
M A N N I N G

Adam Tacy
Robert Hanson

Jason Essington
Anna Tökke

SECOND EDITION

SAMPLE CHAPTER

IN ACTION

GWT in Action
Second Edition

by Adam Tacy
Robert Hanson
Jason Essington

Anna Tökke

Chapter 7

Copyright 2013 Manning Publications

brief contents
PART 1 BASICS .. 1

1 ■ GWT 3

2 ■ Building a GWT application: saying “Hello World!” 24

3 ■ Building a GWT application: enhancing HelloWorld 67

PART 2 NEXT STEPS ... 101

4 ■ Creating your own widgets 103

5 ■ Using client bundles 140

6 ■ Interface design with UiBinder 168

7 ■ Communicating with GWT-RPC 196

8 ■ Using RequestFactory 231

9 ■ The Editor framework 269

10 ■ Data-presentation (cell) widgets 309

11 ■ Using JSNI—JavaScript Native Interface 352

12 ■ Classic Ajax and HTML forms 387

13 ■ Internationalization, localization, and accessibility 417

PART 3 ADVANCED 457

14 ■ Advanced event handling and event busses 459

15 ■ Building MVP-based applications 483

16 ■ Dependency injection 516

17 ■ Deferred binding 538

18 ■ Generators 566

19 ■ Metrics and code splitting 591

196

Communicating
with GWT-RPC

At this point in the book you’ve learned the basics of creating a GWT application,
allowing you to do some great stuff in the browser. The next step will be learning to
communicate with the outside world. GWT offers several tools for this, including
HTML forms (chapter 12), RequestBuilder (chapter 12), RequestFactory (chap-
ter 8), and GWT-RPC. HTML forms are exactly as the name implies, and Request-
Builder is your typical Ajax solution. But the next two, RequestFactory and GWT-
RPC, are special in the sense that they allow you to send Java objects between the cli-
ent and server, as opposed to JSON,1 XML, or whatever other program you can
dream up.

This chapter covers
■ Using GWT-RPC to make remote calls
■ Debugging communication between client and

server
■ Protecting against XSRF attacks

1 JSON stands for JavaScript Object Notation. Learn more at http://json.org.

197Surveying GWT-RPC

 In this chapter we discuss GWT-RPC, or GWT Remote Procedure Call, which allows
you to call Java methods on the server, passing and receiving back Java objects and
primitives. You’ll find this to be a convenient solution for general-purpose RPC calls
when you’re already running Java on the server.

 Before we get into the specifics, we believe it’s pertinent to explain how we struc-
tured this chapter, because we approach this topic differently than you may find in
other books and tutorials. We start with a non-GWT implementation of a method and
slowly transform it into a GWT-RPC call. This will allow us to start on familiar ground
before we move into the specifics of GWT-RPC.

With an understanding of the method we want to execute, we then look at how we can
make the method’s input and output types compatible with GWT serialization. Once
this is complete, we’ll implement the server side of the equation followed by the client
and then follow up with how to add some cross-site request forgery (XSRF) protection
to your RPC calls.

 If you plan on developing the example project as you read through this chapter,
we strongly recommend using the Google Plugin for Eclipse (GPE), which we intro-
duced in chapter 2. It includes several features that will help you along the way and
warn you of potential mistakes.

 Before we dive into the tutorial, we begin with a broad overview of GWT-RPC and
provide a few diagrams to give you an idea of the big picture.

7.1 Surveying GWT-RPC
As they say, the devil is in the details, and this holds true for GWT-RPC. But before we
get to those, we want to provide a broad overview of how GWT-RPC works and the
classes involved. This includes surveying the parts of GWT-RPC that are provided and
the parts you’ll need to write.

 The parts that you’ll need to write include your server-side business logic, the ser-
vice interface, and potentially custom data objects that will hold the data that’s passed
between the client and server. The provided parts include everything else, namely the

How to read this chapter

We devised this chapter to be used as both a tutorial and a reference. The chapter
follows a single example from start to end, but GWT-RPC has lots of features, many
of which won’t apply to the development of the example application. We’ve grouped
those features we didn’t use in our example with related features.

If you’re reading through this chapter as a tutorial, you’ll end up with both a working
application and an understanding of other features that will be applicable in certain
situations. If you’re instead looking for a reference, you can skip to any section in this
chapter and expect it to be a complete reference.

198 CHAPTER 7 Communicating with GWT-RPC

code that glues the client and the server together. Much of this glue code is generated
at compile time and is unseen by the developer.

 At its core GWT-RPC is a way to have the GWT code on the client make an asynchro-
nous call to Java code on the server. Although asynchronous calls have become more
and more common, we still wanted to provide a few paragraphs to explain what they
are and why we use them, so that’s where we begin.

7.1.1 Understanding asynchronous behavior

If you’ve ever bought something online, you’ve participated in asynchronous behav-
ior. The first step is to go to an online store like Amazon and purchase something,
perhaps the latest edition of GWT in Action. The second step is to wait for it to arrive.
But until it arrives, you don’t sit out at the mailbox; you do other things. And when it
does arrive, then you deal with it. That’s asynchronous behavior.

 That’s how GWT-RPC and Ajax work. If you haven’t used Ajax before, particularly if
you’ve only done procedural programming, this feels a bit strange, but it’s absolutely
necessary. The unfortunate truth is that JavaScript is single-threaded. So if you per-
formed a synchronous call, meaning you blocked execution until the RPC call
returned, the browser wouldn’t be able to handle other events, like mouse clicks. The
browser will appear to have locked up, and that wouldn’t be a user-friendly interface.

