

M A N N I N G

IN ACTION

Mark Fisher
Jonas Partner
Marius Bogoevici
Iwein Fuld

FOREWORD BY Rod Johnson

Dottie
Text Box
SAMPLE CHAPTER

Spring Integration in Action
by Mark Fisher, Jonas Partner,
Marius Bogoevici, Iwein Fuld

Chapter 18

 Copyright 2013 Manning Publications

brief contents

PART 1 BACKGROUND ...1

1 ■ Introduction to Spring Integration 3

2 ■ Enterprise integration fundamentals 24

PART 2 MESSAGING...43

3 ■ Messages and channels 45

4 ■ Message Endpoints 63

5 ■ Getting down to business 80

6 ■ Go beyond sequential processing: routing and filtering 104

7 ■ Splitting and aggregating messages 122

PART 3 INTEGRATING SYSTEMS ..139

8 ■ Handling messages with XML payloads 141

9 ■ Spring Integration and the Java Message Service 155

10 ■ Email-based integration 180

11 ■ Filesystem integration 191

12 ■ Spring Integration and web services 208

13 ■ Chatting and tweeting 219

v

vi BRIEF CONTENTS

PART 4 ADVANCED TOPICS...237

14 ■ Monitoring and management 239

15 ■ Managing scheduling and concurrency 258

16 ■ Batch applications and enterprise integration 276

17 ■ Scaling messaging applications with OSGi 292

18 ■ Testing 304

Testing

This chapter covers
 Test-driven development in the context of messaging

 Hamcrest and Mockito matchers for messages

 Testing asynchronous applications

One of the great accomplishments of our industry over the last 20 years is test-driven
development (TDD). Where many methodologies have proven only to work in theory
or have never proven their need, TDD has flourished. The reason for this is simple:
clients only pay willingly for working software, and there’s only one way to prove
that software works—test it. In essence, TDD makes the developer responsible for
proving that the software works. A green test is the ultimate proof of correctness. If
you don’t have a clue how you’re going to test the application, you don’t have any
business building it.

 There are many ways to test software. One of the oldest ways is to test it manu­
ally. Manual testing is still valid and in wide use because of its simplicity, but experi­
enced developers dread the tedious work of so-called monkey testing. A lot of this
work can be automated. Even better, if you can isolate a part of the program in
such a way that it doesn’t require every test fixture to simulate human interaction,
writing tests becomes a simple development task with excellent return on invest­
ment. SUnit, invented by some of the bright minds that also started the Agile

304

305

movement, was ported to Java in the late 1990s. If you don’t know JUnit yet, firmly pull
the handbrake toward you and make sure you learn JUnit before you read any further.

 After reading the rest of the book and being exposed to test code in the samples as
well, you’ll find little new here in terms of what you can do. The main thrust of this
chapter is about why you should pick a certain option.

 Because the topic of this chapter cuts across the other topics, this chapter is orga­
nized differently. Like the other chapters, it uses code samples from the sample appli­
cation, but it doesn’t focus on a particular use case. It also doesn’t have a dedicated
“Under the hood” section, first because the test framework code is simple enough to
embed with its usage and also because the test code serves as an example of how to
extend JUnit to deal with the messaging domain.

 This chapter builds on top of JUnit tests from the sample to show you the intricate
details of testing asynchronous and concurrent programs that were built using the
pipes-and-filters architecture supported by Spring Integration. As you might’ve expe­
rienced, testing these types of applications is more convoluted than testing classical
applications. When you’re using Spring Integration, you’ll find that it’s often neces­
sary to write tests that assert things about the payload of a message that’s received
from a channel or to write assertions about particular headers on such a message. The
boilerplate code normally needed to do this is in large part taken care of by Spring
Integration’s own test framework. This test framework builds on top of Hamcrest to
offer custom matchers that can be used with assertThat. It also has some conve­
nience classes related to the asynchronous nature of certain Spring Integration com­
ponents, such as QueueChannel.

 In addition to Hamcrest matchers, Spring Integration tests can make use of
Mockito extensions. Mocking services out of tests relating to the message flow through
the system becomes more important as a system becomes more complex or when ser­
vice implementations are developed on a different schedule than the configuration
that makes up the message bus. This chapter discusses different use cases for the test
module. The authors strongly believe that tests shouldn’t hide complexity, so, as men­
tioned, we include no “Under the hood” section. Instead, you’ll find all the details
right with the usage examples.

