

Ajax in Practice
by Dave Crane
Bear Bibeault

Jord Sonneveld
with Ted Goddard, Chris Gray,

Ram Venkataraman and Joe Walker

 Sample Chapter 5

Copyright 2007 Manning Publications

v

PART 1 FUNDAMENTALS OF AJAX ...1

1 ■ Embracing Ajax 3

2 ■ How to talk Ajax 26

3 ■ Object-oriented JavaScript and Prototype 64

4 ■ Open source Ajax toolkits 117

PART 2 AJAX BEST PRACTICES .. 161

5 ■ Handling events 163

6 ■ Form validation and submission 202

7 ■ Content navigation 234

8 ■ Handling back, refresh, and undo 271

9 ■ Drag and drop 311

10 ■ Being user-friendly 336

11 ■ State management and caching 388

12 ■ Open web APIs and Ajax 415

13 ■ Mashing it up with Ajax 466

brief contents

163

Handling events

This chapter covers
■ Models of browser event handling
■ Commonly handled event types
■ Making event handling easier
■ Event handling in practical applications

164 CHAPTER 5
Handling events

The days of boring HTML applications are over now that Ajax allows us to build
highly interactive web applications that respond fluidly to user actions. Such user
actions may include clicking a button, typing in a text box, or simply moving the
mouse. User actions have been translated into events throughout the history of
graphical user interfaces (GUIs), and it is no different in the browser world. When
a user interacts with a web page, events are fired within the DOM hierarchy that is
being interacted with, and if there are event handlers associated with the events
fired on the document’s elements, they will be called when the events occur. Ajax
applications depend heavily on these events and their handlers; they could even
be considered the lifeline of every Ajax application.

 Before we get ahead of ourselves, let’s see how we can add a simple event han-
dler to a web page. In the following code snippet, notice how the element
has an onclick attribute. This attribute defines an event handler that will be
called by the browser when the user clicks the mouse on the element.

<html>
 <body>

 </body>
</html>

If you load this example into a browser, you will see that when the mouse button is
clicked while hovering over the image, the alert box showing the message
“Woof!” is displayed, as shown in figure 5.1.

Figure 5.1 Making the dog bark

Event-handling models 165

This demonstrates how easy it is to assign an event handler to a DOM element.
Throughout this chapter we’ll examine the major aspects of event handling. We
begin by reviewing the various ways in which we can define event handlers
using the various models available. We’ll see how the process differs across the
browser platforms and look at ways to make it portable across browser imple-
mentations. We’ll also learn about the information about the event made avail-
able to event handlers when they are invoked. We’ll discuss the concepts of event
bubbling and event capturing that specify how events are propagated through the
DOM, and we’ll also look closely at the commonly handled event types. Finally,
we’ll whip up some real-world examples that demonstrate how we can put these
concepts to use in our applications.

5.1 Event-handling models

While we’ve seen how easy it is to declare simple event handlers, you would think
that writing event handlers should be just as easy. We just write some script into
the handler attributes and the browser executes it when the event occurs. What
could be simpler? But we wouldn’t need this chapter if it were really that simple,
would we?

 In the present-day world, there are three event models that we need to con-
tend with in order to use events in our web applications:

■ The Basic Event Model, also informally known as the DOM Level 0 Event
Model, which is fairly easy, straightforward, and reasonably cross-platform.

■ The DOM Level 2 Event Model, which provides more flexibility but is
supported only on standards-compliant browsers such as Firefox, Mozilla,
and Safari.

■ The Internet Explorer Event Model, which is functionally similar to the
DOM Level 2 Model, but which is proprietary to Internet Explorer.

First we’ll take a look at registering and writing handlers using the basic model,
and then we’ll look at using the two advanced models.

5.1.1 Basic event-handling registration

The example we examined in the chapter introduction illustrates the use of the
Basic, or DOM Level 0, Model. This is the oldest approach to event handling and
enjoys strong (though not complete) platform independence. It is well suited for
basic event-handling needs. And as we’ll see, it’s not completely replaced by the
more advanced models, but is typically used in conjunction with those models.

166 CHAPTER 5
Handling events

 This model allows event handlers to be assigned in one of two ways:

■ Inline with the HTML element markup, using event attributes of the
HTML elements

■ Under script control, using properties of the DOM elements

Recall the element from our small example:

This is an example of using the inline technique.
 The value of the onclick event attribute becomes the body of an anonymous

function that serves as the handler for the click event. While this is easy, it has
its limitations.

 The best-practice design approach to building web applications separates
the view of the application (HTML) from its behavior (JavaScript). Using the
inline approach of defining event handlers violates this principle, and there-
fore it is generally recommended that use of inline handler declarations be lim-
ited or avoided.

 The better approach is to attach the event handler to the DOM element
under script control. This technique has become more prevalent in recent years,
as the browser DOM has become more standardized and JavaScript developers
have become more familiar with it. All DOM elements have properties that repre-
sent the events that can be fired on the element: for example, onclick, onkeyup,
or onchange.

 Let’s rework the sample code that we saw earlier into a complete HTML docu-
ment and programmatically set the onclick event handler of the image as shown
in listing 5.1.

<html>
 <head>
 <title>Events!</title>
 <script type="text/javascript">
 window.onload = function() {
 document.getElementById('anImage').onclick = function() {
 alert('Woof!');
 }
 };
 </script>
 </head>
 <body>

Listing 5.1 Assigning an event handler in script

Declares the page’s
onload handler

 b

Event-handling models 167

 </body>
</html>

If you have downloaded the source code that accompanies this chapter from
www.manning.com/crane2, you’ll find this HTML document in the file chap5/
listing-5.1.html.

 While this example is functionally equivalent to our previous example, it
exhibits a higher level of sophistication than the previous code. We’ve separated
the behavior from the view by factoring the script out of the <body> element C
and into a <script> element in the <head>. Note that we have placed the code in
yet another event-handler function: the onload event handler b for the page.

 Although this seems like more code to do the same thing that we saw in the
first example, this technique not only improves the structure of the page but also
gives us more flexibility.

 An important aspect of that flexibility is the ability to control when handlers
are established and removed. With the inline method, we’re limited to establish-
ing handlers when the page loads, and those handlers exist for the duration of
the page. Assigning the handler under script control allows us to establish a han-
dler whenever we want to. In the example of listing 5.1, we chose to establish the
handler when the page loads, but we could just as easily have deferred that action
until a later time as the result of some other event. Moreover, we can remove the
event handler at any time by assigning null to the event property—something we
can’t do with inline handlers.

 In our example, we created the event handler using an anonymous function
literal—after all, why create a separate named function if we don’t have to? But
when assigning named functions as event handlers, it is important to remember
not to include parentheses after the function name. We want to assign a reference
to the function as the property value, not the result of invoking the function! For
example, the following will invoke a function named sayWoof() rather than set-
ting it as the event handler. Don’t make this common mistake.

element.onclick = sayWoof(); //Wrong!

element.onclick = sayWoof; //Correct!

