
37

XML and Java

This chapter
■ Describes relevant XML standards and

technologies
■ Classifies XML tools in terms of functionality
■ Introduces and demonstrates use of Java

XML Pack APIs (JAX)
■ Suggests how JAX APIs are best deployed in

your architecture

38 CHAPTER 2

XML and Java

A complex set of closely related XML APIs, each of which is either in specifica-
tion or development, is the result of a flurry of Java community development
activity in the area of XML. These APIs include the JAX family, as well as other
popular emerging standards such as JDOM.

 This chapter untangles the web of Java APIs for XML, identifying and clas-
sifying each in terms of its functionality, intended use, and maturity. Where
possible, we provide usage examples for each new API and describe how it
might be best used in your J2EE system. We also identify areas in which the
APIs overlap and suggest which ones are likely to be combined or eliminated
in the future. Subsequent chapters build upon your understanding of these
APIs by providing more specific examples of their implementation.

 To fully appreciate the capabilities and limitations of the current JAX APIs,
section 2.1 provides a brief overview of the state of important XML technolo-
gies. These technologies and standards are implemented and used by the JAX
APIs, so understanding something about each will speed your mastery of JAX.

2.1 XML and its uses

Before diving into the details of Java’s XML API family, a brief refresher on a
few important XML concepts is warranted. This section provides such a
refresher, as well as an overview of the most important recent developments in
XML technology.

 XML, the eXstensible Markup Language, is not actually a language in its
own right. It is a metalanguage used to construct other languages. XML is
used to create structured, self-describing documents that conform to a set of
rules created for each specific language. XML provides the basis for a wide vari-
ety of industry- and discipline-specific languages. Examples include Mathe-
matical Markup Language (MathML), Electronic Business XML (ebXML),
and Voice Markup Language (VXML). This concept is illustrated in figure 2.1.

 XML consists of both markup and content. Markup, also referred to as tags,
describes the content represented in the document. This flexible representa-
tion of data allows you to easily send and receive data, and transform data from
one format to another. The uses of XML are rapidly expanding and are partially
the impetus for writing this book. For example, business partners use XML to
exchange data with each other in new and easier ways. E-business related
information such as pricing, inventory, and transactions are represented in
XML and transferred over the Internet using open standards and protocols.
There are also many specialized uses of XML, such as the Java Speech Markup
Language and the Synchronized Multimedia Integration Language.

XML and its uses 39

Each XML language defines its own grammar, a specific set of rules governing
the content and structure of documents written in that language. For exam-
ple, the element price may be valid in an ebXML document but has no mean-
ing in a MathML document. Since each language must fulfill this grammatical
requirement, XML provides facilities for generically documenting the correct
grammar of any derived language. Any XML parser can validate the structure
of any XML document, given the rules of its language.

 Using XML as a common base for higher-level languages enables the inter-
change of data between software components, systems, and enterprises. Pars-
ing and translation tools written to handle any type of XML-based data can be
employed to create and manipulate data in a uniform way, regardless of each
document’s semantic meaning. For example, the same XML parser can be used
to read a MathML document and an ebXML document, and the same XML
Translator can be used to convert an ebXML purchase order document into a
RosettaNet PIP document.

 An XML-based infrastructure enables high levels of component reuse and
interoperability in your distributed system. It also makes your system inter-
faces cleaner and more understandable to those who must maintain and
extend it. And since XML is an industry standard, it can be deployed widely in
your systems without worry about vendor dependence. XML also makes sense
from the standpoint of systems integration, as an alternative to distributed
object interaction. It allows data-level integration, making the coupling

XML
(Meta-language)

SGML
(Meta-language)

XHTML
Schema

WML
Schema

MathML
Schema

ebXML
Schema

VXML
Schema

XHTML
Document

WML
Document

MathML
Document

ebXML
Document

VXML
Document

Figure 2.1
XML language
hierarchy

40 CHAPTER 2

XML and Java

between your application and other systems much looser and enhancing over-
all architectural flexibility.

 In addition to its uses in messaging and data translation, XML can also be
used as a native data storage format in some situations. It is particularly well
suited for managing document repositories and hierarchical data. We examine
some of the possibilities in this area in chapter 3.

An example XML document
To illustrate the power and flexibility of XML and related technologies, we
need a concrete XML example with which to work. We use this simple docu-
ment throughout the rest of this chapter to illustrate the use of various XML
technologies. Most importantly, we use it to demonstrate the use of the JAX
APIs in section 2.2.

 Listing 2.1 contains an XML instance document, a data structure containing
information about a specific catalog of products.

<?xml version="1.0"?>

<product-catalog>
 <product sku="123456" name="The Product">
 <description locale="en_US">
 An excellent product.
 </description>
 <description locale="es_MX">
 Un producto excellente.
 </description>
 <price locale="en_US" unit="USD">
 99.95
 </price>
 <price locale="es_MX" unit="MXP">
 9999.95
 </price>
 </product>
</product-catalog>

b Shows a catalog containing a single product. The product information includes its
name, SKU number, description, and price. Note that the document contains
multiple price and description nodes, each of which is specific to a locale.

Classifying XML technologies
There are numerous derivative XML standards and technologies currently
under development. These are not specific to Java, or any other implementation

Listing 2.1 Product XML document example

Defines a product with
SKU=123456 and the
name “The Product”

b Lists descriptions and
prices for this product in
the U.S. and Mexico

XML and its uses 41

language for that matter. They are being developed to make the use of XML
easier, more standardized, and more manageable. The widespread adoption of
many of them is critical to the success of XML and related standards.

 This section provides a brief overview of the most promising specifications
in this area. Since it is impossible to provide exhaustive tutorials for each of
these in this section, we recommend you visit http://www.zvon.org, a web
site with excellent online tutorials for many of these technologies.

2.1.1 XML validation technologies

The rules of an XML language can be captured in either of two distinct ways.
When codified into either a document type definition or an XML schema defi-
nition, any validating XML parser can enforce the rules of a particular XML dia-
lect generically. This removes a tremendous burden from your application code.
In this section, we provide a brief overview of this important feature of XML.

Document type definitions
The first and earliest language definition mechanism is the document type def-
inition (DTD).

DEFINITION A document type definition is a text file consisting of a set of rules
about the structure and content of XML documents. It lists the valid
set of elements that may appear in an XML document, including
their order and attributes.

A DTD dictates the hierarchical structure of the document, which is
extremely important in validating XML structures. For example, the element
Couch may be valid within the element LivingRoom, but is most likely not valid
within the element BathRoom. DTDs also define element attributes very specif-
ically, enumerating their possible values and specifying which of them are
required or optional.

<!ELEMENT product-catalog (product+)>

<!ELEMENT product (description+, price+)>
 <!ATTLIST product
 sku ID #REQUIRED
 name CDATA #REQUIRED
 >

<!ELEMENT description (#PCDATA)>

Listing 2.2 DTD for the product catalog example document

Product catalogs must contain
one or more products and
each product has one or more
descriptions and one or more
prices

Each product must
have a SKU and
name attribute

42 CHAPTER 2

XML and Java

 <!ATTLIST description
 locale CDATA #REQUIRED
 >

<!ELEMENT price (#PCDATA)>
 <!ATTLIST price
 locale CDATA #REQUIRED
 unit CDATA #REQUIRED
 >

Listing 2.2 contains a DTD to constrain our product catalog example docu-
ment. For this DTD to be used by a validating XML parser, we could add the
DTD in-line to listing 2.1, right after the opening XML processing instruction.
We could also store the DTD in a separate file and reference it like this:

<!DOCTYPE product-catalog SYSTEM “product-catalog.dtd”>

Using this statement, a validating XML parser would locate a file named prod-
uct-catalog.dtd in the same directory as the instance document and use its
contents to validate the document.

XML Schema definitions
Although a nice first pass at specifying XML languages, the DTD mechanism
has numerous limitations that quickly became apparent in enterprise develop-
ment. One basic and major limitation is that a DTD is not itself a valid XML
document. Therefore it must be handled by XML parsing tools in a special way.

 More problematic, DTDs are quite limited in their ability to constrain the
structure and content of XML documents. They cannot handle namespace
conflicts within XML structures or describe complex relationships among doc-
uments or elements. DTDs are not modular, and constraints defined for one
data element cannot be reused (inherited) by other elements. For these rea-
sons and others, the World Wide Web Consortium (W3C) is working fever-
ishly to replace the DTD mechanism with XML Schema.

