
SAMPLE LESSON

Get Programming with Go
by Nathan Youngman

Roger Peppé

Lesson 1

 Copyright 2018 Manning Publications

v

Contents

Preface vii
Acknowledgments viii
About this book x
About the authors xiii

Unit 0

GETTING STARTED

Lesson 1 Get ready, get set, Go 3

Unit 1

IMPERATIVE PROGRAMMING

Lesson 2 A glorified calculator 13
Lesson 3 Loops and branches 23
Lesson 4 Variable scope 34
Lesson 5 Capstone: Ticket to Mars 41

Unit 2

TYPES

Lesson 6 Real numbers 45
Lesson 7 Whole numbers 53
Lesson 8 Big numbers 62
Lesson 9 Multilingual text 68
Lesson 10 Converting between types 79
Lesson 11 Capstone: The Vigenère cipher 88

Unit 3

BUILDING BLOCKS

Lesson 12 Functions 93
Lesson 13 Methods 101

Lesson 14 First-class functions 108
Lesson 15 Capstone: Temperature tables 117

Unit 4

COLLECTIONS

Lesson 16 Arrayed in splendor 121
Lesson 17 Slices: Windows into arrays 130
Lesson 18 A bigger slice 138
Lesson 19 The ever-versatile map 146
Lesson 20 Capstone: A slice of life 155

Unit 5

STATE AND BEHAVIOR

Lesson 21 A little structure 161
Lesson 22 Go’s got no class 170
Lesson 23 Composition and forwarding 177
Lesson 24 Interfaces 186
Lesson 25 Capstone: Martian animal

sanctuary 196

Unit 6

DOWN THE GOPHER HOLE

Lesson 26 A few pointers 201
Lesson 27 Much ado about nil 220
Lesson 28 To err is human 230
Lesson 29 Capstone: Sudoku rules 248

vi Contents

Unit 7

CONCURRENT PROGRAMMING

Lesson 30 Goroutines and concurrency 253
Lesson 31 Concurrent state 269
Lesson 32 Capstone: Life on Mars 282

Conclusion Where to Go from here 285
Appendix Solutions 287

Index 339

1

U
N

IT 0
Getting started

Traditionally, the first step to learning a new pro-
gramming language is to set up the tools and envi-
ronment to run a simple “Hello, world” application.
With the Go Playground, this age-old endeavor is
reduced to a single click.

With that out of the way, you can begin learning the
syntax and concepts needed to write and modify a
simple program.

3

1 LESSON

GET READY, GET SET, GO

After reading lesson 1, you’ll be able to

 Know what sets Go apart
 Visit the Go Playground
 Print text to the screen
 Experiment with text in any natural language

Go is the contemporary programming language of cloud computing. Amazon, Apple,
Canonical, Chevron, Disney, Facebook, General Electric, Google, Heroku, Microsoft,
Twitch, Verizon, and Walmart are among the companies adopting Go for serious pro-
jects (see thenewstack.io/who-is-the-go-developer/ and golang.org/wiki/GoUsers).
Much of the infrastructure underlying the web is shifting to Go, driven by companies
like CloudFlare, Cockroach Labs, DigitalOcean, Docker, InfluxData, Iron.io, Let’s
Encrypt, Light Code Labs, Red Hat CoreOS, SendGrid, and organizations like the Cloud
Native Computing Foundation.

Go excels in the data center, but its adoption extends beyond the workplace. Ron Evans
and Adrian Zankich created Gobot (gobot.io), a library to control robots and hardware.
Alan Shreve created the development tool ngrok (ngrok.com) as a project to learn Go,
and has since turned it into a full-time business.

https://thenewstack.io/who-is-the-go-developer/
https://golang.org/wiki/GoUsers
https://gobot.io
https://ngrok.com

4 Lesson 1 Get ready, get set, Go

The community of people who have adopted Go call themselves gophers, in honor of
Go’s lighthearted mascot (figure 1.1). Programming is challenging, but with Go and this
book, we hope you discover the joy of coding.

In this lesson, you’ll experiment with a Go program in your web browser.

Figure 1.1 Go gopher mascot
designed by Renée French

Consider this If you tell a digital assistant, “Call me a cab,” does it dial a taxi com-
pany? Or does it assume you changed your name to a cab? Natural languages like
English are full of ambiguity.

Clarity is paramount in programming languages. If the language’s grammar or syntax
allows for ambiguity, the computer may not do what you say. That rather defeats the
point of writing a program.

