, boolean exit) ;

Following the extender pattern introduced in section 3.4, let’s use a bundle tracker to
look for potential jEdit plugins. The code in the following listing uses a tracker to add
and remove jEdit plugin bundles as they come and go.

Listing 6.4 Using the extender pattern to install jEdit plugins

package org.foo.jedit.extender;

import java.io.File;
import org.gjt.sp.jedit.x*;
import org.osgi.framework.*;

public class Activator implements BundleActivator {
BundleTracker pluginTracker;

public void start (final BundleContext ctx) {
pluginTracker = new BundleTracker (ctx) {

Looks for
public void addedBundle (Bundle bundle) { actions.xml
String path = getBundlePath (bundle) ;
if (path != null && bundle.getResource ("actions.xml") != null) {

jEdit.addPluginJAR (path) ;

}
}

224

CHAPTER 6 Moving toward bundles

public void removedBundle (Bundle bundle) {
String path = getBundlePath (bundle) ;
if (path != null) { ﬁ Maps to Plugin]AR
PluginJAR jar = jEdit.getPlugindAR (path) ; instance
if (jar != null) {
jEdit.removePluginJAR (jar, false);
}

}
}
}i

EditBus.addToBus (new EBComponent () {
public void handleMessage (EBMessage message) {
EditBus.removeFromBus (this) ; ﬁ Starts bundle
pluginTracker.open() ; tracker

I3
}

public void stop (BundleContext ctx) {
pluginTracker.close() ;
pluginTracker = null;

} J Ignores bundles that
9.
static String getBundlePath (Bundle bundle) don’t map to file
String location = bundle.getLocation() .trim() ;
File jar;
if (location.startsWith("file:")) {
jar = new File(location.substring(5)) ;
} else {

jar = new File(location) ;

}

if (jar.isFile()) {
return jar.getAbsolutePath() ;

}

return null;

}

}

The code identifies jEdit plugins by looking for a file called actions.xml in the bundle
root @. Because the jEdit API only accepts path-based plugins, itignores bundles whose
locations don’t map to a file @. To remove a plugin bundle, it uses another jEdit
method to map the location back to the installed PluginJdAR instance @. The last piece
of the puzzle is to start the bundle tracker only when jEdit is ready to accept new plug-
ins. If you look at the jEdit startup code, you may notice that one of the last things it
doesin finishStartup () is send out the initial EditorStarted message on the EditBus
(jEdit’s event-notification mechanism). The code registers a one-shot component that
listens for any message event, deregisters itself, and starts the bundle tracker @.

Splitting an application into bundles 225

Let’s see this extender in action:
$ cd chapter06/jEdit-example
$ ant jEdit.patch dist
$ java -Djedit.home=jEdit -jar launcher.jar jEdit
-> install file:test/Calculator.jar

Look in the Plugins menu; no plugins should be available. Now start the calculator
bundle that you just installed:

-> start 9

You should see the calculator in the Plugins menu. Selecting this item opens the win-
dow shown in figure 6.11. If you stop the calculator bundle, this window immediately
disappears, and the Plugins menu once again shows no available plugins:

-> stop 9

Cool—the extender successfully bridges the gap between OSGi bundles and jEdit plug-
ins! You can now use existing OSGi management agents, such as the Apache Felix Web
Console (http://felix.apache.org/site/apache-felix-web-console.html), to manage
jEdit plugins. This small example shows how standards like OSGi can make it much eas-

ier to reuse and assemble existing pieces into new applications.

Are you eager to start moving your application to OSGi? Wait, not so fast! We have
one last topic to discuss before we close out this chapter, and it’s something you
should keep asking yourself when you’re modularizing applications: is this bundle
adding any value?

|| Calculator ol@|s
Function Constanis Help
BD F Bl | 10 Cc AC Rt Ri || XY || Lsti
& acos asin atan + E
x
In cos sin tan
ceil floor rint round = 7 8 9
o deg rad o \ 4 5 B
£
atan2 max min ¥ a 1 2 3
random e m strict = + 0 Figure 6.11

jEdit calculator plugin

http://felix.apache.org/site/apache-felix-web-console.html

226

6.24

CHAPTER 6 Moving toward bundles

To bundie or not to bundle?

Sometimes, you should take a step back and think, do Ineed another bundle? The more
bundles you create, the more work is required during build, test, and management in
general. Creating a bundle for every individual package is obviously overkill, whereas
putting your entire application inside a single bundle means you’re missing out on mod-
ularity. Some number of bundles in between is best, but where’s the sweet spot?

One way to tell is to measure the benefit introduced by each bundle. If you find
you're always upgrading a set of bundles at the same time and you never install them
individually, keeping them as separate bundles isn’t bringing much benefit.