DEFINITION An XML Schema definition (XSD) is an XML-based grammar decla-
ration for XML documents.

XSD is itself an XML language. Using XSD, data constraints, hierarchical rela-
tionships, and element namespaces can be specified more completely than
with DTDs. XML Schema allows very precise definition of both simple and
complex data types, and allows types to inherit properties from other types.

XML and its uses 43

There are numerous common data types already built into the base XML
Schema language as a starting point for building specific languages.
Listing 2.3 shows a possible XML Schema definition for our example product
catalog document.

<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element type="product-catalog"/>

<xsd:complexType name="productCatalog">
 <xsd:element type="productType"
 minOccurs="1"/>
 </xsd:complexType>

 <xsd:complexType name="productType">
 <xsd:element name="description"
 type="xsd:string" minOccurs="1">
 <xsd:attribute name="locale"
 type="xsd:string"/>
 </xsd:element>
 <xsd:element name="price"
 type="xsd:decimal" minOccurs="1">
 <xsd:attribute name="locale"
 type="xsd:string"/>
 <xsd:attribute name="unit"
 type="xsd:string"/>
 </xsd:element>
 <xsd:attribute name="sku"
 type="xsd:decimal"/>
 <xsd:attribute name="name"
 type="xsd:string"/>
 </xsd:complexType>

</xsd:schema>

b This XSD defines a complex type called productType, which is built upon other
primitive data types. The complex type contains attributes and other elements as
part of its definition. Just from the simple example, the advantages of using XML
Schema over DTDs should be quite apparent to you.

The example XSD in listing 2.3 barely scratches the surface of the intricate
structures that you can define using XML Schema. Though we will not focus
on validation throughout this book, we strongly encourage you to become
proficient at defining schemas. You will need to use them frequently as the use

Listing 2.3 An XSD for the product catalog document

“xsd” namespace
defined by XML Schema

Declares the product catalog

Defines catalog type
containing one or more
product elements

b product type
definition

44 CHAPTER 2

XML and Java

of XML data in your applications increases. Detailed information on XML
Schema can be found at http://www.w3c.org/XML/Schema.

 Before leaving the topic of document validation, we note that some parsers
do not offer any validation at all, and others only support the DTD approach.
Document validation is invaluable during development and testing, but is
often turned off in production to enhance system performance. Using valida-
tion is also critical when sharing data between enterprises, to ensure both par-
ties are sending and receiving data in a valid format.

2.1.2 XML parsing technologies

Before a document can be validated and used, it must be parsed by XML-
aware software. Numerous XML parsers have been developed, including Crim-
son and Xerces, both from the Apache Software Foundation. You can learn
about these parsers at http://xml.apache.org. Both tools are open source and
widely used in the industry. Many commercial XML parsers are also available
from companies like Oracle and IBM.

DEFINITION An XML parser is a software component that can read and (in most
cases) validate any XML document. A parser makes data contained
in an XML data structure available to the application that needs to
use it.

SAX
Most XML parsers can be used in either of two distinct modes, based on the
requirements of your application. The first mode is an event-based model
called the Simple API for XML (SAX). Using SAX, the parser reads in the XML
data source and makes callbacks to its client application whenever it encoun-
ters a distinct section of the XML document. For example, a SAX event is fired
whenever the end of an XML element has been encountered. The event
includes the name of the element that has just ended.

 To use SAX, you implement an event handler for the parser to use while
parsing an XML document. This event handler is most often a state machine
that aggregates data as it is being parsed and handles subdocument data sets
independently of one another. The use of SAX is depicted in figure 2.2. SAX is
the fastest parsing method for XML, and is appropriate for handling large doc-
uments that could not be read into memory all at once.

 One of the drawbacks to using SAX is the inability to look forward in the
document during parsing. Your SAX handler is a state machine that can only

XML and its uses 45

operate on the portion of the XML document that has already been parsed.
Another disadvantage is the lack of predefined relationships between nodes in
the document. In order to perform any logic based on the parent or sibling
nodes, you must write your own code to track these relationships.

DOM
The other mode of XML parsing is to use the Document Object Model (DOM)
instead of SAX. In the DOM model, the parser will read in an entire XML data
source and construct a treelike representation of it in memory. Under DOM, a
pointer to the entire document is returned to the calling application. The
application can then manipulate the document, rearranging nodes, adding and
deleting content as needed. The use of DOM is depicted in figure 2.3.

 While DOM is generally easier to implement, it is far slower and more
resource intensive than SAX. DOM can be used effectively with smaller XML
data structures in situations when speed is not of paramount importance to the
application. There are some DOM-derivative technologies that permit the use
of DOM with large XML documents, which we discuss further in chapter 3.

 As you will see in section 2.2, the JAXP API enables the use of either DOM
or SAX for parsing XML documents in a parser-independent manner. Deciding
which method to use depends on your application’s requirements for speed,
data manipulation, and the size of the documents upon which it operates.

XML Parser

XML
Document

Application Code

Execute code
Resume parsing

Initialize Parser
Register Handlers

SAX Event

Execute code
Resume parsing

SAX Event

SAX Event
Parsing CompleteResume Application Code

Begin Parsing

Figure 2.2 Using the SAX API

46 CHAPTER 2

XML and Java

2.1.3 XML translation technologies

A key advantage of XML over other data formats is the ability to convert an
XML data set from one form to another in a generic manner. The technology
that enables this translation is the eXtensible Stylesheet Language for Trans-
formations (XSLT).

XSLT
Simply stated, XSLT provides a framework for transforming the structure of an
XML document. XSLT combines an input XML document with an XSL
stylesheet to produce an output document.

DEFINITION An XSL stylesheet is a set of transformation instructions for convert-
ing a source XML document to a target output document.

Figure 2.4 illustrates the XSLT process. Performing XSLT transformations
requires an XSLT-compliant processor. The most popular open source XSLT
engine for Java is the Apache Software Foundation’s Xalan project. Informa-
tion about Xalan can be found at http://xml.apache.org/xalan-j.

Initialize Parser

Application Code

XML Parser

XML
Document

Begin Parsing

Parsing Complete

In-memory DOM
Traverse, Manipulate
Perform Processing

Figure 2.3 Using the DOM API

XML and its uses 47

An XSLT processor transforms an XML source tree by associating patterns
within the source document with XSL stylesheet templates that are to be
applied to them. For example, consider the need to transform our product cat-
alog XML document into HTML for rendering purposes. This consists of
wrapping the appropriate product data in the XML document with HTML
markup. Listing 2.4 shows an XSL stylesheet that would accomplish this task.

<?xml version="1.0"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:template match="/">
<html>
 <head><title>My Products</title></head>
 <body>
 <h1>Products Currently For Sale in the U.S.</h1>
 <xsl:for-each select="//product">
 <xsl:value-of select="@name"/> : $
 <xsl:value-of select="./price[@unit='USD']"/> USD
 </xsl:for-each>

Listing 2.4 Translating the product catalog for the Web

Parser

XSLT Processor

XSL
Stylesheet

XSL
Stylesheet

XML Document

Output from
Stylesheet 1

Output from
Stylesheet 2

Figure 2.4 XSLT processing overview

b Executes for the root element of
the source document

c Prints name
and price
information

48 CHAPTER 2

XML and Java

 </body>
</html>
</xsl:template>

</xsl:stylesheet>

b The match attribute is an XPath expression meaning the root XML element. This
template is therefore executed against the entire source document.

c Each product element in the source document will have its name attribute printed,
followed by the string: $, its price in dollars, and the string USD.

XSLT processors can vary in terms of their performance characteristics. Most
offer some way to precompile XSL stylesheets to reduce transformation times.
As you will see in section 2.2, the JAXP API provides a layer of pluggability for
compliant XSLT processors in a manner similar to parsers. This permits the
replacement of one XSLT engine with another, faster one as soon as it
becomes available.

 Details on XSLT can be found at http://www.w3.org/Style/XSL.

