
M A N N I N G

Dean Alan Hume

S A M P L E C H A P T E R

Fast ASP.NET Websites

by Dean Alan Hume

 Chapter 2

 Copyright 2013 Manning Publications

vii

brief contents
PART 1 DEFINING PERFORMANCE...1

1 ■ High-speed websites 3

2 ■ First steps toward a faster website 11

PART 2 GENERAL PERFORMANCE BEST PRACTICES27

3 ■ Compression 29

4 ■ Caching: The sell-by date 43

5 ■ Minifying and bundling static files 59

6 ■ HTML optimization tips 75

7 ■ Image optimization 99

8 ■ ETags 117

9 ■ Content Delivery Networks 125

PART 3 ASP.NET-SPECIFIC TECHNIQUES137

10 ■ Tweaking ASP.NET MVC performance 139

11 ■ Tweaking ASP.NET Web Forms performance 155

12 ■ Data caching 171

11

First steps toward
a faster website

This chapter runs through the basic tools and skills that you need to know in order
to start analyzing your site. You’re going to start by learning the basics of HTTP and
understanding HTTP requests and responses. You’ll also run through performance
charts and the tools you can use to create them. By the time you’re finished with
this chapter, you’ll be able to dive straight into coding.

2.1 The basics of HTTP
HTTP, the foundation of all communication on the web, allows browsers and serv-
ers to communicate with each other using a request-and-response communication
system. HTTP, in the most simple terms, is like a conversation: one person is the

This chapter covers
■ The basics of HTTP
■ Empty cache versus primed cache
■ Tips and tools for interpreting

performance charts
■ What does it all mean?
■ Performance rules to live by

12 CHAPTER 2 First steps toward a faster website

browser requesting information, and the other is the server, responding with a result.
You (the browser) then interpret the response and act accordingly.

 In general, the client always initiates the conversation and the server replies. These
HTTP requests and responses contain data that is readable to the human eye, which
makes it easy to follow and understand. Most modern browsers come with a set of free
tools that enable you to monitor these messages easily.

 HTTP messages are made up of a header and a body. The HTTP header contains
important data about the client browser, the requested page, and more. It’s transmit-
ted in a key/value pair format and is the core part of an HTTP message. Then, in the
most basic type of HTTP request, the HTTP message body will contain data being sent
to the server. In a request, this is where user-entered data or uploaded files are sent to
the server.

 Each HTTP request also contains an HTTP verb that tells the server what to do with
the data being sent across. You may be familiar with the two most common verbs—
GET and POST. They often appear in the HTML action form attributes.

 GET is used to request a resource without expecting to change that resource (for
example, loading a website’s homepage). POST is used to submit data to the resource,
which is then updated (for example, submitting your details when changing your user
preferences on a website).

2.1.1 Understanding an HTTP GET request

The most common type of HTTP request is GET. Every time you type a URL in your
browser and hit return, the action fires off a GET request. Figure 2.1 shows a typical
GET request. I have used one of the built-in browser tools that we’re going to cover
later in this chapter to view its internal contents.

 The information inside an HTTP request is full of useful details; it’s up to you to
understand exactly what is happening.

Figure 2.1 An HTTP GET request

13The basics of HTTP

In figure 2.1, you’ll notice a typical HTTP request to www.mozilla.org.

■ The Request Method is listed as a GET, and the Status Code is 200, which means
it was successful.

■ The Accept header field tells the server which content types are acceptable. In
this case, the browser is accepting HTML. The browser also tells the server it
supports other content types in case the server doesn’t support the first one it
asks for. The string containing multiple content types is chained together for
efficiency, meaning that the browser doesn’t have to request multiple content
types one at a time if the first request fails. The Accept-Charset tells the server
which character encoding is acceptable (such as ASCII, UTF-8, etc.) For this
request, it is ISO-8859-1, UTF-8.

■ In the field Accept-Encoding, the browser is letting the server know that it sup-
ports Gzip, Deflate, and SDCH compression types. If the data the server sends
back is compressed, it will understand how to decompress it and display it to the
user. We’ll cover compression in chapter 3.

■ The browser uses the Accept-Language field to tell the server which languages
it can use to respond. In this case it can respond in en-GB and en-US.

■ The Connection field tells the server what type of connection the user-agent would
prefer. In this request, the browser has asked for a keep-alive connection type.

■ The User-Agent field is a text string that browsers and devices use to identify
themselves for tracking and other purposes.