Although the DOM Level 0 Event Model is somewhat flexible, it does suffer from
limitations; for example, it doesn’t easily allow chaining of multiple JavaScript
functions in response to an event.

Declares the script-free
image element C

168 CHAPTER 5
Handling events

 So how would we register two functions to handle a single event? Let’s ini-
tially take a rather naive approach and modify our example by adding two Java-
Script event handlers to the onclick property of the element, as shown in
listing 5.2 (found in the file chap5/listing-5.2.html in the downloadable source
code) with the added code highlighted in bold.

<html>
 <head>
 <title>Events!</title>
 <script type="text/javascript">
 window.onload = function() {
 document.getElementById('anImage').onclick = function() {
 alert('Woof!');
 }
 document.getElementById('anImage').onclick = function() {
 alert('Woof again!');
 }
 };
 </script>
 </head>
 <body>

 </body>
</html>

When we run this code, it is obvious that only the second handler is called
because only a single alert containing “Woof again!” is displayed. Looking at the
code, this shouldn’t be much of a surprise. Since onclick is simply a property of
the element, multiple assignments to it will overwrite any previous assign-
ment, just as with any other property.

 This poses an interesting question: is it possible to call multiple functions in
response to an event? Using the DOM Level 0 Event Model, there is no means to
register multiple event handlers on the same event by assigning the handlers
to the element’s event properties. We could factor the code from multiple func-
tions into a single function, or we could write a function that in turn called the
other functions. But each of these tactics is a rather pedestrian approach and is
not very scalable. If we had no other recourse, a more sophisticated means to
accomplish this would be to utilize the Observer pattern (also known as the Pub-
lisher/Subscriber pattern) in which our registered handler would serve as the
observer, and other functions could register themselves as subscribers.

Listing 5.2 Attempting to assign two handlers

Event-handling models 169

 Luckily, we won’t have to resort to such shenanigans as the browsers allow us to
register multiple handlers—though, unfortunately, not in a browser-independent
fashion—if we use the advanced event-handling models. Let’s take a look at how
to do just that.

5.1.2 Advanced event handling

In a perfect world, code written for one browser would work flawlessly in all
other browsers. We don’t live in that world. So when it comes to the advanced
event models, we need to deal with browser differences. On the one hand, there
is the World Wide Web Consortium (W3C) way of doing things, and then there is
the Microsoft way of doing things. Let’s look at the standardized W3C way first.

 For browsers that adhere to the DOM Level 2 Event Model, a method named
addEventListener() is defined for each DOM element and can be invoked to add
an event handler to that element. This method accepts three arguments: a string
declaring the event type, the event-handler function to be executed (also known
as the listener), and a Boolean value denoting whether or not event capturing is to
be enabled. We’ll explain this last argument when we discuss event propagation,
but for the time being, we’ll just leave it set to false.

 The event type argument expects a string containing the name of the event
type to be observed. This is the attribute name for the event with the on prefix
omitted—for example, click or mouseover.

 Let’s change our sample code of listing 5.2 to use this method. We’ll replace
the basic means (which sets the onclick property of the element) with calls to the
addEventListener() method, as shown in listing 5.3 (with changes highlighted
in bold).

<html>
 <head>
 <title>Events!</title>
 <script type="text/javascript">
 window.onload = function() {
 document.getElementById('anImage').addEventListener(
 'click',
 function() { alert('Woof!'); },
 false);
 document.getElementById('anImage').addEventListener(
 'click',
 function() { alert('Woof again!'); },
 false);
 };

Listing 5.3 Adding an event handler the W3C way

170 CHAPTER 5
Handling events

 </script>
 </head>
 <body>

 </body>
</html>

When this page is displayed and the image is clicked, both the alert boxes show up
without resorting to hokey container functions to chain both event handlers. Note
that this code does not work in Internet Explorer; later in this section we’ll see
how IE implements advanced event handling in its proprietary fashion.

 Also note that, when multiple handlers for the same event on the same ele-
ments are established as we have done in our example, the DOM Level 2 Event
Model does not guarantee the order in which the handlers will be executed. In
testing, it was observed that the handlers seemed to be called in the order that
they were established, but there is no guarantee that will always be the case and it
would be folly to write code that relies on that order.

 To remove an event handler from an element, we can use the removeEvent-
Listener() method defined for the DOM elements.

 The proprietary Microsoft means of attaching events is similar in concept, but
different in implementation. It uses a method named attachEvent() defined for
the DOM elements to establish event handlers. This function accepts two argu-
ments: the event name and the event-handler function to be executed. Unlike the
event type that is used with addEventListener(), the event property name, com-
plete with the on prefix, is expected.

 Armed with this information, let’s modify our sample code once again. We’ll
add some detection to our code and use the method that’s appropriate to the
containing browser. The updated code is shown in listing 5.4 (available in the
downloadable source code for this chapter), once again with changes highlighted
in bold.

<html>
 <head>
 <title>Events!</title>
 <script type="text/javascript">
 window.onload = function() {
 if (document.getElementById('anImage').attachEvent) {
 document.getElementById('anImage').attachEvent(
 'onclick',

Listing 5.4 Doing it either way

Event-handling models 171

 function() { alert('Woof!'); });
 document.getElementById('anImage').attachEvent(
 'onclick',
 function() { alert('Woof again!'); });
 }
 else {
 document.getElementById('anImage').addEventListener(
 'click',
 function() { alert('Woof!'); },
 false);
 document.getElementById('anImage').addEventListener(
 'click',
 function() { alert('Woof again!'); },
 false);
 }
 }
 </script>
 </head>
 <body>

 </body>
</html>

In the first line of the onload event handler, we check to see which method we
should use. Note the use of a test known as object detection. Rather than testing for
a specific browser, we check to see if the proprietary attachEvent() method exists
on the element. If so, we use it; otherwise, we use the standardized W3C method.

 When we display this page in any browser, it is guaranteed to work as long as
the browser supports either one of these mechanisms. When we click on the image
when displayed in Internet Explorer, we notice something strange: the alerts are
shown in the reverse order! Or maybe not. Truth be told, as with the DOM Level 2
Event Model, we don’t know in which order they will be shown. The definition of
the attachEvent() method clearly states that multiple event handlers attached
to the same event type on an element will be triggered in random order.

 This completes our exploration into the ways in which event handlers can be
registered across the different browsers. You saw the ease with which we can use the
inline technique as well as its disadvantages. The DOM Level 0 means of register-
ing event handlers is portable across browsers, but does not provide an automatic
way of chaining multiple event-handler functions. We showed you how to attach
event handlers in a more advanced way using either the DOM Level 2 or Internet
Explorer models. Although this approach is flexible and allows us to dynami-
cally attach, detach, and chain event handlers, it suffers from cross-browser issues,

172 CHAPTER 5
Handling events

forcing us to resort to object detection in order to call the method appropriate to
the current browser. Fortunately, frameworks are available that abstract all these
differences away and help us write code that is portable across all supported
browsers. We’ll see how using Prototype helps us in this manner in section 5.3.