 With this in mind, let’s move on to looking at the classes involved when using GWT-
RPC to see how this fits into the puzzle.

7.1.2 Defining the GWT-RPC classes, interfaces, and annotations

In order to help you understand all of the working parts of GWT, we present two
tables, followed by a diagram to help you visualize how the parts fit together. The first
table provides a list of GWT’s classes, interfaces, and annotations that you’ll use each
time you write a new GWT-RPC service. The second table lists the classes and interfaces
that you’ll need to write yourself.

 For each table we provide a short description of each item and point to the section
in this chapter where you can get the details. The goal is to provide you with not only
a brief overview but also a quick reference of where to get more information.

 Let’s begin with the GWT classes in table 7.1.

Table 7.1 Classes, interfaces, and annotations you’ll use when creating a GWT-RPC service

GWT class Explanation

com.google.gwt.user.server.rpc

RemoteServiceServlet
This is a specialized servlet that your implementation class on
the server will extend. It provides serialization, deserialization,
and auto-dispatching services. We cover the details in section
7.5.

com.google.gwt.user.client.rpc

RemoteService
This is a marker interface with no methods that will need to be
implemented. Your implementation of this class will serve as
the contract the client and the server will use for communica-
tion. We work through the details of this in section 7.5.

199Surveying GWT-RPC

If you read through the table, you’ll notice that we hinted at the fact that GWT will
generate some code for you. This is the key to how GWT-RPC works. At compile time
GWT will inspect your service interface and generate the code required to make the
calls to the server. This includes generating the serialization and deserialization code
required to handle the Java objects passed between the client and server.

DEFINITION Serialization is the act of taking an object graph (for example, a
Java object instance) and converting it into a binary or textual data, allowing
it to be transported to another computer or stored on disk. Deserialization is
the reverse, where you read the serialized data and convert it back into a Java
object. The serialized Java objects are often binary data, but in some cases,
like with GWT-RPC, the serialized data is (semi) readable text.

This is all made possible by GWT’s deferred binding, which allows a code generator to
inspect your Java code and generate additional Java code prior to all of the code
being compiled to JavaScript. In order to use GWT-RPC you don’t need to understand
how deferred binding and generators work, but if you’re curious, it’s covered in
chapter 19.

 Let’s look at the code you need to write, which table 7.2 summarizes.

com.google.gwt.user.client.rpc

ServiceDefTarget
This is an interface that will be implemented by your client-side
service implementation. You won’t implement this yourself; it
will be implemented by the GWT-generated client-side service
implementation. We discuss this more in section 7.6.

com.google.gwt.user.client.rpc

@RemoteServiceRelativePath
This annotation is used when creating the service interface
and specifies the URL to the server where the service is imple-
mented. We discuss the details in section 7.5.

com.google.gwt.user.client.rpc

IsSerializable
This is a marker interface to indicate that the class is serializ-
able. This marker would be placed on classes that you pass
between the client and server. In section 7.4 we explain how
this works and its compatibility with Java’s java.io.
Serializable interface.

Table 7.2 The classes and interfaces you need to create when using GWT-RPC

Construct Explanation

Servlet implementation You’ll create a servlet that extends RemoteServiceServlet and
implements your service interface. This will be the server-side implemen-
tation for your service. We cover the details in section 7.5.

Service interface The service interface will define the remote methods that may be called
from the client, and your servlet will implement this interface. See sec-
tion 7.5 for more information.

Table 7.1 Classes, interfaces, and annotations you’ll use when creating a GWT-RPC service (continued)

GWT class Explanation

200 CHAPTER 7 Communicating with GWT-RPC

This list of code you need to write isn’t daunting, but it’s perhaps more than you
expected. In particular, the asynchronous interface is an added piece of code you
need to create because of the asynchronous requirement when communicating from
the web browser.

 The last thing we want to look at is a diagram of how all of these parts fit together
to help you visualize how the system works, shown in figure 7.1. You can see how the
client-side code uses the asynchronous interface, whereas the server-side code uses the
regular service interface. If there’s anything tricky about GWT-RPC it’s the asynchro-
nous behavior, because it not only adds one additional interface to create but also
changes the way you’d normally code the client portion of the application.

 As you can see in figure 7.1, you’ll be writing code for both the client and server, so
you need to understand how to lay out your packages properly in order for this to
work.

Asynchronous interface This interface is a copy of your service interface but has modified method
signatures in order to allow for asynchronous communication. This is cov-
ered in section 7.6.

Data transfer objects Any data objects that you pass between the client and server will need to
be created and will need to be tagged with the IsSerializable inter-
face. This is covered in detail in section 7.4.

Table 7.2 The classes and interfaces you need to create when using GWT-RPC (continued)

Construct Explanation

Figure 7.1 An overview of the GWT-RPC landscape

201Surveying GWT-RPC

7.1.3 Understanding GWT-RPC package structure

As you learned earlier, you can’t use any library in your GWT project because of the
restrictions of the GWT compiler (compiles from source, limited JRE, and so on). So
the question is, how can we mix server-side and client-side code in the same project,
where the client-side code meets the GWT compiler requirements and the server-side
code doesn’t? And in the case of GWT-RPC we also have data objects that are used by
both the client and the server.