2.1.2 Understanding an HTTP GET response

After you’ve made the HTTP request to www.mozilla.org as shown in figure 2.1, the
server replies with an HTTP response.

 From the request shown in figure 2.2, you can see the following:

■ The server tells the browser that this component can be cached. In this case it’s
using the Cache-Control field and notifying the browser that it can be cached
for 600 seconds. All Cache-Control timings are measured in seconds.

Figure 2.2 An HTTP GET response

14 CHAPTER 2 First steps toward a faster website

■ The Connection field shows Keep-Alive is supported.
■ The Keep-Alive field tells the browser which connection limits it supports (time-

outs and max connection time).
■ The Content-Encoding field tells the browser that the server is sending data

back that’s encoded with Gzip. Now the browser can decompress that data with
the appropriate coding. You’ll look at compression more closely in chapter 3.

■ The component’s Content-Type is text/html.
■ The Date field tells the browser the date it was processed so it can cache it

if necessary.
■ The Expires field tells the browser how long it’s allowed to keep the compo-

nent. The Expires field is a date and time in the future. If it’s far enough into
the future, the browser may choose to cache the component. This is a good
thing, because it saves the browser from having to request that component
again from the server for a specified period of time. This speeds up the down-
load because there is one less request to make. You’ll look into Expires headers
and how to apply them in chapter 4.

■ Transfer-Encoding is the type of encoding used to send data back to the
browser. In this case it was chunked, which means that the data was sent over by
the server in a series of chunks instead of all at once.

■ The Vary field instructs the proxies to cache two versions of the resource: one
compressed and one uncompressed. Without Vary, a server may mistakenly
send users the incorrect cached version of an HTML page instead of the correct
one for its encoding type.

In chapter 1, you learned that multiple components are downloaded when you
request a single URL. These HTTP requests and responses are made for each compo-
nent in the HTML document and they all have similar fields in the headers. If you
refer to the request for www.mozilla.org, you can see that multiple requests are made
when you enter the URL. When you request the URL, the HTML document is down-
loaded, and as the browser parses its contents, it starts to download the additional
components it finds inside the HTML.

 From the chart in figure 2.3, you can see the multiple GET requests downloaded
when you accessed www.mozilla.org. As the browser parsed and located additional
components inside the HTML document, it started to download them. Each compo-
nent is one round-trip that the browser has to make to the server, meaning sending a
request and waiting for a response takes time. As a developer, you can find ways to
reduce the number of server requests that the browser makes. You can also influence
how the browser behaves by telling it to cache the information it downloads. This is
what web performance is all about—reducing the number of HTTP requests sent to
the server.

15The basics of HTTP

2.1.3 Understanding HTTP status codes

When a request is made to your server for a component on your website, the server
returns an HTTP status code, as shown in table 2.1. The status code tells the browser if
it retrieved the component and it tells the browser how to react. Status codes can be
quite handy when you’re debugging an application.

For a full list of status codes, visit http://en.wikipedia.org/wiki/List_of_HTTP_
status_codes.

Table 2.1 An HTTP status code list

HTTP status code range Description

100–1xx Informational: Request received, continuing process.

200–2xx Success: The action requested by the client was received, understood,
accepted, and processed successfully.

300–3xx Redirection: The client must take additional action to complete the request.

400–4xx Client Error: This status code is intended for cases in which the client
seems to have made an error.

500–5xx Server Error: The server failed to fulfill a valid request.

Figure 2.3 Multiple requests to www.mozilla.org

16 CHAPTER 2 First steps toward a faster website

2.2 Empty cache vs. primed cache
A web browser stores certain downloaded items for future use in a browser cache folder.
Images, JavaScript, CSS, and even entire web pages are examples of cache items. Before
you start looking at tools that allow you to profile a website, it’s important to understand
the differences between an empty cache and a primed cache. The first time you visit a
website, you won’t have a cache of that site. But as you continue to browse the website, the
browser cleverly stores the components you download in this temporary folder cache.
The next time you visit the same website, you’ll have a primed cache that contains the
website’s cached items. The browser does this so that on subsequent visits to the same
website, it can easily retrieve the components, which speeds up your download time.

 The empty cache shown in figure 2.4 represents the first time a user visits a site.
Compare that to the primed cache for the same website. You can see the difference in
both the number of HTTP requests and the total weight of the web pages. The total
weight of the web page on the left is 130K; the total weight for the primed cache on
the right is 39.8K. All the components that were saved from the first visit were
retrieved from the cache, thus cutting the download time and weight drastically.