 Before we do that, let’s build on our foundations of event handling in gen-
eral. In the next couple of sections you’ll see in detail how event information is
made available to an event handler and how events are propagated through the
DOM tree.

5.2 The Event object and event propagation

Two other important topics that we need to understand when dealing with events
in the browser are the Event object and the manner in which events are propa-
gated. The Event object, actually an instance of the Event class, is important for
obtaining information about the event, and event propagation defines the order
in which an event is delivered to its observers. First let’s tackle the Event object.

5.2.1 The Event object

When an event is triggered, an instance of the Event class is created that contains
a number of interesting properties describing that event. In our event handlers, we
typically want to access that Event object to obtain interesting properties such as
the HTML element on which the event occurred, or which mouse button was clicked
(for mouse events). As with much else in the world of events, this Event object
instance is made available to the event handlers in a browser-specific fashion.

 For standards-compliant browsers, the Event object instance is passed as the first
parameter to the event-handler function. In Internet Explorer, the instance is
attached as a property to the window object instance (essentially a global variable).

 Let’s explore what it takes to deal with this object. Since we’re getting tired of
the alerts, let’s also change the code to write diagnostic information into a <div>
element below the image, as shown in listing 5.5.

<html>
 <head>
 <title>Events!</title>
 <script type="text/javascript">
 window.onload = function() {
 document.getElementById('anImage').onclick =
 function(event) {
 if (!event) event =

Listing 5.5 Grabbing the Event instance

 B Grabs event object instance

The Event object and event propagation 173

 window.event;
 var target =
 event.target ? event.target : event.srcElement;
 document.getElementById('info').innerHTML +=
 'I woof at ' + target.id + '!
';
 }
 }
 </script>
 </head>
 <body>

 <div id="info"></div>
 </body>
</html>

In this example, we obtain a reference to the instance of Event by checking first to
see if the parameter passed to the event-handler function, which we cleverly
named event, is defined (as it will be for standards-compliant browsers) and if
not, copies the event property from the window object b where IE will have
placed it.

 We then want to obtain a reference to the target element C—that is, the ele-
ment for which the event was generated. Again, we need to do so in a browser-
specific manner as the definition of the Event class differs between IE and
standard browsers.

 We check to see if the standard target property is defined, and if not, we use
the proprietary srcElement property.

 What a pain! It seems that almost each and every step of event handling needs
to do things differently in order to work in both IE and the browsers that support
the W3C standards!

 Well, yes, that’s pretty much the case. But fear not; help is at hand. But first,
let’s find out what event propagation is all about.

5.2.2 Event propagation

We’ve focused, up to this point, on handlers that are directly defined on the ele-
ments that trigger the events, as if they are the only handlers that are significant.
As it turns out, this is not the case. Rather, the event is delivered not only to the
target element, but potentially to all its ancestors in the DOM tree as well. In this
section, we’ll see how events are propagated through the DOM tree, and learn
how we can affect which event handlers are called along the way—and even how
to control the propagation of an event.

Obtains event target element reference C

174 CHAPTER 5
Handling events

 We’ll start by talking about how events are propagated in browsers that follow
the DOM Level 2 Event Model. We’ll then examine how Internet Explorer sup-
ports only a subset of that model.

 In standards-compliant browsers that support the DOM Level 2 Model, when
an event is triggered, that event is handled in three phases. These phases, in
order, are called capture, target, and bubble phases.

 During the capture phase, the event traverses the DOM tree from the docu-
ment root element down to the target element. Any event handlers established on
the traversed elements for the type of event that is being propagated are invoked
if the event handler was registered as a capture handler. Remember that third
parameter to the addEventListener() method that we’ve been ignoring up until
now? If that parameter is set to true, the event handler is registered as a capture
handler. If it’s set to false, as we have been doing up to now, the event handler is
established as a bubble handler. Each event handler can be either a capture or a
bubble handler, but never both.

 Once the event has traversed downward to the target element, activating any
appropriate capture handlers along the way, the propagation enters the target
phase. During this phase, the event handlers established on the target element
itself are triggered as appropriate. If both a capture and a bubble handler are
established on the target element, they are both invoked during this phase.

 The event propagation then reverses direc-
tion and “bubbles” up the DOM tree from the
target element to the root element. This is
the bubble phase, and along the way, any bub-
ble handlers established for the event type on
the traversed elements are triggered.

 Enough talk—how about a diagram? Let’s
say that we modify the body of our example
program to nest the element within two
<div> elements as follows:

<div id="level1">
 <div id="level2">

 </div>
</div>

When we click on the image element, the click
event is propagated through the DOM tree as
shown in figure 5.2. Figure 5.2 Down and up the DOM tree

The Event object and event propagation 175

Now let’s see it in action. Consider the code in listing 5.6.

<html>
 <head>
 <title>Events!</title>
 <script type="text/javascript">
 window.onload = function() {
 document.getElementById('anImage').addEventListener(
 'click', react, false);
 document.getElementById('level1').addEventListener(
 'click', react, true);
 document.getElementById('level2').addEventListener(
 'click', react, false);
 }

 function react(event) {
 document.getElementById('info').innerHTML +=
 'I woof at ' + event.currentTarget.id + '!
';
 }
 </script>
 </head>
 <body>
 <div id="level1">
 <div id="level2">

 </div>
 </div>
 <div id="info"></div>
 </body>
</html>

In this example, we’ve modified the body D as described earlier, nesting the
 element within two <div> elements.

 Within the onload event handler b, we establish three event handlers: one on
the element, and one on each of the nesting <div> elements. Note that the
event handler established on the element with the id of level1 is registered as a
capture handler by way of its third parameter.

 All event handlers are assigned the same function, react() C, which emits a
message that contains the value of the currentTarget property of the passed
event instance. This property differs from the target property in that the target
property identifies the element that triggered the event while currentTarget
identifies the element that is the current subject of the event propagation—in
other words, the element upon which the handler was established.

Listing 5.6 Establishing capture and bubble handlers

Establishes handlers B

Defines handler function C

Defines nested element D

176 CHAPTER 5
Handling events

Before looking at figure 5.3, try to guess what the order of handler invocation will
be. Did you get it right?

 When we display this example in a standards-compliant browser (remember,
the code we’re using is not suited for Internet Explorer yet) and click the image,
we see the display shown in figure 5.3.

 The reason for the order of the output should be clear. The handler estab-
lished on the level1 element is a capture handler, while the rest are bubble han-
dlers. The level1 handler triggers, emitting its output, during the capture phase;
the event handler on the element triggers during the target phase; and
finally, the event handler on level2 is invoked during the bubble phase.

 Internet Explorer supports only the target and bubble phases; no capture
phase is supported. To modify this example for IE, we need to change the calls to
the addEventListener() method to attachEvent() and alter the event-handler
function as well. Unfortunately, there is no property corresponding to current-
Target in the Event class provided by Internet Explorer.