Binary transformations for XML
Note that the capabilities of XSLT are not limited to textual transformations. It
is often necessary to translate textual data to binary format. A common exam-
ple is the translation of business data to PDF format for display. For this reason
the XSL 1.0 Recommendation also specifies a set of formatting objects. For-
matting objects are instructions that define the layout and presentation of
information. Formatting objects are most useful for print media and design
work. Some Java libraries are already available to do the most common types
of transformations. See chapter 5 for an example of the most common binary
transformation required today, from XML format to PDF.

2.1.4 Messaging technologies

Numerous technologies for transmitting XML-structured data between appli-
cations and enterprises are currently under development. This is due to the
tremendous potential of XML to bridge the gap between proprietary data for-
mats and messaging protocols. Using XML, companies can develop standard
interfaces to their systems and services to which present and future business
partners can connect with little development effort. In this section, we provide
a brief description of the most promising of these technologies.

XML and its uses 49

SOAP
By far the most promising advances in this area are technologies surrounding
the Simple Object Access Protocol (SOAP).

DEFINITION SOAP is a messaging specification describing data encoding and
packaging rules for XML-based communication.

The SOAP specification describes how XML messages can be created, pack-
aged, and transmitted between systems. It includes a binding (mapping) for
the HTTP protocol, meaning that SOAP messages can be transmitted over
existing Web systems. Much of SOAP is based upon XML-RPC, a specification
describing how remote procedure calls can be executed using XML.

 SOAP can be implemented in a synchronous (client/server) or asynchro-
nous fashion. The synchronous method (RPC-style) involves a client explicitly
requesting some XML data from a SOAP server by sending a SOAP request
message. The server returns the requested data to the client in a SOAP
response message. This is depicted in figure 2.5.

Asynchronous messaging is also fully supported by the SOAP specification.
This can be useful in situations where updates to information can be sent and
received as they happen. The update event must not require an immediate
response, but an asynchronous response might be sent at some point in the
future. This response might acknowledge the receipt of the original message
and report the status of processing on the receiver side. Asynchronous SOAP is
depicted in figure 2.6.

 Many J2EE server vendors now support some form of SOAP messaging, via
their support of the JAXM API discussed later in this chapter. More informa-
tion on the SOAP specification is available at http://www.w3c.org/TR/SOAP.

SOAP Client SOAP Server

Remote Procedure Call
(SOAP over HTTP(S))

RPC Response
(SOAP over HTTP(S))

Figure 2.5 RPC-style SOAP messaging

50 CHAPTER 2

XML and Java

Web services
Closely related to the development of SOAP is the concept of web services. As
we alluded to in chapter 1, web services is the catchall phrase for the standard-
ization of distributed business services architecture over the Internet. Web ser-
vices rely on SOAP clients and servers to transport inter-enterprise messages.

 The subjects of XML messaging and web services are quite complex. We
take a detailed look at these topics in chapter 4, including examples. In this
section, we discuss only the basics of web services and related technologies.

 Work is also ongoing to define a standard way to register and locate new
web services using distributed service repositories, or search engines. These
repositories use XML to describe web services and the companies that provide
them. The most promising of these standards to date is the Universal Descrip-
tion, Discovery, and Integration (UDDI) specification. This is due to the
broad vendor support UDDI currently enjoys from many companies, includ-
ing IBM and Microsoft.

UDDI
A consortium of large companies has come together to create a set of stan-
dards around the registration and discovery process for web services. The
result is UDDI. The goal of UDDI is to enable the online registration and
lookup of web services via a publicly available repository, similar in operation
to the Domain Name System (DNS) of the Internet. The service registry is
referred to as the green pages and is defined in an XML Schema. The green
pages are syndicated across multiple operator sites. Each site provides some
level of public information regarding the services. This information is repre-
sented as metadata and known as a tModel.

 One of the challenges when registering a web service is deciding on how it
should be classified. A mere alphabetical listing by provider would make it impos-
sible to find a particular type of service. UDDI therefore allows classification of

SOAP
Message
Producer

SOAP
Message
Consumer

Asynchronous Data Update
(SOAP over HTTP(S))

Figure 2.6 Message-style SOAP messaging

XML and its uses 51

services by geographic region and standard industry codes, such as NAICS and
UN/SPC. Many expect the other services repositories, such as the ebXML
Repository, to merge with UDDI in the future, although no one can say for sure.

 You can read more about UDDI and related technologies at http://www.
uddi.org.

WSDL
The creators of the UDDI directory recognized the need for a standard means
for describing web services in the registry. To address this, they created the
Web Services Description Language (WSDL). WSDL is an XML language used
to generically describe web services. The information contained in each
description includes a network address, protocol, and a supported set of oper-
ations. We will discuss WSDL in detail and provide examples of it in chapter 4.

2.1.5 Data manipulation and retrieval technologies

Storing and retrieving data in XML format is the subject of much ongoing
work with XML. The need for XML storage and retrieval technologies has
resulted in the creation of a large number of closely related specifications. In
this section, we provide you with a brief overview of these specifications and
point you in the direction of more information about each.

XPath
XPath is a language for addressing XML structures that is used by a variety of
other XML standards, including XSLT, XPointer, and XQuery. It defines the
syntax for creating expressions, which are evaluated against an XML document.
For example, a forward slash (/) is a simple XPath expression. As you saw in
listing 2.4, this expression represents the root node of an XML document.

 XPath expressions can represent a node-set, Boolean, number, or string.
They can start from the root element or be relative to a specific position in a
document. The most common type of XPath expression is a location path,
which represents a node-set. For our product catalog document example, the
following XPath represents all the product nodes in the catalog:

/product

XPath has a built-in set of functions that enable you to develop very complex
expressions. Although XPath syntax is not a focus of this book, we do explore
technologies such as XSLT that use it extensively. Since XPath is so important,
we suggest that you become proficient with it as quickly as possible.

52 CHAPTER 2

XML and Java

 You can get more detailed information on XPath at http://www.w3c.org/
TR/xpath.

XPointer
XPointer is an even more specific language that builds on XPath. XPointer
expressions point to not only a node-set, but to the specific position or range
of positions within a node-set that satisfy a particular condition. XPointer
functions provide a very robust method for searching through XML data
structures. Take, for example, the following node-set:

<desc>This chapter provides an overview of the J2EE technologies.</desc>
<desc>This chapter provides an overview of the XML landscape.</desc>
<desc>This chapter is an introduction to distributed systems.</desc>

A simple XPointer expression that operates on this node-set is as follows:

xpointer(string-range(//desc, 'overview'))

This expression returns all nodes with the name desc that contain the string
overview. XPointer expressions can be formed in several ways and can quickly
become complex. You can find more information on XPointer at http://
www.w3c.org/XML/Linking.

XInclude
XInclude is a mechanism for including XML documents inside other XML doc-
uments. This allows us to set up complex relationships among multiple XML
documents. It is accomplished by using the <include> tag, specifying a loca-
tion for the document, and indicating whether or not it should be parsed. The
include tag may be placed anywhere within an XML document. The location
may reference a full XML document or may use XPointer notation to reference
specific portions of it. The use of XPointer with XInclude makes it easier to
include specific XML data and prevents us from having to duplicate data in
multiple files.

 Adding the following line to an XML document would include a node-set
from an external file called afile.xml in the current XML document, at the
current location:

<xi:include href=”afile.xml#xpointer(XPath expression)” parse=”xml” />

Only the nodes matching the specified XPath expression would be included.
 More information on XInclude can be found at http://www.w3c.org/

TR/xinclude.

XML and its uses 53

XLink
XLink is a technology that facilitates linking resources within separate XML doc-
uments. It was created because requirements for linking XML resources require
a more robust mechanism than HTML-style hyperlinks can provide. HTML
hyperlinks are unidirectional, whereas XLink enables traversal in both directions.
XLinks can be either simple or extended. Simple XLinks conform to similar rules
as HTML hyperlinks, while extended XLinks feature additional functionality.

 The flexibility of XLink enables the creation of extremely complex and
robust relationships. The following example uses a simple XLink that estab-
lishes a relationship between an order and the customer who placed it.

 If this XML document represents a customer:

<customer id=”0059”>
 <name>ABC Company</name>
 <employees>1000-1500</employees>
</customer>

This XML document lists orders linked to that customer:

<orders>
 <order xlink:type=”simple”
 href=”customers.xml#//customers/customer/@id[.='0059']”
 title=”Customer” show=”new”>
 <number>12345</number>
 <amount>$500</amount>
 </order>
</orders>

Note once again the importance of XPath expressions in enabling this technol-
ogy. More information on XLink is at http://www.w3c.org/XML/Linking.