 An important question to ask yourself when analyzing your website is “How many
of my users are first-time visitors (who will have an empty cache) and how many are
repeat visitors (who will have a primed cache)?” When you answer this question, based
on statistics gathered while using a website analytics package, you’ll understand where
to focus while you’re optimizing your website’s performance.

 If you don’t use a website analytics package or you don’t have enough data to
determine visitor trends, it can be helpful to think about the domain of your website.
Is it an intranet website that might expect a lot of repeat visits throughout the day? Is it
a site expecting to attract a lot of new visits? This mindset allows you to put yourself in
the shoes of the user so you can improve and enhance their site experience.

 It’s also important to note that both the primed and empty caches of a browser
need to be taken into account when profiling, implementing, and monitoring a web

Figure 2.4 The difference between an empty cache and a primed cache. Notice the
differences in the total weight and the number of HTTP requests.

17Tips and tools for interpreting performance charts

page. Sometimes you may find yourself refreshing a web page and getting skewed
results because the browser is actually retrieving the components from its cache
instead of fetching a fresh version on an empty cache. Most browsers will allow you to
refresh a page by hitting the F5 key, which might load the page from cache. But Ctrl-F5
forces a cache refresh, and will guarantee that you’ll get the newest content. You may
also find that some browsers allow you to force a cache refresh by holding Shift (or
Ctrl) and clicking the refresh icon. Keep this in mind when you’re profiling your site
because you might be profiling a web page that’s been updated on the server but isn’t
reflected in your browser because of caching.

2.3 Tips and tools for interpreting performance charts
Now that we’ve talked about what’s going on under the hood when you make a
browser request, we can start interpreting performance charts.

 To understand how to improve your website’s performance, it’s vital that you learn
how to read performance charts. The most typical charts you’ll come across with
today’s profiling tools are waterfall charts, diagrams that show downloads in a linear
progression, in a manner that looks like a waterfall.

 Most modern browsers come with their own built-in developer tools and a version
of a waterfall chart that can be easily accessed via the Tools menu. Most browsers also
have a hotkey for developer tools and F12 seems to bring up the developer panel. You
may need to check your browser settings first, as different browsers might organize
their tools differently. In the next section, you’ll go through a brief review of well-
known developer tools you can use to produce performance charts; after that, you’ll
learn how to interpret the data from these charts in greater depth.

2.3.1 What does it all mean?

When you look at the waterfall chart in figure 2.5, you can see that it gives you so
much more than a series of simple requests.

 In a waterfall chart, the length of the bars shows how long a certain resource took
to download. In figure 2.5 one bar is extremely long, highlighting an area to investi-
gate. Is the image file size too large? Is the image the correct format? What is causing
this image to download so slowly?

 The green vertical line (at 1.2) running through all the requests indicates the DOM-
ContentLoaded event. The DOMContentLoaded event is triggered when the page’s Doc-
ument Object Model (DOM) is ready, which means that the API for interacting with
the content, style, and structure of a page is ready to receive requests from your code.

 The blue vertical line (near 3.2) indicates the Load event being fired. The Load
event is triggered when the entire page has loaded and is generally the moment when
the loading icon in your browser’s title bar stops spinning. When this has happened,
all JavaScript and Cascading Style Sheets (CSS) have finished loading and have been
executed, and all images have been downloaded and displayed. The Load event lines
help you see how long it takes for pages to load and helps you understand when the

18 CHAPTER 2 First steps toward a faster website

browser is parsing and loading your website’s components. So a green line indicates
that the DOMContentLoaded event is triggered and the browser is ready to interact
with requests from your code, and a blue line indicates that the Load event has been
triggered and all JavaScript and CSS have finished executing. Different developer
tools may provide a different color for each vertical line, but they generally mean
the same thing.

 If you refer to the line in figure 2.5 that was taking a long time to load, you can see
that it’s pushing the Load event out. There’s a gap of whitespace between item 15
being finished loading and item 16 starting. It’s as if the image were blocking progress
and causing a slight delay, so this is definitely an area to investigate further.

 The waterfall chart also shows three JavaScript files being downloaded every time
you access the page. Are all three files necessary? Could you reduce these to one
request? As you start optimizing your website and looking at ways to improve its per-
formance, you’ll need to keep asking yourself these sorts of questions.

 Depending on your organization, your website may be image- or style-intensive. Fig-
ure 2.6 is the waterfall chart for a popular online clothing store in the UK. You’ll see a
large number of HTTP requests being made, so many that I had to crop the image.