Assertions with Hamcrest matchers
Since version 4.4, JUnit added Hamcrest support and in later versions also repack­
aged the Hamcrest framework. Hamcrest is a matching framework that allows a user
to compare an object against a predefined matcher with a readable API. Hamcrest
has a more generic use than just JUnit testing, but it’s best known for its use in
JUnit’s assertThat method:
assertThat("Tango", is(not("Foxtrot")));

This makes both the test code and the thrown exceptions more readable.

306	 CHAPTER 18 Testing

Testing behavior with mocks
Mocking is used to allow assertions on behavior instead of state. Frameworks like
EasyMock, JMock, and Mockito help create mocks that allow verification of behavior.
Mockito is probably the simplest mocking framework around. Certain advanced fea­
tures are not supported in Mockito, but that makes it an excellent candidate to use
for illustration. If you’re unfamiliar with mocking, you’re encouraged to read “Mocks
Aren’t Stubs” by Martin Fowler (available at http://mng.bz/mq95).

To make use of all the test goodness, you should depend on spring-integration
-test or org.springframework.integration.test, depending on whether
you’re using OSGi. This JAR is packaged separately from the main Spring Integration
distribution, because we don’t want to force transitive dependencies on Mockito and
Hamcrest on all Spring Integration users:

<dependency>

 <groupId>org.springframework.integration</groupId>

 <artifactId>spring-integration-test</artifactId>

 <version>${spring.integration.version}</version>

 <scope>test</scope>

</dependency>

You’ve just added another Spring Integration JAR on your classpath—now what? Let’s
look at what’s inside that JAR.

18.1	 Matching messages with the
Spring Integration testing framework
What goes in must come out. When a message moves into the system, it must come
out in some form or another, either through being consumed by an outbound chan­
nel adapter, as another message being sent on a subsequent channel, or as an
ErrorMessage being sent to the errorChannel. In a test fixture, you’re usually inter­
ested in the properties of the outgoing messages, but these properties might be hard
to reach:

@Test

public void outputShouldContainDelayedFlight() {

inputChannel.send(testMessage());

Message output = outputChannel.receive();

assertThat(((FlightDelayedEvent) output

.getPayload()).getDelay(),

is(expectedDelay));

}

As you can see here, getting to the delay requires a cast and two method invocations.
Let’s see if we can do better than that. In the next section, you’ll see how to factor the
unwrapping logic out of your test cases.

http://mng.bz/mq95

307 Matching messages with the Spring Integration testing framework

18.1.1 Unwrapping payloads

With Spring Integration’s test module, you can use the matchers that deal with
unwrapping internally. First we look at an example, then we look at the underlying
details. Starting with the previous example, you probably already noticed some pain
points in the test code. The main problem is in the assertion. The is matcher isn’t
particularly well suited to deal with messages.

 Ideally, you’d have a matcher that can be used like this:

assertThat(outputChannel.receive(), hasPayload(expectedDelay));

It’s no coincidence that with the PayloadMatcher you can do exactly this. All you need
to do is add the following import statement:

import static org.springframework.integration.matcher.PayloadMatcher.*;

This gives you two methods related to payloads: hasPayload(T payload) and its over­
loaded cousin accepting Matcher<T>. This way, you can also use other variants of the
theme:

assertThat(outputChannel.receive(), hasPayload(expectedDelay));

assertThat(outputChannel.receive(), hasPayload(same(expectedDelay)));

assertThat(outputChannel.receive(), hasPayload(is(FlightDelay.class)));

This makes your life as a Spring Integration user a lot easier, and the code you need is
almost trivial. Let’s look at the code of the PayloadMatcher in the following listing.

Listing 18.1 The PayloadMatcher

public class PayloadMatcher extends TypeSafeMatcher<Message<?>> {

private final Matcher<?> matcher;

PayloadMatcher(Matcher<?> matcher) {

super(); this.matcher = matcher;

}

public boolean matchesSafely(Message<?> message) {

return matcher.matches(message.getPayload());

}

public void describeTo(Description description) {

description.appendText("a Message with payload: ")

.appendDescriptionOf(matcher);

}

@Factory

public static <T> Matcher<Message<?>> hasPayload(T payload) {

return new PayloadMatcher(IsEqual.equalTo(payload));

}

@Factory

public static <T> Matcher<Message<?>> hasPayload

 ➥(Matcher<T> payloadMatcher) {

return new PayloadMatcher(payloadMatcher);

}

}

308 CHAPTER 18 Testing

expression="payload.subcommands"

Splitter
tripCommands subCommands

0 9

B C

Figure 18.1 The test sends a mes­
sage B on the tripCommands
channel and receives the subcom­
mands that were sent by the split­
ter. Now a test can verify that the
splitter is configured correctly by as­
serting that the payload C of the
messages matches the contents of
the original TripCommand.

