
M A N N I N G

Jim Jackson II
Ian Gilman

Single page web apps, JavaScript, and semantic markup

FOREWORD BY
Scott Hanselman

S A M P L E C H A P T E R

HTML5 for .NET Developers

by Jim Jackson II
Ian Gilman

 Chapter 3

 Copyright 2013 Manning Publications

vii

brief contents
1 ■ HTML5 and .NET 1

2 ■ A markup primer: classic HTML, semantic HTML, and CSS 33

3 ■ Audio and video controls 66

4 ■ Canvas 90

5 ■ The History API: Changing the game for MVC sites 118

6 ■ Geolocation and web mapping 147

7 ■ Web workers and drag and drop 185

8 ■ Websockets 214

9 ■ Local storage and state management 248

10 ■ Offline web applications 273

66

Audio and video controls

It wasn’t so long ago that the only way to play video content was to embed a Quick-
Time, Flash, Silverlight, or other custom-installed program inside your HTML page
with <object> tags. These elements had very little interactivity with the surround-
ing page and were, for all intents, islands of media on the page. Audio content was
only a little better and, in some cases, worse. When was the last time you visited a
page that played a song in the background? From the user’s perspective, it’s the
height of annoyance that you can’t do anything with that page other than turn
down your computer’s volume or navigate away. This chapter will show you how to
fix all those problems with HTML5.

 HTML5 brings two new tags to the table: <audio> and <video>. Both of these
tags implement the same API interface, so while the internal implementations are

This chapter covers
■ Using audio and video controls with no code
■ Integrating JavaScript controls with audio

and video
■ Simple binding techniques for controlling audio

and video
■ Understanding audio and video formats

67Audio and video controls

different, the external interfaces are identical. Furthermore, neither tag requires
any additional supporting downloads to work in supported browsers. You just add
the tag, supply the source content, and your users can see and hear your media. It
really is that simple!

 You’ll also be able to go even farther, as you’ll see in this chapter’s sample applica-
tion. This example starts with basic operational features that help you understand how
the <audio> and <video> tags and their JavaScript APIs work, and evolves over the
course of the chapter. By the end, it will be able to do the following:

■ Download and play audio and video content
■ Use HTML objects to control content playback

Browser support

Chapter 3 map
Audio and video tags allow the browser to load and play both audio and video content
without the need for plugin frameworks. Each browser vendor controls which media
formats it will support, and the page developer can specify multiple levels of fallback
content to play if a particular format isn’t supported.

Identifying <audio> and <video> tags page 72

Using the controls attribute page 72

Using the autoplay attribute page 72

Repeating content with the loop attribute page 72

Queueing content with the preload attribute page 72

Using <video> and <audio> tags without code page 74

Learning to use HTMLMediaElement in JavaScript page 76

Playing content with JavaScript page 79

Pausing content page 79

Handling volume changes page 80

Look for this icon in this chapter and throughout the book to quickly identify
discussions of key HTML5 functionality.

Core API

68 CHAPTER 3 Audio and video controls

■ Play and pause content using JavaScript
■ Change volume and mute media content

When the example is complete, you’ll have a working knowledge of the new HTML5
audio and video controls and will be able to start building such content into any exist-
ing web application.

 As you work through the project, you’ll learn how to do several things:

■ Use the audio and video tags without JavaScript, as HTML elements
■ Control audio and video playback with JavaScript
■ Update media types for open source content

Before we get to those topics, let’s look at what you’ll be building and walk through
the steps involved in getting the application started.

3.1 Building a site to play audio and video
Figure 3.1 shows exactly what the site should look like in any compatible browser.

Figure 3.1 The sample site
will play audio and video
content without plugins
or extra downloads.

69Building a site to play audio and video

To get started building the application skeleton, perform the following steps:

1 Open Visual Studio and create a new ASP.NET MVC application.
2 Select Internet Application, Razor View Engine, and HTML5 semantic markup.
3 Leave the Create Unit Test check box unchecked.
4 Name the application AudioVideo.
5 When Visual Studio starts, navigate to Tools > Library Package Manager > Man-

age NuGet Packages for Solution.
6 Select the Installed Packages tab on the left, and then click Manage on the fol-

lowing packages:
– Entity Framework
– jQuery UI
– jQuery Validation

7 When the pop-up window appears, deselect the project and click OK to remove
the package from your solution.

8 Select the Updates tab on the left and click the Update button for each package
remaining in the center of the window.

9 Open the Razor View file located at \Views\Shared_Layout.cshtml in the solu-
tion, and update the script tags at the top to match the newly updated scripts in
your solution’s Scripts folder.

10 In the menu area, add a new list item:

@Html.ActionLink("AV Players", "Players", "Home")

This creates a link that points to /Home/Players when the application runs. It
won’t work yet because that endpoint and its associated view don’t exist. That’s
the next setup step.