 Due to the nature of the business, high-quality images of the clothes are necessary,
but this can have a very negative effect on web page performance. In chapter 7, you’ll
learn image optimization techniques that reduce the overall size of image files without
reducing their quality.

 Another area that could be addressed immediately is the number of JavaScript files
on the page. Combining them into one file could drastically reduce HTTP requests. In
chapter 5, you’ll look at minifying and bundling static files, which will reduce the
number of HTTP requests and the size of the requests that a browser needs to make.

Figure 2.5 Waterfall chart for www.deanhume.com

19Tips and tools for interpreting performance charts

At first glance, you may notice obvious ways to make performance improvements, but
the solution may not be glaringly obvious. If you keep the two main principles (reduc-
ing the number of requests and the size of the requests) in mind when profiling your
site, finding the solution will be a lot easier.

 Each profiling tool will produce waterfall charts with slightly different features. It’s
up to you to decide which tool and browser you prefer. As you become familiar with
your chosen tool, you’ll find it easier to read and spot areas for improvement.

2.3.2 Google Chrome developer tools

In figure 2.7, I use Chrome developer tools to show you how to produce a waterfall
chart. To access Chrome’s developer tools, navigate to the Settings menu and bring
up the developer tools in the Tools menu; you could also hit F12.

 If you bring up the Network panel and navigate to my website (www.deanhume.com),
you can see the components being downloaded as you reach the home page as shown
in figure 2.8. The developer tools also show you the waterfall chart and the order in
which the components were downloaded.

 The waterfall chart also takes latency into account. Latency is the amount of time it
takes to open a connection to the server and is associated with the round-trip time
that it takes for a request to reach the server and return to the user. The amount of
latency depends largely on how far away the user is from the server. It’s shown in the
lighter shade within each bar.

 The chart is color coded, with each hue representing a content type, such as
JavaScript files, CSS, or images. This helps you see and visually group the different
content types.

Figure 2.6 Waterfall chart for Asos.com

20 CHAPTER 2 First steps toward a faster website

The Chrome developer tools also allow you to edit HTML and CSS on the fly, which is
a handy way to develop quickly and make small changes without having to reload the
page. Next, you’ll run through a few other browser developer tools and show the dif-
ferences between waterfall charts and other profiling tools.

Figure 2.7 Accessing Chrome developer tools

Figure 2.8 Waterfall chart for www.deanhume.com using Chrome developer tools. The figure also
shows the latency that can sometimes be associated with the download time of a component.

21Tips and tools for interpreting performance charts

NOTE Remember that certain components on a web page may be cached, which
can affect your waterfall chart’s accuracy. Run the tool and produce charts for
both primed and empty caches in order to get a more complete picture.

2.3.3 Internet Explorer developer tools

The developer tools in Internet Explorer have been around since IE 6 and have
evolved with each new version. In IE 9, the tools allow you to debug JavaScript, HTML,
and CSS as well as profile the performance of a web page using the handy profiling
reports. They can be easily accessed by hitting the F12 key, as seen in figure 2.9.

2.3.4 Firebug

Firebug is a free and open source tool that was originally built as an extension for Fire-
fox. It has been around since 2006 and is a solid and proven tool. Firebug was one of
the first developer tools to produce a waterfall chart, and most other developer tools
have produced similar waterfall charts based on this original style. Much like
Chrome’s developer tools, it allows you to edit HTML and CSS on the fly.

 Using the Net tab allows you to easily view a waterfall chart, and by expanding on
the individual nodes, you can view the HTTP requests and responses. Although Fire-
bug was originally intended for Firefox, it’s also available as a plugin for Chrome. For
more information, visit getfirebug.com.

2.3.5 Safari Web Inspector

If you develop for Mac users or just prefer to use Safari, it also has a free tool, called
Web Inspector, which allows you to inspect network traffic. You may also notice that
the layout and design are very similar to the Chrome developer tools. Safari and
Chrome are powered by WebKit.

Figure 2.9 Waterfall chart for www.deanhume.com using IE developer tools

22 CHAPTER 2 First steps toward a faster website

2.3.6 HTTPWatch

HTTPWatch is an integrated HTTP sniffer for IE and Firefox that allows you to watch
and “sniff” the HTTP traffic coming to and from your website. It provides a great set of
tools that allow you to easily profile your site’s performance, as well. It doesn’t come
built into any browsers, but a free basic version and an advanced version with more
features can be purchased and downloaded from www.httpwatch.com.