XBase
XBase, or XML Base, is a mechanism for specifying a base uniform resource
identifier (URI) for XML documents, such that all subsequent references are
inferred to be relative to that URI. Despite its simplicity, XBase is extremely
handy and allows you to keep individual XLinks to a reasonable length.

 The following line describes a base URI using XBase. Any relative URI ref-
erence encountered inside the catalog element will be resolved using http://
www.manning.com/books as its base.

<catalog xml:base=http://www.manning.com/books/>
 ………
 ………
</catalog>

You can learn more about XBase at http://www.w3c.org/TR/xmlbase.

54 CHAPTER 2

XML and Java

Query languages
As the amount of data being stored in XML has increased, it is not surprising
that several query languages have been developed specifically for XML. One of
the initial efforts in this area was XQL, the XML Query Language. XQL is a
language for querying XML data structures and shares many of its constructs
with XPath. Using XQL, queries return a set of nodes from one or more docu-
ments. Other query languages include Quilt and XML-QL.

 The W3C has recently taken on the daunting task of unifying these specifi-
cations under one, standardized query language. The result of this effort is a
language is called XQuery. It uses and builds upon XPath syntax. The result of
an XML query is either a node-set or a set of primitive values. XQuery is syn-
tactically similar to SQL, with a set of keywords including FOR, LET, WHERE,
and RETURN.

 The following is a simple XQuery expression that selects all product nodes
from afile.xml.

document(“afile.xml”)//product

A slightly more complex XQuery expression selects the warranty node for
each product.

FOR $product in //product
 RETURN $product/warranty

XQuery is in its early stages of completion and there are not many products
around that fully implement the specification. The latest version of Software
AG’s Tamino server has some support for XQuery, but a full XQuery engine
has yet to be implemented. We discuss XQuery in more detail in chapter 3,
within our discussion of XML data persistence. You can get all the details
about XQuery at http://www.w3c.org/XML/Query.

2.1.6 Data storage technologies

XML is data, so it should be no surprise that there are a variety of technologies
under development for storing native XML data. The range of technologies
and products is actually quite large, and it is still unclear which products will
emerge as the leaders.

 Storing XML on the file system is still very popular, but storing XML in a
textual, unparsed format is inefficient and greatly limits its usability. Static doc-
uments require reparsing each time they are accessed. An alternative mecha-
nism to storing text files is the Persistent Document Object Model (PDOM).
PDOM implements the W3C DOM specification but stores the parsed XML

The Java APIs for XML 55

document in binary format on the file system. In this fashion, it does not need
to be reparsed for subsequent access.

 PDOM documents may be generated from an existing DOM or through an
XML input stream, so the document is not required to be in memory in its
entirety at any given time. This is advantageous when dealing with large XML
documents. PDOM supports all of the standard operations that you would
expect from a data storage component, such as querying (via XQL), inserting,
deleting, compressing, and caching. We offer an example of using this tech-
nique for data storage in chapter 3. You can learn more about PDOM at http:/
/xml.darmstadt.gmd.de/xql/.

 Another alternative to static file system storage is the use of native-XML
databases. Databases such as Software AG’s Tamino are designed specifically
for XML. Unlike relational databases, which store hierarchical XML documents
in relational tables, Tamino stores XML in its native format. This gives Tamino
a significant performance boost when dealing with XML.

 Despite the appearance of native-XML database vendors, traditional data-
base vendors such as Oracle and IBM had no intention of yielding any of the
data storage market just because traditional relational databases did not handle
XML well initially. The major relational vendors have built extensions for their
existing products to accommodate XML as a data type and enable querying
functionality. This is advantageous for many companies that rely heavily on
RDBMS products and have built up strong skill-sets in those technologies.

 Figure 2.7 summarizes your options for XML data storage.

2.2 The Java APIs for XML

The Java development community is actively following and contributing to the
specification of many of the XML technologies discussed in section 2.1.

Plain Text
Flat Files

Parsed
Binary
Files

Relational
Databases

Native XML
Databases

Figure 2.7 XML data storage alternatives

56 CHAPTER 2

XML and Java

Additionally, Java is often the first language to implement these emerging tech-
nologies. This is due largely to the complimentary nature of platform indepen-
dent code (Java) and data (XML). However, XML API development in Java has
historically been disjointed, parallel, and overly complicated. Various groups
have implemented XML functionality in Java in different ways and at different
times, which led to the proliferation of overlapping, noncompatible APIs.

 To address this issue and make developing XML-aware applications in Java
simpler, Sun Microsystems is now coordinating Java XML API development via
the Java Community Process (JCP). Under this process, the Java development
community is standardizing and simplifying the various Java APIs for XML.
Most of these efforts have been successful, although a couple of the standard
specifications still have overlapping scope or functionality. Nevertheless, XML
processing in Java has come a long way in 2000 and 2001.

 The Java APIs for XML (JAX) is currently a family of related API specifica-
tions. The members of the JAX family are summarized in table 2.1. In this sec-
tion, we introduce each member of JAX and discuss its current state of
maturity. For those JAX members with an existing reference implementation,
we also provide usage examples for each.

Table 2.1 The JAX family—Java APIs for XML processing

Java API for XML JAX acronym Functional description

Java API for XML
parsing

JAXP Provides implementation-neutral access to XML
parsers and XSLT processors.

Java Document
Object Model

JDOM Provides a Java-centric, object-oriented imple-
mentation of the DOM framework.

Java API for XML
binding

JAXB Provides a persistent XML mapping for Java
object storage as XML.

Long Term Java-
Beans Persistence

Similar to JAXB, provides XML serialization for
JavaBean components.

Java API for XML
messaging

JAXM Enables the use of SOAP messaging in Java
applications, using resource factories in a man-
ner similar to the Java Messaging Service (JMS).

JAX-RPC JAX-RPC An XML-RPC implementation API for Java. Simi-
lar to JAXM.

Java API for XML
repositories

JAXR Provides implementation-neutral access to XML
repositories like ebXML and UDDI.

The Java APIs for XML 57

2.2.1 JAXP

JAXP provides a common interface for creating and using the SAX, DOM, and
XSLT APIs in Java. It is implementation- and vendor-neutral. Your applications
should use JAXP instead of accessing the underlying APIs directly to enable the
replacement of one vendor’s implementation with another as desired. As faster
or better implementations of the base XML APIs become available, you can
upgrade to them simply by exchanging one JAR file for another. This achieves
a primary goal in distributed application development: flexibility.

The JAXP API architecture is depicted in figure 2.8. JAXP enables flexibility by
divorcing your application code from the underlying XML APIs. You can use it
to parse XML documents using SAX or DOM as the underlying strategy. You
can also use it to transform XML via XSLT in a vendor-neutral way.

Table 2.2 The JAXP packages

Package Description

javax.xml.parsers Provides a common interface to DOM and SAX parsers.

javax.xml.transform Provides a common interface to XSLT processors.

org.xml.sax The generic SAX API for Java

org.w3c.dom The generic DOM API for Java

Application Code

JAXP API

SAX Interface DOM Interface XSLT Interface

Parsers Processors
Figure 2.8
JAXP architecture

58 CHAPTER 2

XML and Java

The JAXP API consists of four packages, summarized in table 2.2. Of these,
the two javax.xml packages are of primary interest. The javax.xml.parsers
package contains the classes and interfaces needed to parse XML documents.
The javax.xml.transform package defines the interface for XSLT processing.

Configuring JAXP
To use JAXP for parsing, you require a JAXP-compliant XML parser. The JAXP
reference implementation uses the Crimson parser mentioned earlier. To do
XSLT processing, you also need a compliant XSLT engine. The reference
implementation uses Xalan, also mentioned earlier.

 When you first access the JAXP parsing classes in your code, the framework
initializes itself by taking the following steps:

■ It initially checks to see if the system property javax.xml.parsers.Doc-
umentBuilderFactory or javax.xml.parsers.SAXParserFactory has
been set (depending on whether you are requesting the use of SAX or
DOM). If you are requesting an XSLT transformation, the system prop-
erty javax.xml.transform.TransformerFactory is checked instead.

