
M A N N I N G

Jeffrey Palermo
Ben Scheirman
Jimmy Bogard
Eric Hexter
Matthew Hinze

FOREWORDS BY ROD PADDOCK AND
 PHIL HAACK

IN ACTION

New Text

by Jeffrey Palermo,

and Jimmy Bogard

 retpahC 22

ASP.NET MVC 2
in Action

Ben Scheirman,

Copyright 2010 Manning Publications

v

brief contents
PART 1 HIGH-SPEED FUNDAMENTALS ...1

1 ■ High-speed beginner ramp-up 3

2 ■ Presentation model 22

3 ■ View fundamentals 31

4 ■ Controller basics 50

5 ■ Consuming third-party components 66

6 ■ Hosting ASP.NET MVC applications 78

7 ■ Leveraging existing ASP.NET features 95

PART 2 JOURNEYMAN TECHNIQUES..117

8 ■ Domain model 119

9 ■ Extending the controller 127

10 ■ Advanced view techniques 136

11 ■ Security 152

12 ■ Ajax in ASP.NET MVC 167

13 ■ Controller factories 190

14 ■ Model binders and value providers 203

15 ■ Validation 215

BRIEF CONTENTSvi

PART 3 MASTERING ASP.NET MVC225

16 ■ Routing 227

17 ■ Deployment techniques 251

18 ■ Mapping with AutoMapper 258

19 ■ Lightweight controllers 268

20 ■ Full system testing 283

21 ■ Organization with areas 301

22 ■ Portable areas 312

23 ■ Data access with NHibernate 322

PART 4 CROSS-CUTTING ADVANCED TOPICS............................347

24 ■ Debugging routes 349

25 ■ Customizing Visual Studio for ASP.NET MVC 356

26 ■ Testing practices 364

27 ■ Recipe: creating an autocomplete text box 380

312

Portable areas

ASP.NET MVC 2’s areas allow us to structure the controllers and views within our
application, organizing our projects hierarchically into folders and namespaces.
Portable areas, a feature in MvcContrib, let us take that concept even further. Por-
table areas are like regular areas in that they’re a collection of controllers and
views—segmented from other areas. But they’re also portable; the entire area is a
separate assembly—typically deployed as a DLL file—and can be shared among sev-
eral ASP.NET MVC 2 projects. Whereas areas allow us to segment our application,
portable areas enable us to compose several applications together in one project.

 Imagine a common set of pages and logic that a company wanted to share among
all its projects. Take, for instance, the common AccountController that’s generated
in the default ASP.NET MVC 2 project template. AccountController provides basic
authentication support—registering users, logging in, and the other traditional

This chapter covers
■ Building a portable area
■ Embedding views
■ Distributing a portable area
■ Creating an RssWidget portable area
■ Integrating with a host using the bus

313A simple portable area

things you’d need to start accepting users. That template could be used as a starter kit
for many projects, and they’d all work the same way. But as it stands, the AccountCon-
troller and its supporting players would be duplicated in all of them. We could instead
move this into a portable area that all our projects could use. We can eliminate that boil-
erplate code from our projects and share the new assembly instead of code files.

 We’ll use this example to demonstrate how to use MvcContrib to create a simple
portable area, gaining all the benefits of nonduplicated code.

22.1 Understanding the portable area
The portable area is a concept that comes from the MvcContrib project. As the name
suggests, it’s a native MVC 2 area packaged up in a way that’s easier to distribute and
consume than an area built with the out-of-the-box MVC 2 support. That’s a pretty
broad statement, so let’s first look at what’s in an area and then cover which pieces
may need to be made portable.

 Areas are a subset of an MVC application that are separated in a way that gives
them some physical distance from other groups of functionality in the application.
This means that an area will have one or more routes, controllers, actions, views, par-
tial views, master pages, and content files, such as CSS, JavaScript, and image files.
These are all the pieces that may be used in an area.

 Of those individual elements, many aren’t part of the binary distribution of an
MVC application. Only the routes, controllers, and actions get compiled into an
assembly. The rest of the elements are individual files that need to be copied and
managed with the other assets that are part of the application. This is reasonably triv-
ial to manage if we build an area for our application and just use it as a way of manag-
ing smaller modules of the application. But if we want to use an area as a way of
packaging up and sharing or distributing a piece of multipage UI functionality, man-
aging all of the individual files make this option a bad choice when integrating some-
one else’s component with our application.