Go isn’t a perfect language, but it strives for clarity more so than any other language
we’ve used. As you go through this lesson, there will be some abbreviations to learn and
jargon to overcome. Not everything will be clear at first glance, but take the time to
appreciate how Go works to reduce ambiguity.

5What is Go?

1.1 What is Go?

Go is a compiled programming language. Before you run a program, Go uses a compiler
to translate your code into the 1s and 0s that machines speak. It compiles all your code
into a single executable for you to run or distribute. During this process, the Go compiler
can catch typos and mistakes.

Not all programming languages employ this approach. Python, Ruby, and several other
popular languages use an interpreter to translate one statement at a time as a program is
running. That means bugs may be lurking down paths you haven’t tested.

On the other hand, interpreters make the process of writing code fast and interactive,
with languages that are dynamic, carefree, and fun. Compiled languages have a reputa-
tion for being static, inflexible robots that programmers are forced to appease, and com-
pilers are derided for being slow. But does it need to be this way?

We wanted a language with the safety and performance of statically compiled languages such as
C++ and Java, but the lightness and fun of dynamically typed interpreted languages such as
Python.

—Rob Pike, Geek of the Week
(see mng.bz/jr8y)

Go is crafted with a great deal of consideration for the experience of writing software.
Large programs compile in seconds with a single command. The language omits fea-
tures that lead to ambiguity, encouraging code that is predictable and easily under-
stood. And Go provides a lightweight alternative to the rigid structure imposed by
classical languages like Java.

Java omits many rarely used, poorly understood, confusing features of C++ that in our experience
bring more grief than benefit.

—James Gosling, Java: an Overview

Each new programming language refines ideas of the past. In Go, using memory effi-
ciently is easier and less error-prone than earlier languages, and Go takes advantage of
every core on multicore machines. Success stories often cite improved efficiency as a
reason for switching to Go. Iron.io was able to replace 30 servers running Ruby with
2 servers using Go (see mng.bz/Wevx and mng.bz/8yo2). Bitly has “seen consistent,
measurable performance gains” when rewriting Python apps in Go, and subsequently
replaced its C apps with a Go successor (see mng.bz/EnYl).

https://mng.bz/Wevx
https://mng.bz/jr8y
https://mng.bz/8yo2
www.simple-talk.com/opinion/geek-of-the-week/rob-pike-geek-of-the-week/
https://mng.bz/EnYl

6 Lesson 1 Get ready, get set, Go

Go provides the enjoyment and ease of interpreted languages, with a step up in effi-
ciency and reliability. As a small language, with only a few simple concepts, Go is rela-
tively quick to learn. These three tenets form the motto for Go:

Go is an open source programming language that enables the production of simple, efficient,
and reliable software at scale.

—Go Brand Book

TIP When searching the internet for topics related to Go, use the keyword golang, which
stands for Go language. The -lang suffix can be applied to other programming languages as
well: Ruby, Rust, and so on.

1.2 The Go Playground

The quickest way to get started with Go is to navigate to play.golang.org. At the Go
Playground (figure 1.2) you can edit, run, and experiment with Go without needing to
install anything. When you click the Run button, the playground will compile and exe-
cute your code on Google servers and display the result.

If you click the Share button, you’ll receive a link to come back to the code you wrote.
You can share the link with friends or bookmark it to save your work.

Quick check 1.1 What are two benefits of the Go compiler?

QC 1.1 answer Large programs compile in seconds, and the Go compiler can catch typos and mis-
takes before running a program.

Figure 1.2 The Go Playground

https://play.golang.org

7Packages and functions

NOTE You can use the Go Playground for every code listing and exercise in this book. Or, if
you’re already familiar with a text editor and the command line, you can download and install
Go on your computer from golang.org/dl/.

1.3 Packages and functions

When you visit the Go Playground, you’ll see the following code, which is as good a
starting point as any.

package main

import (
 "fmt"
)

func main() {
 fmt.Println("Hello, playground")
}

Though short, the preceding listing introduces three keywords: package, import, and func.
Each keyword is reserved for a special purpose.

The package keyword declares the package this code belongs to, in this case a package
named main. All code in Go is organized into packages. Go provides a standard library
comprised of packages for math, compression, cryptography, manipulating images, and
more. Each package corresponds to a single idea.

The next line uses the import keyword to specify packages this code will use. Packages
contain any number of functions. For example, the math package provides functions like
Sin, Cos, Tan, and Sqrt (square root). The fmt package used here provides functions for for-
matted input and output. Displaying text to the screen is a frequent operation, so this
package name is abbreviated fmt. Gophers pronounce fmt as “FŌŌMT!,” as though it
were written in the large explosive letters of a comic book.

