
Howard M. Lewis Ship

M A N N I N G

TAPESTRY
IN ACTION

For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2004 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-11-7

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04

vii

PART 1 USING BASIC TAPESTRY COMPONENTS1

1 ■ Introducing Tapestry 3

2 ■ Getting started with Tapestry 38

3 ■ Tapestry and HTML forms 92

4 ■ Advanced form components 133

5 ■ Form input validation 169

PART 2 CREATING TAPESTRY COMPONENTS............................213

6 ■ Creating reusable components 215

7 ■ Tapestry under the hood 269

8 ■ Advanced techniques 322

PART 3 BUILDING COMPLETE TAPESTRY APPLICATIONS........381

9 ■ Putting it all together 383

10 ■ Implementing a Tapestry application 403

brief contents

viii BRIEF CONTENTS

APPENDIXES

A ■ Getting involved with Tapestry 479

B ■ Building the examples with Ant 485

C ■ Tapestry component reference 493

D ■ Tapestry specifications 516

38

Getting started
with Tapestry

This chapter covers
■ Creating HTML templates, page specifications,

and page classes
■ Using Tapestry components inside an HTML

template
■ Creating clickable links
■ Encoding extra information into link URLs
■ Configuring Tapestry applications for deployment

Introducing the Hangman application 39

In the first chapter, we made a number of claims about what Tapestry is capable of;
now it is time to start backing up those claims with hard code. Launching into a
complete Java 2 Enterprise Edition (J2EE) application right here would be a bit
premature; instead, we’ll start with more of a toy, an application that plays the sim-
ple word game Hangman.† In effect, Hangman is a “scale model” of a real Tapestry
application; it demonstrates the basic capabilities of the framework and will give
you an initial sense for what developing Tapestry applications is all about. Along
the way, you’ll see how to:

■ Separate business logic from presentation logic, within the Model-View-
Controller (MVC) pattern (described in chapter 1)

■ Combine HTML templates, page specifications (in XML), and Java classes
to form pages within the application

■ Create HTML hyperlinks that activate application logic when clicked
■ Encode custom application data into HTML hyperlinks
■ Manage server-side state information
■ Configure a Tapestry application for deployment inside a servlet container

More importantly, you’ll see quite a bit about the work you don’t have to do,
because the framework takes care of it for you.

 Appendix B covers how to obtain the source code for all the examples in the
book, as well as how to build the examples on your own computer and deploy
them into the Tomcat servlet container (Tomcat is an open source servlet con-
tainer available from http://jakarta.apache.org/tomcat). Once Tomcat is running
and you have downloaded the source code, you can launch the Hangman appli-
cation by opening a web browser to http://localhost:8080/hangman1/app.

2.1 Introducing the Hangman application

Hangman is a simple word game for two players, played on a piece of paper or
on a chalkboard. One player selects a secret target word; the other player attempts
to guess the word. To start, you draw an empty gallows. The guessing player
selects a letter from the alphabet; if the letter appears in the target word, the
other player writes the letter in each position of the target word that the letter
appears in. Each unsuccessful guess is marked by adding a line to a stick figure

† An even simpler example of a “Hello World” Tapestry application is available at http://www.manning.
com/lewisship/helloworld. The helloworld.war file is pre-compiled and pre-built, containing all the
necessary Tapestry libraries and deployment descriptors. It may be downloaded directly into your
servlet container, Tomcat or otherwise, and accessed as http://localhost:8080/helloworld/app.

40 CHAPTER 2
Getting started with Tapestry

on the gallows: the head, torso, and then the limbs. The game is over when the
word is guessed or the stick figure is completed.

 The Tapestry Hangman application captures all of this functionality and, at
the same time, attempts to capture the classic look of playing the game by hand
on a chalkboard. The user interface makes use of images to represent the letters
and other artifacts of the game, to provide a “hand–scrawled” look and feel. Fig-
ure 2.1 shows the middle of a game of Hangman; the player has made several
wrong guesses, so parts of the stick figure are filled in, and one letter (A) has
been guessed correctly so far.

 At this point, all we have is a general idea for the application; before we can
get to the coding stage, we must formalize this general idea into something a bit
more concrete—and that begins with identifying the application flow.

Figure 2.1 A Tapestry Hangman game in progress. The player has successfully
guessed the letter A, but has also guessed E, P, and V, which are not in the target
word. An important aspect of this application is the look and feel, which should
resemble a game played by hand on a chalkboard.

Introducing the Hangman application 41

2.1.1 Determining the application flow

The application flow is a model of how the end user will navigate through the
application. Determining the flow occurs very early in the development cycle; it
is driven by the specific requirements and use cases of the application. Applica-
tion flow is the most abstract model of the application; it identifies the different
pages in the application and how they are connected, but rarely has to precisely
identify what is on any particular page. Key aspects of the application user inter-
face are discernable from the flow diagrams, such as the need for common navi-
gation menus or specific links between individual pages.

 The flow of the Hangman application is quite simple: From the Guess page,
the user makes guesses at the target word, eventually winning or losing the
game. Figure 2.2 is a state diagram for this simple application; when the applica-
tion is launched, the user is presented with a Start page (figure 2.4); from there,
he or she can start a new game, making guesses that eventually reach either a
win or a loss; from there, the player can restart the game with a new target word.

 From this simple description, you can see that we’ll have four distinct pages in
the application:

Figure 2.2
The player starts the
game and makes
guesses, eventually
reaching the win or lose
page, from which the
player can start a new
game (with a new word).

42 CHAPTER 2
Getting started with Tapestry

■ Start—A welcome page to greet players before starting a new game
■ Make Guess—The main page, from which players may guess letters of the

target word
■ Win—The page reached after the target word is successfully guessed
■ Lose—The page reached after players have exhausted their guesses

Once the application flow has been determined, the next step is to prototype
what the individual HTML pages will look like.

2.1.2 Creating page mockups

Page mockups are static HTML pages that represent what the active pages from
the running application will look like. These are ordinary HTML pages with
placeholder values representing the content that will eventually be generated
dynamically by the application. The point of creating the mockups is to give
the HTML developers a chance to work out the look and feel of the application,
right down to fonts, colors, and graphics, without concern for how the applica-
tion will be implemented.

 Figure 2.3 shows the mockup for the Guess page in an HTML editor. The
HTML source is shown in the upper pane, and the WYSIWYG preview appears in
the lower pane. This mockup will eventually be converted for use as the Guess
page’s HTML template.

 Page mockups should display all the features of the running application,
especially such features as error messages that are included only conditionally.
For example, a mockup may include a snippet for an error message:

 Placeholder for error message.

This snippet is important for two reasons: It clearly identifies how a real error
message should be displayed, and it identifies exactly where within the page the
error message should be displayed. In the Guess page mockup, the Guess and
Choose sections demonstrate what the page looks like in the middle of a game,
with some letters of the target word filled in and several letters from the alphabet
already guessed. Having clear examples of these dynamic aspects of the page will
be invaluable to the Java developer when he or she is converting the mockup
into a usable HTML template.

 It is not an absolute requirement that you create a mockup for every page in
the application; often, mockups for only a handful of key pages will suffice, and

Introducing the Hangman application 43

developers can use these core mockups as templates for the remaining applica-
tion pages.

 As you’ll see shortly, converting these HTML mockup pages into usable Tapes-
try page templates requires a minimal number of unobtrusive changes. A
mockup is converted into a page template by adding instrumentation: Additional
tags and tag attributes are used to identify and configure Tapestry components
within the template. This instrumentation is designed to be nearly invisible. Tap-
estry’s approach stands in stark contrast to the use of JSPs, where the conversion

Figure 2.3 The page mockup for the Guess page in an HTML editor.

44 CHAPTER 2
Getting started with Tapestry

from HTML mockup to JavaServer Page (JSP) is a one-way process. Once the
HTML mockup page has been converted to a JSP, it will not preview correctly in a
standard HTML editor, making all subsequent changes to the JSP that much
more difficult. Within Tapestry, a page template can still be edited by an HTML
developer using standard HTML editing tools; in effect, the mockups evolve into
the HTML page templates yet can still be treated as mockups.1

 This is an important aspect of Tapestry because late changes to application
flow and look and feel are simply a reality when creating web applications—
there’s always a last-minute change: a new page to add, a background color to
change, or a column width to tweak. Even in an impossibly idealized project, one
where no late changes ever occurred, a subsequent release of the application
would inevitably update the application flow and at least some aspect of the look
and feel. Tapestry accommodates these kind of late cycle changes quite well
because of how unobtrusive the instrumentation (the additional tags and tag
attributes used to identify components within a template) is. Much more work
can be done by an HTML developer using standard HTML editing tools, without
the involvement of Java developers.

 Meanwhile, even as the HTML developers are working on the mockups, the
Java developers should be getting a head start on the design of the actual appli-
cation, and that begins with identifying the domain objects.

2.1.3 Defining the domain objects

The architects and developers on the Java side of the team are ultimately
responsible for the running application; in most applications, this becomes a
question of linking a user interface to your domain objects. Domain objects are the
objects of the middle tier, the application tier, in the overall application—they
are the entity objects for data stored in a database, or objects that implement
your business’s specific processes. Common problems to solve involve what infor-
mation is stored by these objects, how the different objects are related, and how
they are read from, or stored into, a database.

 Even in a simple application such as Hangman, which does not make use of a
database, there are still domain objects, and still advantages (in accordance with
the MVC design pattern) to keeping these objects well separated from any code
directly related to the user interface.

1 Tapestry isn’t magic, and there are some limitations on maintaining full WYSIWYG previews of
HTML templates once more sophisticated custom components are created and used within a page
template; this subject is covered in chapter 6.

Introducing the Hangman application 45

 The two domain objects used in the Hangman application are WordSource
and Game. The first, WordSource, is simply a wrapper around a list of words read
from a text file and is used to dole out random words for the player to guess.
Game is a bit more interesting; it encompasses all the logic about the game. Spe-
cifically, the Game object knows:

■ The target word the player is attempting to guess
■ Which of the 26 letters of the alphabet the player has already guessed
■ Which letters of the target word have been filled in by successful guesses
■ How many incorrect guesses remain
■ If the player has won the game (by guessing all the letters in the target word)

As promised, the implementation of the Game class (in listing 2.1) knows nothing
about Tapestry or any other user interface.

package hangman1;

public class Game
{
 private String _targetWord;
 private int _incorrectGuessesLeft;
 private char[] _letters;
 private boolean[] _guessed = new boolean[26];
 private boolean _win;

 public boolean isWin()
 {
 return _win;
 }

 public char[] getLetters()
 {
 return _letters;
 }

 public int getIncorrectGuessesLeft()
 {
 return _incorrectGuessesLeft;
 }

 public boolean[] getGuessedLetters()
 {
 return _guessed;
 }

Listing 2.1 Game.java: domain object for the Hangman application

Returns true
once word has
been guessed

Returns array
of letters in
the word

Returns 26 flags:
letters guessed
by player

46 CHAPTER 2
Getting started with Tapestry

 public void start(String word)
 {
 _targetWord = word;
 _incorrectGuessesLeft = 5;
 _win = false;

 int count = word.length();

 _letters = new char[count];

 for (int i = 0; i < count; i++)
 letters[i] = '';

 for (int i = 0; i < 26; i++)
 _guessed[i] = false;
 }

 public boolean makeGuess(char letter)
 {
 char ch = Character.toLowerCase(letter);

 if (ch < 'a' || ch > 'z')
 throw new IllegalArgumentException(
 "Must provide an alphabetic character.");

 int index = ch - 'a';

 if (_guessed[index])
 return true;

 _guessed[index] = true;

 boolean good = false;
 boolean complete = true;

 for (int i = 0; i < _letters.length; i++)
 {
 if (_letters[i] != '_')
 continue;

 if (_targetWord.charAt(i) == ch)
 {
 good = true;
 _letters[i] = ch;
 continue;
 }

 complete = false;
 }

 if (good)

Starts
a new
game

Processes
a player’s
guess

Introducing the Hangman application 47

 {
 _win = complete;

 return !complete;
 }

 if (_incorrectGuessesLeft == 0)
 {
 _letters = _targetWord.toCharArray();

 return false;
 }

 _incorrectGuessesLeft--;

 return true;
 }
}

The makeGuess() method is invoked to process a player’s guess. It updates the
target word and other properties and returns true if more guesses are allowed. It
returns false if the player has either won or lost the game.