 Ultimately, the answer is simple. When you create your GWT project, using whatever
means, you’ll have created a client package. You’ve seen this throughout the book.
This package should be used for both client-side and shared code. This works because
although the GWT compiler compiles only the client package code into JavaScript, the
Java compiler compiles all of the code, both client and server code, into Java bytecode.
Therefore, the server-side code can make use of every class in your project.

 So where does the server-side code go? The answer is, anywhere your client-side
code isn’t. Typically, if you have a package named org.foo.project.client for the
client-side code, then you’d create org.foo.project.server for the server-side code.
But again, the only real requirement is that the client-side code is segregated into its
own package structure.

 If you’re using GPE, you’ll see that
it creates three packages for you: one
for client, one for server, and one for
shared. You can see this in figure 7.2.

 Looking at the figure, you may
have noticed that this seems to break
the rule in that the shared code isn’t
inside the client package. The way
this works is that the plug-in alters the
default source package to include
both client and shared. This is
achieved by adding the shared pack-
age as a source code package in the
module configuration that the GWT
compiler should compile. For exam-
ple, here’s a snippet of module con-
figuration that was generated by the
Google plug-in:

<!-- Specify the paths for translatable code-->
<source path='client'/>
<source path='shared'/>

As you read through this chapter we use the package hierarchy created by GPE, so
throughout the chapter we’ll use the client package for client-only code and the
shared package for code used by both the client and server.

Figure 7.2 The default package structure that’s
created when you use GPE includes client, server,
and shared packages.

202 CHAPTER 7 Communicating with GWT-RPC

 Now that you have a broad overview of GWT-RPC, let’s write some code. In the sec-
tions that follow we show you how to create a simple Twitter client that has a lot of the
same challenges you can expect when using GWT-RPC.

7.2 Learning GWT-RPC with Twitter
In selecting an example to demonstrate GWT-RPC, we settled on the idea of a simple
Twitter client. Twitter, once the secret of techies, has gone mainstream, with celebri-
ties and companies using it to keep their fans informed. So Twitter seemed like a good
choice because GWT is a tool for the modern web application, and social media is a
cornerstone of that class of application.

NOTE If you want to follow along and run the example project, you should
create a new GWT project with the name GTwitter and a base package of
com.gwtia.ch07. Or you can download the project source code and follow
the provided instructions.

The Twitter client that we’ll build in sections 7.3 through 7.6 is named GTwitter. It’s a
simple client that will only display the latest tweets for a specific Twitter user. The GWT
application will send the request to Twitter via our web server, so the client won’t be
communicating with Twitter directly. This offers some advantages over a client-only
solution in that we can extend the server code over time to also return content from
Facebook, Orkut, and RSS feeds, to name a few. On top of that we can also add cach-
ing if we desire to improve performance, something that you can’t do in a client-only
solution.

 GTwitter will make use of Twitter4J,2 an open source Java library for interacting
with the Twitter API. You’ll need to download Twitter4J if you wish to follow along with
the example. The examples in this chapter use version 2.1.1 of Twitter4J and only
require the use of twitter4j-core-2.1.1.jar. If you wish to use a newer version of the
Twitter4J API, you may be required to make some changes to the examples in order to
match any changes made to the API.

We’ll develop the GTwitter client over the next few sections. This includes looking at
model considerations in section 7.4, developing the server component in section 7.5,

2 Twitter4J can be downloaded from http://twitter4j.org.

Including the Twitter4J library in your project

In order to develop and run the GTwitter example, you’ll need to download the Twitter4J
jar file and add it to the /war/WEB-INF/lib/ directory of your project, as well as add
it to the classpath of your IDE. You’d also do this for any other jar file that you need
to include on the server side of your application. This is different from libraries used
to create the client side, which don’t need to be placed in /war/WEB-INF/lib/ or even
be deployed with the application to the server.

203Fetching data from Twitter the non-GWT way

and writing the client portion in section 7.6. But first we begin by looking at an exam-
ple of a non-GWT Twitter4J call from a Java application. This will be a good way to see
what issues and limitations come to play when using GWT-RPC.

7.3 Fetching data from Twitter the non-GWT way
With the Twitter4J library in your classpath, you need a few lines of code to fetch a feed
and display the results. Take a look at the following listing, and then we’ll explain it.

package com.gwtia.ch07.server;

import twitter4j.*;

public class TwitterServiceImpl
{
 public static void main(String[] args) throws Exception
 {
 TwitterServiceImpl impl = new TwitterServiceImpl();
 ResponseList<Status> resList = impl.getUserTimeline("ianchesnut");

 for (Status status : resList) {
 System.out.println(status.getCreatedAt()
 + ": " + status.getText());
 }
 }

 public ResponseList<Status> getUserTimeline (String screenName)
 throws TwitterException
 {
 Twitter twitter = new TwitterFactory().getInstance();
 return twitter.getUserTimeline(screenName);
 }
}

As you can see, fetching data from Twitter doesn’t require a lot of code when you use
the Twitter4J library. Still, we’ll explain what’s going on before we point out the issues
you’ll face when trying to port this to GWT-RPC.

 B In the main method you create a new instance of the class and then call the
getUserTimeline() method, passing the Twitter screen name of the user you want
tweets for. This is essentially what the GWT-RPC client-side code will look like.