11 Navigate to the Controllers folder and open the Home Controller. Add the fol-
lowing snippet of code to create the new endpoint:

public ActionResult Players()
{
 return View();
}

12 Right-click on the word View, and from the pop-up menu select Add View. This will
create a new file called Players.cshtml in the \Views\Home folder of your solution.

13 If you have not done so already, get the audio and video content from the
GitHub account and add these four files to your solution’s Content folder:
– gwt.ogg
– gwt.mp3
– lego.ogv
– lego.mp4
The .ogg and .ogv files are open source audio and video formats used for
high quality digital media. The format is maintained by the Xiph.org Foundation

70 CHAPTER 3 Audio and video controls

(http://www.xiph.org/). The .mp3 and .mp4 formats are proprietary but
very common.

Table 3.1 shows the current browser compatibility levels for the .ogg and .ogv formats.

Now that the application skeleton is in place, we’ll look next at the <audio> and <video>
tags and their basic similarities, and at three different ways that you can use the tags in
your projects. You’ll use one of those ways to build this chapter’s sample application.

Finding the audio/video content for the sample application
You can download the audio and video content we use in this chapter from https://
github.com/axshon/HTML-5-Ellipse-Tours/tree/master/demos/av/Media.

This GitHub project was originally designed as a monolithic sample application for
this book, but we decided that the application-per-chapter paradigm would be more
suited to introducing and explaining each HTML5 API in isolation. All the code in this
book and some additional content are available in the GitHub repository.

Converting audio and video file formats
There are lots of options for converting your audio and video to Ogg or WebM, but
right now the easiest is the free Miro Video Converter (http://www.mirovideocon-
verter.com/). Once you’ve installed it, just drag your audio or video file into it and pick
a format.

For Ogg video (.ogv), select Theora, an open video format (theora.org). The Theora
setting also converts audio files into Ogg audio, but you’ll want to change the result-
ing file extension to .ogg.

Table 3.1 Open source media format compatibility (.ogg and .ogv)

Browser Starting version support

Chrome 4

Internet Explorer Not supported

Firefox 3.5

Opera (desktop) 10.5

Safari (all versions) Not supported

Opera Mobile 11

Android (all versions) Not supported

Windows Mobile Not supported

71Audio and video tags

3.2 Audio and video tags
<audio> and <video> tags in HTML5 are similar in that they both implement the
HTMLMediaElement interface. This interface describes all the major functions, proper-
ties, and events necessary to play and control multimedia content on the web. You’ll
see a few of these events and properties in action later when you build out the
JavaScript side of the player application, but you can get the full story on the W3C site
at http://dev.w3.org/html5/spec/media-elements.html#htmlmediaelement.

 The simplest tag that you can implement for rendering audio and video content in
HTML5 plays whatever audio content is in the audio file, as long as it exists in the rela-
tive URL specified in the src attribute. It looks like this:

<audio src="myaudio.mp3"></audio>

The tags become much more powerful when you implement the <source> child tags.
These let you provide multiple formats for your content so it’s more likely to be play-
able across different browser platforms. Here’s an example:

<audio>
 <source src="myaudio.ogg" type="audio/ogg" >
 <source src="myaudio.mp3" type="audio/mp3" >
</audio>

The <source> tag is the same for both the <audio> and <video> tags. You just need
to add as many elements as you have available for the specific piece you want the user to
see or hear, and the browser will start from the top and work its way down until it finds
a format that it supports. No checking is done to detect bandwidth, video size, or any
other information about the source media file. If the format is supported, the browser
will use it. End of story.

 There is also no concept of “more supported” when it comes to playing source
files. A particular format either is or isn’t supported. As you might infer from table 3.1,
there is no format for either audio or video that’s universally supported—not even
mp3—so for now you must put on your format-converter hat and translate whatever
you have into formats supported by your target user’s browser.

NOTE We decided not to give the full story around which formats are sup-
ported by which browsers because the format “wars” are still ongoing, with no
clear winner so far. What is supported on which browser will likely continue
to change rapidly. Expect to have at least two or three formats for each media
file you present to your users.

ASSIGNING HTML ATTRIBUTES TO TAGS

Using an audio or video tag as in the previous snippets isn’t enough to play your media
content, because you haven’t yet assigned the appropriate HTML attributes to the tags to
run the audio content. Audio and video tags can operate in one of three ways:

■ Strictly as HTML elements
■ Strictly as JavaScript controls
■ As a hybrid using both HTML attributes and JavaScript to control playback

72 CHAPTER 3 Audio and video controls

In the next few pages, we’ll describe the ins and outs of presenting media content
using the first method, and then you’ll continue building the sample application using
the second method.

 Because the third (hybrid) method just combines the first two, everything you
learn as we proceed should equip you to build out using that method as well. A typical
situation where you might use the hybrid method is on a video site that automatically
starts playing as soon as content is ready but that allows a user to stop and restart using
JavaScript code.

3.2.1 Using audio and video tags without JavaScript

Let’s start with the first method: using the tags strictly as HTML elements. You might
want to do this when you’re building a static site displaying a tutorial or a web page
that shows an introductory audio or video clip for a site.