 This is where the MvcContrib project developed the idea of portable areas. By
building on top of the existing area functionality, it only takes some minor changes to
an area project to make it portable. A portable area is simply an area that can be
deployed as a single DLL.

 The process of making an area portable is trivial. As area developers, instead of
leaving the file assets as content items in your project, we make them embedded
resources. An embedded resource is a content file that’s compiled into the assembly of a
project. The file still exists, and it can be programmatically extracted from the assem-
bly at runtime. This means that a portable area only contains a single file, the assem-
bly of the project, rather than all the individual content files.

22.2 A simple portable area
A portable area is a class library project with controllers and views. It has all the trappings
of an ASP.NET MVC 2 project: controllers, folders for views, and the views themselves. To
extract the AccountController, we’ll move those related files from the default template

314 CHAPTER 22 Portable areas

to a new class library project. The overall
structure of the project is the same, but it’s
not a web project, as shown in figure 22.1.

 Developers familiar with the ASP.NET
MVC 2 default template will recognize
most of the files in the portable area shown
in figure 22.1. For the most part, the con-
tent is exactly the same, and it’s in the same
structure. But the views aren’t content files
like in ASP.NET MVC 2 projects; they’re
embedded resources.

 To make a view an embedded resource,
select it in Solution Explorer and press the
F4 key, or right-click it and select Proper-
ties from the context menu. The Properties
window (shown in figure 22.2) will appear.

 For the Build Action, select Embed-
ded Resource to instruct Visual Studio to
include the file as an embedded resource
of the project.

Like regular areas, portable areas must be registered. This is done by inheriting from
a base class provided by MvcContrib, PortableAreaRegistration, as shown in list-
ing 22.1.

Figure 22.2 Visual Studio’s
Properties window

Embedded resources
Embedded resources are project artifacts that are compiled into the assembly, and
they can be programmatically retrieved. Normally, views are set with a Build Action of
Content, which means they’ll be stored and accessed like regular files in the filesys-
tem. Class files have a Build Action of Compile, which compiles them into the assembly
regularly. For more information on embedded resources, visit the MSDN reference
page: http://mng.bz/Uz67.

Figure 22.1 A portable area class library project

http://mng.bz/Uz67

315Consuming portable areas

public class AreaRegistration : PortableAreaRegistration
{
 public override string AreaName
 {
 get { return "login"; }
 }

 public override void RegisterArea
 (AreaRegistrationContext context, IApplicationBus bus)
 {
 context.MapRoute(
 "login",
 "login/{controller}/{action}",
 new { controller = "Account", action = "index" });

 base.RegisterTheViewsInTheEmbeddedViewEngine(GetType());
 }
}

In listing 22.1 we register our portable area. It’s similar to the regular AreaRegistra-
tion classes we wrote in chapter 21, with one additional required step: we must call
base.RegisterTheViewsInTheEmbeddedViewEngine(GetType()) B. That call allows
us to use a special view engine (also included in MvcContrib) that makes our embed-
ded views available to the consuming project.

 The embedded views are the trick behind portable areas. When our consuming
project needs a view, the special embedded view engine can find them. If we didn’t use
this view engine, we’d have to automate our deployments so that each portable area’s
views were in the correct spot in our project’s filesystem. Even though this can be auto-
mated, using embedded views allows us to skip this tedious and error-prone step.

 In the next section, we’ll use the portable area in our consuming application.

22.3 Consuming portable areas
When we have our portable area class library project with its controllers and embed-
ded views, we must configure our consuming application so that it can use them. Mvc-
Contrib makes this easy. As well as registering the area, we also need to call
InputBuilder.BootStrap in Global.asax.cs, as shown in listing 22.2.

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes);

 MvcContrib.UI.InputBuilder.InputBuilder.BootStrap();
}

The call to AreaRegistration.RegisterAllAreas will look for any assemblies in the
bin folder—if our portable area project is referenced by the consuming application, it
goes there automatically. If our consuming application doesn’t reference the portable

Listing 22.1 Registering a portable area from PortableAreaRegistration

Listing 22.2 Consuming a portable area in a regular ASP.NET MVC 2 project

Registers
embedded views

B

316 CHAPTER 22 Portable areas

area assembly, we need to put it in the bin folder. That can be done automatically using
a postbuild step configured on the Build tab of the project’s Properties dialog box.