 The Game class must provide some support for the user interface, but it does
so in a generic fashion without being tied to the interface; it’s the Model in the
MVC pattern described in chapter 1. This support takes the form of JavaBeans
properties that are exposed to the user interface, such as the number of incorrect
guesses remaining or the list of letters already guessed. These properties are
bound to Tapestry component parameters, allowing those components to dis-
play the number of guesses remaining, the partially guessed word, or the list of
remaining unguessed letters. In addition, Game provides methods that can be
invoked by the user interface code to start a new game or to process a guess
made by the player.

 A second class, WordSource, is also used. WordSource is responsible for provid-
ing a random word for the player to guess. The source of the words is a small file,
WordList.txt, packaged with the WordSource class. The WordSource class is pro-
vided in listing 2.2.

package hangman1;

import java.io.IOException;
import java.io.InputStream;

Listing 2.2 WordSource.java: domain object for the Hangman application

Processes
a player’s
guess

48 CHAPTER 2
Getting started with Tapestry

import java.io.InputStreamReader;
import java.io.LineNumberReader;
import java.io.Reader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class WordSource
{
 private int _nextWord;
 private List _words = new ArrayList();

 public WordSource()
 {
 readWords();
 }

 private void readWords()
 {

 try
 {
 InputStream in =
 getClass().getResourceAsStream("WordList.txt");
 Reader r = new InputStreamReader(in);
 LineNumberReader lineReader = new LineNumberReader(r);

 while (true)
 {
 String line = lineReader.readLine();

 if (line == null)
 break;

 if (line.startsWith("#"))
 continue;

 String word = line.trim().toLowerCase();

 if (word.length() == 0)
 continue;

 _words.add(word);
 }

 lineReader.close();
 }
 catch (IOException ex)
 {
 throw new RuntimeException(
 "Unable to read list of words from file WordList.txt.",

Introducing the Hangman application 49

 ex);
 }

 // Randomize the word order

 Collections.shuffle(_words);

 }

 public String nextWord()
 {
 if (_nextWord >= _words.size())
 {
 _nextWord = 0;
 Collections.shuffle(_words);
 }

 return (String) _words.get(_nextWord++);
 }
}

When WordSource is instantiated, it reads the list of words. Later, the nextWord()
method is invoked to get a new word for the player to guess. The method is
designed to not repeat a target word until every word in the list has been guessed.

 As with the Game class, this class has no direct connection to Tapestry—these
objects fit firmly into the Model category within the MVC pattern. This kind of
decoupling from the user interface is very important, because it means the Game
and WordSource classes can be tested without having to run the Tapestry applica-
tion, which in turn means the code can be fully tested inside an automated test
suite. Making code testable is always a worthy goal, because no matter how sim-
ple the code is, when you write tests, you find bugs.

 Once all the details of the domain objects are worked out, the next step is to
begin work on the pages that will interact with those domain objects.

2.1.4 Defining the pages
Like any other Tapestry application, the Hangman game consists of a set num-
ber of pages, which are themselves composed of components. In a Tapestry
application, each page is constructed by combining three related artifacts: an
HTML template, a page specification, and a Java class.2

2 Refer back to section 1.5.1 to see how to properly package these artifacts for use within a servlet con-
tainer. Appendix B provides examples of how to set up your development workspace and how to use
Ant to build and deploy the WAR.

50 CHAPTER 2
Getting started with Tapestry

 Each Tapestry page has a specific, unique name. The page name is used to
locate the page specification and HTML template. Part of the page specification
is the name of the Java class to instantiate; this is called the page class, and it will
include properties and methods specific to your application.

 The Hangman application contains only four pages: Home, Guess, Lose, and
Win, corresponding to the four pages identified in the application flow state dia-
gram (figure 2.2). The Home page here is the same as the Start page in figure 2.2.
By default, when a Tapestry application is first launched, the framework renders
the page named Home. Although there are several options for changing this
behavior, the simplest approach is to follow Tapestry’s naming convention—by
naming the first page a user will see Home.

 Creating a functioning Tapestry page starts with the HTML mockup for the
page. This mockup must be instrumented to act as an HTML template instead of
a mockup. Instrumenting a mockup inserts additional attributes and tags in
the mockup that tell Tapestry which parts of the template are dynamic compo-
nents. Most of a template, however, is exactly the same as the mockup—simple,
static HTML.

NOTE In real projects, the mockups are not always available when needed by
the Java developers creating the pages. In this situation, the Java devel-
opers will create simple, minimal HTML templates—just enough to wire
up the functionality of the application. When the mockup is ready, some
careful cut and paste from the mockup into the minimal HTML tem-
plate will convert it to use the desired application look and feel.

Once the HTML template is instrumented, a page specification (a short XML docu-
ment) can be created. The page specification has a number of responsibilities
(many of which will be discussed in later chapters). Its most basic responsibility is
to identify which Java class is to be instantiated as the page. In chapter 1, we
described Tapestry as being a component object framework; this means that
each component fits into an object hierarchy, either as a container of other com-
ponents or as a containee of a specific component—or, in many cases, as both
container and containee. Pages are still components, sitting at the root of the
component object hierarchy.

 As you’ll see, the page class is specific to the application and contains a mix-
ture of properties and methods that support both the rendering of the page and
any user interaction in the page. Ultimately, the behavior of the page is defined
by the page’s properties and methods, combined with the components contained

Developing the Home page 51

within the page—including the templates, properties, and methods of those
components. This may seem a bit dizzying in theory, but in practice it all comes
together simply and seamlessly. For our first example, let’s start with the Home
page—the simplest page in the Hangman application.

2.2 Developing the Home page

The Hangman application’s Home page has only one small bit of user interac-
tion: a link that starts a new game. This interaction is triggered by clicking the
Start image, shown in figure 2.4. Like any page, the Home page is a combination
of an XML page specification, an HTML template, and a Java class. Our first
steps into Tapestry will be to examine how these three artifacts are combined to
form a simple page.

Figure 2.4 The Home page of the Tapestry Hangman application. The player may
click the word Start to begin a game.

52 CHAPTER 2
Getting started with Tapestry

 The Home page is displayed when the application is first launched. The Web
archive (WAR) for the application must be deployed into the servlet container,
and the servlet container must itself be running. This WAR will contain the Tap-
estry framework JARs, the page templates and specifications, the static image
files (and other assets), and the compiled Java classes (this is discussed in
chapter 1, section 1.5.1). When the user launches the application (by opening a
web browser to http://localhost:8080/hangman1/app), the framework responds
by rendering the Home page.

 The first step in rendering a page is to create an instance of the page. The
framework reads the Home page’s specification and HTML template and uses
this information to create the page instance. A Tapestry page is not a single
object; the page object is the root of a tree of objects, including Tapestry compo-
nents from the page’s template, the contents of the HTML template, and a num-
ber of objects used to connect the individual pieces together. There’s no special
assembly stage for Tapestry applications, nor are there any special build steps or
compilation—all that is necessary is to package the specifications, templates, and
Java classes inside the WAR.

NOTE You might be concerned about performance, given all this talk of pars-
ing specifications and templates and instantiating trees of objects—but
don’t be. This parsing occurs very quickly, and, unlike with JSPs, there’s
no time spent compiling generated Java source code (JSP compilation
causes a noticeable delay the first time a JSP is used within a traditional
servlet application). In line with Tapestry’s efficiency goal, all the speci-
fications and templates are read and parsed just once, and then cached
for fast access when needed again in future requests. Page instances are
also stored and reused in later requests.

Let’s dive a little deeper and see exactly how the Home page’s specification is
used by the framework.

2.2.1 Understanding the Home page specification

The framework’s first step toward instantiating the Home page is to locate and
read the page’s specification. Page specifications are validated XML files (with a
.page extension) that are stored in the WEB-INF folder of the web application.
The page specification’s first responsibility is to identify the page class it needs to
instantiate—it has other many other, optional responsibilities that we’ll cover

Developing the Home page 53

later in this chapter and in subsequent chapters. Listing 2.3 contains the com-
plete specification for the Home page of the Hangman application.

<?xml version="1.0"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification class="hangman1.Home"/>

This is about as simple as a page specification can get; its only purpose is to
identify the page class, hangman1.Home. This is a Java class written for the Hang-
man application, which will be the runtime representation of the page (see sec-
tion 2.2.3 for more details). By convention, the class name for a page is the same
as the page’s name (though often stored inside a Java package), but of course,
you are free to ignore this convention and name pages and classes differently. It’s
important, however, that the <!DOCTYPE> declaration be exactly as shown in list-
ing 2.3.

WARNING Use the correct <!DOCTYPE>. Tapestry uses a validating XML parser to
read specifications. Tapestry is purposely finicky about the public ID
(the first string after PUBLIC), since it uses the known public ID to access
a copy of the document type definition (DTD) inside the framework’s
JAR rather than access it over the Internet using the system ID. The
public ID must exactly match the value in listing 2.3, or an Application-
RuntimeException is thrown. For example, changing Foundation to
Floundation will result in an exception report with this error message: Doc-
ument context:/WEB-INF/Home.page has an unexpected public id of ‘-//Apache
Software Floundation//Tapestry Specification 3.0//EN’. Watch out for typos;
this is one area where a little cut and paste will save you some grief.

In addition, there is nothing that keeps a single page class from being used for
multiple pages. Each page will have a distinct instance of the page class, just as
each component in a page is a distinct instance of a component class.

Listing 2.3 Home.page: specification for the Home page

54 CHAPTER 2
Getting started with Tapestry

2.2.2 Rendering the Home page

After parsing the page specification, Tapestry locates the HTML template for the
Home page. The HTML template, which is named Home.html, is located in the
root of the web application archive. This template is shown in listing 2.4.