 If you are targeting IE, and getting a reference to the current target element of
the bubble phase is essential to your requirements, you’ll need to come up with
some underhanded means of getting a reference to that element to the event
handler. One tactic that we could employ would be to use the Prototype bind()

Figure 5.3 Result of capture and bubble

The Event object and event propagation 177

mechanism to force the function context object (the this reference) for the event
handler to be the element upon which the handler is being established, as in

Event.observe('someId','click',someHandler.bind($('someId')));

Then, in the event handler, we could add

if (!event.currentTarget) event.currentTarget = this;

This would detect environments where currentTarget is not defined and set
the context object reference into the Event instance to be used in a browser-
independent fashion in the remainder of the handler. A bit Byzantine, per-
haps, but useful if you absolutely must have this information available across
all browsers.

Stopping propagation
There are times when you may want to prevent an event from continuing its
propagation. An example is when you know that you have handled the event as
much as you require and allowing the event to further propagate would trigger
unwanted handlers.

 In a standards-compliant browser, the stopPropagation() method of the Event
class would be called within an event handler to prevent further propagation of the
current event. In IE, the cancelBubble property of the Event instance is set to true.
It may seem odd to set a property, rather than call a method, in order to effect a
stop to the propagation, but that’s how IE defines this action.

Preventing the default action
Some events, known as semantic events, trigger a default action in the browser—
such as when a form is submitted, or when an anchor element is clicked.

 In DOM Level 0 handlers, the value false can be returned in order to cause that
default action to be canceled. In DOM Level 2 handlers, the preventDefault()
method of the Event class serves the same purpose. Calling this method prevents
the default action from taking place. This can be used, for example, to prevent a
form from being submitted if a validation check conducted by a submit event han-
dler determines that one or more form fields are not valid. In IE, the returnValue
property of the Event instance is set to false to prevent the browser from carrying
out the default action.

 All these browser differences are a royal pain to deal with. Luckily, we’re not
the only ones who think so, and those who write JavaScript libraries have come to
our aid. Let’s take a look at how a now-familiar library makes event handling less
painful in our pages.

178 CHAPTER 5
Handling events

5.3 Using Prototype for event handling

Several JavaScript libraries are available that simplify the process of defining
event handlers by abstracting browser differences away. Prototype, which we
examined previously in chapters 3 and 4 with regard to helping us write object-
oriented JavaScript and make Ajax requests, also provides a simple but conve-
nient abstraction to help us with event handling.

 Prototype defines an Event namespace that possesses a handful of useful
methods; the two most important ones are observe() and stopObserving(). The
observe() method allows you to attach an event handler to an element, while
stopObserving() removes event handlers from those elements.

 Let’s take our example of listing 5.6 and modify it using Prototype. The result
is shown in listing 5.7.

<html>
 <head>
 <title>Events!</title>
 <script type="text/javascript" src="prototype-1.5.1.js">
 </script>
 <script type="text/javascript">
 window.onload = function() {
 Event.observe('anImage', 'click', react, false);
 Event.observe('level1', 'click', react, true);
 Event.observe('level2', 'click', react, false);
 }

 function react(event) {
 $('info').innerHTML +=
 'I woof at ' + Event.element(event).id + '!
';
 }
 </script>
 </head>
 <body>
 <div id="level1">
 <div id="level2">

 </div>
 </div>
 <div id="info"></div>
 </body>
</html>

Listing 5.7 Event handlers the Prototype way!

Defines event handlers B

Declares handler function C

Using Prototype for event handling 179

What a difference Prototype makes! Not only were we able to use the handy $()
function that Prototype provides, we were also able to make our example cross-
browser compatible while reducing the amount of code we had to write.

 In the onload event handler b, we used the Event.observe() method to estab-
lish our handlers in a cross-browser manner. We are still able to specify, for W3C-
compatible browsers, whether the event handler should be a capture or a bubble
handler. Under IE, this distinction will just be ignored.

 In our event-handler function C, we used the Event.element() method to
obtain a reference to the target element in a browser-agnostic manner.

 Note that Prototype does not provide a 100 percent abstraction of the differ-
ences between browser event handling. For example, if we wanted to obtain the
value of the currentTarget property, we’d need to do that directly, and we’d have
to be sure to not make such a reference when running within IE. However, Proto-
type does abstract a great deal of the most commonly used event-handling
requirements.

5.3.1 The Prototype Event API

This section provides a quick rundown of the API for the Prototype Event
namespace, describing each method available.

 To begin, the method

Event.observe(element,eventType,handler,useCapture)

establishes an event handler for the named event type on the passed element.
The useCapture parameter may be omitted and defaults to false. This parameter
is ignored in IE.

 Next, the method

Event.stopObserving(element,eventType,handler,useCapture)

removes an event handler. The parameters should exactly match those used to
establish the handler that is to be removed.

 The method

Event.unloadCache()

removes all handlers established through observe() and frees all references in
order to make them available for garbage collection. This is especially important
for IE, which has a severe memory leak problem with regard to event handling.
The best news is that under IE, Prototype automatically calls this method when a
page is unloaded.

180 CHAPTER 5
Handling events

 Next, the method

Event.element(event)

returns the target element of the passed event.
 The method

Event.findElement(event,tagName)

returns the nearest ancestor of the target element for the passed event that has
the passed tag name. For example, you could use this to find the nearest <div>
parent of the target element by passing the string “div” as the tagName parameter.

 The method

Event.pointerX(event)

returns the page-relative horizontal position of a mouse event, and the method

Event.pointerY(event)

returns the page-relative vertical position of a mouse event.
 The method

Event.isLeftClick(event)

returns true if a mouse event was a result of a click of the primary mouse button.
 Finally, the method

Event.stop(event)

stops the event from propagating any further and cancels any default action asso-
ciated with the event.

 There! That should make coding for events a lot simpler for us. Now let’s turn
our attention to the various event types that we commonly need to deal with.

5.4 Event types

When we consider a web application, we know that most events of interest to us
occur as the result of the user interacting with the application using the mouse or
the keyboard. These events are fired in the DOM element tree in response to user
actions such as causing the page to load, clicking a button, moving the mouse,
dragging the mouse, typing on the keyboard, or taking an action that would cause
the page to unload. As we have seen, we can write event handlers for these events
so that our application can respond to these actions. We’ll take a closer look at the
more commonly handled event types in this section, and we’ll start by looking at
the mouse events.

Event types 181

5.4.1 Mouse events

The mouse events that are most commonly handled in a web application are
mouseup, mousedown, click, dblclick, and mousemove. When a user clicks on an
element, three events are fired: mousedown, mouseup, and click. Let’s observe this
firsthand by inspecting the code in listing 5.8.

<html>
 <head>
 <title>Mouse events!</title>
 <script type="text/javascript" src="prototype-1.5.1.js">
 </script>
 <script type="text/javascript">
 window.onload = function() {
 Event.observe('anImage', 'click', react);
 Event.observe('anImage', 'mousedown', react);
 Event.observe('anImage', 'mouseup', react);
 }

 function react(event) {
 $('info').innerHTML +=
 'I bark for ' + event.type +
 ' at (' + Event.pointerX(event) + ','+
 Event.pointerY(event) + ')!
';
 }
 </script>
 </head>
 <body>

 <div id="info"></div>
 </body>
</html>

In this code, we establish event handlers b for the click, mouseup, and mousedown
events on the element. When the image is clicked on, the event-handler
function C examines the event instance and emits output containing the event
type, as well as the page-relative coordinates of the mouse cursor at the time of
the click. In the browser, we’ll see the display shown in figure 5.4.