 To do this, you can just add the controls attribute to an <audio> tag and refresh
the page:

<audio id="audio" controls>
 <source src="myaudio.ogg" type="audio/ogg" >
 <source src="myaudio.mp3" type="audio/mp3" >
</audio>

You should see one of the various audio player formats built into whatever browser
you run. The selection of screen shots in figure 3.2 may change over time as browsers
are upgraded, but we expect the changes to be minimal.

 The other common <audio> attributes are listed here; values for each are in the
discussion that follows:

<audio id="audio"
 controls
 autoplay
 loop
 preload="metadata or none or auto">

Let’s look at these attributes in a little more detail.

Core API

Figure 3.2 The default
audio players for browsers
vary in height and width.
If layout is a concern,
consider creating your
own player interface.
Section 3.3 shows you
how to do that.

73Audio and video tags

THE CONTROLS ATTRIBUTE

The controls attribute just needs to be present and doesn’t need a value assigned.
You may also see it listed as controls="controls", which is the same thing.

 The attribute’s function, as you saw earlier, is to show the user audio controls. The ren-
dering and function of these are entirely dependent upon what the browser vendor wants
to give you. They can be always visible or only visible on hover, depending upon the
browser, but this facet of their operation isn’t something you as the developer can affect.

THE AUTOPLAY ATTRIBUTE

The autoplay attribute doesn’t need a value set and will start playing the audio content
as soon as the element is loaded. This harkens back to the early days of audio content on
the internet, when sites would play background music for you while you browsed the
site. This is practically never a good idea because it annoys users and uses bandwidth
unnecessarily. It does have its place in site design and content presentation, but
remember: less is more.

THE LOOP ATTRIBUTE

The loop attribute will start the audio again after it has completed playing. This can
be handy in game development for soundtracks, but again, it can easily be overused.
autoplay will continue to play the audio track until the user unloads the page or
pauses it. If controls aren’t displayed on a track of audio content, and you have loop
turned on, you can guarantee that visitors will leave your site as quickly as they can.
loop is also an attribute that doesn’t need a value set.

THE PRELOAD ATTRIBUTE

The preload attribute has three possible values: metadata, auto, and none:

■ metadata—Requests that the player download enough information about the
audio track to show the total length of the track and possibly other information,
depending upon the browser vendor’s implementation

■ none—Tells the browser to download nothing until the user presses the play
button

■ auto—Attempts to start loading the track as soon as the element is rendered on
the page

Keep in mind that these preload settings are suggestions for the browser. The browser
may choose, for whatever reason, to ignore these settings when downloading audio or
video content for the element.

 Now that you have a grasp of how a generic HTML5 media tag works, let’s spend a
moment focusing on the <audio> tag.

3.2.2 Using the audio tag as an HTML element

If you worked through the markup in the Players.cshtml page you created in section 3.1,
you should have seen the players appear on the page when you ran the application in
a browser and, depending upon the attributes you assigned, it may have started play-
ing or been queued up ready to be started by a user.

Core API

Core API

Core API

Core API

74 CHAPTER 3 Audio and video controls

The code in the following snippet is a little more detailed and uses the ASP.NET MVC
Url.Content helper method to build URLs that are relative without parsing HTTP
request address strings. Note the order of the <source> elements. As mentioned ear-
lier, the browser will always try to play these by starting at the top and working down
until it finds a compatible format. It stops there:

<audio id="audio">

 <source src="@Url.Content("~/Content/gwt.ogg")"
 type="audio/ogg" >

 <source src="@Url.Content("~/Content/gwt.mp3")"
 type="audio/mp3" >
</audio>

Be careful when using the browser default players for <audio> content, because they
can differ greatly in the amount of space they take up on the page. Take another look
at the rendered audio players in figure 3.3 and notice how the Safari player is much
narrower and the Internet Explorer player is much wider than Chrome. Any of these
could change your page layout if not handled properly.

3.2.3 Using the video tag as an HTML element

The <video> tag in HTML5 is similar to <audio> in most of its implementation
respects. In fact, anything you can control on an audio track, you can also control on a

Forcing audio and video elements to show their controls
There may be times when you land on a page with audio or video controls that has
controls turned off, and you would like to see them or you want to test your own
pages at runtime. If these pages are using the HTML5 tags and jQuery, the easiest
way to find the elements and turn controls on is to use the attr function:

$("#audio").attr("controls", "controls");
$("#video").attr("controls", "controls");

This code assumes an audio and video element with IDs of audio and video respec-
tively, and it will immediately cause the controls feature of these elements to be
turned on.

Basic audio tag will give code
a way to play sounds but
won’t, by default, display.

Source elements inside media tags
will attempt to play in order.

If first source tag is unsupported by
current browser, next is tried, and so on.

Figure 3.3 The
differences between
default rendered audio
players in various
browsers. The Chrome
version is the same
as the size in most other
browsers; Safari and
IE fall outside the
normal boundaries.