As you can see, this listing extends TypeSafeMatcher and implements two factories for
the matcher. If your only concern is to match payloads, you might even opt to add this
class to your project and avoid the extra dependency on the spring-integration­
test JAR. A few more features are bundled in Spring Integration’s test module. For
example, you might require matching on headers too, as you’ll see in the next section.

 Matching messages is particularly useful if the framework is doing work that’s
important for business concerns. In many cases, the message payload is determined by
business logic in Java code, and asserting things about the payload doesn’t make much
sense in an integration test (because most of that would already be covered in a unit
test around the service). In some cases, though, such as when you use the Spring
expression language, things change. Let’s take another example from the sample
application.

 In the sample application, a user can fill out a form creating a new trip, and from
that a CreateTripCommand is sent into the system wrapped in a message. The mes­
sage goes through a splitter that chops the command into subcommands for rental
cars, hotel rooms, and flights. Let’s zoom in on the tests for the splitter. In
figure 18.1 you can see how we modified the fixture to allow you to control incom­
ing and outgoing messages.

 You can now make sure the expression is correct in a controlled test case. All you
need to do is receive three messages from the javaLegQuoteCommands channel and
assert that their payloads meet your expectations.

 The test case remains relatively simple as you can see in the following code:

@Autowired

MessageChannel tripCommands;

@Autowired

PollableChannel javaLegQuoteCommands;

@Test

public void splitterShouldSplitIntoSubcommands() {

CreateTripCommand tripCommand = mock(CreateTripCommand.class);

Message<CreateTripCommand> tripCommandMessage =

MessageBuilder.withPayload(tripCommand).build();

final Command carCommand = mock(Command.class);

final Command flightCommand = mock(Command.class);

final Command hotelCommand = mock(Command.class);

309 Matching messages with the Spring Integration testing framework

given(tripCommand.getSubCommands()).willReturn(

Arrays.asList(carCommand, flightCommand, hotelCommand));

tripCommands.send(tripCommandMessage);

List<Message<? extends Object>> received =

Arrays.asList(javaLegQuoteCommands.receive(100),

javaLegQuoteCommands.receive(100),

javaLegQuoteCommands.receive(100));

assertThat(received.size(), is(3));

}

The trick here is to plug into the existing system without replacing logic that you want
to test. In this case, the javaLegQuoteCommands channel is overridden by a queue
channel, and no other components are receiving from it.

 As you saw in the previous example, it’s simple and useful to write tests that make
assertions on the payload of a message. More often than not, though, the headers of
messages play at least as big a role in the integration of the system. In the next section,
we go into the details of header matching.

18.1.2 Expectations on headers

In many cases, when you’re testing the integrated application, it’s more important to
make assertions about the infrastructural effects on messages than on the business ser­
vices’ effects on messages. Typically, the effects of business services are already covered
by unit tests, so you don’t need to cover all the corner cases in your integration test
again. But headers on messages are typically set by components that are decoupled
from services and can only do their work in an integrated context. For headers set in
this manner, you need to test all the corner cases in an integration test.

 Let’s look at the booking of a flight again. From the UI, a command describing the
desired booking is submitted. This command is consumed by the booking service,
which puts an event on the bus that signals the result of the booking (success or fail­
ure). To guarantee idempotence, the service activator for the booking service is pre­
ceded by a header enricher that stores a reference to the original command in the
headers and a filter that drops any message containing a command that has already
been executed. It’s followed by a service activator that keeps track of all the success­
fully executed commands, for example, in a table that’s also used by the filter.

 This construction contains enough complexity and business value to make it the
target of a test, but testing all these components in isolation doesn’t assert anything
about what Spring Integration will do with the header values. You need to make asser­
tions about headers, which you could do manually:

@Test

public void outputHasOriginalCommandHeader() {

//when

inputChannel.send(testMessage());

Message output = outputChannel.receive();

//verify

assertThat(

(BookFlightCommand) output.getHeaders().get("command")

310 CHAPTER 18 Testing

, is(expectedCommand)

);

}

But similar to matching payloads, matching headers manually causes smelly code.
Again, there are matching facilities in Spring Integration’s test module that can help
you. The implementation is similar to the PayloadMatcher, so you only need to look
at the usage here:

BookFlightCommand testBookFlightCommand =

new BookFlightCommand("SFO", "ORD");

Message<?> testMessage =

MessageBuilder.withPayload(testBookFlightCommand)

 .setCorrelationId("ABC")

 .build();

// send to flow where header-enricher stores payload as 'command'

inputChannel.send(testMessage);