■ If the appropriate system property has not been set explicitly, the frame-
work searches for a file called jaxp.properties in the lib directory of
your JRE. Listing 2.5 shows how the contents of this file might appear.

■ If the jaxp.properties file is not found, the framework looks for files on
the classpath named /META-INF/services/java.xml.parsers.Document-
BuilderFactory, /META-INF/services/SAXParserFactory, and /META-
INF/services/javax.xml.transform.TransformerFactory. When
found, these files contain the names of the JAXP DocumentBuilder, SAX-
ParserFactory, and TransformerFactory classes, respectively. JAXP-com-
pliant parsers and XSLT processors contain these text files in their jars.

■ If a suitable implementation class name cannot be found using the
above steps, the platform default is used. Crimson will be invoked for
parsing and Xalan for XSLT.

NOTE Statements in the following listing are shown on multiple lines for
clarity. In an actual jaxp.properties file, each statement should ap-
pear as a single line with no spaces between the equals character (=)
and the implementation class name.

The Java APIs for XML 59

javax.xml.parsers.DocumentBuilderFactory=
 org.apache.crimson.jaxp.DocumentBuilderFactoryImpl
javax.xml.parsers.SAXParserFactory=
 org.apache.crimson.jaxp.SAXParserFactoryImpl
javax.xml..transform.TransformerFactory=
 org.apache.xalan.processor.TransformerFactoryImpl

Since JAXP-compliant parsers and processors already contain the necessary text
files to map their implementation classes to the JAXP framework, the easiest
way to configure JAXP is to simply place the desired parser and/or processor
implementation’s JAR file on your classpath, along with the JAXP jar. If, how-
ever, you find yourself with two JAXP-compliant APIs on your classpath for
some other reason, you should explicitly set the implementation class(es)
before using JAXP. Since you would not want to do this in your application
code, the properties file approach is probably best.

 JAXP is now a part of the J2EE specification, meaning that your J2EE ven-
dor is required to support it. This makes using JAXP an even easier choice over
directly using a specific DOM, SAX, or XSLT implementation.

Using JAXP with SAX
The key JAXP classes for use with SAX are listed in table 2.3. Before demon-
strating the use of SAX via JAXP, we must digress for a moment on the low
level details of SAX parsing. To use SAX with or without JAXP, you must always
define one or more event handlers for the parser to use.

DEFINITION A SAX event handler is a component that registers itself for callbacks
from the parser when SAX events are fired.

The SAX API defines four core event handlers, encapsulated within the Enti-
tyResolver, DTDHandler, ContentHandler, and ErrorHandler interfaces of the
org.xml.sax package. The ContentHandler is the primary interface that most
applications need to implement. It contains callback methods for the start-
Document, startElement, endElement, and endDocument events. Your applica-
tion must implement the necessary SAX event interface(s) to define your
specific implementation of the event handlers with which you are interested.

Listing 2.5 A Sample jaxp.properties file

Sets DOM builder,
SAX parser, and
XSLT processor
implementation
classes

60 CHAPTER 2

XML and Java

The other types of event handlers defined in SAX exist to deal with more
peripheral tasks in XML parsing. The EntityResolver interface enables the
mapping of references to external sources such as databases or URLs. The
ErrorHandler interface is implemented to handle special processing of SAXEx-
ceptions. Finally, the DTDHandler interface is used to capture information
about document validation as specified in the document’s DTD.

 SAX also provides a convenience class called the org.xml.sax.help-
ers.DefaultHandler, which implements all of the event handler interfaces. By
extending the DefaultHandler class, your component has access to all of the
available SAX events.

 Now that we understand how SAX works, it is time to put JAXP to work
with it. For an example, let us read in our earlier product catalog XML docu-
ment using SAX events and JAXP. To keep our example short and relevant, we
define a SAX event handler class that listens only for the endElement event.
Each time a product element has been completely read by the SAX parser, we
print a message indicating such. The code for this handler is shown in
listing 2.6.

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;

public class ProductEventHandler
 extends DefaultHandler {

Table 2.3 Primary JAXP interfaces to the SAX API

JAXP class or interface Description

javax.xml.parsers.SAXParserFactory Locates a SAXParserFactory implementation class and
instantiates it. The implementation class in turn provides
SAXParser implementations for use by your application code.

javax.xml.parsers.SAXParser Interface to the underlying SAX parser.

javax.xml.parsers.SAXReader A class wrapped by the SAXParser that interacts with your
SAX event handler(s). It can be obtained from the SAXParser
and configured before parsing when necessary.

org.xml.sax.helpers.DefaultHander A utility class that implements all the SAX event handler
interfaces. You can subclass this class to get easy access
to all possible SAX events and then override the specific
methods in which you have interest.

Listing 2.6 SAX event handler for product nodes

Extends this class to only handle
the endElement event

The Java APIs for XML 61

 // other event handlers could go here

public void endElement(String namespaceURI,
 String localName,
 String qName,
 Attributes atts)
 throws SAXException {
 // make sure it was a product node
 if (localName.equals(“product”))
 System.out.println(
 A product was read from the catalog.);
 }
}

Now that we have defined an event handler, we can obtain a SAX parser imple-
mentation via JAXP in our application code and pass the handler to it. The
handler’s endElement method will be called once when parsing the example
document, since there is only one product node. The code for our JAXP SAX
example is given in listing 2.7.

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import java.io.File;

public class JAXPandSAX {

 public static void main(String[] args) {

 ProductEventHandler handler
 = new ProductEventHandler();

 try {
 SAXParserFactory factory
 = SAXParserFactory.newInstance();
 SAXParser parser
 = factory.newSAXParser();
 File ourExample
 = new File("product-catalog.xml");

 parser.parse(ourExample, handler);

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

}

Listing 2.7 Parsing XML with JAXP and SAX

Instantiates our
event handler

Obtains a SAXParser via JAXP

62 CHAPTER 2

XML and Java

When the code in listing 2.6 is executed against our product catalog docu-
ment from listing 2.1, you should see the following output:

Product read from the catalog.

This statement only prints once, since we have only defined a single product.
If there were multiple products defined, this statement would have printed
once per product.

Using JAXP with DOM
Using JAXP with DOM is a far less complicated endeavor than with SAX. This
is because you do not need to develop an event handler and pass it to the
parser. Using DOM, the entire XML document is read into memory and repre-
sented as a tree. This allows you to manipulate the entire document at once,
and does not require any state-machine logic programming on your part. This
convenience comes, of course, at the expense of system resources and speed.
The central JAXP classes for working with DOM are summarized in table 2.4.

Since our product catalog document is very short, there is no danger in read-
ing it in via DOM. The code to do so is given in listing 2.8. You can see that
the general steps of obtaining a parser from JAXP and invoking it on a docu-
ment are the same. The primary difference is the absence of the SAX event
handler. Note also that the parser returns a pointer to the DOM in memory
after parsing. Using the other DOM API classes in the org.w3c.dom package,
you could traverse the DOM in your code and visit each product in the cata-
log. We leave that as an exercise for the reader.

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.w3c.dom.Document;
import java.io.File;

public class JAXPandDOM {

Table 2.4 Primary JAXP interfaces to the DOM API

JAXP class or interface Description

javax.xml.parsers.DocumentBuilderFactory Locates a DocumentBuilderFactory implementation
class and instantiates it. The implementation class
in turn provides DocumentBuilder implementations.

javax.xml.parsers.DocumentBuilder Interface to the underlying DOM builder.

Listing 2.8 Building a DOM with JAXP

Imports the JAXP
DOM classes

The Java APIs for XML 63

 public static void main(String[] args) {

 try {
 DocumentBuilderFactory factory
 = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder
 = factory.newDocumentBuilder();
 File ourExample
 = new File("product-catalog.xml");
 Document document
 = builder.parse(ourExample);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

}

Using JAXP with XSLT
JAXP supports XSLT in the same implementation-independent manner as XML
parsing. The JAXP interfaces to XSLT are located in the javax.xml.transform
package. The primary classes and interfaces are summarized in table 2.5. In
addition to these top-level interfaces, JAXP includes three subpackages to sup-
port the use of SAX, DOM, and I/O streams with XSLT. These packages are
summarized in table 2.6.