Core API

75Audio and video tags

video track. Features, events, and properties are all the same, except that video con-
tains a few more that are inappropriate for audio. With the <video> tag, you can
assign some additional properties to set the size of the video as well as the image that
appears before the video starts to play.

 A basic <video> tag, like the one in the following snippet, will have source tags
nested inside it and use the same format fallback mechanism described earlier. The
difference between <audio> and <video> when rendered is that video will always dis-
play unless told not to either in code or by some CSS rule. <audio>, on the other hand,
won’t display if controls isn’t turned on:

<video id="video">
 <source src="@Url.Content("~/Content/lego.ogv")" type="video/ogg" >
 <source src="@Url.Content("~/Content/lego.mp4")" type="video/mp4" >
</video>

This code will display the opening frame of the content video but no controls to con-
trol the play. One exception to this rule is that some browsers, notably Internet
Explorer 9 and above, will allow you to right-click on the video and get a context
menu with player controls. These can’t be turned on or off, but it’s possible in code to
override the right-click.

 Just like the <audio> tag, you can add the controls, autoplay, loop, and metadata
attributes, and their function is identical. The additional features only available with
video are the height and width attributes, which will constrain the video to a specific
rectangle, and the poster attribute. poster is a URL value that points to a valid image
file. The image will be scaled to fit inside the assigned height and width, but the
aspect ratio isn’t guaranteed to be retained, unlike video content, which will shrink
until the correct aspect fits inside the assigned height and width rectangle:

<video id="video"
 controls
 autoplay
 loop
 preload="metadata or none or auto"
 poster="@Url.Content("~/Content/VideoPoster.png")">

Figure 3.4 shows the default video player controls implemented by the major browsers
at the time of this writing. The controls appear inside the boundaries of the video—
some push the video content up, some appear over it with a slight transparency effect,
but all are rendered at the bottom of the player’s rendered area.

 Note that the width of the controls will be the same as the width of the player, but
the browser vendor can choose any height for the rendered control surfaces. While
this is fine for tangential content that isn’t necessarily the core purpose of a particular
page, the fact is that if you’re building the page specifically to present audio or video
content, the default players simply won’t do. They’re visually inconsistent and offer no
customization capabilities. Enter the JavaScript APIs.

76 CHAPTER 3 Audio and video controls

3.3 Controlling audio and video playback with JavaScript

Using the JavaScript API available for <audio> and <video> elements, you can control
nearly every feature of playback in the client browser. You can also wire up events and
properties to any other HTML controls so the presentation is entirely up to the site
designer. As mentioned earlier, you can also use the JavaScript APIs to control features
of playback while leaving the existing browser-provided controls in place.

 Here are some things you can do with these two media elements in code:

■ Assign source values
■ Monitor the state of play
■ Get the total duration and current time of the track being played
■ Detect and modify the rate of playback
■ Assign attributes for loop, autoplay, and controls
■ Detect when a track has finished playing
■ Turn the volume up or down
■ Mute or unmute the volume

As you can see, there are a lot of control features available to you when playing audio
and video content, and you’re going to use the most common ones in your sample
application, such as play/pause, mute/unmute, and volume control. In this section,
you’ll learn how to use the audio and video APIs as you do the following:

■ Build a custom audio and video control surface
■ Build the main.js library structure
■ Create a JavaScript media player object
■ Attach JavaScript to audio and video event models to complete the user’s

media experience

We’ll start with building custom controls.

3.3.1 Building custom controls for audio and video

Before you begin, if you’ve been following along in your solution and fiddling with
<audio> and <video> tag attributes, clear them all out from the Players.cshtml page.

Figure 3.4 The current
default video player
controls will appear inside
the defined height and
width properties of the
video element.

Core API

77Controlling audio and video playback with JavaScript

You’ll also need to add id properties to the tags so that you can easily identify them in
code. They should look like this:

<audio id="audio">
 <source src="@Url.Content("~/Content/gwt.ogg")" type="audio/ogg" >
 <source src="@Url.Content("~/Content/gwt.mp3")" type="audio/mp3" >
</audio>
<video id="video">
 <source src="@Url.Content("~/Content/lego.ogv")" type="video/ogg" >
 <source src="@Url.Content("~/Content/lego.mp4")" type="video/mp4" >
</video>

Next, below the video element add a few standard <button>, <div>, and tags to
bind to the control code you’ll write shortly. The following listing shows the layout of
this markup. These will act as the controlling user interface elements in the final page.

<div id="video-controls">
 Video:
 <button class="play">play</button>

</div>
<div id="audio-controls">
 Audio:
 <button class="play">play</button>

 <div class="secondary-controls">
 Volume:
 <button id="volume-up">+</button>
 <button id="volume-down">-</button>
 <button id="mute">mute</button>

 </div>
</div>

Listing 3.1 Controls for audio and video elements

Where are all the HTML5 semantic tags?
You may have noticed that in this chapter we’re using regular <div> and tags
to organize the structure of our page. We do this in various places throughout the
book for a number of reasons.