Message<?> reply = outputChannel.receive();

assertThat(reply, hasHeaderKey("command"));

assertThat(reply, hasHeader("command", notNullValue()));

assertThat(reply, hasHeader("command", is(BookFlightCommand.class)));

assertThat(reply, hasHeader("command", testBookFlightCommand));

assertThat(reply, hasCorrelationId("ABC"));

// create a map of headers to be verified

Map<String, Object> map = new HashMap<String, Object>();

map.put("command", testBookFlightCommand);

map.put(MessageHeaders.CORRELATION_ID, "ABC");

assertThat(reply, hasAllHeaders(map));

As you can see, the header matching methods are very convenient and drastically
reduce the amount of noise in test code. The example above demonstrates several of
the matching options: checking for the presence of a header key, verifying that a
header value is not null, validating a header value’s type, and asserting that a header
contains an expected instance. Moreover, all of the predefined header keys can be
matched via explicitly named methods as shown above with the hasCorrelationId
method. On the last line, you see that there’s even a method for testing that all key-
value pairs in a given map are present as headers on the message against which you
match. That’s far more convenient than iterating through the map directly and test­
ing each key and value against the message headers. Not only is the test code more
readable, but the error message produced by a failed assertion will provide much
more detail than if you were testing individual values directly. If we change the corre­
lation ID in the test message, for example, the resulting test failure message would
contain the following:

 Expected: a Message with Headers containing an entry with key

 "correlationId" and value matching "ABC"

 got: <[Payload=CONFIRMATION-ID:123][Headers={correlationId=XYZ,...

This section established a solid foundation in terms of matching messages based on
payloads and headers. Regarding the matchers, it isn’t trivial to deal with the fact that
a message received from a channel doesn’t have the benefit of generics in many cases.

311 Mocking services out of integration tests

If you choose to implement your own matchers, you should expect to invest some of
your time in fine-tuning parameterization.

 Matching the message state is only part of the equation. You should also verify that
service activators, transformers, and channel adapters invoke services correctly. For
this, you can use mocks. When you’re using a mocking framework, things get more
complicated because you must deal with the particulars of the mocking framework as
well. We outline the support for Mockito in the next section.

18.2 Mocking services out of integration tests
When your test subject has dependencies that aren’t relevant for your test, you can use
mocks or stubs to factor their influence out of the test fixture. People often refer to
such refactoring as mocking out. A briefing on mocking is beyond the scope of this
chapter, but we keep a strict definition of a mock as something that can be used to test
behavior (and is usually created by a mocking framework), as opposed to a stub,
which is typically used to test state and is created as an inner class in a test case.

 In this chapter, we show only mocks using Mockito, which serves our need for con­
cise and readable code samples. Other mocking frameworks or stubs can be used in
the same manner; the particulars of Mockito are irrelevant to the point being made.

 Most unit tests require a test harness that simulates the external dependencies (for
example, through mocking or stubbing). But if configuration becomes a major part of
the behavior of your application, as with Spring Integration, it becomes important to
test the configuration itself. This means that it becomes sensible to mock out business
code and let a message flow through the system just to see if it’s handled correctly by the
infrastructure. This would concern routing, filtering, header enrichment, and interac­
tion with other systems. For example, you might want to pick up a file from a certain
directory, set its name as a header value, then unzip the file and unmarshal it to domain
objects. All this can be considered infrastructure—customized infrastructure, if you will.

 Customized infrastructure is usually important to the business without being
tightly related to a particular business use case. For example, properly setting a header
is essential for your system to perform its tasks as designed, but setting this header is
only a small part of the story. The particular header enricher has a place as a unit in
the system, so it should have a designated unit test. If you’re using SpEL, you have
only XML configuration to test.

Let’s say you have a header enricher that sets the original command as a header so
it can be used later in the chain when the payload is already referencing the response:

<header-enricher>

 <header name="originatingCommand" expression="payload"/>

</header-enricher>

Even though the expression is trivially simple, this needs to be tested thoroughly. For
example, a change that postpones the unmarshalling to a BookingCommand could cause
a regression where the originatingCommand header suddenly references a Document
instead.

312 CHAPTER 18 Testing

Service Activator
in out

0 9

C D
B E

Figure 18.2 First record the
behavior of the mock B. Then send a
test message to the input channel
C. After waiting for the message to
come out of the other end D, verify
that the appropriate operations on
the mock have been invoked E.
Variations on this recipe work also in
more complex cases.