In section 2.1.3, we discussed the XSLT process and saw how our product
catalog document could be transformed into HTML via XSLT. Now we exam-
ine how that XSLT process can be invoked from your Java code via JAXP. For
the sake of clarity and simplicity, we will use the I/O stream helper classes

Table 2.5 Primary JAXP interfaces to the XSLT API

JAXP class or interface Description

javax.xml.transform.TransformerFactory Locates a TransformerFactory implementation class
and instantiates it.

javax.xml.transform.Transformer Interface to the underlying XSLT processor.

javax.xml.transform.Source An interface representing an XML data source to be
transformed by the Transformer.

javax.xml.transform.Result An interface to the output of the Transformer after
XSLT processing.

Obtains a DOMBuilder
via JAXP

Parses the XML and
builds a DOM tree

64 CHAPTER 2

XML and Java

from the javax.xml.transform.stream package to create our Source and
Result objects.

The code we need to convert our example document to HTML is shown in
listing 2.9. To compile it, you must have the JAXP jar file in your classpath. To
run this program, you must have the example product catalog XML document
from listing 2.1 saved in a file called product-catalog.xml. The stylesheet
from listing 2.4 must be saved to a file named product-catalog-to-html.xsl.
You can either type these files into your favorite editor or download them
from the book’s web site at http://www.manning.com/Gabrick. You will also
need to place a JAXP-compliant XSLT engine (such as Xalan) in your classpath
before testing this example.

import javax.xml.transform.*;
import javax.xml.transform.stream.*;
import java.io.File;

public class JAXPandXSLT {

 public static void main(String[] args) {

 File sourceFile
 = new File("product-catalog.xml");
 File xsltFile
 = new File("product-catalog-to-html.xsl");

 Source xmlSource = new StreamSource(sourceFile);
 Source xsltSource = new StreamSource(xsltFile);
 Result result = new StreamResult(System.out);

 TransformerFactory factory
 = TransformerFactory.newInstance();

try {

Table 2.6 JAXP helper packages for XSLT

Package name Description

javax.xml.transform.dom Contains classes and interfaces for using XSLT with DOM input
sources and results.

javax.xml.transform.sax Contains classes and interfaces for using XSLT with SAX input
sources and results.

javax.xml.transform.stream Contains classes and interfaces for using XSLT with I/O input and
output stream sources and results.

Listing 2.9 Building a DOM with JAXP

Imports the JAXP
XSLT API

Loads the XML and
XSL files

Creates I/O Stream
sources and results

Returns an instance of
TransformerFactory

The Java APIs for XML 65

 Transformer transformer
 = factory.newTransformer(xsltSource);

 transformer.transform(xmlSource, result);

 } catch (TransformerConfigurationException tce) {
 System.out.println("No JAXP-compliant XSLT processor found.");
 } catch (TransformerException te) {
 System.out.println("Error while transforming document:");
 te.printStackTrace();
 }
 }

}

B The TransformerFactory implementation then provides its own specific Trans-
former implementation. Note that the transformation rules contained in the
XSLT stylesheet are passed to the factory for it to create a Transformer object.

C This is the call that actually performs the XSLT transformation. Results are
streamed to the specified Result stream, which is the console in this example.

At first glance, using XSLT via JAXP does not appear to be too complex. This is
true for simple transformations, but there are many attributes of the XSLT
process that can be configured via the Transformer and TransformerFactory
interfaces. You can also create and register a custom error handler to deal with
unexpected events during transformation. See the JAXP documentation for a
complete listing of the possibilities. In this book, we concentrate on where
and how you would use JAXP in your J2EE code rather than exhaustively exer-
cising this API.

A word of caution
Using XSLT, even via JAXP, is not without its challenges. The biggest barrier
to the widespread use of XSLT is currently performance. Performing an XSLT
transformation on an XML document is time- and resource-intensive. Some
XSLT processors (including Xalan) allow you to precompile the transformation
rules contained in your stylesheets to speed throughput. Through the
JAXP 1.1 interface, it is not yet possible to access this feature.

 Proceed with caution and perform thorough load tests before using XSLT
in production. If you need to use XSLT and if performance via JAXP is insuffi-
cient, you may consider using a vendor API directly and wrapping it in a utility
component using the Faade pattern. You might also look into XSLTC, an
XSLT compiler recently donated to the Apache Software Foundation by Sun

B Factory returns new
Transformer

C Performs transformation

66 CHAPTER 2

XML and Java

Microsystems. It enables you to compile XSLT stylesheets into Java classes
called translets. More information on XSLTC is available at http://
xml.apache.org/xalan-j/xsltc/.

2.2.2 JDOM

The first thing that stands out about this JAX family member is its lack of a JAX
acronym. With JAXP now at your disposal, you can write parser-independent
XML application code. However, there is another API that can simplify things
even further. It is called the Java Document Object Model (JDOM), and has
been recently accepted as a formal recommendation under the Java Commu-
nity Process.

 JDOM, created by Jason Hunter and Brett McLaughlin, provides a Java-
centric API for working with XML data structures. It was designed specifically
for Java and provides an easy-to-use object model already familiar to Java
developers. For example, JDOM uses Java collection classes such as
java.util.List to work with XML data like node-sets. Furthermore, JDOM
classes are concrete implementations whereas the DOM classes are abstract.
This makes them easy to use and removes your dependence on a specific ven-
dor’s DOM implementation, much like JAXP.

 The most recent version of JDOM has been retrofitted to use the JAXP API.
This means that your use of JDOM does not subvert the JAXP architecture,
but builds upon it. When the JDOM builder classes create an XML object, they
invoke the JAXP API if available. Otherwise, they rely on a default provider for
parsing (Xerces) and a default XSLT processor (Xalan). The JDOM architecture
is depicted in figure 2.9.

 Table 2.7 lists the central JDOM classes. As you can see, they are named
quite intuitively. JDOM documents can be created in memory or built from a
stream, a file, or a URL.

The Java APIs for XML 67

Table 2.7 Core JDOM classes

Class name Description

org.jdom.Document The primary interface to a JDOM document.

org.jdom.Element An object representation of an XML node.

org.jdom.Attribute An object representation of an XML node’s attribute.

org.jdom.ProcessingInstruction JDOM contains objects to represent special XML content,
including application-specific processing instructions.

org.jdom.input.SAXBuilder A JDOM builder that uses SAX.

org.jdom.input.DOMBuilder A JDOM builder that uses DOM.

org.jdom.transform.Source A JAXP XSLT Source for JDOM Documents. The JDOM is
passed to the Transformer as a JAXP SAXSource.

org.jdom.transform.Result A JAXP XSLT Result for JDOM Documents. Builds a JDOM
from a JAXP SAXResult.

Request Document Parsing

Application Code

XML Parser

XML
Document

DOM API

SAX API

JAXP

Parsing Infrastructure

JDOM

Manipulate / Traverse
JDOM document

Figure 2.9
JDOM architecture

68 CHAPTER 2

XML and Java

 To quickly demonstrate how easy JDOM is to use, let us build our product
catalog document from scratch, in memory, and then write it to a file. To do
so, we simply build a tree of JDOM Elements and create a JDOM Document
from it. The code to make this happen is shown in listing 2.10. When you
compile and run this code, you should find a well-formatted version of the
XML document shown in listing 2.1 in your current directory.

import org.jdom.*;
import org.jdom.output.XMLOutputter;
import java.io.FileOutputStream;

public class JDOMCatalogBuilder {

 public static void main(String[] args) {

 // construct the JDOM elements

 Element rootElement = new Element("product-catalog");
 Element productElement = new Element("product");

 productElement.addAttribute("sku", "123456");
 productElement.addAttribute("name", "The Product");

 Element en_US_descr = new Element("description");
 en_US_descr.addAttribute("locale", "en_US");
 en_US_descr.addContent("An excellent product.");

 Element es_MX_descr = new Element("description");
 es_MX_descr.addAttribute("locale", "es_MX");
 es_MX_descr.addContent("Un producto excellente.");

 Element en_US_price = new Element("price");
 en_US_price.addAttribute("locale", "en_US");
 en_US_price.addAttribute("unit", "USD");
 en_US_price.addContent("99.95");

 Element es_MX_price = new Element("price");
 es_MX_price.addAttribute("locale", "es_MX");
 es_MX_price.addAttribute("unit", "MXP");
 es_MX_price.addContent("9999.95");

 // arrange elements into a DOM tree

 productElement.addContent(en_US_descr);
 productElement.addContent(es_MX_descr);
 productElement.addContent(en_US_price);
 productElement.addContent(es_MX_price);

 rootElement.addContent(productElement);
 Document document = new Document(rootElement);

 // output the DOM to "product-catalog.xml" file

Listing 2.10 Building a document with JDOM

Creates element
attributes

Adds text to
the element

Builds the DOM by
adding one element as
content to another

Wraps root element
and processing
instructions

The Java APIs for XML 69

 XMLOutputter out = new XMLOutputter(" ", true);

 try {
 FileOutputStream fos = new FileOutputStream("product-catalog.xml");
 out.output(document, fos);
 } catch (Exception e) {
 System.out.println("Exception while outputting JDOM:");
 e.printStackTrace();
 }
 }

}

Due to its intuitive interface and support for JAXP, you will see JDOM used
extensively in remaining chapters. You can find detailed information about
JDOM and download the latest version from http://www.jdom.org.