<html>
<head>
<title>Tapestry Hangman</title>
<link rel="stylesheet" type="text/css" href="css/hangman.css"/>
</head>
<body>
<table>
<tr>
 <td><img alt="[Tapestry Hangman]"
 src="images/tapestry-hangman.png" width="197" height="50"
 border="0"/>
 </td>
 <td width="70" align="right"><img height="36" alt="5"
 src="images/Chalkboard_3x8.png" width="36" border="0"/>
 </td>
 <td><img alt="Guesses Left" src="images/guesses-left.png"
 width="164" height="11" border="0"/>
 </td>
</tr>
<tr>
 <td>
 </td>
 <td>
 </td>
 <td>
 </td>
</tr>
</table>

<a href="#" jwcid="@DirectLink"
 listener="ognl:listeners.start">
 <img src="images/start.png" width="250" height="23"
 border="0" alt="Start"/>
</body>
</html>

The majority of the HTML template is standard, static HTML; only a single Tap-
estry extension beyond ordinary HTML is used, showing up in the portion of the
template that provides the link to start the game.

Listing 2.4 Home.html: HTML template for the Home page

Dynamic
portion of
template

Developing the Home page 55

 The <a> tag declares a Tapestry component within the template, giving us our
first whiff of a dynamic web application rather than a static web page. The attribute
jwcid is the indicator that Tapestry uses to identify components within the tem-
plate. The name jwcid is simply Java Web Component ID. The component is type
DirectLink, one of over 40 components provided with the Tapestry framework.

 The example here is an implicit component, where the type of component and
its configuration are declared directly in the HTML template. The @ symbol
indicates to Tapestry that the component is implicitly declared. Later in this
chapter, we’ll show examples of declared components, which have their type and
configuration stored inside the page specification.

 The DirectLink component is used to create a particular type of callback into
the application. This component is one of the two primary ways that interaction
occurs in Tapestry; the other is user-submitted forms (which are covered starting in
chapter 3). The DirectLink component renders an HTML <a> element, supplying a
URL that, when clicked by the end user, causes a specific listener method of the
page to be executed (we’ll discuss what a listener method is shortly, in section 2.2.3).

 The position of the DirectLink component within the template is delineated
by the <a> and tags. Everything else in this HTML template is static
HTML—text that is sent through to the client web browser unchanged. Just the
portion rendered by the DirectLink component is dynamic. Figure 2.5 shows
how the dynamic and static portions of the template are integrated together to
form the complete response.

 The Home page’s HTML template is divided into five individual “chunks.”
Each chunk is either a block of static HTML, the start tag for a component (rec-
ognized by Tapestry because of the presence of a jwcid attribute), or the match-
ing end tag for a component. Chunk b is the portion of the HTML template
that precedes the DirectLink component. Chunk c is the component itself.
Chunk d is the portion of the page enclosed by the DirectLink. Chunk e is the
close tag for the DirectLink component. Chunk f is the remainder of the tem-
plate after the DirectLink.

 Chunks that are enclosed directly within a component’s start and end tags are
part of that component’s body. This is a very important part of Tapestry: Com-
ponents control if and when their bodies are rendered. We’ll frequently refer to
the body of the component: This is the static HTML and other components that
are enclosed between a component’s start and end tags.

 In this example, chunk d, containing the tag, is the entire body of the
DirectLink component. The page itself has a body, the top-level static chunks
(chunks b and f) and the components that aren’t enclosed by other components

56 CHAPTER 2
Getting started with Tapestry

(chunk c). When the page renders, it renders just the chunks in its body. Static
HTML chunks render as themselves; they are passed on through to the client web
browser unchanged. Components are responsible for rendering themselves and
their body.

 Figure 2.5 references two methods related to the DirectLink component: render-
Component() and renderBody(). The renderComponent() method is implemented
by components that render in Java code (rather than using their own template).
The method is invoked by the component’s container, in this case the Home
page itself, as part of the Home page’s render.

 The second method, renderBody(), is inherited by the DirectLink component
from the AbstractComponent base class. The component invokes this method
from its own renderComponent() method to render the text and components in
its own body—the static tag enclosed by the DirectLink’s <a> and tags.

 In this case, the body of the DirectLink is simple, static HTML. That’s often
not the case; a component may contain a mix of static HTML and other compo-
nents. Tapestry figures it all out, properly slotting each chunk of the page’s tem-
plate into the body of the correct component. Rendering a page is a recursive
process, since components may themselves have their own templates, containing
other components. Chapters 6 and 8 go into great detail about creating new
components, including components that have their own template.

 Tapestry’s HTML template parser is very forgiving; although the examples in
this book all follow Extensible HTML (XHTML) conventions, the template parser
can handle the kind of HTML you’ll find in the wild: unquoted attribute values,

Figure 2.5 The Home page template is broken into chunks of static HTML and component tags.
Static HTML chunks render as themselves; the DirectLink renders in code, in its
renderComponent() method, and causes its body (the tag) to render by invoking its
renderBody() method.

Developing the Home page 57

mixed uppercase and lowercase, single or double quotes, unquoted attribute val-
ues, and lots of additional whitespace. As elsewhere in Tapestry, if the parser is
unable to parse a template it will throw an exception providing line-precise
reporting of the problem.

 The last piece of the Home page puzzle is the page class; this is where we put
our application-specific logic—the code that will actually start a new game.

2.2.3 Defining the Home page class
So, what happens when the user clicks the link that was created when the page
rendered? In Tapestry, that’s the million-dollar question,3 the point where all
this talk of simplicity, consistency, and components starts to make a difference.
Here’s the short answer: You tell the component about a method in your page
class to execute, and it executes the method when the link is clicked. Now, let’s
see what this looks like in practice. We’ll start with listing 2.5, the source code for
the Home page class.

package hangman1;

import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.html.BasePage;

public class Home extends BasePage
{
 public void start(IRequestCycle cycle)
 {
 Visit visit = (Visit)getVisit();

 visit.startGame(cycle);
 }
}

A page class has many responsibilities defined by the framework, including the
ability to act as a container of other components. Fortunately, the BasePage class,
from which the Home class extends, contains the code needed to fulfill all these
responsibilities; for the Home page, all we need to add is the little bit of application-
specific logic to be executed when the Start link is clicked. That logic shows up as
a method, start(), implemented by the Home page class.

3 Since Tapestry is open source, money is not the best way to gauge status. Perhaps this should be the
“million download question” instead!

Listing 2.5 Home.java: Java class for the Home page

58 CHAPTER 2
Getting started with Tapestry

 The start() method is a listener method, a method that will be invoked in
response to a user clicking a particular link. Its implementation is to defer to the
Visit object to actually start a new game—we’ll discuss what the Visit object is
shortly; for the moment, we’ll concentrate on how it is that the start() method
is invoked when a user clicks the link.

 Listener methods are ordinary instance methods, implemented by the page’s
class, that have a specific method signature:

public void method(IRequestCycle cycle)

The method must always be public, return void, and take a single parameter of
type IRequestCycle.

 Tapestry components may have any number of parameters, both optional
and required. The DirectLink component has several optional parameters and
one that’s required (listener). The binding for the listener parameter was pro-
vided in the Home page’s HTML template:

<a href="#" jwcid="@DirectLink"
 listener="ognl:listeners.start">
 . . .

TIP Tapestry checks that there’s a binding for each required parameter. If
you remove the listener attribute from the HTML template for the
Home page, the page will not display. Instead, you’ll get an exception
report with this message: Required parameter listener of component Home/
$DirectLink is not bound. Home/$DirectLink is the name of the page and
the ID of the component.

The DirectLink component’s listener parameter is used to find the listener
method it should execute when the end user clicks the link visible in his or her
web browser. The ognl: prefix on the attribute value informs Tapestry that the
value is an Object Graph Navigation Language (OGNL) expression to be evalu-
ated, rather than a literal string constant. In Tapestry terminology, the expres-
sion listeners.start is bound to the DirectLink’s listener parameter.

WARNING Don’t forget the ognl: prefix. If you omit the prefix, Tapestry treats the
value as a string literal. Removing the prefix from the DirectLink’s lis-
tener parameter will result in an error like this when you click the link:
Parameter listener (listeners.start) is an instance of java.lang.String, which does
not implement interface org.apache.tapestry.IActionListener. When you see

Developing the Home page 59

exceptions such as this, or perhaps ClassCastExceptions within your
own code, the likely cause is a missing ognl: prefix.

How does the OGNL expression listeners.start end up executing this method?
All pages and components inherit a property, listeners, from the AbstractCompo-
nent base class. The listeners property contains a nested property for each lis-
tener method implemented by the class. Underneath the covers, there’s an
interface, IActionListener, and a little bit of Java reflection used to connect the
DirectLink component with the page’s listener method; this is shown in figure 2.6.

 A class may have any number of listener methods, each with a unique and
individual name. Listener methods inherited from superclasses are also available
through the listeners property.

WARNING If your OGNL expression references a listener method that doesn’t exist,
you’ll get an exception when you click the link. For example, changing
the expression to ognl:listeners.star results in an exception with
this message: Unable to resolve expression ‘listeners.star’ for hangman1.Home@
19b808a[Home]. You’ll also see an ognl.NoSuchPropertyException for
the property star.

An invalid listener method will result in the same exception: This will
occur if the method is not public or has the wrong method signature.

Sit back and think about this for a moment: We’ve just extended the behavior of
this page within the application by writing a very short method, the start() lis-
tener method. The provisions we’ve made in the HTML template to get this

Figure 2.6 The Tapestry servlet receives and interprets the incoming request and invokes
trigger() on the DirectLink component. The DirectLink invokes the listener method provided by
the page. After the method is invoked, a page is rendered, forming the HTML response sent back to
the client web browser.

60 CHAPTER 2
Getting started with Tapestry

listener method to execute on cue are so minor that they’re barely worth consid-
ering. The Hangman application’s Home page is unusual in that it has just the
single bit of behavior—but you can imagine a more complicated page with many
links (and, as you’ll see in chapter 3, forms); adding each new bit of behavior is
still just…adding another listener method.

 This gets to the heart of the Tapestry goals described in chapter 1:

■ Simplicity—Adding new operations takes minimal code and minimal
changes to the HTML template.

■ Consistency—Add as few or as many operations as you like, and the pro-
cess stays the same. Look at any page in the application, and it still looks
the same.

■ Feedback—By working with the framework, errors in Java code, in the
template, or in the specification are detected and verbosely reported by
the framework.

A good practice is to keep listener methods short and focused on simply interfac-
ing Tapestry components with business logic stored in domain objects. That’s
demonstrated here by having the start() listener method simply find the Visit
object and let it do the work of actually starting a new game.

2.2.4 Examining the Visit object

The Visit object is an application-wide space for storing application logic and
data. This object is accessible from all pages and components within the appli-
cation and contains information specific to a single client of the web applica-
tion. A single Visit object instance is shared by all pages within the application.
The object fulfills much the same role as the HttpSession does in a typical serv-
let application, and in fact, the Visit object is ultimately stored as an Http-
Session attribute.

 All web applications eventually store some form of client-specific server-side
state. The HttpSession acts like a map, storing named attributes. Simple as this
seems, in real applications, a considerable amount of code must be written to
retrieve attribute values from the HttpSession, cast them to the right type, create
them on the fly as needed, and delete them when they are no longer needed.