In figure 18.2 you can see how to generically set up a test that verifies the framework
behavior. The example chosen is a service activator that invokes a method on a mock.
Arguably, this setup would make sense only as an integration test for the framework,
but it serves as a simple example. As the complexity of your configuration increases, it
becomes increasingly useful to verify the flow of the messages through the system.

 In a test like this, you’re not interested in the behavior and effects of the service
that receives the objects as message payloads. In fact, a failure in that service might dis­
tract you from the purpose of the test. It therefore makes sense to replace the service
with a mock, but because this service is wired as a bean in a Spring context, it isn’t as
easy as injecting a component with mocked collaborators, as you would do in a normal
unit test. But there’s a trick you can use:

<bean id="service"

factory-method="mock"

class="org.mockito.Mockito">

 <constructor-arg value="example.ServiceToMock"/>

</bean>

This code overrides the service bean with a bean that’s a mock created by Mockito.
This bean, @Autowired into your test case, can be used like any other mock with the only
difference being that its lifecycle will be managed by Spring instead of JUnit directly.

 This strategy is particularly useful to avoid calling services that operate on external
systems. Invoking an external system is more problematic to clean up, but it’s also
more complicated to verify the invocation happened correctly. If you use a mock, you
can simply verify that it was touched, and that’s it. This is a good option for channel
adapters too, because it gives you a generic way to deal with them. In section 18.3, we
use this strategy as well to deal with the need to wait for an invocation to happen
before we start asserting the result.

 This section focused only on Mockito, but similar support for EasyMock, JMock,
and RMock can be implemented along the same lines. It’s unlikely that Spring Inte­
gration will natively support all of these frameworks in the near future. After reading
this chapter, you should have some idea of how to implement the test support of your
choosing, and chances are good that someone out there has shared some matcher
you might reuse.

Testing an asynchronous system 313

 The next section dips into the realm of concurrency. We already secretly used
some concurrency features of Spring Integration to our advantage in tests, but now
it’s time to explore the different concurrency strategies. The combination of mocking
and latching is especially powerful, so stay tuned!

18.3 Testing an asynchronous system
One of the trickiest things to solve cleanly in tests is assertions around related actions
performed by multiple threads. A big advantage of staged event-driven architecture
(SEDA; see chapter 2) is that components become passive and react to events rather
than actively changing the world around them. This opens the door to decoupling
cause and effect using a framework rather than having the complexities of asynchro­
nous handoff emerge in business code. At runtime, though, these subtleties are essen­
tial to the proper functioning of the system. Therefore, they must be accounted for in
tests. This section focuses on the concerns around testing an asynchronous system. An
asynchronous system is a system in which multiple threads are involved in performing
a bit of work (such as processing a message).

 If a part of your system is designed to process messages asynchronously, you should
keep an eye on certain things. As you saw in chapter 3, processing messages asynchro­
nously can be done in several different ways. You can use a <queue/> element or a
<dispatcher/> element. Also, when you use a publish-subscribe channel configured
with a task executor, you’re using asynchronous handoff. Finally, there are a few end­
points that can be configured with a TaskExecutor that will process a message in a dif­
ferent thread than the thread pushing the message in.

 To give you a handle on this, remember that whenever an endpoint or channel is
using storage or a task executor, it can cause asynchronous handoff.

 Whenever asynchronous handoff is involved, there are no chronological guarantees
without explicit locking. Luckily, getting explicit locking in place is simple in Spring Inte­
gration, but if you’re not familiar with what happens under the hood, you can be
sucked into hours of fruitless debugging.

18.3.1 Can’t we wait for the message to come out the other end?

You sure can! In most cases, that’s precisely what you should do. We look at a few
exceptions later, but in the vast majority of cases, plugging into the output channel of
your context and just waiting for the output message to arrive is sufficient. How do
you go about it?

 You might be expecting to see a loop with Thread.sleep(..) in there, or if you’re
more familiar with Java’s concurrency support, you might expect a CountDownLatch.
Things are even simpler than that.

 For a standard test case, you just follow this simple recipe: make sure your output
goes to a QueueChannel and receive from this channel before doing any assertions:

@Test

public void shouldInvokeService() {

given(service.invoke(payload))

314 CHAPTER 18 Testing

.willReturn(newPayload);

in.send(testMessage);

Message m = out.receive(100);

verify(service).invoke(payload);

assertNotNull("Output didn't arrive!", m);

assertThat(m, hasPayload(newPayload));

}

As you can see, you receive m from the output channel before you assert that the service
has been invoked. Also, you use a timeout in the receive call to ensure the test doesn’t
run indefinitely. The assertions are done in the order that you expect them to succeed.