2.2.3 JAXB

The Java API for XML Binding (JAXB) is an effort to define a two-way map-
ping between Java data objects and XML structures. The goal is to make the
persistence of Java objects as XML easy for Java developers. Without JAXB, the
process of storing and retrieving (serializing and deserializing, respectively)
Java objects with XML requires the creation and maintenance of cumbersome
code to read, parse, and output XML documents. JAXB enables you to work
with XML documents as if they were Java objects.

DEFINITION Serialization is the process of writing out the state of a running soft-
ware object to an output stream. These streams typically represent
files or TCP data sockets.

The JAXB development process requires the creation of a DTD and a binding
schema—an XML document that defines the mapping between a Java object
and its XML schema. You feed the DTD and binding schema into a schema
compiler to generate Java source code. The resulting classes, once compiled,
handle the details of the XML-Java conversion process. This means that you do
not need to explicitly perform SAX or DOM parsing in your application code.
Figure 2.10 depicts the JAXB process flow.
Early releases of JAXB show improved performance over SAX and DOM parsers
because its classes are lightweight and precompiled. This is a positive sign for
the future of JAXB, given the common concerns about performance when
using XML.

Indents element two
spaces and uses newlines

Writes the JDOM
representation to a file

70 CHAPTER 2

XML and Java

One tradeoff to consider before using JAXB is a loss of system flexibility, since
any change in your XML or object structures requires recompilation of the
JAXB classes. This can be inconvenient or impractical for rapidly evolving sys-
tems that use JAXB extensively. Each change to the JAXB infrastructure
requires regenerating the JAXB bindings and retesting the affected portions of
the system.

 JAXB manifests other issues in its current implementation that you should
explore before using it in your applications. For example, the process by which
XML data structures are created from relational tables is overly simplistic and
resource intensive. Issues such as these are expected to subside as the specifica-
tion matures over time. We provide an example of using JAXB in the remain-
der of this section. More information about the capabilities and limitations of
this API are available at http://java.sun.com/xml/jaxb/.

Binding Java objects to XML
To see JAXB in action, we turn once again to our product catalog example
from listing 2.1. We previously developed the DTD corresponding to this
document, which is shown in listing 2.2. Creating the binding schema is a bit
more complicated. We start by creating a new binding schema file called
product-catalog.xjs. Binding schemas in the early access version of JAXB
always have the following root element:

Java
Source
Files

DTD

Binding
Schema

(conversion
instructions)

Schema Compiler Java Compiler

Java
Class
Files

Java Objects XML Documents

Figure 2.10 JAXB architecture

The Java APIs for XML 71

<xml-java-binding-schema version="1.0-ea">

This element identifies the document as a binding schema. We now define our
basic, innermost elements in the product-catalog document:

<element name="description" type="class">
 <attribute name="locale"/>
 <content property="description"/>
</element>

and

<element name="price" type="class">
 <attribute name="locale"/>
 <attribute name="unit"/>
 <content property="price"/>
 </element>

The type attribute of the element node denotes that the elements of type
description and price in the product-catalog document are to be treated as
individual Java objects. This is necessary because both description and price
have their own attributes as well as content.

 The content element in each of the above definitions tells the JAXB com-
piler to create a property for the enclosing class with the specified name. The
content of the generated Description class will be accessed via the getDe-
scription and setDescription methods. Likewise, the Price class content
will be accessed via methods called getPrice and setPrice.

 Having described these basic elements, we can now refer to them in the
definition of the product element.

<element name="product" type="class">
 <content>
 <element-ref name="description"/>
 <element-ref name="price"/>
 </content>
</element>

The product element maps to a Java class named Product and will contain two
Lists as instance variables. One of these will be a List of Description instances.
The other will be a List of Price instances. Notice the use of element-ref
instead of element in the definition of the description and price nodes. This
construct can be used to create complex object structures and to avoid dupli-
cation of information in the binding document.

 The final element to bind is the root element, product-catalog. Its bind-
ing is defined as follows:

72 CHAPTER 2

XML and Java

<element name="product-catalog" type="class" root="true">
 <content>
 <element-ref name="product"/>
 </content>
</element>

Notice the root=true attribute in this binding definition. This attribute iden-
tifies product-catalog as the root XML element. From this definition, the
JAXB compiler will generate a class called ProductCatalog, containing a List
of Product instances. The complete JAXB binding schema for our example is
shown in listing 2.11.

<xml-java-binding-schema version="1.0-ea">

 <element name="description" type="class">
 <attribute name="locale"/>
 <content property="description"/>
 </element>

 <element name="price" type="class">
 <attribute name="locale"/>
 <attribute name="unit"/>
 <content property="price"/>
 </element>

 <element name="product" type="class">
 <content>
 <element-ref name="description"/>
 <element-ref name="price"/>
 </content>
 </element>

 <element name="product-catalog" type="class" root="true">
 <content>
 <element-ref name="product"/>
 </content>
 </element>

</xml-java-binding-schema>

Now that we have a DTD and a binding schema, we are ready to generate our
JAXB source code. Make sure you have the JAXB jar files in your classpath and
execute the following command:

java com.sun.tools.xjc.Main product-catalog.dtd product-catalog.xjs

If all goes well, you will see the following files created in your current directory:

Listing 2.11 Complete JAXB binding schema example

The Java APIs for XML 73

Description.java
Price.java
Product.java
ProductCatalog.java

You can now compile these classes and begin to use them in your application
code.

Using JAXB objects
Using your compiled JAXB classes within your application is easy. To read in
objects from XML files, you simply point your JAXB objects at the appropriate
file and read them in. If you are familiar with the use of java.io.ObjectIn-
putStream, the concept is quite similar. Here is some code you can use to read
in the product catalog document via JAXB:

ProductCatalog catalog = null;
File productCatalogFile = new File("product-catalog.xml");
try {
 FileInputStream fis
 = new FileInputStream(productCatalogFile);
 catalog = ProductCatalog.unmarshal(fis);
} catch (Exception e) {
 // handle
} finally {
 fis.close();
}

To reverse the process and save the ProductCatalog instance as XML, you
could do the following:

try {
 FileOutputStream fos
 = new FileOutputStream(productCatalogFile);
 catalog.marshal(fos);
} catch (Exception e2) {
 // handle
} finally {
 fos.close();
}

In the course of application processing, use your JAXB objects just as you
would any other object containing instance variables. In many cases, you will
need to iterate through the children of a given element instance to find the
data you need. For example, to get the U.S. English description for a given
Product instance product, you would need to do the following:

String description = null;
List descriptions = product.getDescription();
ListIterator it = descriptions.listIterator();

74 CHAPTER 2

XML and Java

while (it.hasNext()) {
 Description d = (Description) it.next();
 if (d.getLocale().equals(en_US)) {
 description = d.getDescription();
 break;
 }
}

This type of iteration is necessary when processing XML data through all APIs,
and is not specific to JAXB. It is a necessary part of traversing tree data struc-
tures like XML.

 We invite you to explore the full capabilities of JAXB at the URL given near
the beginning of this section. This can be a very useful API in certain applica-
tions, especially those with serious performance demands.