First, the audio/video content in this chapter is contained in a single page, otherwise
known as a single page app (SPA). One of the primary functions of semantic markup is
to allow a web crawler, search engine, or accessibility tool to “read” the content of a
page, but SPAs generally load content dynamically using JavaScript based on user inter-
action or other conditions. A web crawler won’t execute JavaScript, so it won’t be able to
load and parse the dynamic content. This makes the semantic tags somewhat useless.

Second, we want to make it abundantly clear throughout the book that while you can
use semantic HTML tags right away in all of your web pages and HTML applications,
it’s optional. The previous (classic HTML) tags are still valid and common throughout
the web.

Play/pause button
for video content

Note to show
current time
of videoPlay/pause button

for audio content

Note to show current
time of audio

Volume and mute
controls for audio

Display for current
audio volume

78 CHAPTER 3 Audio and video controls

3.3.2 Building the main.js library structure

With the controls in place, you can start building the controlling code structures.
 Create a new JavaScript library file called main.js in the Scripts folder of your solu-

tion and open it. You’ll have only three functions in your main.js library, as you can
see in the next listing. These will initialize the page, initialize an audio or video
object, and update the volume value on the screen.

$(document).ready(function () {
 Main.init();
});

window.Main = {

 init: function () {
 },

 initMedia: function (name) {
 },

 showVolume: function () {
 }

};

The basic structure here initializes the Main object and creates custom objects via
initMedia to control playback of either audio or video content. Inside the init function,
you’ll test for browser compatibility using Modernizr and then execute the function to
create your objects. That code is shown in the following listing.

var self = this;

if (!Modernizr.audio) {
 alert("Audio tag not supported.");
 return;
}

if (!Modernizr.video) {
 alert("Video tag not supported.");
}

this.video = this.initMedia("video");
this.audio = this.initMedia("audio");

Modernizr checks for audio and video compatibility. Then this code adds two prop-
erties to the Main object created earlier using window.Main = {...}. The properties
(video and audio) are created with the initMedia function. Read on to see how
and why.

Listing 3.2 The basic JavaScript structure of the main.js library

Listing 3.3 init function checks and initializes video and audio elements

Checks for features,
creates two objects,
and binds volume
controls to HTML
controls

Takes either “audio”
or “video” as
parameter and builds
player object that’s
bound to appropriate
media element and a
few of element’s event
handlers

Updates volume
display on screen

Checks for audio
and video support

Creates audio and video objects
and attaches them to Main object

79Controlling audio and video playback with JavaScript

3.3.3 Creating a JavaScript media player object

This initMedia function is a great example of how you can reduce the volume of code
you write and improve maintainability. In this function, you’ll find various elements in
the interface, the most important of which is either the rendered <audio> or <video>
element. You then treat that element not as a piece of audio or video content, but as a
piece of generic content. You can do this because both tags implement the HTMLMedia-
Element interface.

 To start, look at the next listing very carefully. It’s the first part of initMedia.
There’s a lot of locating of elements and assigning of variables going on here.

var result = {};
result.$media = $("#" + name);
result.media = result.$media[0];

result.$controls = $("#" + name + "-controls");

result.$play = result.$controls.find(".play");
result.$time = result.$controls.find(".time");

Notice that you have $media, $controls, $play, and $time all as wrapped sets from
jQuery selectors, plus the media element that corresponds to either the <audio> or
<video> element based on the input parameter (name) value. Why go through all
these gyrations? Because a wrapped set will give you all the normal jQuery functional-
ity you need to bind to events, change assigned CSS attributes, and update text values,
but it won’t give you the ability to call functions on individual API objects. For that,
you must have a single object, not a wrapped set.

 The next bit of code in the initMedia function shows the process of getting a
wrapped set and then using the object (not the wrapped set) to execute functions:

result.$play.click(function () {
 if (result.media.paused)
 result.media.play();
 else
 result.media.pause();
});

You’ve just implemented the click handler for the $play button, so the media (audio
or video) will play, but you still have to bind to the various other player events so that
you can pause the media and track what’s happening while it plays. You can use the
$media wrapped set for this because you aren’t executing specific functions.

 Listing 3.5 shows how to bind to the playing, pause, ended, and timeupdate
events. Again, each time you have to call into a specific function or property of the
HTMLMediaElement API, either audio or video, you make the call against the media
local property. This is the last part of the initMedia function.

Listing 3.4 The initMedia function assigning properties for a new object

Find media element with jQuery and pull
actual media element from wrapped set.

Find controls
<div> based
on concatenated
naming
convention.

With controls <div> find play
button and time element.

Core API

Use wrapped
set to bind to
click event.You must have single

object to check properties
like paused or execute
functions like play.