 We can see from these results that when the element is clicked on, the mouse-
down event fires first, followed by mouseup, and finally, click. As an exercise, add
mousemove or dblclick event handlers, and see how those events are delivered in
relation to the other event types.

Listing 5.8 Mouse events on a single click

Establishes mouse event handlers B

Emits info about event C

182 CHAPTER 5
Handling events

5.4.2 Keyboard events

The commonly handled keyboard events are keyup, keydown, blur, and focus. The
keyup and keydown events are similar to the mouseup and mousedown events; the
keydown event is fired when the key is pressed, and the keyup event is fired when
the key is released.

 The focus and blur events are triggered when a DOM element gains or loses
focus. In any loaded page, only one DOM element can have focus at a time. The
focus can be changed programmatically or as a result of user actions. When a user
tabs out of a field, the blur event will be fired, followed by the focus event of the
next element gaining focus. The user can also change focus by clicking on a
focusable element.

 Let’s look at an example of how the blur and focus events work. Examine the
code in listing 5.9.

<html>
 <head>
 <title>Blur and Focus</title>
 <script type="text/javascript" src="prototype-1.5.1.js">
 </script>
 <script type="text/javascript">
 window.onload = function() {
 Event.observe('nameField', 'blur', react);

Figure 5.4 Reaction to mouse events

Listing 5.9 Blur and focus and blur and focus and…

Establishes handlers on page load B

Event types 183

 Event.observe('nameField', 'focus', react);
 Event.observe('breedField', 'blur', react);
 Event.observe('breedField', 'focus', react);
 Event.observe('dobField', 'blur', react);
 Event.observe('dobField', 'focus', react);
 $('nameField').focus();
 }

 function react(event) {
 $('info').innerHTML +=
 Event.element(event).id + ' ' +
 event.type + '
';
 }
 </script>
 </head>
 <body>
 <form name="infoForm">
 <div>
 <label>Dog's name:</label>
 <input type="text" id="nameField"/>
 </div>
 <div>
 <label>Breed:</label>
 <input type="text" id="breedField"/>
 </div>
 <div>
 <label>Date of birth:</label>
 <input type="text" id="dobField"/>
 </div>
 <div>
 <input type="submit" id="submitButton"/>
 </div>
 </form>
 <div id="info"></div>
 </body>
</html>

The structure of this example is similar to the ones that we’ve been looking at up
to this point, but we’ve made some significant changes in order to shift focus from
mouse events (primarily click) to keyboard events.

 The body of the page has been modified to contain a <form> element E in
which we have defined three text fields. In the onload event handler b, we estab-
lish a focus event handler and a blur event handler for each of the text fields. We
added these handlers individually for clarity. As an exercise, how would you
rewrite this code so that all text fields in a form would be instrumented with the
event handlers without having to list them individually?

Assigns focus to first field c

 D Handles blur and focus events

 E Contains focusable elements

184 CHAPTER 5
Handling events

 At the conclusion of the onload handler, we also assign the focus C to the first
field in the form under script control. This is significant (besides being a friendly
thing to do) because it shows us that when the page loads, the focus handler for
that first field will trigger. This tells us that the focus event is triggered either
when focus is assigned by script or when assigned via user activity.

 This is not true for all events. The submit event for a form element, for exam-
ple, will not be triggered when a form is submitted under script control.

 We’ve also slightly modified our react() D event-handler function to emit the
name of the target element followed by the event type.

 When this page is initially loaded into the browser, we see the display as shown
in the top portion of figure 5.5. As you can see, an invocation of the focus event

Figure 5.5 Focusing and blurring

Event types 185

handler has already taken place because we assigned focus to the nameField ele-
ment in the onload event handler.

 After filling in some data and tabbing to the dobField element, we can see that
as we tab out of each field, the blur event handler is called for the element that we
are leaving, and the focus event handler is triggered as the next element in the tab
order gains focus (we’ll be seeing a lot more regarding tab order in chapter 10).

 Make a copy of the example code in listing 5.9 and add event handlers for the
other keyboard events to text fields. Observe how they are triggered as you type
the values into the fields.

5.4.3 The change event

We have seen how we can use a blur event handler to be notified when the user
leaves an element. But it would also be useful to know whether the value of a DOM
element has changed when it loses focus—for example, if we want to perform val-
idation on a field only when its data has changed instead of every time it loses
focus. For certain types of elements, such as text, textarea, select, and file, the
DOM fires a change event when an element loses focus and the content of the ele-
ment has changed between the time that field gains and loses focus.

 To see this in action, we’ll modify our previous example to add change event
handlers to the text field elements. The result is shown in listing 5.10, with
changes from listing 5.9 highlighted in bold.

<html>
 <head>
 <title>Ch-ch-changes</title>
 <script type="text/javascript" src="prototype-1.5.1.js">
 </script>
 <script type="text/javascript">
 window.onload = function() {
 Event.observe('nameField', 'blur', react);
 Event.observe('nameField', 'focus', react);
 Event.observe('nameField', 'change', react);
 Event.observe('breedField', 'blur', react);
 Event.observe('breedField', 'focus', react);
 Event.observe('breedField', 'change', react);
 Event.observe('dobField', 'blur', react);
 Event.observe('dobField', 'focus', react);
 Event.observe('dobField', 'change', react);
 $('nameField').focus();
 }

Listing 5.10 Knowing what’s changed

186 CHAPTER 5
Handling events

 function react(event) {
 $('info').innerHTML +=
 Event.element(event).id + ' ' +
 event.type + '
';
 }
 </script>
 </head>
 <body>
 <form name="infoForm">
 <div>
 <label>Dog's name:</label>
 <input type="text" id="nameField"/>
 </div>
 <div>
 <label>Breed:</label>
 <input type="text" id="breedField"/>
 </div>
 <div>
 <label>Date of birth:</label>
 <input type="text" id="dobField"/>
 </div>
 <div>
 <input type="submit" id="submitButton"/>
 </div>
 </form>
 <div id="info"></div>
 </body>
</html>

With very little in the way of changes to the HTML document, we’ve added the
ability to be notified when changes are effected on the text fields in our form.

 If we were to load this page into our browser, enter some text into the first field,
tab to the second, and then tab to the third without entering text into the second
field, we’d see something like figure 5.6. As you can see, a change event was trig-
gered just prior to the blur event for the name field, whose value was changed as
a result of user input, but not for the breed field, which was not changed.

5.4.4 Page events

So far we’ve seen events that are fired when a user interacts with the elements
within a loaded page, but the browser can also fire events representing page-level
activity. These are called page events, and they occur when the document is loaded,
unloaded, resized, or scrolled. Although these events sound special, we can cap-
ture them just as we do with other events by providing event handlers on the
<body> element of the page or assigning them via the window object.