 You’re piggybacking on the contract of the receive method here. Because receive
is a blocking call, you don’t have to do any additional waiting to ensure a happens-before
relationship between the service invocation and the verification. However complex
your contexts get, it’s almost always possible to find some output that will arrive only
after the behavior you’re trying to verify has been executed.

 The timeout is also important. When designing a test case, you must understand
that the main function of the test is to fail when the software doesn’t behave correctly.
This main function is best implemented when the failure clearly points out what part
of the behavior was incorrect. If the receive call had no timeout, and an exception
were thrown from the service, the test could run indefinitely. The test wouldn’t fail in
this case of malfunctioning in the software under test, so the test would be flawed. You
could put a general timeout on the test to prevent it from running indefinitely. The
timeout would fix the flaw, but the failure message would have no relation to the
cause of the failure. The test would be correct but not very useful.

Finally, the assertions should be in the right order. If the service isn’t invoked,
you’ll most likely get no output message. In this case, mixing the order of the asser­
tions will make the test fail with an “Output didn’t arrive” message, or worse, a Null-
PointerException. Thinking carefully about the order of the assertions can prevent
this problem.

 Before we look at exceptional cases in which waiting for output isn’t an option or
isn’t sufficient to prove that the system functions correctly, we examine the need for
proper test cases in asynchronous scenarios a bit further.

18.3.2 Avoiding the wicked ways of debugging

Before you get the wrong idea, let’s make it clear that debugging is a skill that all
excellent developers have and all novice developers should strive to learn. It’s also the
mother of all time wasters.

 To tweak an old saying: Debug a program and you fix it for a day; improve the
tests and the logging of a program, and you fix it for its lifetime. Before you dive into
hours of debugging, you should ask yourself, what is this test not telling me that I
need to know? The answer is often right in front of you, hard to reach with a debug­
ger, easy to log. Once you have a test suite and some decent logging around the prob­
lem, another developer can continue where you left off. Better yet, in the

315 Testing an asynchronous system

unthinkable scenario that the problem happens in production, you can ask the sys­
tem administrator for the log file.

 The reason we bring this up is because debugging is much harder in a concurrent
scenario than in a single-threaded scenario. Spring Integration is inherently a concur­
rent framework, and if you have a concurrency-related bug lying dormant in your
code, it might be awakened by wiring your service in a Spring Integration context. In
single-threaded scenarios, debugging is great. It helps you understand the code more
quickly than just reading through it would. In many cases, you don’t want to fix all the
logging in your program; you just want to see what’s going on. That’s fine, usually. But
if multiple threads are entering the problem area of your code, debugging loses all its
power. Suddenly, the debugger changes the timing that led to a race condition and
often completely hides the bug from your sight. You could say that concurrency is
debugger kryptonite.

 Luckily, logging and test cases are much more reliable even when dealing with con­
current access. That’s not to say that finding and analyzing a concurrency issue is easy.
It’s merely possible, and that’s just about good enough. So heed this advice: especially
when facing a concurrency bug, try to avoid the debugger and fix the problem with
tests and logging. Now that you’ve learned to prefer testing and logging over the
debugger in concurrent scenarios, you’re ready to learn how to wait for messages to
terminate inside an endpoint using latches and mocks.

18.3.3 Injecting latches into endpoints

Sometimes an endpoint has no output. As you read in chapter 4, these types of end­
points are called channel adapters. A channel adapter takes the payload of a message
and feeds it to a service. This service may be a bean in your context, but it might also
be a database, a web service, the filesystem, or standard output.

 The tricky part is to wait for the invocation of this service before you start making
assertions about the state of the system. In this section, we show you how you can
inject latches into endpoints that have been mocked with Mockito. Similar strategies
exist for other mocking frameworks, and the problem can also be solved with channel
interceptors or AOP. Going over all these options is beyond the scope of this book, but
this section should be enough to spark your imagination.

 It’s time to look back to our example. In figure 18.2, we showed how to mock out
services from tests. That example required no latching inside the mock because you
could just wait for the message to come out of the output channel, as discussed in the
previous section. Let’s explore an endpoint that’s different in that respect.

When notifications are sent to the user, they’re sent over an asynchronous com­
munication channel. You specifically don’t want to wait for the external system to
confirm something was sent synchronously. That would block too many threads.
Looking at the email outbound channel adapter, for instance, you need to confirm
that a message reaches this adapter, but you don’t need to test the sending of the
email in this test. There should be another test for sending, but that’s in the scope of
infrastructure testing.