 In addition to registering the area, the call to InputBuilder.BootStrap initializes
a custom view engine that can be used to render views that are configured as embed-
ded resources within the portable area.

 Our application that consumes the portable area must also tell MvcContrib to pre-
pare it. This is all that’s needed to begin using the shared functionality of our portable
area. In our consuming project, we can link to and otherwise use portable area con-
trollers as if they were included in our project.

22.4 Creating an RSS widget with a portable area
A portable area can and should include addi-
tional helpers to make the use of consuming a
portable area frictionless for developers.

 Consider a portable area that would provide a
web page widget for rendering an RSS feed as an
unordered list. We’ll walk through an example and
look at how we can add a helper to make the por-
table area easier to use. Figure 22.3 shows the Visual
Studio structure for the RssWidget portable area.

 The RssWidget project shown in listing 22.3
contains all the files that are part of this portable
area. The interesting difference between this
RssWidget example and the previous example is
the addition of the SyndicationService and the
HtmlHelperExtensions classes. This example
demonstrates that you can include a complete fea-
ture in a portable area. We’ve found that by includ-
ing custom HTML helpers in the projects, the ease
of use for the area increases significantly. Let’s walk
through the code.

using System.Web.Mvc;
using MvcContrib.PortableAreas;

namespace RssWidgetPortableArea
{
 public class RssWidgetAreaRegistration : PortableAreaRegistration
 {
 public override string AreaName
 {
 get { return "RssWidget"; }
 }

 public override void RegisterArea(AreaRegistrationContext context,

Listing 22.3 RssWidget registration

Figure 22.3 Layout of the
RssWidget portable area

317Creating an RSS widget with a portable area

 IApplicationBus bus)
 {
 context.MapRoute(
 "RssWidget_default",
 "RssWidget/{controller}/{action}/{id}",
 new {action = "Index", id = ""});

 RegisterTheViewsInTheEmbeddedViewEngine(
 GetType());
 }
 }
}

The registration code for the area, in listing 22.3, is boilerplate code. The standard calls
to MapRoute B and RegisterTheViewsInTheEmbeddedViewEngine C are included. No
special registration code is needed for this example.

 Only one action is included in this portable area—the RssWidgetCon-

troller.Index method. This method is basic. Its only purpose is to tie together the
RssUrl and the SyndicationService dependency. See listing 22.4 for the details of
the Index method.

 The SyndicationService provides the logic to retrieve an RSS feed from a URL
and return the model of the feed. The controller then sends that model to the view
for formatting, as shown in listing 22.4.

using System.Web.Mvc;

namespace RssWidgetPortableArea.Controllers
{
 public class RssWidgetController : Controller
 {
 public ActionResult Index(string RssUrl)
 {
 var service = new SyndicationService();
 var feed = service.GetFeed(RssUrl, 10)
 return View(feed);
 }
 }
}

The feed is rendered by a simple view—shown in listing 22.5—that will create an unor-
dered list of the items in the RSS feed. The code is pretty simple in this view. It loops
over a collection of System.ServiceModel.Syndication.SyndicationFeed objects
and displays the Title and Author for each item.

 If a developer needs to control the HTML for this widget, the great thing about a por-
table area is that we can override this view and still take advantage of the controller and
SyndicationService provided by the component. Using the portable area isn’t an all-
or-nothing decision. Because the portable area is built on top of the MVC 2 areas imple-
mentation, it’s easy to start taking control back from the component and providing our
own implementation code. This can be considered incremental customization.

 The view for displaying the RSS feed is shown in listing 22.5.

Listing 22.4 Passing the contents of the feed to the view

Maps routes
for area

B

C Registers
embedded views

Gets feed based
on RssUrl

318 CHAPTER 22 Portable areas

<%@ Page Title="" Language="C#"
Inherits="System.Web.Mvc.ViewPage<

System.ServiceModel.Syndication.SyndicationFeed>" %>

 <%foreach(var item in Model.Items) {%>

 <%=item.Title.Text %> -
 <%=item.Authors[0].Name %>

 <%} %>

The view in listing 22.5 iterates over each item in the feed and displays the title as well
as the author inside an unordered list.