 The part that isn’t GWT-compatible is the fact that this is a synchronous call, mean-
ing that your code waits until the method returns the ResponseList. As you saw in sec-
tion 7.1, GWT-RPC solves this by using asynchronous calls, which will alter the way you
call the service.

 c Next, you iterate over the results returned from the call. Note that the Response-
List object that you’re iterating over and the Status objects in the list are classes from
the Twitter4J library. These classes aren’t GWT-compatible either, because GWT requires
the Java source code in order to compile it to JavaScript.

Listing 7.1 A non-GWT version of fetching a Twitter feed using Twitter4J

Fetch a
user’s feed

B

Print feed
contents

c

Helper
method

D

204 CHAPTER 7 Communicating with GWT-RPC

 This is one of the more common issues you’ll run into with GWT-RPC, and the solu-
tion is to make use of data transfer objects (DTO).3 What this means is that you need
to have your own versions of ResponseList and Status that are GWT-RPC-compatible
(the DTOs), and copy the data into these.

DEFINITION A data transfer object is a design pattern used for transferring data
between different applications. A DTO is characterized by not having any
behavior, meaning it doesn’t “do” anything; it stores data. DTOs are often
used when it’s not possible to transfer your business or data access objects. In
the case of GTwitter, the Twitter4J objects can’t be serialized by GWT, so you’d
want to create DTO objects that are serializable in order to transfer the data to
the client browser.

d The last part of the code example is the part that will run on the server. Here you
use the Twitter4J API to fetch the status data and return it to the caller. The best thing
about this is that this runs on your server, so you don’t need to make any changes.

 You’ll have to do a little extra work here, like copying the ResponseList into the
GWT-RPC-compatible DTO that we mentioned. And this is exactly where we’ll start. In
this next section we’ll define the requirements of the objects returned from a GWT-RPC
call, as well as discuss some common issues like trying to use JPA entities as DTOs.

7.4 Defining a GWT-RPC-compatible model
When deciding on the data types to pass between the client and server, the most
important concern is to make sure that the data types can be serialized by GWT. Table
7.3 provides a list of these types.

You may have noticed that this list is missing quite a few basic types, like
java.util.Date and java.lang.Integer. In GWT these are handled by creating
custom serializers, and GWT ships with a bunch of them. We’ll discuss how to create
your own custom serializer soon, but for now table 7.4 provides a list of Java types for

3 For more information on data transfer objects, refer to its Wikipedia page at http://en.wikipedia.org/wiki/
Value_object.

Table 7.3 Data types that can be serialized for GWT, not including types with custom serializers

Java type Explanation

Primitive Includes byte, char, short, int, long, float, double, and boolean.

Java enum Enumeration constants are serialized by name only; any other field values
won’t be carried over.

Array Must be an array of other serializable types.

Serializable user defined A class that implements the IsSerializable or Serializable marker
interface, along with a no-arg constructor and serializable fields.

http://en.wikipedia.org/wiki/Value_object
http://en.wikipedia.org/wiki/Value_object

205Defining a GWT-RPC-compatible model

which GWT provides custom serializers. For reference, these serializers are found under
the subpackages of com.google.gwt.user.client.rpc.core in the gwt-user.jar file.

As you can see, GWT either provides built-in serialization for your data or gives you a
way to build your own serializer. There’s a good amount of information to cover here,
so let’s start by looking at using Serializable and IsSerializable, which directly
relate to our example.

7.4.1 Using the Serializable and IsSerializable interfaces

GWT provides two marker interfaces for identifying classes that can be serialized. The
first is Java’s own java.io.Serializable, and the second is com.google.gwt.user
.client.rpc.IsSerializable. A marker interface has no methods that need to be
implemented and acts as a marker to let other classes know that certain semantics
apply. The semantics in this case are those required for the class to be serializable by
GWT. By implementing either of these interfaces you’re agreeing that the class meets
the following requirements:

■ All nonfinal and nontransient fields must in turn be serializable by GWT.
■ The class must have a zero-arg constructor.

If you’ve used java.io.Serializable before, you might have noticed that this isn’t at
all compatible with Java’s definition of a serializable class. It’s provided merely as a
convenience for developers who wish to reuse their database entities that already
implement this interface. In GWT the semantics of the two interfaces are exactly the
same. In general you should use IsSerializable because it’s more correct.

Table 7.4 Java classes for which that GWT provides custom serializers out of the box

Package Classes

java.lang Boolean, Byte, Character, Double, Float, Integer, Long, Short, String

java.sql Date, Time, Timestamp

java.util ArrayList, Collection, Date, HashMap, HashSet, IdentityHashMap,
LinkedHashMap, LinkedList, Map, TreeMap, TreeSet, Vector

IsSerializable vs. Serializable

When GWT was first released, the designers felt that because GWT couldn’t comply
with the semantics of Java’s own Serializable interface, they should create a GWT-
specific IsSerializable interface. This caused some pain for developers who want-
ed to pass their database entities directly to the browser via GWT. After quite a bit of
discussion, the GWT community opted to allow the use of Serializable as the equiv-
alent of IsSerializable because the benefit was deemed greater than the possible
semantic confusion that it might cause.