 Here again, Tapestry steps in to rethink this approach in terms of objects,
methods, and properties. In chapter 7, we’ll cover how Tapestry allows page
properties to be stored persistently between requests, which is appropriate for
values that are used only within a single page.

Developing the Home page 61

 For more general data, used throughout an application, Tapestry allows for a
single Visit object. Tapestry doesn’t know or care about the type of the Visit
object. There is no specific Visit class defined by the framework; each applica-
tion defines its own Visit class. The accessor method for the Visit object pro-
vided by the page (defined by the interface IPage and implemented by the class
BasePage) doesn’t specify the type of the object:

public Object getVisit();

It then becomes a matter of casting to the application-specific type:

Visit visit = (Visit)getVisit();

The Visit object is automatically created by the framework the first time it is ref-
erenced; you must configure Tapestry, providing the name of the class to instan-
tiate (this may be configured inside the web deployment descriptor; see section 2.6).
Once the Visit object is created, it is stored in the HttpSession for persistent
access in later requests.

 Developer code never has to worry about the HttpSession. The HttpSession
itself is created only as needed. A stateless application is more efficient than a
stateful one, and a Tapestry application will operate in a stateless mode until
there is actual server-side state to store. The framework takes care of this transi-
tion automatically, which would be very cumbersome to accomplish in ordinary
servlet code because each and every servlet would need custom logic to check for
the existence of the session and create it only as needed.

 For our Hangman application, the Visit object is responsible for controlling
page flow. It acts as a façade around the WordSource and Game objects, handles the
process of starting a new game, and processes guesses made by the player. The
Visit class for the Hangman application is provided in listing 2.6.

package hangman1;

import org.apache.tapestry.IRequestCycle;

public class Visit
{
 private WordSource _wordSource = new WordSource();
 private Game _game = new Game();

 public void startGame(IRequestCycle cycle)
 {
 _game.start(_wordSource.nextWord());

Listing 2.6 Visit.java: controller object for the Hangman application

Invoked by
Home page
listener method

 b

62 CHAPTER 2
Getting started with Tapestry

 cycle.activate("Guess");
 }

 public void makeGuess(IRequestCycle cycle, char ch)
 {
 if (_game.makeGuess(ch))
 return;

 cycle.activate(_game.isWin() ? "Win" : "Lose");
 }

 public Game getGame()
 {
 return _game;
 }
}

The startGame() method is invoked by a listener method on the Home page
to start a new game. It is also invoked by listener methods on the Win and
Lose pages.
The makeGuess() method is invoked by a listener method on the Guess page; the
listener method passes in the character to be guessed and the request cycle (so
that the Visit object can activate the Win or Lose page, if necessary).
The Game object is exposed as a read-only property of the Visit object. You’ll see
references to the properties of the Game object in the template as ognl:visit.
game.property.

When the Home page invokes the startGame() method on Visit, Visit gets a
random word and sets up the Game instance with it by invoking Game’s start()
method. The call to activate() is used to change the active application page;
the active page is responsible for rendering the response. Initially, the Home
page is the active page, because it contains the DirectLink component that was
triggered. Invoking the activate() method allows the correct page, the Guess
page, to render the response.

2.3 Implementing the Home page using
standard servlets

Despite the fact that the previous discussion about the DirectLink component,
listener methods, and the Visit object was unavoidably long-winded, in the end
we’ve shown that creating a link and getting an application-specific method to
execute when the link is clicked is extremely simple.

 b

Invoked by
Guess page
listener
method

 c

Provides
game
property

 d

 b

 c

 d

Implementing the Home page using standard servlets 63

 Let’s see what would be involved in accomplishing the same thing using stan-
dard servlets and JSPs. In this simple example, the JSP is very straightforward—so
much so that it could as easily be an entirely static HTML page. The DirectLink
component is replaced by a standard HTML link to a servlet we’ll provide:

Of course, this example is not representative. Most application operations will
involve quite a bit more: more servlets to implement the operation, more query
parameters to fill in the details, and more code to build and interpret the
URLs—all things that the Tapestry framework provides you for free.

 Regardless, this example uses a very simple operation with no parameters.
We still need to add a few lines to the application’s web deployment descrip-
tor, web.xml:

<servlet>
 <servlet-name>startGame</servlet-name>
 <servlet-class>StartGameServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>startGame</servlet-name>
 <url-pattern>/startGame</url-pattern>
</servlet-mapping>

Finally, we need the actual servlet, shown in listing 2.7.

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class StartGameServlet extends HttpServlet
{
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 HttpSession session = request.getSession(true);

 Visit visit = new Visit();
 session.setAttribute("visit", visit);

Listing 2.7 StartGameServlet.java: hypothetical servlet for starting a game

Gets or creates
the session

 b

Stores Visit
for later

 c

64 CHAPTER 2
Getting started with Tapestry

 visit.startGame();

 RequestDispatcher d =
 request.getRequestDispatcher("/Guess.jsp");
 d.forward(request, response);
 }
}

This accesses an existing HttpSession for the client or creates a new one if necessary.
We store the Visit object as a session attribute so that it can be accessed in later
requests or by a JSP.
As in the Tapestry Hangman application, the hypothetical servlet Visit object is
responsible for selecting a random word to guess.
The RequestDispatcher object is used to bridge from the servlet to a JSP that can
render the response.

This servlet creates a Visit instance, similar in scope and implementation to
the Visit object used in the Tapestry application. Once created, the Visit
object is stored in the HttpSession, where it will be available in subsequent
requests. The implementation of this Visit class may use the same Game and
WordSource domain objects used by the real Tapestry application.

 Extending this comparison from one single interaction to the innumerable
interactions in a typical web application underscores the amount of developer
effort needlessly wasted on most web applications. You are forced to drop out
of the world of objects and methods and deal directly with aspects of the
HTTP protocol and the Servlet API. You must define a URL to trigger your
operation, create a new servlet class to perform that operation, and record the
mapping from the URL to the servlet in the web.xml deployment descriptor.
In a team environment, you will be competing with your fellow developers to
update the deployment descriptor and to lay claim to the possible URLs for
the application.

 Certainly, as you become more experienced writing servlet-based applica-
tions, you will find shortcuts to help you streamline this effort. Unfortunately,
different developers are quite likely to create their own suite of shortcuts. In a
large team effort, getting the bits and pieces of the application written by dif-
ferent developers interoperating properly can become quite a challenge
because of the impedance caused by all of the developers’ individual schemes.
When using Tapestry, this is rarely an issue because Tapestry defines a standard

Chooses random
word to guess

 d

Forwards to
the Guess.jsp
page

 e

 b

 c

 d

 e

Developing the Guess page 65

way for different parts of the application to interoperate—using objects, meth-
ods, and properties.

 Now that we’ve seen how the Home page and the Hangman application’s
Visit object work together to start a new game, we can continue to the Guess
page, the primary page in the Hangman application.

2.4 Developing the Guess page

The Guess page is the central page for the Hangman application; it allows the
player to guess at letters of the target word. Figure 2.1 shows an example of the
Guess page in action.

 The page has a number of responsibilities:

■ It displays the number of guesses remaining (as a number) as well as
the number of incorrect guesses so far (as the growing stick figure).

■ It displays the partially guessed target word, with lines replacing the as-yet
unguessed letters.

■ It displays a grid of remaining letters to guess; each letter is a clickable link.
■ It supports the “hand-scrawled” look and feel, using custom images to dis-

play numbers and letters.

To accomplish all these tasks, we’ll be introducing several new concepts for Tap-
estry specifications, HTML templates, and Java classes, as well as new Tapestry
components. We’ll start with the full listings for the HTML template, the page
specification, and the page class, and then show how the different responsibili-
ties we’ve listed are implemented—as Tapestry markup in the HTML template
combined with entries in the page specification and code in the Java class. We’ll
begin with listing 2.8, the HTML template for the Guess page.

<html>
<head>
<title>Tapestry Hangman</title>
<link rel="stylesheet" type="text/css" href="css/hangman.css"/>
</head>
<body>
<table>
<tr>
 <td><img alt="Tapestry Hangman" src="images/tapestry-hangman.png"
 width="197" height="50" border="0"/>
 </td>

Listing 2.8 Guess.html: HTML template for the Guess page

66 CHAPTER 2
Getting started with Tapestry

 <td width="70" align="right"><img jwcid="@Image"
 alt="ognl:visit.game.incorrectGuessesLeft"
 image='ognl:getAsset("digit" +
 visit.game.incorrectGuessesLeft)'
 height="36" src="images/Chalkboard_3x8.png" width="36"
 border="0"/>
 </td>
 <td><img alt="Guesses Left" src="images/guesses-left.png"
 width="164" height="11" border="0"/>
 </td>
</tr>
<tr>
 <td>
 </td>
 <td>
 </td>
 <td><img jwcid="@Image"
 image='ognl:getAsset("scaffold" +
 visit.game.incorrectGuessesLeft)'
 alt="[Scaffold]" src="images/scaffold.png" border="0"/>
 </td>
</tr>
</table>

<table>
<tr valign="center">
 <td width="160">
 <p align="right"><img alt="Current Guess"
 src="images/guess.png" align="middle" width="127" height="20"
 border="0"/></p>
 </td>
 <td><span jwcid="@Foreach" source="ognl:visit.game.letters"
 value="ognl:letter"><img jwcid="@Image"
 image="ognl:letterImage" alt="ognl:letterLabel" height="36"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/>

 <!--- Additional letters from the mockup --->
 <img height="36" alt="A" src="images/Chalkboard_1x1.png"
 width="36" border="0"/><img height="36" alt="_"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/><img height="36" alt="_"
 src="images/Chalkboard_1x5.png" width="36"
 border="0"/><img height="36" alt="_"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/><img height="36" alt="_"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/><img height="36" alt="_"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/><img height="36" alt="_"

 b

 c

 d

 e

Developing the Guess page 67

 src="images/Chalkboard_5x1.png" width="36"
 border="0"/>

 </td>
</tr>
<tr>
 <td valign="top">
 <p align="right"><img alt="Choose" src="images/choose.png"
 height="20" width="151" border="0"/></p>
 </td>
 <td width="330"><a href="#"
 jwcid="select" class="select-letter"><img jwcid="@Image"
 image="ognl:guessImage" alt="ognl:guessLabel" height="36"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/>