 The developer’s experience using this RssWidget portable area is where this type
of component model shines. Using this widget in an application consists of referenc-
ing the HTML helper extensions from our view and then calling the RssWidget
method, as shown in listing 22.6.

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage" %>
<%@ Import Namespace="RssWidgetPortableArea"%>

<asp:Content ID="indexTitle"
 ContentPlaceHolderID="TitleContent" runat="server">
 Home Page
</asp:Content>

<asp:Content ID="indexContent"
 ContentPlaceHolderID="MainContent"
 runat="server">

<%
Html.RssWidget(
 "http://search.twitter.com/search.atom?q=%23mvc2inaction");
%>
</asp:Content>

The only line of code in the application that calls the portable area is the call to the
RssWidget method B. After calling that method and running a simple view, the
resulting web page is displayed in figure 22.4. The view merely references an RSS feed
for Twitter messages containing “MVC2InAction.” The title and user will show up on
the screen.

 The RssWidget HTML helper method that’s used in the view is the syntactic sugar
that makes consuming this portable area simple. If this method weren’t made avail-
able, developers using the portable area would have to know some of the internals of
how the area was constructed.

 For example, the RssWidget was intended to be used with the RenderAction
method calling the RssWidgetController’s Index method. To make that call, the area
name registered in the area’s registration is required, and in this case the area name is
RssWidget. The implementation of the RssWidget helper is shown in listing 22.7.

Listing 22.5 View for the RssWidget.Index action

Listing 22.6 Calling an RssWidget HtmlHelper extension

Imports helper
namespace

Invokes
 RssWidget helper

B

319Distributing the RssWidget

using System.Web.Mvc;
using System.Web.Mvc.Html;

namespace RssWidgetPortableArea
{
 public static class HtmlHelperExtensions
 {
 public static void RssWidget(this HtmlHelper helper, string RssUrl)
 {
 helper.RenderAction("Index", "RssWidget",
 new {RssUrl, Area = "RssWidget"});
 }
 }
}

The HtmlHelper extension method, displayed in listing 22.7, shows a call to Render-
Action that could easily be put into the view directly in order to call the appropriate
action in the portable area, but this call requires knowledge about the internals of
the area.

 By moving this code into an HTML helper extension method, all code specific to
the portable area can be pushed into the portable area. As a result, the developer
using the area just needs to worry about where the widget should be displayed in the
application and what RSS URL needs to be displayed. Creating this separation of con-
cerns allows us the flexibility to make internal changes to the implementation while
leaving the public-facing interface nice and simple.

22.5 Distributing the RssWidget
We’ve covered how to create the widget and how to use it from an MVC application.
The one missing piece is distributing the RssWidget portable area.

Listing 22.7 Hiding complexity in an HtmlHelper extension method

Figure 22.4 The view that uses the RssWidget portable area

320 CHAPTER 22 Portable areas

 This entire component was written in a way that allows it to be compiled down to
one file. To use this portable area from an MVC application, the application needs the
portable area in its bin directory, so distributing the portable area consists of distribut-
ing the DLL. We recommend distributing portable areas in a zip file, and that package
should include:

■ The assembly
■ A readme file that explains what the portable area is intended to do
■ A sample application that shows how to use the portable area

Developers should also consider including a license, which makes it clear to anyone
using the portable area how it’s intended to be distributed and used.

 We don’t see portable areas being a tool that’s tied to just open source or compo-
nent vendors exclusively. The concept demonstrates the technical solution to easily
sharing functionality. We see this as being interesting to both open source and closed
source developers and companies.

22.6 Interacting with the portable area bus
The samples that we’ve covered so far have solved some pretty specific problems.
These examples have been able to take little input from the hosting application and
provide some useful benefits. In most cases, a portable area will need to programmati-
cally interact with the hosting application, and rather than leaving the method of
interacting up to each portable area developer, the MvcContrib project laid out a sim-
ple but effective mechanism: a message bus. The bus was created to allow synchronous
communication to send and receive messages that the portable area defines.