316 CHAPTER 18 Testing

 Let’s say you want to test the following snippet:

<int:publish-subscribe-channel id="tripNotifications"

datatype="siia.booking.domain.notifications.TripNotification"

task-executor="taskScheduler"/>

<int:outbound-channel-adapter id="smsNotifier"

channel="tripNotifications" ref="smsNotifierBean" method="notify"/>

You design your test to verify that a notification is passed into the smsNotifierBean’s
notify method whenever a message containing the same notification is sent to the
tripNotifications channel.

 First you must make sure you replace the smsNotifierBean with a mock. You can
use the same trick shown earlier:

<bean id="smsNotifierBean" class="org.mockito.Mockito"

factory-method="mock">

 <constructor-arg

 value="siia.booking.domain.notifications.SmsNotifiable"/>

</bean>

Once that job is done, you can focus on the test itself.
The test sends a message containing the test notification to the channel. It then

verifies that the method was invoked, but a simple verify call doesn’t work here
because the channel is an asynchronous publish-subscribe channel. You have to wait
for the message to arrive before you can verify. This can be done using a latch injected
into the mock:

private Answer countsDownLatch(final CountDownLatch notifierInvoked) {

return new Answer() {

@Override

public Object answer(InvocationOnMock invocationOnMock)

throws Throwable {

notifierInvoked.countDown();

return null;

}

};

}

With the answer returned by this method, you can tell Mockito to count down the
latch passed in whenever a certain method is invoked. Let’s go over the usage.

 The JUnit test becomes

@Autowired

MessageChannel tripNotifications;

@Autowired

SmsNotifiable smsNotifier;

@Test

public void notificationShouldArriveAtSmsAdapter() throws Exception {

TripNotification notification = mock(TripNotification.class);

Message tripNotificationMessage =

MessageBuilder.withPayload(notification)

.build();

317 Testing an asynchronous system

CountDownLatch notifierInvoked = new CountDownLatch(1);

doAnswer(countsDownLatch(notifierInvoked))

.when(smsNotifier).notify(notification);

tripNotifications.send(tripNotificationMessage);

notifierInvoked.await(100, MILLISECONDS);

verify(smsNotifier).notify(notification);

}

Because the notify method returns void, you use Mockito’s doAnswer method to
record the behavior. You’re essentially telling Mockito, “When the notify method is
invoked on smsNotifier, react by counting down the notifierInvoked latch.” Then
it’s a matter of awaiting the latch so you can execute assertions under the safe assump­
tion that they’ll happen after the message arrives at the endpoint.

 Before we round up, we should give you some guidelines for making your applica­
tions easier to test. This isn’t an easy thing, but it’s a skill worth honing.

18.3.4 Structuring the configuration to facilitate testing

We can’t overemphasize that changing the application to improve testability is a good
thing. In Spring Integration applications, you usually see good decoupled code that’s
easy to test. But what about the configuration? With all that XML containing all those
little SpEL expressions and intricate dependencies, you could easily get lost.

 It’s said that programming in XML is a bad thing (which it is). That’s why Spring
Integration focuses on XML as a domain-specific language for the configuration of
enterprise integration patterns. It doesn’t include logical constructs such as <if> or
<when> in that domain-specific language. Nevertheless, it is arguably possible to cross
the fuzzy line into XML programming if the configuration becomes too convoluted.
This section offers some pointers to help you spot problems in this area and combat
them with your test goggles on.

AVOID LOGIC IN XML

You can do complex things with Spring and Spring Integration, particularly using
SpEL for elaborate routing. Don’t! It might seem powerful, even simple at first, but
testing logic that’s embedded in XML is tough to the point of headache.

 Instead, design your flows in linear steps as much as you can. If you want to use SpEL,
keep it simple; delegate to Java code for the complex decisions. Also, it’s fine to invoke
methods on other objects from Java directly; not every fine-grained step needs to be a
service activator.

SPLIT THE MAIN FLOW INTO SUBFLOWS

As your application gets larger, the configuration files grow too. At some point, it
becomes hard to find that part of the configuration that you need to change. Take out
the detailed flows and integrate them using import statements.

 If you’re used to Spring, you might’ve put configuration related to data access in a
separate file, or you might’ve created several servlet contexts using the same root con­
text. With a messaging application, splitting in layers isn’t a good fit. It’s better to
divide the flow into different phases and give each phase its own context.

318 CHAPTER 18 Testing

 One way to make the subcomponents more testable is to define input and output
channels in each subcontext and use bridges to glue them together in the main con­
text. This way, a test that focuses on a particular subcontext in isolation can easily use
the same concept to wire the input and output to channels that are specific to that test.

 In the next section, we take a brief glimpse into the realm of threading.