You can also look at how your current choice affects developers. If a bundle layout
helps developers work in parallel or enforces separation between components, it’s
worth keeping. But if a bundle is getting in the way of development, perhaps for leg-
acy class-loader reasons, you should consider removing it, either by merging it with an
existing bundle or by making it available via boot delegation (we briefly discussed this
option at the start of section 6.2.1). Consider the jEdit example: have you reached the
right balance of bundles?

A BUNDLE TOO FAR

Let’s refresh your memory. Recall the Import-Package discussion back in the section
“Stitching the pieces together.” We mentioned an interesting issue caused by placing
the top-level package in its own bundle, separate from the rest of the jEdit engine. You
can see the problem for yourself by starting the OSGi version of jEdit and selecting
File > Print. A message box pops up (see figure 6.12), describing a failure in a Bean-
Shell script.

Why did the script fail? The error message suggests a class-loading problem. If you
scroll down through the stack trace, you’ll notice the last jEdit class before the call to
bsh.BshMethod.invoke () is org.gjt.sp.jedit.BeanShell. This is a utility class that
manages BeanShell script execution for jEdit. It’s part of the top-level jEdit package
loaded by the main bundle class loader, and it configures the BeanShell engine to use
a special instance of JARClassLoader (previously discussed in section 6.2.3) that

| £ BeanShell Error 2

® ABeanShell error occurred.

Attempt to

interl_4 :
{ns) { this.calls
i .4 .print (view , buffer , false)

m
d o

w

JExpression.java:

™
of ot

[T

yExpreasicn.eval (BS

ryExpression.java: 4

Figure 6.12 Error attempting to print from jEdit

Splitting an application into bundles 227

delegates to each plugin class loader in turn. This is so BeanShell scripts can access
any class in the entire jEdit application. If none of the plugin class loaders can see the
class, this special class loader delegates to its parent class loader. For a classic Java
application, this is the application class loader, which can see all the jEdit classes on
the class path. For your OSGi application, the parent is the class loader for the main
bundle, which can only see the org.gjt.sp.jedit and proto packages it contains as
well as any packages it explicitly imports. One thing you know it can’t see is the
BufferPrinterl 4 class.

Who owns the BufferPrinterl 4 class? It’s part of the org.gjt.sp.jedit.print
package, belonging to the jEdit engine bundle. You could check the manifest to make
sure this package is being exported as expected; but if you’re using the instructions
from the section “Stitching the pieces together,” then it is. It’s being exported from
the engine bundle, but is it being imported by the main bundle? Without an import,
this package isn’t visible. Let’s avoid cracking open the JAR file and instead use bnd to
see the list of imports.

Listing 6.5 Using bnd to print imported and exported packages

$ java -jar ../../lib/bnd-0.0.384.jar print -impexp jEdit/jedit.jar

[IMPEXP]
Import-Package Prints imported and
bsh exported packages

com.microstar.xml
gnu.regexp
javax.swing
javax.swing.border
javax.swing.event
javax.swing.plaf
javax.swing.text
org.gjt.sp.jedit.browser
org.gjt.sp.jedit.buffer
org.gjt.sp.jedit.gui
org.gjt.sp.jedit.help
org.gjt.sp.jedit.io
org.gjt.sp.jedit.menu
org.gjt.sp.jedit.msg
org.gjt.sp.jedit.options
org.gjt.sp.jedit.pluginmgr
org.gjt.sp.jedit.search
org.gjt.sp.jedit.syntax
org.gjt.sp.jedit.textarea
org.gjt.sp.util
org.osgi. framework
org.osgi.service.url
Export-Package
org.gjt.sp.jedit {version=4.2}

Aha! The main bundle manifest contains no mention of the org.gjt.sp.
jedit.print package, which explains why the BufferPrinterl 4 class wasn’t found
and the script failed. A last question before you try to fix this issue: why didn’t bnd

228

CHAPTER 6 Moving toward bundles

pick up the reference to the org.gjt.sp.jedit.print package? Remember that bnd
works primarily on byte code, not source code; it won’t pick up packages referenced
in scripts, arbitrary strings, or runtime configuration files. The only reference to this
package was in a BeanShell script, which wasn’t analyzed by the bnd tool.

You now have all the answers as to why the script failed, but how should you solve
the problem? Bnd supports adding custom analyzers to process additional content, so
you could write your own BeanShell analyzer for bnd. But what if writing such an ana-
lyzer is outside your expertise? Can you instead fix the class-loading problem at execu-
tion time? There are two approaches to solving this type of class-loading issue:

= Attempt to use a different class loader to load the class.

= Add the necessary imports to the bundle doing the loading.

The first approach is only possible when the library provides some way of passing in
the class loader or when it uses the Thread Context Class Loader (TCCL) to load
classes. (You can read more about the TCCL in chapter 8.) The BeanShell library does
provide a method to set the class loader, but jEdit is already using it to pass in the spe-
cial class loader that provides access to all currently installed jEdit plugins. Rather
than mess around with jEdit’s internal JARClassLoader code and potentially break
the jEdit plugin framework, you’ll take the second approach and add the missing
imports to the main bundle. This has the least impact on existing jEdit code—all
you're doing is updating the OSGi part of the manifest.