2.2.4 Long Term JavaBeans Persistence

Easily the most poorly named Java XML API, Long Term JavaBeans Persistence
defines an XML mapping API for JavaBeans components. It is similar in func-
tion to JAXB, but leverages the JavaBeans component contract instead of a
binding schema to define the mapping from Java to XML. Since JavaBeans
must define get and set methods for each of their publicly accessible properties,
it was possible to develop XML-aware components that can serialize JavaBeans
to XML without a binding schema. These components use the Java reflection
API to inspect a given bean and serialize it to XML in a standard format.

 This API has become a part of the Java 2 Standard Edition as of
version 1.4. There is no need to download any extra classes and add them to
your classpath. The primary interfaces to this API are summarized in table 2.8.
These classes behave in a similar fashion to java.io.ObjectInputStream and
java.io.ObjectOutputStream, but use XML instead of a binary format.

Writing a JavaBean to XML
As an example, let us define a simple JavaBean with one property, as follows:

public class SimpleJavaBean {
 private String name;

Table 2.8 Core Long Term JavaBeans Persistence classes

Class name Description

java.beans.XMLEncoder Serializes a JavaBean as XML to an output stream.

java.beans.XMLDecoder Reads in a JavaBean as XML from an input stream.

The Java APIs for XML 75

public SimpleJavaBean(String name) {
 setName(name);
 }

// accessor
 public String getName() { return name; }

// modifier
 public void setName(String name) { this.name = name; }

}

As you can see, this bean implements the JavaBeans contract of providing an
accessor and modifier for its single property. We can save this bean to an XML
file named simple.xml using the following code snippet:

import java.beans.XMLEncoder;
import java.io.*;

...

XMLEncoder e
 = new XMLEncoder(new BufferedOutputStream(
 new FileOutputStream("simple.xml")));
e.writeObject(new SimpleJavaBean("Simpleton"));
e.close();

The code above creates an XMLEncoder on top of a java.io.BufferedOutput-
Stream representing the file simple.xml. We then pass the SimpleJavaBean
instance reference to the encoder’s writeObject method and close the stream.
The resulting file contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.0" class="java.beans.XMLDecoder">
 <object class="SimpleJavaBean">
 <void property="name">
 <string>Simpleton</string>
 </void>
 </object>
</java>

We will not cover the XML syntax in detail, since you do not need to under-
stand it to use this API. Detailed information about this syntax is available in
the specification, should you need it.

Restoring a JavaBean from XML
Reading a previously saved JavaBean back into memory is equally simple.
Using our SimpleJavaBean example, the bean can be reinstated using the fol-
lowing code:

76 CHAPTER 2

XML and Java

XMLDecoder d
 = new XMLDecoder(new BufferedInputStream(
 new FileInputStream("simple.xml")));
SimpleJavaBean result = (SimpleJavaBean) d.readObject();
d.close();

The XMLDecoder knows how to reconstitute any bean saved using the XMLEn-
coder component. This API can be a quick and painless way to export your
beans to XML for use by other tools and applications. And remember, you can
always transform the bean’s XML to another format via XSLT to make it more
suitable for import into another environment.

2.2.5 JAXM

The Java API for XML Messaging (JAXM) is an enterprise Java API providing a
standard access method and transport mechanism for SOAP messaging in Java.
It currently includes support for the SOAP 1.1 and SOAP with Attachments
specifications. JAXM supports both synchronous and asynchronous messaging.

 The JAXM specification defines the various services that must be provided
by a JAXM implementation provider. Using any compliant implementation,
the developer is shielded from much of the complexity of the messaging sys-
tem, but has full access to the services it provides. Figure 2.11 depicts the
JAXM architecture.

 The two main components of the JAXM architecture are the JAXM Client
and Provider. The Client is part of the J2EE Web or EJB container that pro-
vides access to JAXM services from within your application. The Provider may
be implemented in any number of ways and is responsible for sending and
receiving SOAP messages. With the infrastructure in place, sending and receiv-
ing SOAP messages can be done exclusively through the JAXM API.

J2EE Container

JAXM
Client

Application Code

Application Code

Create and Send
SOAP Message

JAXM Provider

Send Message
Over HTTP

Receive SOAP
Message

Receive and
Process Message

Figure 2.11 JAXM architecture

The Java APIs for XML 77

 The JAXM API consists of two packages, as summarized in table 2.9. Your
components access JAXM services via a ConnectionFactory and Connection
interface, in the same way you would obtain a handle to a message queue in
the Java Messaging Service (JMS) architecture. After obtaining a Connection,
you can use it create a structured SOAP message and send it to a remote host
via HTTP(S). JAXM also provides a base Java servlet for you to extend when
you need to handle inbound SOAP messages.

At the time of this writing, JAXM 1.0.1 is available as part of the Java XML
Pack and is clearly in the lead of all APIs under development in terms of stan-
dardizing the transmission of SOAP messages in Java. Since the creation and
consumption of SOAP messages is a complex topic, we defer an example of
using JAXM to chapter 4. There we use JAXM to create and access web services
in J2EE.

 More information about JAXM can be found at http://java.sun.com/
xml/jaxm/. Details about the Java XML Pack can be found at http://
java.sun.com/xml/javaxmlpack.html.

2.2.6 JAX-RPC

JAX-RPC is a Java-specific means of performing remote procedure calls using
XML. JAX-RPC implements the more general XML-RPC mechanism that is the
basis of SOAP. Using JAX-RPC, you can expose methods of the beans running
in your EJB container to remote Java and non-Java clients. An early access
release of the JAX-RPC is now available as part of the Java XML Pack. Up-to-
date details about JAX-RPC are at http://java.sun.com/xml/jaxrpc/.

 It should be noted that SOAP is fast becoming the preferred method of
implementing XML-RPC for web services. Since JAXM already implements the
SOAP protocol and has a more mature reference implementation available, the
future of the JAX-RPC API remains somewhat uncertain.

Table 2.9 The JAXM API packages

Package name Description

javax.xml.messaging Contains the ConnectionFactory and Connection interfaces and
supporting objects.

javax.xml.soap Contains the interface to the SOAP protocol objects, including
SOAPEnvelope, SOAPHeader, and SOAPBody

78 CHAPTER 2

XML and Java

2.2.7 JAXR

A critical component to the success of web services is the ability to publish
and access information about available services in publicly available registries.
Currently, there are several competing standards in the area of web services
registries. UDDI and ebXML Registry are currently the two most popular of
these standards.

 To abstract the differences between registries of different types, an effort is
underway to define a single Java API for accessing any type of registry. The
planned result is an API called the Java API for XML Registries (JAXR). JAXR
will provide a layer of abstraction from the specifics of each registry system,
enabling standardized access to web services information from Java.

 JAXR is expected to handle everything from executing complex registry
queries to submitting and updating your own data to a particular registry sys-
tem. The primary benefit is that you will have access to heterogeneous registry
content without having to code your components to any specific format. Just
as JNDI enables dynamic discovery of resources, JAXR will enable dynamic dis-
covery of XML-based registry information. More information on JAXR is avail-
able at http://java.sun.com/xml/jaxr/.

 The JAXR specification is currently in public review draft, and an early
access reference implementation is part of the Java XML Pack. Because of its
perceived future importance with regard to web services and the number of
parties interested in ensuring its interface is rock solid, this specification is
likely to change dramatically before its first official release. We encourage you
to stay on top of developments in this API, especially if you plan to produce or
consume web services in J2EE.

2.3 Summary

The chapter has been a whirlwind tour of current XML tools and technologies,
along with their related Java APIs. Now that you are familiar with the state and
direction of both XML and J2EE, we can begin to use them together to
enhance your application architecture.

 By now, you should be comfortable with viewing XML as a generic metalan-
guage and understand the relationships between XML, XML parsers, XSLT pro-
cessors, and XML-based technologies. You should also understand how XML is
validated and constrained at high level. Perhaps most importantly, you should
see how the various pieces of XML technology fit together to enable a wide

Summary 79

variety of functionality. You will see many of the technologies and APIs dis-
cussed in this chapter implemented by the examples in the remaining chapters.

 Of all the topics covered in this chapter, web services is by far the hottest
topic in business application development today. Chapter 4 contains the
details you need to implement and consume web services in J2EE. Chapter 6
provides an end-to-end example of using web services via a case study.