Core API

80 CHAPTER 3 Audio and video controls

result.$media
 .bind("playing", function () {
 result.$play.text("pause");
 })
 .bind("pause", function () {
 result.$play.text("play");
 })
 .bind("ended", function () {
 result.media.play();
 })
 .bind("timeupdate", function () {
 var prettyTime =
 Math.round(result.media.currentTime * 100) / 100;
 result.$time.text("time: " + prettyTime + "s");
 });

result.media.play();
return result;

There’s a lot of interplay here with the audio and video elements, the controls on the
page, and the Main object’s various properties. To reiterate, the secret sauce that
makes this event binding with jQuery wrapped sets work is the fact that audio and video
elements implement the HTMLMediaElement interface, making them generally function
the same way as each other but with different output to the browser. Figure 3.5 shows the
various wrapped sets and properties that you established in your code and how they all
play together in the window.Main object.

 Coming full circle to the object you created in initMedia, you first instance an
object variable called result and then bind a bunch of jQuery wrapped sets and a
media object to it. Then you bind the various media events to create a responsive
interface. Finally, you start the media content playing and then return the object to
the caller, which in this case is the init function. It seems complicated, but you’re
really just setting up the interface and playing the media.

3.3.4 Completing the media experience by adding volume controls

Back in the init function, you have this code, which should make a lot more
sense now:

this.video = this.initMedia("video");
this.audio = this.initMedia("audio");

You’re assigning a variable called video and one called audio to new objects created
in the initMedia function. These objects take care of everything related to play,
pause, loop, and content timer functionality. The only bits left to fill in are those
pieces specific to the audio track.

 1Because the example video track you’re using doesn’t happen to have audio, your
code must diverge from doing work inside the initMedia function. If you wanted to

Listing 3.5 Binding events to the media object in the initMedia function

Fires when media
element content begins

Fires when
content is paused

Fires when content has finished
playing and before loop restarts

Fires on interval as
media is played

Starts playing
immediately after
binding UI elements
to media events

Returns newly created media object

Core API

81Controlling audio and video playback with JavaScript

1 For more on polymorphism and encapsulation, see http://en.wikipedia.org/wiki/Polymorphic_code.

jQuery wrapped set bound to mute button

Click handler to mute audio

Property text edited when mute changes

$mute

$volume

$volumeUp

$volumeDown

window.main

$media

media

$controls

$play

$time

audio

jQuery wrapped set bound to volume button

Property text edited when mute changes

jQuery wrapped sets bound to + and – buttons

Audio.media.volume property edited when volume changed

jQuery wrapped sets bound to audio element

Audio play event handlers

Play control button for audio

Click event handler for initiating audio play/pause

jQuery wrapped set bound to video element

Video play event handlers

Custom JS object created by initMedia

Single object bound to audio player element

Wrapped set of controls <div> for audio

View area for current time value

Custom JS object created by initMedia

Single object bound to video player element

Wrapped set of controls <div> for audio

View area for current time value

Play control button for audio

$media

media

$controls

$play

$time

video

Figure 3.5 Due to the polymorphic1 nature of HTMLMediaElement, you can create both audio and
video objects in the same function. Volume control is separated in these objects because it’s only being
controlled when playing audio content in this example. Therefore, it doesn’t need to be part of the
polymorphic object.

82 CHAPTER 3 Audio and video controls

add volume controls to video as well as audio, you could have performed this work
inside initMedia, but for this example we’ll have you put it inside init so that the vol-
ume HTML elements only bind to the audio control. You can, however, still use the
audio object you created.

 The next listing shows the binding of controls for turning volume up and down
and muting the audio, along with a simple binding statement to track the volume-
change event. This code fills in the init function of the main object.

this.$volume = $("#volume");

this.$volumeUp = $("#volume-up")
 .click(function () {
 self.audio.media.muted = false;
 self.audio.media.volume += 0.1;
 });

this.$volumeDown = $("#volume-down")
 .click(function () {
 self.audio.media.muted = false;
 self.audio.media.volume -= 0.1;
 });

this.$mute = $("#mute")
 .click(function () {
 self.audio.media.muted = !self.audio.media.muted;
 });

this.audio.$media
 .bind("volumechange", function () {
 self.showVolume();
 });

this.showVolume();

The final step to getting your application to run is to fill in the showVolume function as
shown in the next listing. This will simply round the volume off to the nearest tenth
(0.1) value and display it on the page.

var prettyVolume =
 Math.round(this.audio.media.volume * 10) / 10;
if (this.audio.media.muted) {
 prettyVolume = 0;
 this.$mute.text("unmute");
}
else {
 this.$mute.text("mute");
}
this.$volume.text(prettyVolume);

Listing 3.6 init function binding UI events to the media object created in initMedia

Listing 3.7 showVolume function to update volume information on the page

Ensure mute is turned off
and add 10% to volume.

Ensure mute is turned off and
subtract 10% from current volume.

Toggle muted
Boolean property.

Track audio control’s volume change
event to show current volume.