You know that you need to import the org.gjt.sp.jedit.print package, but
what else might you need? To make absolutely sure, you’d have to run through a
range of tests exercising the whole of the jEdit GUI. Although this testing could be
automated to save time, let’s instead try the suggestion from the end of section 6.1.3
and allow the main jEdit bundle to import any package on demand:

DynamicImport-Package: *

Add this to the jedit-main.bnd instruction file, and rebuild one more time. You can
now open the print dialog box without getting the error message. The application will
also continue to work even if you use a more restrictive dynamic import, such as

DynamicImport-Package: org.gjt.sp.*

Why does this work? Well, rather than say up front what you import, you leave it open
to whatever load requests come through the main bundle class loader. As long as
another bundle exports the package, and it matches the given wildcard, you’ll be able
to see it. But is this the right solution? Merging the main and engine bundles back
together would solve the BeanShell problem without the need for dynamic imports. You
already know these bundles are tightly coupled; keeping them apart is causing you fur-
ther trouble. This is a good example of when introducing more bundles doesn’t make
sense. OSGi isn’t a golden hammer, and it won’t magically make code more modular.
In short, if you’re getting class-loading errors or are sharing lots of packages between
bundles, that could be a sign thatyou should start merging them back together. You may

6.3

Summary 229

decide to fall back to classic Java class loading by putting troublesome JAR files back on
the application class path and exposing a selection of their packages via the system bun-
dle with the org.osgi.framework.system.packages.extra property. You can go even
further by adding their packages to the org.osgi.framework.bootdelegation prop-
erty, which makes them automatically available to all bundles without needing to explic-
itly import them.

This sounds useful, but there’s a catch: if you use boot delegation, you won’t be
able to use multiple versions or dynamically deploy them. But if it avoids tangled class-
loading problems and helps keep your developers sane, you may decide this is a fair
trade. You can often achieve more by concentrating on modularizing your own code.
Leave complex third-party library JAR files on the application class path until you
know how to turn them into bundles or until an OSGi-compatible release is available.
Not everything has to be a bundle. As we often say in this book, you can decide how
much OSGi you want to use: it’s definitely not an all-or-nothing approach!

Summary
In this chapter, we did the following:

= Showed how to turn an existing JAR into a bundle (abracadabra!)

= Turned Apache BeanUtils and HttpClient into example bundles

= Discussed slicing complete applications into one or more bundles

= Converted jEdit into an OSGi application that still works outside of OSGi

= Explained why you should watch for the sweet spot where you get the most
value per bundle

= Looked at why too few bundles make your application less modular and less
flexible

= Looked at why too many bundles can lead to exponential test and management
costs

But what is involved in testing bundles? After you’ve split your application into many
independent parts, how do you keep everything consistent, and how do you upgrade
your application without bringing everything down? The next chapter will discuss this
and more, as we look at testing OSGi applications.

JAVA

0SGi v action

Hall « Pauls « McCulloch * Savaqe

SGi is a Java-based framework for creating applications as

a set of interconnected modules. OSGi lets you install,

start, stop, update, or uninstall modules at execution time
without taking down your entire system. It’s the backbone of
the Eclipse plugin system, as well as many Java EE containers,
such as GlassFish, Geronimo, and WebSphere.

05Gi in Action provides a clear introduction to OSGi concepts
with examples that are relevant both for architects and
developers. You'll start with the central ideas of OSGi: bundles,
module lifecycles, and interaction among application com-
ponents. With the core concepts well in hand, you’'ll explore
numerous application scenarios and techniques. You'll learn
how to migrate legacy systems to OSGi and how to test, debug,
and manage applications.

What's Inside
e Core ideas of OSGi

* Vocabulary, tools, and strategies

* Applying OSGi

This book assumes readers with a working knowledge of Java,
but requires no previous exposure to OSGi.

Richard S. Hall, Karl Pauls, Stuart McCulloch, and David Savage are
all respected Java developers and committers on the Apache
Felix OSGi implementation.

For access to the book’s forum and a free ebook for owners
of this book, go to manning.com/OSGiinAction

$49.99 / Can $61.99 [INCLUDING eBOOK]

&ee eb,
Q SEE IN

“An impressive book.”

—From the foreword by
Peter Kriens
OSGi Technical Director

“A lucid explanation of an
intricate topic.”
—John S. Griffin, Overstock.com

“Easy to read ... explains
everything you need
to know.”

—Jason Lee, Oracle

“Straight from the experts.”
—Erik Van Oosten, JTeam

“Hit the ground running

with this book.”

— David Dossot
Coauthor of Mule in Action

ISBN-13: 978-1-933988-91-7
ISBN-10: 1-933988-91-b

“ 5‘499“9
IM7819331988917