Event types 187

In every example we’ve examined in this chapter, we’ve already seen the load
event in action; we used it to declare the other event handlers that we wanted to
demonstrate. Now let’s add examples of the unload and onbeforeunload events
into the mix, as shown in listing 5.11.

<html>
 <head>
 <title>Page Events</title>
 <script type="text/javascript" src="prototype-1.5.1.js">
 </script>
 <script type="text/javascript">
 window.onload = function() {
 alert('Loaded!');
 window.onunload = function() {
 alert('Unloaded!');
 }
 window.onbeforeunload =
 function() {
 return 'Leaving so soon?';
 }
 }
 }
 </script>
 </head>
 <body>

Listing 5.11 Handling page events

Figure 5.6 What’s changed?

 B Alerts that page is loaded

 C Alerts that page is unloading

 D Offers choice

188 CHAPTER 5
Handling events

 Do it again!
 </body>
</html>

As we’re going to be loading and unloading the page itself, using on-page out-
put to see what’s going on won’t work very well, so we’ve resorted to alert dialog
boxes again. In the onload event handler, we issue an alert when the page is
loaded b and then proceed to establish event handlers for the unload and
beforeunload events.

 In the onunload event handler C, we simply issue another alert that announ-
ces that that event has triggered. But the onbeforeunload event handler is a bit
more interesting.

 In the onunload event handler, there’s not much we can do except react to the
fact that the page is unloading, but in the onbeforeunload event handler, we can
actually affect whether or not the page will unload. If a value is returned, as in our
onbeforeunload event handler D, the browser will display a dialog box that asks
the user whether the page should unload. That dialog box contains the value that
we returned from the handler as part of its text.

 When we load this example into the browser, we get an annoying alert that
announces that the page has been loaded. Upon clicking the link on the page,
which we’ve wired to simply display the same page again, we see that the browser
triggers our onbeforeunload event handler and, as a result of the value we
returned from that handler, displays the dialog box shown in figure 5.7.

Figure 5.7 Let’s chat before you go.

Putting events into practice 189

It doesn’t take much imagination to see that this technique could be quite useful for
making sure that users don’t lose data when they attempt to leave a page before
completing their operation. If the user clicks the Cancel button, the page naviga-
tion is canceled and the unload operation never takes place. If the user clicks the
OK button, the unload operation proceeds and the user receives the alert announc-
ing that the unload event handler has been called just before the page reloads.

 One aside on the use of the load event: it’s not uncommon to see pages in
which a <script> element is placed near the bottom of the page in order to exe-
cute code as the page loads. The difference between using this tactic and imple-
menting the load event is that the load event is guaranteed not to be triggered
until after the page has completed loading, to include external elements such as
script files, CSS style sheets, and images.

 That completes our survey of event handling and our examination of some of
the most commonly handled event types. Obviously, we haven’t explored all
events that can be fired within a web page—such an overview could take many
chapters—but the information presented here is certainly enough to help you
understand how event handling operates and how to handle the event types that
are most typically used in modern web applications.

 Now that we have a good working knowledge of event handling and the event
types, let’s take a look at a few practical examples of putting them to work.

5.5 Putting events into practice

The examples in this section require the services of server-side resources in order
to execute. To make this as painless and simple as possible for the reader, the
sample code for this chapter at www.manning.com/crane2 is already set up to be a
complete and runnable web application.

 If you are already running a servlet container on your system, simply create a
new application context named aip.chap5 that points to the chap5 folder of the
downloaded code as its document base.

 If you are not already running a servlet engine, no need to panic. A PDF doc-
ument in the chap4 folder of the download walks you through downloading and
configuring Tomcat, and also shows you how to set up application contexts.

 When opening these examples in the browser, be sure to address the pages
through the web server rather than merely opening the HTML pages as files. For
example, to load the example in listing 5.12, you would use the address:

http://localhost:8080/aip.chap5/listing-5.12.html

190 CHAPTER 5
Handling events

This assumes, of course, that you are running the servlet container on the default
port of 8080. If you’ve changed that port to another one, be sure to adjust the
URL accordingly.

5.5.1 Validating text fields on the server

With the knowledge of how to attach change and blur event handlers to DOM ele-
ments under our belts, it is quite easy to use such handlers to validate input
elements on the client to ensure that the data entered is acceptable. Simple client-
side checks are easy to conduct, but sometimes business requirements dictate
that the data may need to be validated using knowledge that is only available on
the server. This may be because the validation is too complex to handle in Java-
Script, or because the information that needs to be available in order to validate
the data is too vast to send to the page for client-side use.

 A common strategy used in classical web applications is to perform the simple
validation on the page, and then to perform the more complex validations when
the form is submitted. But with the advent of Ajax, we no longer need to put the
user through this rather schizophrenic means of validation. To conduct server-
assisted validation on the fly, we’ll make a server request when a suitable event
occurs on the client side, which will validate the data and respond to the client
with an appropriate message.

 We have all the information we need to solve this problem. We know that we can
attach an event to a textbox to detect any changes, and that we can use that event
to trigger a request to the server with Ajax. The server-side resource that such a
request contacts can validate the data and send back an error message if the data
proves invalid.

 Note that the purpose of the example in this section is to demonstrate a real-
world use of event handling, not to present a mature or sophisticated validation
framework. That is a subject that will be discussed later in this book in chapter 6
and then again in chapter 10.

Problem
We need to validate text fields using a server-side resource when their value
changes.

Solution
We’ve already seen how to instrument an input text element with event han-
dlers, and this solution will do no differently. The question is: do we trap blur
or change events?

Putting events into practice 191

 The answer depends on the nature of the data and of the validations to be per-
formed. Since we are going to be making a server round-trip whenever we want to
perform a server-assisted validation operation, we want to make sure that we’re
not firing off requests any more than we need to.

 If we know that the data is valid to begin with, we can limit ourselves to trap-
ping change events. After all, there’s no need to validate data that we know is
already good. But in the more common case where fields may start off with
unknown data (or even empty), we probably need to trap blur events so that the
field can be validated every time it is visited.

 Establishing an event handler for the field to be validated is as simple as this:

Event.observe('fieldId','blur',validationFunction);

Listing 5.12 shows a page with a small form consisting of fields for a U.S. address,
city, state, and zip code. Our business requirements dictate that the zip code and
address must match. This requires consulting a server-side API that the United
States Postal Service (USPS) makes available and that must be consulted in the
server-side code. Let’s see how we handle that on the page.