206 CHAPTER 7 Communicating with GWT-RPC

Let’s take this information and apply it to the GTwitter client. As you might recall, the
Twitter4J library returned a ResponseList<Status>, essentially a list of Status
objects. To make the return objects more generic so that they can be used for other
types of values, our model will consist of a list of FeedData. The FeedData class is pre-
sented in the next listing.

package com.gwtia.ch07.shared;

import java.util.Date;
import com.google.gwt.user.client.rpc.IsSerializable;

public class FeedData implements IsSerializable
{
 private Date createdAt;
 private String text;

 public FeedData() {}

 public FeedData(Date createdAt, String text) {
 this.createdAt = createdAt;
 this.text = text;
 }

 public Date getCreatedAt() {
 return createdAt;
 }

 public String getText() {
 return text;
 }
}

In listing 7.2 the only GWT-specific remnant is that the bean implements IsSerializ-
able and the package in which the class resides. Specifically, the class is in the shared
package, which will be one of the packages compiled by the GWT compiler, assuming
you’re using the default-generated module configuration for the project. Strictly speak-
ing, you can place your DTO classes in any package that your client-side application
uses. See chapter 2 for how to configure your project and alter the <source> packages.

 Implementing IsSerializable will cover many use cases but not all. In some cases
you may want to use the same classes as your JPA or JDO entities, and we’ll look at
some special rules regarding their use.

7.4.2 Special considerations when using JPA/JDO model objects as DTOs

If you plan on using the Java Persistence API (JPA) or Java Data Objects (JDO) and want
to use the same entity objects as DTOs that will transfer data between server and client,
you have two issues to consider. First is that GWT’s IsSerializable interface is no
longer desirable, and java.io.Serializable should be used instead. As mentioned
previously there are no semantic differences from GWT’s point of view, but your persis-
tence mechanism will require it.

Listing 7.2 GTwitter serializable model object

207Defining a GWT-RPC-compatible model

 The second and more important issue is how GWT handles enhanced persisted
classes. Some persistence mechanisms work by enhancing either the source code or
bytecode of the class prior to deploying it to a server. A good example of this is the
JDO support for Google App Engine (GAE), which will use the Data Nucleus to
enhance your bytecode prior to deploying it to the server. We’ll provide an example of
this in chapter 12 when we discuss using GWT with GAE.

 When a class is enhanced, additional static or instance fields are added to the class.
These won’t be present in the source code that GWT compiles, which means that com-
piled client-side code and the server-side code for these same classes will differ. One of
the enhancements in GWT 2.0 is the ability to handle this situation, but be warned that
it may not work with all persistence tools.

 GWT will consider a class as being enhanced if one or more of the following are true:

■ For JPA, the class is annotated with javax.persistence.Entity.
■ For JDO, the class is annotated with java.jdo.annotations.Persistence-

Capable with the attribute detachable=true.
■ The GWT module file includes the fully qualified class name in the

rpc.enhancedClasses configuration property.

GWT handles these classes differently. When sending these classes from the server to
the client, it will use Java serialization to serialize the added fields but won’t deserialize
them on the client side. This means the client won’t be able to access this persistence
engine–specific data. If you send the same object back to the server, this data will be
deserialized on receipt so that it can be used by the persistence engine.

 In order to do this work, GWT makes some assumptions about the data entity. It
assumes that the object is in a detached state. This means that changes to the fields of
the object don’t affect persistent storage. Furthermore, GWT will also assume that all
nonstatic and nontransient fields are serializable.

 In general, if you fall into this use case, you’ll need to experiment a little to see if
GWT-RPC works with your persistence tool or if some tweaking is required. If some
research is necessary, we suggest starting with the archives of the GWT General Discus-
sion mailing list4 and perhaps even using it to get help from others who’ve already
trod the same ground.

 But what if your serialization needs are more complex, and you need to customize
how the serializer works? GWT provides a mechanism for that as well.

7.4.3 Developing custom serializers

In some cases GWT developers have had a need to customize the process of serializing
their data objects. This is usually a last resort, used when GWT can’t automatically han-
dle this for you. Some of the common reasons for this include the following:

■ The default serialization causes performance issues for a complex object.

4 The GWT general discussion list is found at http://groups.google.com/group/google-web-toolkit.

208 CHAPTER 7 Communicating with GWT-RPC

■ The class that needs to be serialized doesn’t implement IsSerializable or
Serializable.

■ The class that needs to be serialized doesn’t have a zero-argument constructor.

When you do need to create your own custom serializer, as you will for the Twitter
example, GWT makes this a relatively easy task. For the purposes of example we’ll use
the DTO that we created for the GTwitter client, which would be serializable by GWT,
but then make some changes so it isn’t—and so you need to create a custom serializer,
as shown in the following listing.

package com.gwtia.ch07.shared;

import java.util.Date;

public class BadFeedData
{
 private Date createdAt;
 private String text;

 public BadFeedData(Date createdAt) {
 this.createdAt = createdAt;
 }

 public Date getCreatedAt() {
 return createdAt;
 }

 public String getText() {
 return text;
 }

 public void setText(String text) {
 this.text = text;
 }
}

In listing 7.3 you take the GTwitter DTO and remove the IsSerializable interface
and the no-arg constructor, making it GWT-incompatible. In addition you add one
argument to the constructor so that you can fully exercise the capabilities of a custom
serializer. Now let’s look at how to create a custom serializer for the modified DTO.