 <!-- Additional selectable letters from the mockup. --->

 <img height="36" alt="B"
 src="images/Chalkboard_1x2.png" width="36" border="0"/>
 <img height="36" alt="C"
 src="images/Chalkboard_1x3.png" width="36" border="0"/>
 <img height="36" alt="D"
 src="images/Chalkboard_1x4.png" width="36" border="0"/>
 <img height="36" alt="-" src="images/letter-spacer.png"
 width="36" border="0"/>
 <img height="36" alt="F"
 src="images/Chalkboard_1x6.png" width="36" border="0"/>
 <img height="36" alt="G"
 src="images/Chalkboard_2x1.png" width="36" border="0"/>
 <img height="36" alt="H"
 src="images/Chalkboard_2x2.png" width="36" border="0"/>
 <img height="36" alt="I"
 src="images/Chalkboard_2x3.png" width="36" border="0"/>
 <img height="36" alt="J"
 src="images/Chalkboard_2x4.png" width="36" border="0"/>
 <img height="36" alt="K"
 src="images/Chalkboard_2x5.png" width="36" border="0"/>
 <img height="36" alt="L"
 src="images/Chalkboard_2x6.png" width="36" border="0"/>
 <img height="36" alt="M"
 src="images/Chalkboard_3x1.png" width="36" border="0"/>
 <img height="36" alt="N"
 src="images/Chalkboard_3x2.png" width="36" border="0"/>
 <img height="36" alt="O"
 src="images/Chalkboard_3x3.png" width="36" border="0"/>
 <img height="36" alt="P"
 src="images/Chalkboard_3x4.png" width="36" border="0"/>
 <img height="36" alt="Q"
 src="images/Chalkboard_3x5.png" width="36" border="0"/>

 e

 f

 g

68 CHAPTER 2
Getting started with Tapestry

 <img height="36" alt="R"
 src="images/Chalkboard_3x6.png" width="36" border="0"/>
 <img height="36" alt="S"
 src="images/Chalkboard_4x1.png" width="36" border="0"/>
 <img height="36" alt="T"
 src="images/Chalkboard_4x2.png" width="36" border="0"/>
 <img height="36" alt="U"
 src="images/Chalkboard_4x3.png" width="36" border="0"/>
 <img height="36" alt="V"
 src="images/Chalkboard_4x4.png" width="36" border="0"/>
 <img height="36" alt="W"
 src="images/Chalkboard_4x5.png" width="36" border="0"/>
 <img height="36" alt="X"
 src="images/Chalkboard_4x6.png" width="36" border="0"/>
 <img height="36" alt="-" src="images/letter-spacer.png"
 width="36" border="0"/>
 <img height="36" alt="Z"
 src="images/Chalkboard_5x2.png" width="36" border="0"/>

 </td>
</tr>
</table>
</body>
</html>

This Image component selects and displays the correct image identifying the
number of incorrect guesses remaining to the player.
The second Image component selects and displays an image for the man on the
scaffold, showing how many incorrect guesses the player has made so far.
These components display the target word, with underscores marking unguessed
letters within the word.
This portion of the template is marked for removal (using the special $remove$
value for the jwcid attribute). The tags within the exist for
WYSIWYG preview but must be removed because they conflict with the dynamic
content provided by d.
These components provide an array of clickable letters, allowing the player to
guess the next letter in the target word.
This portion of the template is also marked for removal.

This page was converted directly from the HTML mockup; the bulk of the tem-
plate consists of placeholder values (for the number of guesses, for the stick fig-
ure, for the partially guessed word, and for the grid of guessable letters) that will
actually be discarded in favor of dynamically generated HTML. We’ll go into
more detail on each portion of the HTML template shortly.

 g

 b

 c

 d

 e

 f

 g

Developing the Guess page 69

 Listing 2.9 is the page specification for the Guess page.

<?xml version="1.0"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification class="hangman1.Guess">

 <component id="selectLoop" type="Foreach">
 <binding name="source" expression="visit.game.guessedLetters"/>
 <binding name="value" expression="letterGuessed"/>
 <binding name="index" expression="guessIndex"/>
 </component>

 <component id="select" type="DirectLink">
 <binding name="listener" expression="listeners.makeGuess"/>
 <binding name="parameters" expression="letterForGuessIndex"/>
 <binding name="disabled" expression="letterGuessed"/>
 </component>

 <context-asset name="digit0" path="images/Chalkboard_1x7.png"/>
 <context-asset name="digit1" path="images/Chalkboard_1x8.png"/>
 <context-asset name="digit2" path="images/Chalkboard_2x7.png"/>
 <context-asset name="digit3" path="images/Chalkboard_2x8.png"/>
 <context-asset name="digit4" path="images/Chalkboard_3x7.png"/>
 <context-asset name="digit5" path="images/Chalkboard_3x8.png"/>

 <context-asset name="scaffold5" path="images/scaffold.png"/>
 <context-asset name="scaffold4" path="images/scaffold-1.png"/>
 <context-asset name="scaffold3" path="images/scaffold-2.png"/>
 <context-asset name="scaffold2" path="images/scaffold-3.png"/>
 <context-asset name="scaffold1" path="images/scaffold-4.png"/>
 <context-asset name="scaffold0" path="images/scaffold-5.png"/>

 <context-asset name="space" path="images/letter-spacer.png"/>
 <context-asset name="dash" path="images/Chalkboard_5x3.png"/>

 <context-asset name="a" path="images/Chalkboard_1x1.png"/>
 <context-asset name="b" path="images/Chalkboard_1x2.png"/>
 <context-asset name="c" path="images/Chalkboard_1x3.png"/>
 <context-asset name="d" path="images/Chalkboard_1x4.png"/>
 <context-asset name="e" path="images/Chalkboard_1x5.png"/>
 <context-asset name="f" path="images/Chalkboard_1x6.png"/>
 <context-asset name="g" path="images/Chalkboard_2x1.png"/>
 <context-asset name="h" path="images/Chalkboard_2x2.png"/>
 <context-asset name="i" path="images/Chalkboard_2x3.png"/>
 <context-asset name="j" path="images/Chalkboard_2x4.png"/>
 <context-asset name="k" path="images/Chalkboard_2x5.png"/>

Listing 2.9 Guess.page: specification for the Guess page

 b

 c

 d

 e

70 CHAPTER 2
Getting started with Tapestry

 <context-asset name="l" path="images/Chalkboard_2x6.png"/>
 <context-asset name="m" path="images/Chalkboard_3x1.png"/>
 <context-asset name="n" path="images/Chalkboard_3x2.png"/>
 <context-asset name="o" path="images/Chalkboard_3x3.png"/>
 <context-asset name="p" path="images/Chalkboard_3x4.png"/>
 <context-asset name="q" path="images/Chalkboard_3x5.png"/>
 <context-asset name="r" path="images/Chalkboard_3x6.png"/>
 <context-asset name="s" path="images/Chalkboard_4x1.png"/>
 <context-asset name="t" path="images/Chalkboard_4x2.png"/>
 <context-asset name="u" path="images/Chalkboard_4x3.png"/>
 <context-asset name="v" path="images/Chalkboard_4x4.png"/>
 <context-asset name="w" path="images/Chalkboard_4x5.png"/>
 <context-asset name="x" path="images/Chalkboard_4x6.png"/>
 <context-asset name="y" path="images/Chalkboard_5x1.png"/>
 <context-asset name="z" path="images/Chalkboard_5x2.png"/>

</page-specification>

The <component> element is used to declare components. The type of compo-
nent and the configuration of the component’s parameters go here, in the page
specification.
The <context-asset> element defines an asset file that is stored within the web
application context. This first set of assets includes the digits used to display the
number of remaining incorrect guesses. These assets are given logical names
that are referenced in the Java page class.
The second group of <context-asset> elements defines the images used for the
stick figure.
The remaining <context-asset> elements define the images used for the letters of
the alphabet, as well as a blank space image and the underscore image (as dash).

This is a much longer specification than for the Home page, and it demonstrates
a couple of new features: the ability to define the type and configuration of com-
ponents in the specification rather than in the HTML template, and the ability to
define assets, which are named references to static files such as images or
stylesheets. Again, we’ll revisit the relevant portions of this specification shortly.

 Finally, listing 2.10 is the source for the Guess class: the Java class for the
Guess page.

package hangman1;

import org.apache.tapestry.IAsset;
import org.apache.tapestry.IRequestCycle;

 e

 b

 c

 d

 e

Listing 2.10 Guess.java: Java class for the Guess page

Developing the Guess page 71

import org.apache.tapestry.html.BasePage;

public class Guess extends BasePage
{
 private char _letter;
 private boolean _letterGuessed;
 private int _guessIndex;

 public void initialize()
 {
 _letter = 0;
 _letterGuessed = false;
 _guessIndex = 0;
 }

 public char getLetter()
 {
 return _letter;
 }

 public void setLetter(char letter)
 {
 _letter = letter;
 }

 public String getLetterLabel()
 {
 return ("" + _letter).toUpperCase();
 }

 public IAsset getLetterImage()
 {
 if (_letter == '_')
 return getAsset("dash");

 return getAsset("" + _letter);
 }

 public boolean isLetterGuessed()
 {
 return _letterGuessed;
 }

 public int getGuessIndex()
 {
 return _guessIndex;
 }

 public void setLetterGuessed(boolean letterGuessed)
 {
 _letterGuessed = letterGuessed;
 }

Resets page
properties

 b

Converts letter
property to an
image

 c

72 CHAPTER 2
Getting started with Tapestry

 public void setGuessIndex(int guessIndex)
 {
 _guessIndex = guessIndex;
 }

 public IAsset getGuessImage()
 {
 if (_letterGuessed)
 return getAsset("space");

 String name = "" + getLetterForGuessIndex();

 return getAsset(name);
 }

 public char getLetterForGuessIndex()
 {
 return (char) ('a' + _guessIndex);
 }

 public String getGuessLabel()
 {
 if (_letterGuessed)
 return " ";

 char ch = Character.toUpperCase(getLetterForGuessIndex());

 return new Character(ch).toString();
 }

 public void makeGuess(IRequestCycle cycle)
 {
 Object[] parameters = cycle.getServiceParameters();
 Character guess = (Character) parameters[0];

 char ch = guess.charValue();

 Visit visit = (Visit) getVisit();

 visit.makeGuess(cycle, ch);
 }
}

This method is invoked when the page is created and at the end of each request,
to reset any properties back to pristine values, ready for the next request.
This method creates a read-only, synthetic property, letterImage, that provides
the correct image for whatever the letter property currently is.
Likewise, this guessImage property returns the correct image based on the guess-
Index and letterGuessed properties.

Converts
guessIndex
property to
an image

 d

Listener
method
invoked when
a letter is
clicked

 e

 b

 c

 d

Developing the Guess page 73

This listener method is invoked when a letter image is clicked; it exists to deter-
mine the correct parameters to pass to the Visit object’s makeGuess() method.

Guess is a typical Tapestry page class; it contains properties and methods that
support the rendering of the page as well as listener methods activated by links
on the page.

2.4.1 Displaying the remaining guesses

The first dynamic bit is the part of the HTML template that displays the number
of incorrect guesses remaining to the player:

<img jwcid="@Image"
 alt="ognl:visit.game.incorrectGuessesLeft"
 image='ognl:getAsset("digit" +
 visit.game.incorrectGuessesLeft)'
 height="36"
 src="images/Chalkboard_3x8.png"
 width="36" border="0"/>

This snippet has an array of responsibilities:

■ It must render an HTML tag and fill in a number of attributes
dynamically.

■ It must convert the incorrectGuessesLeft property of the Game object into
a string, as the alt attribute.

■ It must select the correct image file to display the number of guesses left
and build a URL to that file (as the src attribute).