<html>
 <head>
 <title>I Need Validation</title>
 <script type="text/javascript" src="prototype-1.5.1.js">
 </script>
 <script type="text/javascript">
 window.onload = function() {
 Event.observe('zipCodeField','blur',validateZipCode);
 $('addressField').focus();
 }

 function validateZipCode(event) {
 new Ajax.Request(
 '/aip.chap5/validateZipCode',
 {
 method: 'get',
 parameters: $('infoForm').serialize(true),
 onSuccess: function (transport) {
 if (transport.responseText.length != 0)
 alert(transport.responseText);
 }
 }
);
 }
 </script>
 </head>

Listing 5.12 Validating the zip code

Sets up event handling B

 C Initiates validation request

192 CHAPTER 5
Handling events

 <body>
 <form id="infoForm">
 <div>
 <label>Address:</label>
 <input type="text" id="addressField" name="address"/>
 </div>
 <div>
 <label>City:</label>
 <input type="text" id="cityField" name="city"/>
 <label>State:</label>
 <input type="text" id="stateField" name="state"/>
 <label>Zip Code:</label>
 <input type="text" id="zipCodeField" name="zipCode"/>
 </div>
 <div>
 <input type="submit" id="submitButton"/>
 </div>
 </form>
 <div id="info"></div>
 </body>
</html>

Three major activities are addressed by this page: setting up the event handling
b, reacting to the blur event by initiating the validation request to server-side
resource C, and setting up the data entry form D for the user to fill in.

 In the onload event handler b for the page, we set up the handler for the blur
event so that the validateZipCode() function will be called whenever the user
leaves the zip code field. This function C fires off a Prototype-assisted Ajax
request to a server-side resource named validateZipCode. As you’ll see in a
moment, this resource is a Java servlet that does some simplistic hand waving in
order to emulate an actual zip code validation operation.

 To this resource, we pass the fields of the our form utilizing the handy serial-
ize() method that Prototype conveniently adds to the <form> element.

 The server-side validation resource is defined to return an empty response if
all is well and to return an error message if validation fails. So in the onSuccess
event handler for the Ajax request, we test the text of the response and emit a
simple alert if the field failed validation. Remember, more sophisticated valida-
tion handling is something that we’ll explore in later chapters.

 Load this page into a browser (be sure to use the web server URL, not the File
menu) and fill in the fields. Note that when you leave the Zip Code field, an alert
is issued displaying the validation failure message, as shown in figure 5.8.

 D Sets up data entry form

Putting events into practice 193

In fact, you’ll find that every zip code that you type in will generate a validation
warning unless you just happened to guess the one valid zip code value of 01826.
That’s because our server-side validation servlet is, of course, not really connect-
ing to the USPS database in order to perform an actual validation. The servlet
code that is faking a validation operation appears in listing 5.13.

package org.aip.chap5;

import java.io.IOException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * Smoke-and-mirrors validator servlet for listing 5.12. The
 * zip code must be non-blank and equal to "01826" to be
 * considered valid.
 */
public class ZipCodeValidatorServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {
 StringBuilder result = new StringBuilder ();
 String zipCodeValue = request.getParameter("zipCode");
 if (zipCodeValue.length() == 0) {
 result.append("The zip code field cannot be blank");
 }

Listing 5.13 Faking our way through a zip code validation

Figure 5.8 Zip code invalid!

194 CHAPTER 5
Handling events

 else if (!zipCodeValue.equals("01826")) {
 result
 .append("The zip code value of ")
 .append(zipCodeValue)
 .append(" does not match the specified street address");
 }
 response.getWriter().write(result.toString());
 }
}

There’s really not too much to comment on here, except that if this were an
actual validation resource, all the fields for the form would be gathered, and a
USPS-provided API would be utilized to perform the actual validation. Because
that’s not the focus of this example (or even of this book), we’re just supplying a
fake resource that allows us to see our client-side code in practice.

Discussion
In this section, we saw a hybrid method of using client-initiated, server-assisted
validation that enables us to give users immediate feedback regarding their
entered data, regardless of whether the validation needs server resources.

 We used the blur event to detect when a user left a field in order to initiate the
check. But could we be smarter about this? Once the data has been checked the
first time, there’s no need to go through the overhead of another server round-
trip unless the data has changed. How would you modify the code to only initiate
the server check if the validity of the data is unknown?

 This hybrid approach of using both client-side and server-assisted on-the-fly
validation is a powerful addition to our web application toolbox. Such immediate
validation can prevent a lot of user frustration resulting from being told after the
form submission that there are problems with the submitted data. So by all means,
you should implement such validation. But you can never rely on it!

 Our client-side code is readily available to anyone visiting our pages, and
nefarious types will find it easy to reverse-engineer this code to submit their own
false data, totally bypassing any client-side validations framework no matter how
cleverly crafted. To be sure that the data is valid, always implement server-side
validation upon form submission regardless of how much validation has been
performed prior to that point. You can leverage the same code that you use for
client-initiated, server-assisted validation (such as the code we examined in this
example) for the final submission-time checks.

Putting events into practice 195

 Speaking of form submission, there may be times when we want to submit a
form to the server without the overhead of a complete page reload. Let’s examine
that next.

5.5.2 Posting form elements without a page submit

The vast majority of web pages that accept input today are written using the clas-
sical technique of submitting a form to the server when data entry is complete.
This entails a complete page refresh, which may be undesirable in the context of
the rich web applications that we can now deliver using Ajax.

Problem
We want to post a form to a server resource without a full-page reload.

Solution
As it turns out, the solution is almost completely trivial. In fact, we’ve already
pretty much accomplished this task in our previous example. To “submit” the
form, we’ll use the same technique that we utilized in that example to send form
elements to the server for validation.

 Trivial and familiar as this solution might be, a few nuances make this prob-
lem worth considering. We’ll take the code of our previous example, remove the
validation check (so that we can focus on the submission topic), and rewire it to
hijack the form-submission process in order to send the form to the server under
Ajax control rather than as a normal form submission. The results are shown in
listing 5.14.

<html>
 <head>
 <title>Submit!</title>
 <script type="text/javascript" src="prototype-1.5.1.js">
 </script>
 <script type="text/javascript">
 window.onload = function() {
 Event.observe('infoForm','submit',submitMe);
 $('addressField').focus();
 }

 function submitMe(event) {
 new Ajax.Request(
 '/aip.chap5/handleSubmission',
 {

Listing 5.14 Hijacking the submission process

Establishes submit event handler B

 C Submits form under Ajax control

196 CHAPTER 5
Handling events

 method: 'post',
 parameters: $('infoForm').serialize(true),
 onSuccess: function (transport) {
 $('info').innerHTML = transport.responseText;
 }
 }
);
 Event.stop(event);
 }
 </script>
 </head>

 <body>
 <form id="infoForm"
 action="/aip.chap5/shouldNotActivate">
 <div>
 <label>Address:</label>
 <input type="text" id="addressField" name="address"/>
 </div>
 <div>
 <label>City:</label>
 <input type="text" id="cityField" name="city"/>
 <label>State:</label>
 <input type="text" id="stateField" name="state"/>
 <label>Zip Code:</label>
 <input type="text" id="zipCodeField" name="zipCode"/>
 </div>
 <div>
 <input type="submit" id="submitButton"/>
 </div>
 </form>
 <div id="info"></div>
 </body>
</html>

The changes to this page are subtle but significant. First, we’ve added a handler
to the form for the submit event in the window’s onload handler b, which will
cause the submitMe() function to be called when the form is submitted C.