Round off volume
to nearest tenth

Check muted property
of audio control

Assign text to $mute
element based on
current mute setting

Display volume
on page

83Updating media types for open source content

You should be able to run your application in Chrome, Internet Explorer, and Safari
and see everything running. Load the Players page, and the music and video should
immediately start playing, as shown in figure 3.6.

3.4 Updating media types for open source content
We specifically left out Opera and Firefox in our list of browsers that will work as-is in
the Visual Studio solution. These browsers are perfectly compatible with HTML5
<audio> and <video> tags, but when the page is running in your local environment,
you may need to make a few tweaks. These tweaks are related to the open source con-
tent types, not to any specific server compatibility. Opera and Firefox support the .ogv
and .ogg file types by default, so you have to tell the local web server that these are OK
to send out.

 This section will cover the changes you need to make to the project.

Figure 3.6 The completed
application playing audio and
video content, controlled by
your own JavaScript and
HTML elements

84 CHAPTER 3 Audio and video controls

USING IIS EXPRESS

The first thing you need to do is update your solution so that it uses IIS Express. You
could push this all the way into an IIS Server instance, but that’s really not necessary
for your tests and would generally be the job of a network administration person any-
way. To update your AudioVideo project, follow these steps:

1 Right-click on your AudioVideo project node in Solution Explorer and select
Properties.

2 Click on the Web tab on the left side; you should see a screen similar to figure 3.7.
3 About halfway down the page, in the Servers section of the page, select Use

Local IIS Web Server and then check Use IIS Express. You can leave the default
Project URL as is. (If you need more information about installing IIS Express,
please refer to appendix C.)

ASSIGNING CONTENT TYPES

Now that you have set up the solution to run under IIS Express, you can assign the
.ogg and .ogv content types for the local server. Currently, this can only be done using
the appcmd executable when running IIS Express. Appcmd is a utility program that
can be used for editing a number of configuration values, but updating the available
content types is the only change we’re after.

Figure 3.7 Set up the application to run using the local IIS Express instance.

85Summary

Follow these steps:

1 Open a command prompt as an administrator.
2 Navigate to either the Program Files or Program Files (x86) folder.
3 Navigate into the IIS Express folder.
4 Run the following command to update the .ogg content type:

appcmd set config /section:staticContent
 /+[fileExtension='.ogg',mimeType='audio/ogg']

5 Run the following command to update the .ogv content type:

appcmd set config /section:staticContent
 /+[fileExtension='.ogv',mimeType='video/ogv']

You should see a screen similar to figure 3.8 in the command-line window.
 Run your program now using any browser you like, and you should get an identical

experience! You’re playing audio and video content with no plugins and with very lit-
tle extraneous code. This is a huge leap forward from what was available just a couple
of years ago, and it’s only the beginning of what will probably be available in the com-
ing years, as formats and specifications stabilize.

3.5 Summary
Streaming audio and video content may be the core of what you want to accomplish
with your website or HTML application, or it may add the final touch of interactivity,
interest, and professionalism to your site. Regardless of your reasons for using the
<audio> and <video> tags, their current compatibility levels point new applications
toward a plugin-free experience, with Flash or Silverlight only being necessary as a fall-
back until the older browsers die off. The sample application in this chapter gives you
a solid foundation to continue building upon. Finding a specific portion of the con-
tent using the seek function and monitoring the caching process with various events
are some possible directions you could look in for additional studies.

Figure 3.8 The appcmd utility program can add the proper content types to the local IIS
Express instance. This setting will then work across all applications that use IIS Express
on the local machine.

86 CHAPTER 3 Audio and video controls

 In the next chapter, we’ll dig into the basics of drawing on the web using the
HTML5 Canvas API. This will be a deeper topic on the JavaScript front, and the project
in that chapter should be a really fun way to start learning the correlation between
markup and code.

3.6 Complete code listings
The following code is provided to let you check your work or build the project from
scratch if you haven’t been building along.

@{ ViewBag.Title = "Players"; }
<div id="content">
 <audio id="audio">
 <source src="@Url.Content("~/Content/gwt.ogg")" type="audio/ogg" >
 <source src="@Url.Content("~/Content/gwt.mp3")" type="audio/mp3" >
 </audio>
 <video id="video">
 <source src="@Url.Content("~/Content/lego.ogv")" type="video/ogg" >
 <source src="@Url.Content("~/Content/lego.mp4")" type="video/mp4" >
 </video>
 <div id="video-controls">
 Video:
 <button class="play">play</button>

 </div>
 <div id="audio-controls">
 Audio:
 <button class="play">play</button>

 <div class="secondary-controls">
 Volume:
 <button id="volume-up">+</button>
 <button id="volume-down">-</button>
 <button id="mute">mute</button>

 </div>
 </div>
 <div id="avfooter">
 <p>Video copyright 2012,
 Ian Gilman.</p>
 <p>Audio by
 Gennaro's Wax Trio, copyright 2008, BMI, BLZDub Music;
 used by permission.</p>
 </div>
</div>
<script src="@Url.Content("~/Scripts/main.js")"
 type="text/javascript"></script>