 A custom serializer is a class that you’ll place in the same package as the DTO, with
specific requirements for naming the class. You don’t have any classes to extend or any
interfaces to implement. Before we codify the rules, let’s see what the custom serial-
izer for this class looks like.

package com.gwtia.ch07.shared;

import java.util.Date;
import com.google.gwt.user.client.rpc.*;

Listing 7.3 An unserializable GTwitter DTO

Listing 7.4 A custom serializer for the BadDataFeed DTO

209Defining a GWT-RPC-compatible model

public class BadFeedData_CustomFieldSerializer
{
 public static void serialize(SerializationStreamWriter ssw,
 BadFeedData instance) throws SerializationException {
 ssw.writeObject(instance.getCreatedAt());
 ssw.writeString(instance.getText());
 }

 public static BadFeedData instantiate(SerializationStreamReader ssr)
 throws SerializationException {
 return new BadFeedData((Date) ssr.readObject());
 }

 public static void deserialize(SerializationStreamReader ssr,
 BadFeedData instance) throws SerializationException {
 instance.setText(ssr.readString());
 }
}

The first thing to note is that the class name is the name of the DTO plus the postfix
_CustomFieldSerializer B. This scheme is the unfortunate side effect of Java 1.4.
GWT was initially released without support for Java 5 language features like generics.
Because of this, custom serializers make use of this naming rule.

 Getting into the body of the class, you’ll need to write three methods. The first is
the serialize() method c. The method takes a writer and an instance and writes
the properties of the instance to the writer. The writer allows you to write Java primi-
tives, Strings, and Object types. Object types are then serialized by their own serial-
izer. For example, in our serializer we write a java.util.Date instance to the stream,
and because GWT ships with its own customer serializer for Date, that serializer will be
called in order to convert the object to a primitive value.

 The order in which you write the values to the stream is important, because when
you deserialize you need to read the values in the same order. In this case the DTO
doesn’t have a zero-arg constructor, so you need to provide an instantiate() method
d. This method takes a reader and uses it to create and return a new object instance.
If you had a zero-arg constructor you wouldn’t need to provide this method at all, and
GWT would handle creating a new instance for you. But you don’t have one, so you need
to handle this. When you serialize the object, you write the value of the createdAt field
first, and that’s because you need it for the constructor. Note that you call read-
Object() on the reader. Because the writer would in turn use the Date custom serializer
to write the Date value, that same serializer is used to read the Date value.

 Finally, you need to provide a deserialize() method e. The instantiate()
method has already created the object you’ll return and set the Date value; now you
need to read in any remaining values and use them in the setters of the instance. In
this case, that means you need to read the text and set the value in the instance.

 As with the DTO itself, the custom serializer is shared code, used by both the server
and the client. Because of this you’re limited to the parts of the JRE that can be com-
piled to JavaScript, as you are with any GWT client code.

Special
class nameB

Send instance
properties to stream

C

Instantiate new
instance from streamD

Set properties
from streamE

210 CHAPTER 7 Communicating with GWT-RPC

 So now that we’ve explained it, let’s boil this down to a simple list that you can use
as a reference when you need to create your own customer serializer:

As you’ve seen, depending on your project needs, your GWT-compatible model can be
either extremely easy or quite complex. Fortunately, this is likely the most complex of
the GWT-RPC topics, and things will fall into place from here on out.

 So with that we move to the server side of the equation, which is perhaps the easi-
est because it’s familiar territory for Java web developers.

7.5 Building and deploying the server side
In section 7.4 we defined a GWT-compatible model for our GTwitter client. Now we
want to look at coding the server side of the equation and deploying it to a servlet con-
tainer.

 GWT makes developing the server-side code easy. The first rule is that this is the
server, so anything goes. You’re not limited to what the GWT compiler can accept,
because your server-side code isn’t processed by the GWT compiler. You can use all of
your favorite Java libraries and aren’t limited to specific classes in the JRE as you are
with your client-side code. If you felt a bit overwhelmed by all of the rules of GWT-
compatible serialized objects, this section will be a nice break.

 This section assumes some familiarity with servlet containers, what a servlet is, and
how to deploy an application to a servlet container. If you’re unfamiliar with servlet
containers, we suggest going through the process of downloading Apache Tomcat5

and walking through some of the introductory material before continuing.
 Three topics need to be addressed when writing and deploying server-side code:

writing the servlet, deploying the servlet, and handling exceptions. Because the
GTwitter example throws an exception, we start with handling exceptions and show
how to make an exception GWT-compatible.

■ The serializer must be in the same package as the object it serializes/deseri-
alizes.

■ The name is the name of the DTO plus _CustomFieldSerializer.

■ The required serialize method has a signature of public static void

serialize(SerializationStreamWriter ssw, T instance).

■ The required deserialize method has a signature of public static void
deserialize(SerializationStreamReader ssr, T instance).

■ The optional instantiate method has a signature of public static T

instantiate(SerializationStreamReader ssr).

■ All methods may rethrow SerializationException.

5 Apache Tomcat downloads and documentation are available at http://tomcat.apache.org/.

211Building and deploying the server side

7.5.1 Handling exceptions

Besides sending Java objects to and from the client, GWT supports having the server
throw exceptions that are handled on the client. This is handled by enforcing the
same methods we covered in section 7.4 when discussing how to make a GWT-compat-
ible DTO. And an exception instance, from GWT’s point of view, is merely another
object that needs to be transported between the client and server.

 To make this easier, you may use any of the exceptions provided by GWT’s JRE
Emulation Library without having to do anything else. These include Throwable,
Exception, IllegalArgumentException, NullPointerException, and NumberFormat-
Exception, to name a few. In addition, because these already implement Serializ-
able, you can create a subclass of these without having to do any additional work. But
as you saw with DTO handling, there may be cases where you need to create a custom
serializer. Again, custom serialization for exceptions is no different than handling
DTOs; all the same rules apply.