Earlier we saw how the DirectLink component on the Home page inserted an
<a> tag into the response sent to the client web browser. The Image component,
another standard Tapestry component, is actually much simpler; it inserts an
 tag, generating the tag’s src attribute from its image parameter. Here we
want it to provide the correct image (one of the hand-drawn digits) and the cor-
responding alt value.

NOTE To support WYSIWYG editing, the HTML template uses an tag,
knowing that the component will, at runtime, render an tag. The
Image component will override the src attribute in the template, which
is also here just to help with the WYSIWYG preview of the template.

In a Tapestry template, each component must have properly balanced start and
end tags. An alternative, used here, is to include an XML-style empty tag, one

 e

74 CHAPTER 2
Getting started with Tapestry

that ends with />. Tapestry is flexible about attribute quoting; because the image
parameter’s expression uses double quotes, the entire expression is enclosed in
single quotes.

WARNING Match your open and close tags. You must supply a matching close tag
for each component’s start tag. Tapestry even checks that all the start
tags and end tags on a page properly nest (it is forgiving for all tags that
aren’t components). Changing the end of the tag from /> to just
> will result in the following exception: Closing tag </td> on line 13 is im-
properly nested with tag on line 12. Tapestry matched the </td> on
line 13 with the <td> on line 12 (before the tag) and realized that
the tag hadn’t yet been closed, even though it’s a component.

The first OGNL expression, visit.game.incorrectGuessesLeft, is very straight-
forward; it retrieves the incorrectGuessesLeft property from the Game object
(via the Visit object). The incorrectGuessesLeft property (a number) is con-
verted to a string and becomes the value for the tag’s alt attribute. In the
client web browser, this value becomes the tooltip for the image and is also used
for accessibility (visually impaired users may have the value read to them by
their computer).

 The other expression, for selecting the image is more complicated. It also
obtains the incorrectGuessesLeft property, but then it uses that value as a parameter
when invoking the getAsset() method on the page. This underscores why OGNL
is so useful and powerful; without OGNL, this access and manipulation would
have to occur in Java code. Using OGNL, we are able to assemble the complete
string and invoke a Java method, getAsset(), on our page, all in one step. The
invoked method returns the asset object representing the image to use, which is
ultimately converted into a URL by the Image component and inserted in the
HTML response as the src attribute of the tag.

NOTE Using OGNL expressions where possible allows you to assume a rapid
application development cycle, free from the normal edit/compile/de-
ploy cycle that occurs with Java code. You can simply edit your tem-
plates and specifications in place to see changes.4 Later, you can recode

4 It is possible to disable the normal caching that occurs inside Tapestry so that templates and specifi-
cations are reread for each new request. This allows changes to templates and specifications to take
effect immediately. Consult the Tapestry reference documentation, distributed with the framework,
for the details.

Developing the Guess page 75

OGNL expressions as Java methods for greater application efficiency.
Another good option, when not prototyping, is to move nontrivial
OGNL expressions into the page specification (an example of this is
shown in section 2.4.3); this results in a much improved separation of
the View from the Model and application logic, which ultimately yields a
more maintainable application.

Tapestry allows you, as the developer, to decide how pure a separa-
tion between the View and the Model you will maintain. At one extreme,
the pragmatic view, you may put as much logic (in the form of OGNL ex-
pressions) as you want directly into the HTML template. This pushes to-
gether purely presentation-oriented aspects of the application (such as
layout and fonts) with the behavioral aspects of the application (shown
in this example as references to page properties, including visit and
visit.game). Such an approach is perfectly acceptable for prototypes,
or for small projects where a strong separation between developers isn’t
realistic. Most of the examples in this book use this pragmatic approach
simply because it puts related information side by side, making it easier
to comprehend.

At the other extreme, the purist view, your HTML template contains
only placeholders for components; all details about the component con-
figuration are stored outside the template, in the page specification.
This is critical on larger projects, where a division can be expected be-
tween the HTML developers responsible for page mockups and the
Java developers responsible for converting the mockups into a working
application. Minimizing how much of the application’s implementation
is exposed to the HTML developers reduces the potential for conflicts
between the Java developers and the HTML developers.

Assets are any kind of file that may be distributed as part of the WAR; the most com-
mon types of assets are images and stylesheets. The Image component’s image
parameter expects an asset object (an object that implements the IAsset interface),
not a string, and this pairs up with the getAsset() method, which returns just such
an object. The getAsset() method is inherited from the AbstractComponent base
class; it allows access to the named assets defined in the page specification.

 The names of the assets come from the <context-asset> elements in the page
specification (in listing 2.9). What’s happening is a mapping from a logical name
(such as x or dash) to a particular file (such as images/Chalkboard_4x6.png or
images/Chalkboard_5x3.png). The assets abstraction has some other important
uses related to localization and to packaging components into reusable libraries.
Those uses are covered in more detail in chapters 6 and 7.

76 CHAPTER 2
Getting started with Tapestry

Defining assets in the page specification
The page specification for the Guess page declares assets for the letters, digits,
and underscore as well as all the images of the stick figure on the gallows. The
Guess page specification includes the following lines to declare the six digits
used in the user interface:

<context-asset name="digit0" path="images/Chalkboard_1x7.png"/>
<context-asset name="digit1" path="images/Chalkboard_1x8.png"/>
<context-asset name="digit2" path="images/Chalkboard_2x7.png"/>
<context-asset name="digit3" path="images/Chalkboard_2x8.png"/>
<context-asset name="digit4" path="images/Chalkboard_3x7.png"/>
<context-asset name="digit5" path="images/Chalkboard_3x8.png"/>

WARNING Tapestry checks that a file matching the provided asset path exists.5

This check occurs when the page specification is first read and takes
place regardless of whether anything ever uses the asset. Putting a typo
into one of the names in the previous snippet results in the following
exception: Unable to locate asset ‘digit0’ of component Guess as context:/imag-
es/Challkboard_1x7.png.

Here, we can see how the aliasing is useful. The letters and numbers were ini-
tially drawn onto a grid, and a slicing tool was used to generate a set of individ-
ual files from the cells of the grid. The filenames provided by the slicing tool are
not intuitive (they are based on the position in the grid, rather the value of the
image, and so are somewhat arbitrary), but the use of assets allows the code to
reference them using more friendly names. Of course, we could have simply
renamed the files output by the slicing tool, but by leaving the names as is, we
can change the original letter grid image and then use the same slicing tool to
regenerate all the images without having to go through the painful renaming
process a second time. Tapestry has provided a little bit of abstraction and flexi-
bility that ultimately makes the build process for this application more agile,
because an annoying manual step (renaming the files) is not necessary.

 Assets also provide a separation of concerns, dividing the HTML developers
from the Java developers. For example, an HTML developer may decide to redo
the graphics for the page and use a new tool to generate the images of the dig-
its—which would result in new filenames, possibly even new types (perhaps GIF
or JPEG), but no change to the logical names of the assets. Either the HTML

5 This applies to the context assets defined here and the private assets we’ll discuss in chapter 6. A third
asset type, the external asset, is not checked.

Developing the Guess page 77

developer or the Java developer would need to update the page specification to
change the filenames, but there would be no change to the HTML template or
even to the Java class (if the Java class ever accessed any assets by name).

 Now that we have a way of mapping from logical names to actual asset files,
we still need a way to figure out which logical name, and thus, which asset,
should be used when displaying the remaining guesses.

Calculating the right asset
Displaying the digit image is a matter of selecting the correct asset as the image
parameter to the Image component. This occurs in the HTML template using an
OGNL expression:

image='ognl:getAsset("digit" + visit.game.incorrectGuessesLeft)'

Here, OGNL has done something fairly complex: building up the name of the
asset and invoking the page’s getAsset() method. There are penalties, however:
This chunk of text is somewhat unwieldy and forces us to use single quotes, since
the expression itself contains double quotes. Putting OGNL expressions into your
template, especially expressions of this complexity, is not much better than put-
ting Java scriptlets into a JSP: Such OGNL expressions strongly tie together the
presentation of the page with the implementation.

 One option would be to move more of this logic into equivalent Java code.
This can be easily accomplished by referencing a new, read-only property in the
HTML template:

<IMG jwcid="@Image"
 alt="ognl:visit.game.incorrectGuessesLeft"
 image="ognl:digitImage"
 height="36"
 src="images/Chalkboard_3x8.png"
 width="36" border="0"/>

We would then implement an accessor method for this new digitImage property
in the Guess class:6

public IAsset getDigitImage()
{
 Visit visit = (Visit)getVisit();
 int guessesLeft = visit.getGame().getIncorrectGuessesLeft();

 return getAsset("digit" + guessesLeft);
}

6 Because this approach is only hypothetical, you won’t see this method in the Guess class in listing 2.10.

Reference to the page’s
digitImage property

78 CHAPTER 2
Getting started with Tapestry

Another option, which we’ll explore shortly, is to move the OGNL expression into
the page specification. The decision to use OGNL expressions, Java code, or
some mix of the two is left to you, according to your personal taste and the par-
ticular situation. The modest runtime performance penalty for using OGNL is
easily offset by increased developer productivity.

Using informal component parameters
If you check the description for the Image component in appendix C, you’ll see
that it defines two possible parameters: a required image parameter and an
optional border parameter. However, if you run the application and view the
source of the page, you’ll see that the other attributes included in the tag
in the template (alt, width, and height) are still present in the tag ren-
dered by the Image component. How can this be?

 The majority of Tapestry components, including Image and DirectLink, allow
informal parameters. Informal parameters are additional parameters for the com-
ponent beyond those that are formally declared by the component. These addi-
tional parameters are simply added to the rendered tag as additional attributes.
Informal parameters can be unevaluated static values, such as for width, or
expressions, such as for alt. Some informal parameters are discarded so that
they don’t conflict with attributes rendered directly by the component. For exam-
ple, it doesn’t matter that the template provides a value for the src attribute (in
the tag for the Image component); the value in the template is discarded
because the Image component will itself generate an src attribute from the asset
provided in the image parameter. The src value in the template exists to support
WYSIWYG previewing of the template; its value is discarded in favor of the real,
dynamic URL computed on the fly in the live application. Only components that
map directly to an HTML tag will accept informal parameters; each component
indicates within its own component specification whether it accepts or discards
informal parameters.

 So, when the Image component renders, it will mix and match the informal
parameters with the HTML attributes it generates from formal parameters. This
is a capability missing from JSP tags, where specifying an undeclared JSP tag
attribute is simply an error. With JSP tags, you are limited to just the attributes
explicitly declared for the tag, no more.

Displaying the right stick figure image
Continuing with the rest of the Guess page, the next dynamic section of the
HTML template is also related to the incorrectGuessesLeft property; it is used

Developing the Guess page 79

to display one of several images for the gallows, showing increasing amounts of
the stick figure as the incorrectGuessesLeft property drops toward zero.

<img jwcid="@Image"
 image='ognl:getImage("scaffold" +
 visit.game.incorrectGuessesLeft)'
 alt="[Scaffold]"
 src="images/scaffold.png"

 border="0"/>

Again, we use the same trick; we come up with a logical name for the image
asset and map that logical name to an actual file by way of the <context-asset>
elements in the page specification. This is a good, simple example of the MVC
pattern in action; the Model in this case is the Game object and its incorrect-
GuessesLeft property, but there are two Views of the data: the first as a digit, the
second as the stick figure on the gallows.