2.3.7 WebPagetest

You can find an extremely handy tool to profile your site at www.webpagetest.org. It
isn’t built into any browser, but it can provide a wealth of information about any web-
site (figure 2.10). Simply visit the site and enter the URL you wish to profile.

 WebPagetest is an open source project that’s developed and supported primarily
by Google. Many partners also work with WebPagetest and provide a test location for
you to run your site against. I really like the way you can profile your site against a loca-
tion from almost anywhere in the world, using multiple browsers. It’s especially handy
if you need to see what your users would see if they accessed your site from halfway
across the world. These test locations provide useful insight into the round-trips the
browser will make to download the required components. There is even an option to
record video of the page as it loads, which can be very useful to compare and review
page rendering.

 WebPagetest provides a breakdown of the first view and the repeat view, allowing
you to see how many requests you saved by using caching, Expires headers, and so on.
You can also experiment with different advanced features if your website has a com-
plex setup. Throughout this book, I will refer to www.webpagetest.org because it pro-
vides a great set of charts that give us an in-depth look at a website’s performance.

2.3.8 Fiddler

Another fantastic free tool is Fiddler. This web debugging proxy logs all network
traffic between your computer and the internet and lets you inspect traffic, set

Figure 2.10 Waterfall chart for www.deanhume.com using www.webpagetest.org

23Performance rules to live by

breakpoints, and “fiddle” with incoming or outgoing data. It can be quite interesting
to fire up Fiddler and watch the requests coming and going from your PC, let alone
the website that you are profiling!

 The Fiddler dashboard gives you an in-depth look at the HTTP requests and allows
you to create and test HTTP requests yourself. Fiddler also offers a whole host of other
great features. For more information, point your browser at www.fiddler2.com/fiddler2.

2.4 Performance rules to live by
In 2007, Steve Souders, at the time Chief Performance Yahoo! at Yahoo!, created a set
of 14 rules for faster front-end performance. These rules, shown in table 2.2, are out-
lined in his book, High Performance Web Sites, and every single one is widely accepted as
best practice in web performance today.

As the web has evolved, the number of rules has increased, but every core concept in
this book is based on Souders’s 14 rules. There may be newer browsers that can han-
dle HTML5, but these original rules have been proven and tested, and they underpin
everything that you are trying to achieve.

 Many of these rules closely align with this book’s table of contents. As you prog-
ress through the chapters, you’ll learn about the performance rules, as well as some

Table 2.2 Steve Souders’s rules for faster front-end performance

Rule Number Description

 1 Make fewer HTTP requests

 2 Use a content delivery network

 3 Add an Expires header

 4 Compress components with Gzip

 5 Put CSS at the top

 6 Move JavaScript to the bottom

 7 Avoid CSS expressions

 8 Make JavaScript and CSS external

 9 Reduce DNS lookups

10 Minify JavaScript

11 Avoid redirects

12 Remove duplicate scripts

13 Turn off ETags

14 Make AJAX cacheable and small

24 CHAPTER 2 First steps toward a faster website

of the newer concepts that have evolved with the introduction of HTML5 and
advances in JavaScript.

 There are a lot of performance techniques and methods that can be applied to
your website and trying to remember them all when you’re profiling your site can be
quite daunting. This is where a performance-profiling tool can be very helpful.
Instead of remembering each and every technique, these tools take the hard work out
of profiling and provide a set of suggestions and best practices that can be applied to
your website. Let’s look at two such performance-analysis tools, Yahoo! YSlow and
Google PageSpeed.

2.4.1 Yahoo! YSlow

YSlow is a great add-on for many browsers and it offers suggestions for improving a
web page’s performance. It’s free and can be downloaded from http://developer
.yahoo.com/yslow/ for Firefox, Chrome, Opera, and Safari. The tool runs against a
set of 23 rules that affect web page performance. Throughout the remainder of this
book, you’ll come back to this tool to see how each improvement you make boosts
your performance score.

 YSlow provides a grade and overall performance score for your URL. It grades A as
high performance and F as poor. You should, obviously, always aim for the highest
grade you can obtain because each step closer to an A improves your web page perfor-
mance. Figure 2.11 shows performance areas on my website that need to be improved.

 In figure 2.11 you’ll notice that the overall performance score for my website is
quite high, but one area scored an E. Obviously I need to add an Expires header to

Figure 2.11 Yahoo! YSlow tool run against www.deanhume.com

25Performance rules to live by

certain components on the web page. As you recall from examples earlier in the chap-
ter, these Expires headers let the browser know that the component doesn’t need to
be downloaded again because the content hasn’t changed. It will only expire in the
future—this saves the browser a round-trip to the server again, thus speeding up the
load time. You’ll look at code and the different ways in which you can add Expires
headers to the components in your web page in chapter 4.