18.3.5 How do I prove my code thread safe?

The short answer is that you don’t. You can prove the correctness of your code under
concurrent access, but it’s usually unfeasible to test all possible concurrent scenarios
and make sure they meet the specifications. But there are a few things you can do to
help ensure your code is thread safe.

 We don’t go into great detail here, because concurrency is already discussed in
detail in chapter 15. Just repeat to yourself: Pass immutable objects between stateless services.

 Where testing is concerned, you can do your best to make sure concurrency bugs
have a chance to surface in your test. For one, you should use at least the same number
of threads in some of your integration tests as would be used in your production appli­
cation. This ensures that the code is at least run concurrently in your continuous inte­
gration build. Some failures will still be unlikely to occur in a test, so this is by no
means foolproof. Tests written this way might cause intermittent failures, which in
many cases means you have a concurrency bug in your code.

 Concurrency bugs are best tackled by logging and testing, but they can be a huge
pain to reproduce. Some frameworks, such as ConcuTest, are helpful in provoking con­
currency bugs by injecting yields and waits into your bytecode. If you learn these tools,
you’ll have a better chance of resolving concurrency bugs. In the future, Spring Inte­
gration’s testing module may very well expand to include a full concurrency test suite.

18.4 Summary
In this chapter, we formalized our understanding of testing Spring Integration applica­
tions. First, we discussed the test support in Spring Integration’s own test framework.
Then, we detailed the strategies and rationale for mocking out external dependencies
and business services from message flow tests. Finally, we discussed testing asynchro­
nous applications on a broader level and showed you how to enforce chronological
order in tests with asynchronous channels or mocks and latches. We also discussed
thread safety.

 Within the scope of the test framework, you saw different ways of matching mes­
sages, either by their headers or by their payloads. Matching payloads is helpful when
you want to avoid unwrapping messages and casting their payloads to the expected
types. We discussed support for unwrapping headers, including an example dealing
with the whole map of headers.

 We made a case for mocking business services out of tests. Because a Spring Inte­
gration configuration defines a message flow that’s dynamically used at runtime, it

Summary 319

becomes important to test this configuration in relative isolation too. Mocking away
external dependencies is an excellent way to achieve this goal.

 Finally, we went into the details of testing a full asynchronous message flow. We
explained how to use a blocking receive call to ensure chronological order in tests.
Also we explained that when this doesn’t work, you can use latches within mocks to
enforce happens-before relationships.

 This is the last chapter, but that doesn’t mean it’s least important. A proper under­
standing of how to test your application is both the end and the beginning of crafts­
manship in software engineering.

JAVA/SPRING

Spring Integration IN ACTION
Fisher ● Partner ● Bogoevici ● Fuld

S
pring Integration extends the Spring Framework to support
the patterns described in Gregor Hohpe and Bobby Woolf ’s
Enterprise Integration Patterns. Like the Spring Framework

itself, it focuses on developer productivity, making it easier to
build, test, and maintain enterprise integration solutions.

Spring Integration in Action is an introduction and guide to en­
terprise integration and messaging using the Spring Integration
framework. The book starts off by reviewing core messaging pat­
terns, such as those used in transformation and routing. It then
drills down into real-world enterprise integration scenarios using
JMS, web services, filesystems, email, and more. You’ll fi nd an
emphasis on testing, along with practical coverage of topics like
concurrency, scheduling, system management, and monitoring.

What’s Inside
● Realistic examples
● Expert advice from Spring Integration creators
● Detailed coverage of Spring Integration 2 features

This book is accessible to developers who know Java. Experience
with Spring and EIP is helpful but not assumed.

Mark Fisher is the Spring Integration founder and project lead.
Jonas Partner, Marius Bogoevici, and Iwein Fuld have all been
project committers and are recognized experts on Spring
and Spring Integration.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/SpringIntegrationinAction

SEE INSERT

“A wealth of good advice

based on experience.”
—From the Foreword by

Rod Johnson

Founder of the Spring Framework

“Informative and

well-written … makes

 Spring Integration fun!”
—John Guthrie, SAP

“Bridges the gap between

Spring and Enterprise

Integration workspaces.
—Rick Wagner, Red Hat”

“Comprehensive coverage

of features and capabilities.”
—Doug Warren, Java Web Services

“Spring Integration from

its creators.”
—Arnaud Cogoluègnes, coauthor

of Spring Batch in Action and
Spring Dynamic Modules in Action

M A N N I N G $49.99 / Can $52.99 [INCLUDING eBOOK]

	Sample.pdf
	Fisher-SIinA-front
	Copyright
	BriefTOC