 We’ll deal with that function in just a minute, but first take a look at the
change we made to the <form> element D. We added an action attribute that
specifies a server-side resource that does not exist. By doing so, we’ll quickly
know if our form is ever submitted using the normal default action: the browser
will display an unmistakable error page when the server reports that the resource
cannot be found.

Assigns normal submission action D

Putting events into practice 197

 The submitMe() function, called when the submit event is triggered, initiates
an Ajax request similar to the one we saw in the previous example. But in this
case, we specified an HTTP method of 'post' rather than 'get'. The heavy lifting
is done by the Prototype serialize() method.

 The server-side resource for the request is a servlet that collects the request
parameters and formats a response that contains an HTML snippet showing
the names and values of those parameters. (As its operation is not germane to
this discussion, we won’t inspect it here. But if you’re curious, you’ll find the
source code for the servlet in the downloadable code as the org.aip.chap5.
ParameterInspectorServlet class.) This response body is displayed on the page
in the info element.

 Finally, the following statement is executed:

Event.stop(event);

This Prototype method stops the event from propagating any further and cancels
the default action of the event, which in this case is the form submission. Without
this statement, the form would go on submitting to the resource identified by the
form’s action attribute.

Discussion
Although this example didn’t cover much new ground, it did point out some
important concepts, such as using the submit event to prevent the submission
of the form. We used an event handler and the Prototype event methods for
this purpose, but if all you’re trying to accomplish is preventing form submis-
sion, you can use the following form declaration to return false from a DOM
Level 0 handler:

<form id="my Form" action="whatever" onsubmit="return false;">

In our example, we also relied heavily on the services of the Prototype serialize()
method. This method marshals all the values of the containing form’s elements
and constructs either a query string or an object hash from those parameters.
Because we specified true as the parameter to this method, it returns an object
hash, which is the preferred technique for Prototype 1.5.

 When this page is loaded, data entered, and the Submit button clicked (or the
Enter key pressed), the display appears as shown in figure 5.9.

 That was all pretty easy. But what if we want to be slightly pickier?

198 CHAPTER 5
Handling events

5.5.3 Submitting only changed elements

The previous example showed us that we can take control of the form-submission
process and use event handling to reroute the submitted data to an Ajax request.
Prototype’s serialize() method made it almost trivial for us to gather all the
data elements of a form to send to the server.

 But what if we don’t want to send all the form data? What if we only want
to send data elements that have changed? Indeed, why make the request at all
if none of the data has changed? We could use the change event of the form
elements to know when an element’s value has changed, but how do we best
keep track of this information for use when it comes time to send the data to
the server?

 We could be sophomoric about it and store the information in global variables.
But not only would that be inelegant, it would also create severe problems on
pages with multiple forms, and is not an object-oriented approach.

 We could be sophisticated about it and store the information right on the ele-
ment itself by adding a custom property, as follows:

element.hasChanged = true;

We could then loop through the elements when it comes time to gather the data
for submission, looking for elements that have this property set.

 Or better yet, we can be clever about it (that sounds so much better than
lazy) and leverage code that we already have handy. Listing 5.15 shows just
such an approach.

Figure 5.9 Submitting without submitting!

Putting events into practice 199

<html>
 <head>
 <title>Submit, or not!</title>
 <script type="text/javascript" src="prototype-1.5.1.js">
 </script>
 <script type="text/javascript">
 window.onload = function() {
 Event.observe('infoForm','submit',submitMe);
 Event.observe('infoForm','change',
 markChanged);
 $('addressField').focus();
 }

 function markChanged(event) {
 Event.element(event).addClassName('changedField');
 }

 function submitMe(event) {
 var changedElements = $$('.changedField');
 if (changedElements.length > 0) {
 var parameters = {};
 changedElements.each(
 function(element) {
 parameters[element.name] = element.value;
 element.removeClassName('changedField');
 }
);
 new Ajax.Request(
 '/aip.chap5/handleSubmission',
 {
 method: 'post',
 parameters: parameters,
 onSuccess: function (transport) {
 $('info').innerHTML = transport.responseText;
 }
 }
);
 }
 Event.stop(event);
 }
 </script>
 </head>

 <body>
 <form id="infoForm" action="/aip.chap5/shouldNotActivate">
 <div>
 <label>Address:</label>
 <input type="text" id="addressField" name="address"/>
 </div>
 <div>

Listing 5.15 Submitting only changed data

Establishes change
handler on form B

Marks target element as changed C

Collects only changed elements D

200 CHAPTER 5
Handling events

 <label>City:</label>
 <input type="text" id="cityField" name="city"/>
 <label>State:</label>
 <input type="text" id="stateField" name="state"/>
 <label>Zip Code:</label>
 <input type="text" id="zipCodeField" name="zipCode"/>
 </div>
 <div>
 <input type="submit" id="submitButton"/>
 </div>
 </form>
 <div id="info"></div>
 </body>
</html>

In this example we’ve made some minor but significant changes to the code in
listing 5.14. In the onload event handler, we’ve established a change event handler
on the form b. We could have looped through the form, adding a handler on
each individual element, but why bother when the form will receive the event
notification during the bubble phase?

 The handler function, markChanged() C, which will be called whenever a form
element has changed, obtains a reference to the event’s target element and adds
the CSS class changedField to that element.

 Huh? What does CSS have to do with keeping track of changed fields? All is
revealed when we examine the changes to the submitMe() event-handler function.

 In that function D, we use the Prototype $$() function. This handy function
returns an array of all elements that match the CSS selector passed as its param-
eter. Since we specified the string '.changedField', an array of all elements
marked with that CSS class name is returned.

 If that array is empty, we simply skip over the code that submits the request.
Otherwise, we loop through the elements, creating an object hash of the name/
value pairs that we gather from the array elements. That hash is then used as the
parameter set for the Ajax request.

 Since the data has been submitted and is no longer considered changed, we
remove the CSS class name changedField from the elements, and we’re good to
go again!

Discussion
This example builds on the code in listing 5.14 to limit the parameters submitted
on the Ajax request to those that have changed value, and to completely skip sub-
mitting the request if no changes have taken place.

Summary 201

We used a change event handler on the form to catch changes to all its elements,
cleverly taking advantage of the bubble phase of event propagation. And we saw a
clever way of marking elements for later identification through the use of CSS
class names and the Prototype $$() function.

 When displayed in the browser, and with only the City and State fields
changed, we see the display as shown in figure 5.10.

5.6 Summary

In this chapter, we saw some interesting and powerful techniques to add interac-
tivity to web applications. We looked at the various ways in which you can add
event handlers to a DOM element, and we saw how the Prototype JavaScript
library greatly simplifies the process of attaching and writing event handlers. We
looked at all the major event types, and we examined many code snippets that
demonstrated how these events can be used in our web applications. We also
looked at some validation and form submission examples, something we’ll cover
more in-depth in the next chapter.

Figure 5.10 Submitting only what counts