Listing 3.8 The complete Players.cshtml code

87Complete code listings

$(document).ready(function () {
 Main.init();
});

window.Main = {

 //-----------------
 init: function () {
 var self = this;

 if (!Modernizr.audio) {
 alert("Audio tag not supported.");
 return;
 }

 if (!Modernizr.video) {
 alert("Video tag not supported.");
 }

 this.video = this.initMedia("video");
 this.audio = this.initMedia("audio");

 this.$volume = $("#volume");

 this.$volumeUp = $("#volume-up")
 .click(function () {
 self.audio.media.muted = false;
 self.audio.media.volume += 0.1;
 });

 this.$volumeDown = $("#volume-down")
 .click(function () {
 self.audio.media.muted = false;
 self.audio.media.volume -= 0.1;
 });

 this.$mute = $("#mute")
 .click(function () {
 self.audio.media.muted = !self.audio.media.muted;
 });

 this.audio.$media
 .bind("volumechange", function () {
 self.showVolume();
 });

 this.showVolume();
 },

 //-----------------
 initMedia: function (name) {
 var result = {};
 result.$media = $("#" + name);
 result.media = result.$media[0];
 result.$controls = $("#" + name + "-controls");
 result.$play = result.$controls.find(".play");
 result.$time = result.$controls.find(".time");

Listing 3.9 The complete code listing for main.js

88 CHAPTER 3 Audio and video controls

 result.$play.click(function () {
 if (result.media.paused)
 result.media.play();
 else
 result.media.pause();
 });

 result.$media
 .bind("playing", function () {
 result.$play.text("pause");
 })
 .bind("pause", function () {
 result.$play.text("play");
 })
 .bind("ended", function () {
 result.media.play();
 })
 .bind("timeupdate", function () {
 var prettyTime =
 Math.round(result.media.currentTime * 100) / 100;
 result.$time.text("time: " + prettyTime + "s");
 });

 result.media.play();
 return result;
 },

 //-----------------
 showVolume: function () {
 var prettyVolume =
 Math.round(this.audio.media.volume * 10) / 10;
 if (this.audio.media.muted) {
 prettyVolume = 0;
 this.$mute.text("unmute");
 }
 else {
 this.$mute.text("mute");
 }
 this.$volume.text(prettyVolume);
 }
};

/*--- audio/video ----*/

#content {
 width: 100%;
 max-width: 400px;
 margin: 10px auto;
}

#video {
 width: 400px;
 height: 400px;
}

Listing 3.10 Styles added to site.css to support audio/video formatting

89Complete code listings

#audio {
 display: block;
}

button {
 padding: 5px;
}

#video-controls {
 margin-top: 25px;
}

#audio-controls {
 margin-top: 25px;
}

.secondary-controls {
 margin-top: 10px;
}

#avfooter {
 margin-top: 50px;
 font-size: 12px;
 color: #888;
}

#avfooter a,
#avfooter a:visited {
 color: #555;
}

Jackson ● Gilman

A
shift is underway for Microsoft developers—to build web
applications you’ll need to integrate HTML5 features like
Canvas-based graphics and the new JavaScript-driven APIs

with familiar technologies like ASP.NET MVC and WCF. Th is
book is designed for you.

HTML5 for .NET Developers teaches you how to blend HTML5
with your current .NET tools and practices. You’ll start with a
quick overview of the new HTML5 features and the semantic
markup model. Th en, you’ll systematically work through the
JavaScript APIs as you learn to build single page web apps that
look and work like desktop apps. Along the way, you’ll get tips
and learn techniques that will prepare you to build “metro-style”
applications for Windows 8 and WP 8.

What’s Inside
● HTML5 from a .NET perspective
● Local storage, threading, and WebSockets
● Using JSON-enabled web services
● WCF services for HTML5
● How to build single page web apps

Th is book assumes you’re familiar with HTML, and concentrates
on the intersection between new HTML5 features and Microsoft -
specifi c technologies.

Jim Jackson is a soft ware consultant and project lead specializing
in HTML5-driven media. Ian Gilman is a professional developer
passionate about open technologies and lively user interfaces.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/HTML5for.NETDevelopers

$44.99 / Can $47.99 [INCLUDING eBOOK]

HTML5 for .NET Developers

WEB DEVELOPMENT/.NET

M A N N I N G

“Speaks directly to the
interests and concerns of the

.NET developer.”
—From the Foreword by

 Scott Hanselman, Microsoft

“Looks under the hood of
HTML5 to teach more than

just pretty pages.”—Joseph M. Morgan, Amerigroup

“A comprehensive jumpstart
for the .NET developer looking
to make a leap into HTML5.”—Peter O’Hanlon

Lifestyle Computing Ltd

“A great HTML5 and API
 learning resource!”—Stan Bice

Applied Information Sciences

SEE INSERT