 The remaining dynamic portions of the page are more complex and require
using multiple components in concert to produce the desired output.

2.4.2 Generating the guessed word display

The next section of the Guess page displays the target word the player is
attempting to guess, or at least as much of the target word as the player has
guessed so far. Generating this portion of the page starts with the Game object,
which has a property, letters, for just this purpose. The letters property is an
array of each letter of the target word as an individual character. Each unguessed
letter in the target word is replaced with an underscore character.

 As with the previous examples, we can’t simply output the individual letters as
characters. To keep the hand-scrawled look and feel, each letter must be trans-
lated to the correct image. The template uses two different components to gen-
erate the display: a Foreach component (which performs a kind of loop)
enclosing another Image component. The two components work together to dis-
play one letter after another.

<span jwcid="@Foreach"
 source="ognl:visit.game.letters"
 value="ognl:letter">
<img jwcid="@Image"
 image="ognl:letterImage"
 alt="ognl:letterLabel"
 height="36"
 src="images/Chalkboard_5x3.png"
 width="36"
 border="0"/>

80 CHAPTER 2
Getting started with Tapestry

Looping with the Foreach component
Foreach is a looping component; it iterates over the list of values provided by its
source parameter7 and updates its value parameter for each value from the
source before rendering its body. This is a crucial feature of Tapestry component
parameters; by binding a property to a component parameter, the component is
free not only to read the value of the bound property, but also to update the
property as well.

 The Foreach component is represented in the template using a tag,
which is very natural: The HTML tag is simply a container of other text
and elements in a page. It doesn’t normally display anything itself, but is com-
monly used in conjunction with a stylesheet to control how a portion of a page
is rendered.

 Although the Foreach’s location in the template is specified using a
tag, when it renders, it does not produce any HTML directly; it simply renders
the text and components in its body repeatedly. The sequence is shown in
figure 2.7.

 So, the Foreach component will render its body many times, but that doesn’t
help the Image component display the correct letter image. Just before the
Foreach renders its body (on each pass through the loop), it sets a property of the
page to the next letter in the word (from the array of characters provided by the
Game object). The trick is to convert this letter into the correct image. The Guess
page class includes a property, letter, which is bound to the Foreach compo-
nent’s value parameter so that it can be updated by the Foreach:

private char _letter;

public char getLetter()
{
 return _letter;
}

public void setLetter(char letter)
{
 _letter = letter;
}

7 The Foreach component is flexible about how it defines “a list of values.” It may be an array of objects,
or a java.util.List, or even a single object (which is treated like an array of one object).

Developing the Guess page 81

NOTE In chapter 3, we’ll see how Tapestry can automatically create properties
at runtime (and the benefits of doing so beyond less typing). For now,
we’ll mechanically code these properties ourselves by supplying the in-
stance variable and pair of accessor methods.

Figure 2.7 The Foreach component reads a list of values bound to its source
parameter from a domain object (which is often the page that contains the
component). For each item in the list, it updates a domain object property bound
to its value parameter, and then renders its body. Components within its body
can get the value from the domain object property.

82 CHAPTER 2
Getting started with Tapestry

Translating letters to images
Once again, we are using assets to obtain the correct image to display within the
page. The assets for the letters a through z are named, simply, a through z. How-
ever, there’s a gotcha for the underscore character; its asset name is dash.

 The Guess page class implements another method to provide the asset to display:

public IAsset getLetterImage()
{
 if (_letter == '_')
 return getAsset("dash");

 return getAsset("" + _letter);
}

This simple method captures the special rule about replacing the underscore
character with the asset named dash. The Foreach component is responsible for
invoking setLetter() with the correct letter well before getLetterImage() is
invoked by the Image component.

NOTE Because this method is public and follows the naming convention for a
JavaBeans property, it can be referenced in the HTML template as
ognl:letterImage. This is a common approach in Tapestry—creating
synthetic properties, properties that are computed on the fly, rather than
just exposing a value in an instance variable.

The letters in the list (provided by the Game object) are all lowercase, but the tool-
tip (generated from the tag’s alt attribute) looks better if the letter is
uppercase. This is another, minor example of the Controller (the page) mediat-
ing between the Model (the Game object) and the View (the Image component
within the HTML template). This case conversion is accomplished by binding the
value for the alt parameter to the letterLabel property of the page. The
getLetterLabel() accessor method simply converts the letter to uppercase and
returns it as a string:

public String getLetterLabel()
{
 char upper = Character.toUpperCase(_letter);

 return new Character(upper).toString();
}

Removing unwanted portions of the template
If you examine the complete HTML template in listing 2.4, you’ll see that just
after the tag for the Foreach component is a long chunk of additional

Developing the Guess page 83

images—images for additional letters from the target word, as dashes. These
images were copied over from the original HTML mockup and are left in place so
that the HTML template will still preview properly. Without these additional
images, the target word will appear as a single underscore, which may not be
enough to validate the layout of the page. At the same time, these extra images
must not be included in a live, rendered page or the target word will appear to
be six letters longer than it actually is.

 Earlier, you saw that Tapestry will drop unwanted HTML attributes that are
provided in HTML tags to support WYSIWYG preview. This is a larger case, where
an entire section of HTML is dropped. The block to be removed is surrounded by
a tag:

 . . .

The special component ID, "$remove$", is the trigger for Tapestry’s template
parser that this portion of the HTML template should be discarded. This is a
second aspect of instrumenting an HTML mockup into an HTML template:
marking portions of the mockup for removal, yet leaving them in for preview-
ing purposes.

 So far on this page, we’ve covered just output-only behaviors: displaying
the right digit image, or the right letter from the target word. The most
involved part of the page comes next—the part that allows players to select
letters to guess.

2.4.3 Selecting guesses

This portion of the page is a grid of letters that the player may click on to make
guesses. As usual, the letters are represented as images, to keep with the hand-
scrawled look and feel. As the player makes guesses, the guessed letter is erased,
and one or more positions in the target word are filled in or another segment is
added to the stick figure.

 To accomplish this, we’ll use a combination of components: another Foreach
to iterate over the different letters of the alphabet, a DirectLink to create a
link, and an Image to display either the image for the letter or the image for a
blank space for an already guessed letter. The three components appear in the
HTML template:

<a href="#"
 jwcid="select"
 class="select-letter">
 <img jwcid="@Image"

84 CHAPTER 2
Getting started with Tapestry

 image="ognl:guessImage"
 alt="ognl:guessLabel"
 height="36"
 src="images/Chalkboard_5x3.png"
 width="36"
 border="0"/>

Two of these components look a little sparse compared to previous examples;
that’s because we’ve chosen to use the declared component option for them
rather than configure them in-place as implicit components. For a declared com-
ponent, we just put the component ID in the HTML template. Tapestry recog-
nizes that the value for the first jwcid attribute is just an ID and not a
component type, because it does not contain the @ character (as the previous
usages of components have done). For a declared component, the element in the
HTML template is simply a placeholder; the jwcid attribute provides a compo-
nent ID that is used to link to a <component> element in the page specification.
The type and configuration of the component is provided in the page specifica-
tion itself:8

<component id="selectLoop" type="Foreach">
 <binding name="source" expression="visit.game.guessedLetters"/>
 <binding name="value" expression="letterGuessed"/>
 <binding name="index" expression="guessIndex"/>
</component>

<component id="select" type="DirectLink">
 <binding name="listener" expression="listeners.makeGuess"/>
 <binding name="parameters" expression="letterForGuessIndex"/>
 <binding name="disabled" expression="letterGuessed"/>
</component>

The information that goes into the specification is the same as what would be put
directly into the HTML template, but the format is slightly different. In the
HTML template, we must mark OGNL expressions with the ognl: prefix; but in
the XML we have a specific element, <binding>, that is always an OGNL expres-
sion (other elements are used for literal strings and other variations). There is no
difference to Tapestry whether a component is declared in the specification or in

8 The template may still specify additional formal and informal parameters. In keeping with the goal
to provide the clearest separation of presentation and logic, the informal parameters, which are most
often related purely to presentation, should go in the template, and the formal parameters, which are
most often related to the behavior of the component, should go in the page specification.

Developing the Guess page 85

the HTML template; here, the sheer number of parameters for the two compo-
nents indicated that specification was a better home for the component configu-
ration than the HTML template.

WARNING Mistakenly using the ognl: prefix inside a page or component specifica-
tion will create an OGNL expression that is invalid. You’ll see an exception,
such as Unable to parse expression ‘ognl:visit.game.guessedLetters’. The fact that
the ognl: prefix shows up in the exception message as part of the expres-
sion is the indicator that you included the prefix where it is not allowed.

Once again we are combining the behaviors of different components and using
the page to mediate between them. We are also making use of new features of
the Foreach and DirectLink components by binding additional parameters of
the components.

Getting the images for the letters
The source of all this data is the guessedLetters property of the Game object; this
is an array of 26 flags, one for each letter in the alphabet. Initially, all the flags
are false, but as the player makes guesses, the corresponding flags are set to true.

 The Foreach component will loop through the 26 flags and set the letter-
Guessed property of the page to true or false on each pass through the loop. In
addition, binding the index parameter of the Foreach component directs it to set
the guessIndex property of the page. This value starts at zero and increments
with each pass through the loop. The other components simply translate from
this ordinal value to a letter in the range of a to z. This functionality is imple-
mented by additional properties and methods in the Game class, as shown in the
following snippet:

private boolean _letterGuessed;
private int _guessIndex;

public boolean isLetterGuessed()
{
 return _letterGuessed;
}

public void setLetterGuessed(boolean letterGuessed)
{
 _letterGuessed = letterGuessed;
}

public int getGuessIndex()

86 CHAPTER 2
Getting started with Tapestry

{
 return _guessIndex;
}

public void setGuessIndex(int guessIndex)
{
 _guessIndex = guessIndex;
}

public char getLetterForGuessIndex()
{
 return (char) ('a' + _guessIndex);
}

Getting the right letter image for the current letter within the loop is very similar
to the previous examples. Although the dash will never occur, we do have to sub-
stitute a blank image for any letter that has already been guessed:

public IAsset getGuessImage()
{
 if (_letterGuessed)
 return getAsset("space");

 String name = "" + getLetterForGuessIndex()

 return getAsset(name);
}

That covers how we get the image for each letter display, but what about the link
that the player uses to make a guess?

Handling the links for guesses
Were we to display the link for guesses using ordinary servlets, we’d define a
query parameter whose value is the letter selected; that is, we would encode the
letter into the URL. Since we’re using Tapestry, we don’t want to think in terms of
query parameters, but instead, we want to think of objects and properties—but
we still want the URL to carry this piece of information. When we render the link,
we know which letter the link is for, and when the link is clicked, we need that
information back. In Tapestry terms, we need to invoke a specific listener
method (as before on the Home page) but also propagate along some additional
data: the letter selected by the player.