2.4.2 Google PageSpeed

Google also has a handy performance tool called PageSpeed, shown in figure 2.12,
which can be added to both Firefox and Chrome. It’s very similar to YSlow and was
built using the same performance rules set out by the Yahoo! performance team.
PageSpeed has grown to become a great tool that allows you to easily profile your site.
If you would like to try the tool before adding it to your browser, Google offers you the
ability to do so on the PageSpeed Insights web page (https://developers.google.com/
speed/pagespeed/insights).

 In figure 2.12, you can see the results of a test run against my site. Much like YSlow,
it has given me a similar suggestion, letting me know that I need to use browser cach-
ing by setting an expiration date on some resources. The PageSpeed tool provides a
very simple interface that suggests only the improvements you need to make. Unlike
YSlow, it doesn’t give you a breakdown of the components or the empty versus primed
cache view. I find it very helpful to have the full dashboard that YSlow provides, but I
also like to incorporate the performance results from Google PageSpeed into my
overall performance profiling. Each tool provides its own rule set and logic to deter-
mine the score.

Figure 2.12 Google PageSpeed tool run against www.deanhume.com

26 CHAPTER 2 First steps toward a faster website

NOTE Some of the performance profiling tools may offer a setting that
enables you to autorun the tests every time a web page is loaded. Although
this may be helpful during testing and development, remember that it needs
to process a full set of rules and code, which may take time. It may feel as if a
web page is running slowly, but actually it’s the profiling tool running in the
background. Don’t forget to turn it off when you aren’t using it!

2.5 Summary
In this chapter, you started off learning the basics of HTTP and understanding how the
browser makes a request to the server and gets a response. Next, you had a brief sum-
mary of the tools that are freely available with most browsers. These developer tools will
help you start profiling and analyzing HTTP requests and responses from your websites.
The waterfall chart is the most widely used when it comes to profiling your site and it
displays the component downloads over a timeline. You evaluated two different web
pages with a waterfall chart and saw how you could reduce the overall number of HTTP
requests. You also became familiar with two tools that help you measure your applica-
tions’ performance, as well as suggest areas for improvement. You’ll use these tools
throughout the book as you work to improve the sample application’s speed.

 Now that you have a good grasp of the basics of web performance, it’s time to start
improving your website. In the next chapter you’ll learn how to apply compression to
your website and make significant speed gains.

Dean Alan Hume

T
here’s a real cost to ineffi cient HTTP requests, overloaded
data streams, and bulky scripts. Server throughput is a
precious commodity, and seconds—even tiny fractions of

a second—can seem like an eternity while a visitor waits for
your site to load. As an ASP.NET developer, there are dozens of
techniques you can apply immediately to make your sites and
applications faster. You’ll fi nd them here.

Fast ASP.NET Websites delivers just what it promises—practical,
hands-on guidance to create faster, more effi cient ASP.NET sites
and applications. Th is book off ers step-by-step .NET-specifi c
examples showing you how to apply classic page optimization
tips, ASP.NET-specifi c techniques, and ways to leverage new
HTML5 features.

What’s Inside
● Drastically improved response times
● Tips for Webforms and ASP.NET MVC sites
● Optimizing existing pages
● .NET-specifi c examples

Readers should be familiar with basic HTML, CSS, and ASP.NET
concepts.

Dean Hume is a soft ware developer and blogger based in the U.K.
A passionate techie, he created the ASP.NET HTML5 toolkit and
blogs regularly about web performance at www.deanhume.com.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/FastASP.NETWebsites

$34.99 / Can $36.99 [INCLUDING eBOOK]

FAST ASP.NET WEBSITES

ASP.NET/WEB DEVELOPMENT

M A N N I N G

“A clear and eff ective guide
to the art of ASP.NET

 performance tuning.”—Bryn Keller, Jenkon

“Comprehensive,
reader-friendly information

on how to make your
 ASP.NET website fl y.”—Danylo Kizyma

Advanced Utility Systems

“Demonstrates key
 concepts in clear detail.”—Michael Roberts, Sr.

Information Innovators

“An up-to-date guide ...
focuses on client performance

and user experience.”
—Onofrio Panzarino
SBG Wolters Kluwe

SEE INSERT