 Getting back to the GTwitter example, when we look at the non-GWT-compatible
version we see that the Twitter4J library will throw TwitterException if it should fail
to load the feed data for the specified user. This exception isn’t part of the GWT Emu-
lation Library and is therefore incompatible with GWT. To handle this, you can create
your own GTwitterException and use it instead.

package com.gwtia.ch07.shared;

public class GTwitterException extends Exception {
 public GTwitterException() { }

 public GTwitterException(String reason) {
 super(reason);
 }
}

The GTwitterException is about as basic as they come. You extend Exception and
provide some constructors. Because you extend Exception, which in turn implements
java.io.Serializable, you meet that requirement. In addition to that, you provide
a no-arg constructor to meet the remaining requirement.

 As you saw with the DTO, this class lives in a package that will be compiled to Java-
Script by the GWT compiler. This is because you’ll be using this class on both the cli-
ent and server side of the application.

 Now that you have a GWT-compatible DTO and exception, let’s define the service
interface that will need to be implemented on the server.

7.5.2 Defining the service interface

Although creating the service interface isn’t as complicated as dealing with GWT-
compatible DTOs, you still have a few GWT specifics you need to deal with.

Listing 7.5 An application-specific exception for the GTwitter service

212 CHAPTER 7 Communicating with GWT-RPC

 The easiest way to explain how this works is to start with a code example and then pro-
vide an explanation. The following listing shows the service for the GTwitter application.

package com.gwtia.ch07.shared;

import java.util.ArrayList;
import com.google.gwt.user.client.rpc.RemoteService;
import com.google.gwt.user.client.rpc.RemoteServiceRelativePath;

@RemoteServiceRelativePath("service")
public interface TwitterService
 extends RemoteService
{
 public ArrayList<FeedData> getUserTimeline(String screenName)
 throws GTwitterException;

}

This code is devilishly simple, but there’s quite a bit to it. Let’s explore each of part of
listing 7.6.

 B Like the DTO, the service is used by both the client side and the server side. So this
class must reside in a directory that will be compiled to JavaScript by the GWT compiler.

 c When GWT compiles the code to JavaScript and turns the service into an Ajax
call, it needs to know the location of the servlet on the server. The @RemoteService-
RelativePath annotation allows you to do this. The value, "service" in this case, is
appended to the result of GWT.getModuleBaseURL(). The URL that this translates to
depends on where you deploy the compiled GWT code on your server. Most of the
time this will make sense, but there are always exceptions. Because of this, this annota-
tion is optional and can be specified when you write the client-side code. We’ll look at
that more in section 7.6, but for now it suits our purposes to use the annotation.

 d Your service needs to extend RemoteService. This is another one of those
marker interfaces, as you saw earlier when we looked at IsSerializable, and it
doesn’t require you to implement any additional methods. The purpose of this inter-
face is to trigger the generation of the code by the GWT compiler that will do the real
work of allowing you to (somewhat) transparently call your server-side service. If you
want to know more about how compile-time code generation is triggered in GWT, you
should read about deferred binding, covered in chapter 19.

Listing 7.6 The server-side interface for the GTwitter application

Why does Eclipse show “Missing asynchronous interface”?

If you’re developing the application using GPE, Eclipse will report the error “Missing
asynchronous interface TwitterServiceAsync.” The reason is that the plug-in is antic-
ipating that you also need to create a client-side asynchronous interface. We create
this interface in section 7.6. If you’re coding along with the example, you can ignore
this error for now.

Shared
packageB

Provide
the servlet
path

C

Extend
RemoteService

D

Define the
service
methods

E

213Building and deploying the server side

e You need to define the server-side service that you’ll implement. No additional rules
apply here other than what we already defined. Specifically, all of the parameters,
return types, and exceptions need to be compatible with GWT serialization. The GWT
compiler will inspect this method during code-generation time in order to know what
type serializers must be included in the resulting JavaScript output.

 For this same reason it’s important to be as specific as possible when specifying the
types, because this will result in code bloat. For example, specifying that this method
throws Exception, as opposed to GTwitterException, requires the generated code to
include every available Exception type. So instead of only GTwitterException, the
compiled code would include closer to 30 exception types and the code to serialize all
of them.

NOTE Be as specific as possible when specifying the types. Using java.util
.List instead of java.util.ArrayList will force the compiler to include
every List implementation in the JavaScript output, which results in larger
files that the browser will need to download. So be specific with your types.

The flip side of that coin is that if your code were to throw a NullPointerException,
it wouldn’t be serialized and sent to the client as such. Instead it would be returned as
a generic failure. So be as specific as possible, but be sure to include every exception
that you’d want sent to the client.

NOTE When compiling GWT code to JavaScript, you can use the -gen <DIR>
switch to tell the compiler to output the generated Java code to the specified
directory. This will include generated field serializers, type serializers, and RPC
proxy code. Besides this being a way to get a handle on what’s being gener-
ated, it’s also a great way to learn about the inner workings of GWT-RPC.

Now that we’ve defined the service, we can write the server-side servlet that will act as
an implementation of our service.

7.5.3 Writing the servlet

When using GWT-RPC, the server-side code takes the form of a servlet, although it
doesn’t look much like one. For many of us, using Spring, Struts, or other servlets may
be a relic of the past, because our favorite framework provides an abstraction above the
basic servlet. GWT-RPC is the same, and although it’s a servlet, it doesn’t resemble one.