Listing 1.1 Hello, playground: playground.go

Quick check 1.2 What does the Run button do in The Go Playground?

QC 1.2 answer The Run button will compile and then execute your code on Google servers.

Declares the package
this code belongs to

Makes the fmt (format)
package available for use

Declares a function named main

Prints Hello, playground
to the screen

https://golang.org/dl/

8 Lesson 1 Get ready, get set, Go

The func keyword declares a function, in this case a function named main. The body of
each function is enclosed in curly braces {}, which is how Go knows where each func-
tion begins and ends.

The main identifier is special. When you run a program written in Go, execution begins at
the main function in the main package. Without main, the Go compiler will report an error,
because it doesn’t know where the program should start.

To print a line of text, you can use the Println function (ln is an abbreviation for line).
Println is prefixed with fmt followed by a dot because it is provided by the fmt package.
Every time you use a function from an imported package, the function is prefixed with
the package name and a dot. When you read code written in Go, the package each func-
tion came from is immediately clear.

Run the program in the Go Playground to see the text Hello, playground. The text
enclosed in quotes is echoed to the screen. In English, a missing comma can change the
meaning of a sentence. Punctuation is important in programming languages too. Go
relies on quotes, parentheses, and braces to understand the code you write.

Lu
x

ta
x

Cape
road

Money
chest

$60

D
el

ai
n

$4
00

Quick check 1.3

1 Where does a Go program start?
2 What does the fmt package provide?

QC 1.3 answer

1 A program starts at the main function in the main package.
2 The fmt package provides functions for formatted input and output.

9The one true brace style

1.4 The one true brace style

Go is picky about the placement of curly braces {}. In listing 1.1, the opening brace { is
on the same line as the func keyword, whereas the closing brace } is on its own line. This
is the one true brace style—there is no other way. See mng.bz/NdE2.

To understand why Go became so strict, you
need to travel back in time to the birth of Go.
In those early days, code was littered with
semicolons. Everywhere. There was no escap-
ing them; semicolons followed every single
statement like a lost puppy. For example:

fmt.Println("Hello, fire hydrant");

In December of 2009, a group of ninja gophers
expelled semicolons from the language. Well,
not exactly. Actually, the Go compiler inserts
those adorable semicolons on your behalf,
and it works perfectly. Yes, perfectly, but in
exchange you must follow the one true brace
style.

If you put an opening brace on a separate line from the func keyword, the Go compiler
will report a syntax error:

func main()
{
}

The compiler isn’t upset with you. A semicolon was inserted in the wrong place and it
got a little confused.

TIP As you work through this book, it’s a good idea to type the code listings yourself. You
may see a syntax error if you mistype something, and that’s okay. Being able to read, under-
stand, and correct errors is an important skill, and perseverance is a valuable trait.

missing function body

syntax error:unexpected semicolon or
newline before {

https://mng.bz/NdE2

10 Lesson 1 Get ready, get set, Go

Summary

 With the Go Playground you can start using Go without installing anything.
 Every Go program is made up of functions contained in packages.
 To print text on the screen, use the fmt package provided by the standard library.
 Punctuation is just as important in programming languages as it is in natural lan-

guages.
 You used 3 of the 25 Go keywords: package, import, and func.

Let’s see if you got this...

For the following exercise, modify the code in the Go Playground and click the Run but-
ton to see the result. If you get stuck, refresh your web browser to get back the original
code.

Experiment: playground.go

 Change the text printed to the screen by modifying what appears between
quotes. Have the computer greet you by name.

 Display two lines of text by writing a second line of code within the body {} of
the main function. For example:

fmt.Println("Hello, world")
fmt.Println("Hello, ")

 Go supports characters of every language. Print text in Chinese, Japanese, Rus-
sian, or Spanish. If you don’t speak those languages, you can use Google Trans-
late (translate.google.com) and copy/paste text into the Go Playground.

Use the Share button to get a link to your program and share it with other readers by
posting it on the Get Programming with Go forums (forums.manning.com/forums/get-
programming-with-go).

Compare your solution to the code listing in the appendix.

Quick check 1.4 Where must opening braces { be placed to avoid syntax errors?

QC 1.4 answer An opening brace must be on the same line as func, rather than on an separate line.
This is the one true brace style.

https://translate.google.com
https://forums.manning.com/forums/get-programming-with-go
https://forums.manning.com/forums/get-programming-with-go

	Get Programming with Go
	Copyright
	Contents
	Get Ready, Get Set, Go
	back cover