 We’ll use a DirectLink component, as we did with the link on the Home page,
but with two differences. First, we only want to display the link itself (the <a> and
 tags) some of the time; we want to omit the link for letters that have already
been guessed (the positions that show up as blank space), because letters may

Developing the Guess page 87

only be guessed a single time. Second, we need a way to know which letter has
been selected. The DirectLink component includes formal parameters to satisfy
both of these needs.

 The disabled parameter is used to control whether the link renders the <a>
and tags. The disabled parameter is optional, and by default, the link is
enabled. A DirectLink component will always render its body, regardless of the
setting of the disabled parameter. The Guess page binds the disabled parame-
ter to the letterGuessed property of the page—the same property that is set by
the Foreach component and used in the getGuessImage() method:

<binding name="disabled" expression="letterGuessed"/>

This ensures that once a letter has been guessed, there will not be another link
for that letter. Shortly, we’ll see how we also ensure that the guessed letter is
replaced by a blank space. Once again, we are working at the level of objects and
properties, and not treating all of this HTML rendering as just a text processing
problem. A common, ugly “JSP-ism” is to use embedded scriptlets to avoid writ-
ing the open and close tags, wrapping the <a> and tags inside conditional
blocks, which can be a messy affair.

 The DirectLink embodies the Tapestry philosophy, solving a similar problem
using JavaBeans properties and Tapestry component parameters. Every compo-
nent decides, in its own code, whether to render; the DirectLink has a small con-
ditional statement to control whether an <a> element is rendered—but that’s
Java code in a Java file, not cluttering up a JSP. The end result is a cleaner, sim-
pler, easier-to-use solution.

 To identify which letter is actually clicked by the player, we will use yet
another component parameter, named parameters. We can bind a single value,
or an array, or a java.util.List to the parameters parameter, which, like the
disabled parameter, is optional (we didn’t use it before with the Start link on the
Home page). The collection of values provided by the parameters parameter is
recorded into the URL constructed when the DirectLink component renders.
When the link is submitted, the array of parameters is reconstructed and is avail-
able to the listener method.

 For this case, we use a single value, provided by the property letterForGuessIndex:

<binding name="parameters" expression="letterForGuessIndex"/>

Each time the DirectLink component renders, within the Foreach component
loop, the value for the letterForGuessIndex property will reflect the current letter

88 CHAPTER 2
Getting started with Tapestry

in the loop and the URL written into the HTML response will be different, as a
portion of the URL will be an encoding of the letterForGuessIndex property.

 When the link is clicked, the listener method can get the parameters back:

public void makeGuess(IRequestCycle cycle)
{
 Object[] parameters = cycle.getServiceParmeters();
 Character guess = (Character) parameters [0];

 char ch = guess.charValue();
 Visit visit = (Visit) getVisit();

 visit.makeGuess(cycle, ch);
}

The parameters encoded into the URL by the DirectLink are available in the lis-
tener method as an array of object instances, which can be obtained from the
getServiceParameters() method of the IRequestCycle object. Even when, as in
this case, there’s only a single parameter value, an array is returned. The lone
character value is the first and only element in the array.

 In addition, the value has been converted from a scalar type, char, to a wrap-
per object type, Character, but it is a simple chore to convert it back. The param-
eter value is not simply converted to a string; it retains its original type (which is
encoded into the URL along with the value). You can see a bit of this in the web
browser’s Address field in figure 2.1; the URL shown contains much information
used by Tapestry, but at the end is cp, an encoding of character p (the player had
just clicked the letter P). Chapter 7 discusses how Tapestry encodes information
into URLs.

 From here, it’s simply a matter of obtaining the Visit object and letting it do
the rest of the processing of the player’s guess, which may result in a win or a loss
or more guessing. Because we pass the request cycle to the Visit, this object is
fully capable of selecting which page will render the response by invoking the
activate() method on the request cycle.

 Adding this new interaction, the handling of guesses by the player, involved
little more than creating the new listener method and pointing the DirectLink
component at the method. Without Tapestry, this same functionality would
entail not only writing a servlet and registering it into the web deployment
descriptor, but also creating code to generate the hyperlink in the first place.
This latter code could take the form of Java scriptlets in the JSP, or a new JSP
tag in a JSP tag library. In either case, the HTML in the JSP file would deviate

Configuring the web.xml deployment descriptor 89

further from ordinary HTML, and the ability to preview the web page would be
diminished. With Tapestry, the HTML template will continue to look and act
like standard HTML.

 Instead, we are making use of existing components, the DirectLink, and a
consistent approach to encoding data into the URL. Once again, we’re seeing the
consistency goal: Anywhere in the application where we have a link that needs to
pass along some data in the URL, we can use and reuse the same tool, the
DirectLink component and its parameters parameter. In addition, because Tap-
estry properly encodes the data type with the data (rather than just converting
all the parameters to strings), we can consistently pass any type of data in the
URL: strings, characters, numbers, or even custom objects.

 That wraps up the Guess page; we’ve discussed how to extract information
from the Game domain object and present it in various ways and also figured out
how to react to user input. We’ve kept the domain logic (in the Game and Word-
Source objects) separate from the presentation logic (the Guess page class,
HTML template, and page specification), using listener methods and the Visit
object as the bridge between the two aspects.

2.5 Developing the Win and Lose pages

The other two pages in the application, Win and Lose, are displayed when the
player successfully guesses the word, or when the player exhausts all his or her
incorrect guesses. There is nothing new on these pages; they duplicate bits and
pieces of the Home and Guess pages. In fact, there’s a bit of unwanted duplica-
tion in the HTML templates: the Java code and the page specifications. In
chapter 6 we’ll see how easy it is to create new components that encapsulate
this functionality and remove this duplication. Remember: More code means
more bugs!

 Our Hangman application is nearly complete; all that’s left is to fulfill our
contract with the servlet container and create a deployment descriptor for the
Hangman application WAR.

2.6 Configuring the web.xml deployment descriptor

All of these HTML templates and page specifications do not automatically
become a web application. We still need a servlet to act as the bridge between the
Servlet API and the Tapestry framework. Fortunately, this does not require any
coding, since the framework includes the necessary servlet class. All that’s neces-

90 CHAPTER 2
Getting started with Tapestry

sary is to configure the web deployment descriptor, which is the file WEB-INF/
web.xml. The deployment descriptor is provided in listing 2.11.

<?xml version="1.0"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
 <servlet>
 <servlet-name>hangman</servlet-name>
 <servlet-class>org.apache.tapestry.ApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>org.apache.tapestry.visit-class</param-name>
 <param-value>hangman1.Visit</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>hangman</servlet-name>
 <url-pattern>/app</url-pattern>
 </servlet-mapping>
</web-app>

The deployment descriptor maps an instance of the Tapestry ApplicationServlet
to the path /app within the servlet context. Using /app as the servlet path is a
common convention for Tapestry applications but not a requirement; Tapestry
will adapt to whatever servlet mapping is actually used.

 The servlet context’s name is based on the name of the web application
archive (the WAR file), which is hangman1.war; therefore, the complete URL of
the servlet is http://localhost:8080/hangman1/app. This means that the base URL
for the application is http://localhost:8080/hangman1/, which is why relative
URLs (in static HTML) to assets such as images/guess.png work, both when pre-
viewing the HTML template and at runtime.

 The org.apache.tapestry.visit-class initial parameter is used to tell Tapes-
try what class to instantiate as the Visit object.

 Using the <load-on-startup> element in the deployment descriptor is recom-
mended, especially during development. Loading on startup causes the applica-
tion servlet to be instantiated and initialized. Often, problems in the application or

Listing 2.11 web.xml: web deployment descriptor for the Hangman application

Summary 91

deployment descriptor will be detected immediately at startup; this is an even bet-
ter idea for more advanced applications that use an application specification.9

2.7 Summary

In this chapter, we’ve seen the basics of creating a web application using Tapes-
try. A Tapestry application is divided into individual pages; those pages are con-
structed by combining components, an overall HTML template, and a small
amount of Java code. Tapestry leverages the Model-View-Controller pattern to
isolate domain logic from the user interface. We’ve also begun to see the “light
touch” of Tapestry, where simple properties and short Java methods are woven
together to create very complex, dynamic, interactive user interfaces.

 This simple application demonstrates some of the key patterns that occur
when developing in Tapestry. It shows how components interact with each other
by reading and setting properties. It shows how the page can act as a Controller,
coordinating the domain logic and mediating between its embedded compo-
nents. We’ve also demonstrated how easy it is to add new interactions to a page,
in the form of listener methods.

 We’ve begun to demonstrate how Tapestry, by excusing developers from mun-
dane “plumbing” tasks, really frees up developer energies. It enables you to
implement more complicated behaviors in much less time and be more confi-
dent that your code is bug free. Tapestry can give projects the one thing money
truly can’t buy: time—time to test and debug back-end code, time to locate and
fix performance problems, even time to add new features.

9 Application specifications are an optional file described in chapter 6. They are needed only to access
some advanced feature of Tapestry, such as referencing a component library.

M A N N I N G $44.95 US/$67.95 Canada

www.manning.com/lewisship

Author responds to reader questions

Ebook edition available

AUTHOR
✔

ONLINE

✔

Howard M. Lewis Ship

T apestry is an open source Java web framework with a unique
approach: it represents all behavior and all state as standard
Java objects, methods, and properties. In the stateless world

that is the Web, the Tapestry developer is relieved of the onerous
burden of managing state.

This book is an introduction to Tapestry and a guide to the world
of Tapestry development. It shows you how you can create
complex applications by combining HTML with the framework’s
components, and connecting them to small amounts of applica-
tion-specific logic. It illustrates the practical benefits of Tapestry’s
inbuilt management of state and its clean separation of presenta-
tion logic from business logic.

The book is written to be accessible to new Tapestry users and
even to developers new to Java web application development in
general. Later chapters discuss more advanced topics including
integration with J2EE and team development.

What’s Inside
■ Tapestry’s Component Object Model

■ Write new components

■ Configure third party components

■ Dynamic JavaScript integration

■ Form validation

■ Tapestry/JSP integration

■ Localization/internationalization

■ J2EE integration

A professional developer for fifteen years, Howard Lewis Ship has
worked with Java web applications since 1997. He is the creator
and the principal architect of the open source Tapestry project.

JAVA

TAPESTRY IN ACTION “Tapestry in Action is masterfully
written, making this elegant
framework accessible to all
Java web developers.”

—Erik Hatcher, co-author of
Java Development with Ant

“There is a better, more elegant
way to build web apps—Tapestry
In Action absolutely rocks!”

—Bill Lear
Wayport Inc./DejaNews

“Tapestry is the way ... and this
book amply demonstrates that
there is no better authority on the
subject than Howard Lewis Ship.”

—Geoff Longman
Intelligent Works,
developer of Spindle for Eclipse

“I found this book just right—
for newcomers and experienced
Tapestry developers alike.”

—Richard Lewis-Shell, Techcon

“Keep your html code-free—write
OO web pages the Tapestry way!”

—Joel Trunick, SmartPrice.com

,!7IB9D2-djebbf!:p;o;O;t;P
ISBN 1-932394-11-7

TAPESTRY 3.0