 As an example, let’s take the login portable area from section 22.2. If this area sim-
ply provided a user interface for logging in but didn’t provide any mechanism for
looking up usernames and passwords, it could send a message on the bus. The hosting
application could then look up a username in its custom user data store, compare the
password, and then return a message, letting the portable area know whether the
user’s credentials are valid.

 Let’s look at how a message is sent from a portable area. Here’s a call to send a
message down the bus:

MvcContrib.Bus.Send(new RssWidgetRenderedMessage{Url = RssUrl});

This example shows a one-way message being sent to an application, say for logging
purposes.

 In order for a message to be received, the host application needs to register a han-
dler, like this:

MvcContrib.Bus.AddMessageHandler(typeof(RssMessageHandler));

Registering a message handler is a one-line call that should only happen once in an
application at application startup. The bus will keep track of the handlers and mes-
sages and make sure the handlers are called when needed.

321Summary

 The code that’s more interesting is the RssMessageHandler class. Each message
handler needs to be implemented in the host application. Handlers should be consid-
ered integration code that stitches together a portable area with the host application.
This means that the handler code should be minimized, and that it relies on applica-
tion service classes rather than on implementing logic inside of a handler class.

 Listing 22.8 demonstrates the boilerplate code required to implement a message
handler for a message using the bus.

using MvcContrib.PortableAreas;
using RssWidgetPortableArea.Controllers;

namespace RssWidgetPortableArea
{
 public class RssMessageHandler :
 MessageHandler<RssWidgetRenderedMessage>
 {
 public override void Handle(
 RssWidgetRenderedMessage message)
 {
 //log the message to the application’s log.
 }
 }
}

Inside the Handle method, you can implement calls to your application services and
data storage.

22.7 Summary
The biggest benefit that a portable area can provide over a standard area is the ability
to distribute the portable area as a single assembly. This chapter showed how to create
a portable area.

 We learned how using this mechanism can allow us to build reusable components
easily. We also saw how easy it is to distribute portable areas and that rich functionality
can be integrated using the portable area bus.

 Portable areas are just one tool that allows developers to build functionality more
quickly, and we’ll show how using object-relational mapping tools like NHibernate can
increase your team’s productivity. The next chapter covers using NHibernate to
streamline your application’s data access.

Listing 22.8 A message handler class

T he future of high-end web development on the Microsoft
platform, ASP.NET MVC 2 provides clear separation of
data, interface, and logic and radically simplifi es tedious

page and event lifecycle management. And since it’s an evolu-
tion of ASP.NET, you can mix MVC and Web Forms in the
same application, building on your existing work.

ASP.NET MVC 2 in Action is a fast-paced tutorial designed to
introduce the MVC model to ASP.NET developers and show
how to apply it eff ectively. Aft er a high-speed ramp up, the
book presents over 25 concise chapters exploring key topics
like validation, routing, and data access. Each topic is illus-
trated with its own example so it’s easy to dip into the book
without reading in sequence. Th is book covers some high-
value, high-end techniques you won’t fi nd anywhere else!

What’s Inside
Dozens of self-contained examples
Real-world use cases
Full-system testing for ASP.NET applications

All authors are Microsoft MVPs and ASPInsiders. Jeffrey
Palermo is cofounder of MvcContrib and CIO of Headspring
Systems. Ben Scheirman, Jimmy Bogard, Eric Hexter (the other
cofounder of MvcContrib), and Matthew Hinze are architects
and .NET community leaders.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/ASP.NETMVC2inAction

$49.99 / Can $62.99 [INCLUDING eBOOK]

ASP.NET MVC 2 IN ACTION
Palermo Scheirman Bogard Hexter Hinze

Forewords by Rod Paddock and Phil Haack Technical Editor Jeremy Skinner

ASP.NET / WEB DEVELOPMENT

“...learn from expert users
 of the ASP.NET MVC
 framework.”
 —From the Foreword by
 Rod Paddock

“An authoritative source on
 ASP.NET MVC 2. Pick up
 this book!”
 —Alessandro Gallo
 Microsoft MVP

“Learn MVC 2 from the
 people who helped
 shape it.
 —Alex Th issen
 Killer-Apps

“Hands-down the best
 MVC resource available!”
 —Andrew Siemer
 Lamps Plus

M A N N I N G

SEE INSERT