 Let’s start the conversation as we’ve done before, presenting the code up front fol-
lowed by a detailed explanation. The next listing presents our GTwitter servlet imple-
mentation.

package com.gwtia.ch07.server;

import java.util.ArrayList;
import twitter4j.*;
import com.google.gwt.user.server.rpc.RemoteServiceServlet;

Listing 7.7 The server-side implementation of the GTwitter client

Server
packageB

214 CHAPTER 7 Communicating with GWT-RPC

import com.gwtia.ch07.shared.*;

public class TwitterServiceImpl
 extends RemoteServiceServlet implements TwitterService
{

 public ArrayList<FeedData> getUserTimeline (String screenName)
 throws GTwitterException
 {

 ArrayList<FeedData> result = new ArrayList<FeedData>();
 Twitter twitter = new TwitterFactory().getInstance();

 try {
 ResponseList<Status> responses
 = twitter.getUserTimeline(screenName);

 for (Status status : responses) {
 result.add(
 new FeedData(status.getCreatedAt(), status.getText()));
 }
 }
 catch (TwitterException e) {
 throw new GTwitterException(e.getMessage());
 }

 return result;
 }
}

Listing 7.7 is a little longer than the original non-GWT version of this code that we pro-
vided in section 7.3, so let’s look at what’s going on.

 B This class lives in the server package of your project. Specifically, the rule is that
this class can live in any package not compiled to JavaScript by the GWT compiler. The
reason is that server-side GWT-RPC code uses classes outside of the JRE Emulation
Library and therefore is unable to be compiled to JavaScript.

 c When you define the class, you need to extend RemoteServiceServlet. This is
the GWT servlet that handles the incoming request from the client, deserializes the
incoming data, and executes your method. In addition, you implement the Twitter-
Service interface that you created in the previous section. The RemoteService-
Servlet uses reflection to read your interface definition so that it knows what
methods may be called remotely, meaning that it won’t allow calls to methods not
defined in your interface.

 The code you use to get the tweets from Twitter is the same as it was in the non-GWT
version of the code. You use the Twitter4J library’s Twitterfactory to create a Twitter
session d and then call getUserTimeline() to fetch the tweets for that user e.

 f Once you have the list of Status objects, you need to convert them to a GWT-
compatible DTO. In this case you copy them into the FeedData objects defined in
section 7.4. The need to copy data, particularly complex data, is one of the major

Defines superclass
and service interface

c

Create
Twitter
instance

D

Fetch
timeline

E

Copies data into
a GWT-RPC-

compatible DTO

F

Rethrows as
GWT-RPC-compatible
exceptionG

215Building and deploying the server side

complaints with GWT-RPC. One popular remedy for this is to use Dozer,6 a library that
provides the tools to copy data between objects of different types. If you find a need to
copy complex data structures, you may want to consider using Dozer.

 g When you’re using the Twitter4J library, it will throw a TwitterException if it’s
unable to fetch the requested data. This could occur in your application if someone
requested tweets for a screen name that doesn’t exist. Here you convert the Twitter-
Exception into your GTwitterException. Recalling the earlier discussion on serializa-
tion, you need to do this because TwitterException isn’t serializable by GWT, and you
therefore can’t pass this exception back to the client. Your exception, on the other
hand, is serializable by GWT and is defined in your service interface, so exceptions of
this type will be sent to the client.

 And there you have it, a GWT-RPC servlet. As you can see, the fact that you’re using
GWT or a servlet is hidden rather well. You can even test our method without a servlet
container at all. Listing 7.8 provides some test code that you can add to your GWT serv-
let so that you can also run it as an application.

public static void main(String[] args) throws Exception
{
 TwitterService impl = new TwitterServiceImpl();
 ArrayList<FeedData> resList = impl.getUserTimeline("ianchesnut");

 for (FeedData status : resList) {
 System.out.println(status.getCreatedAt() + " " + status.getText());
 }
}

Executing this code will result in output similar to what you see here, which shows sev-
eral tweets displayed along with the date and time they were posted:

Sat Mar 21 21:39:43 EDT 2009 Super test
Sat Mar 21 21:13:22 EDT 2009 test already
Sat Mar 21 21:12:48 EDT 2009 Test again

This is basic output, but it shows that our code works. That’s good enough for us right
now until we develop the client side of our application. So now that we have our serv-
let, we’ll want to deploy it to a servlet container.

7.5.4 Deploying the servlet

As noted throughout this book, when you create a new GWT project, it creates a war
directory at the top level of the project. This is your web root, where the files destined
to be deployed are stored. Within this directory is a WEB-INF folder that contains the
servlet deployment descriptor file web.xml.

6 Dozer is available at http://dozer.sourceforge.net/.

Listing 7.8 Test code to verify the functionality of the GTwitter server

216 CHAPTER 7 Communicating with GWT-RPC

 To configure the servlet, open this file, war/WEB-INF/web.xml, and add the servlet
configuration. The following listing shows the full web.xml after making our changes.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <servlet>
 <servlet-name>twitterServlet</servlet-name>
 <servlet-class>
 com.gwtia.ch07.server.TwitterServiceImpl
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>twitterServlet</servlet-name>
 <url-pattern>/GTwitter/service</url-pattern>
 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>GTwitter.html</welcome-file>
 </welcome-file-list>
</web-app>

If you’re following along, and you used the Eclipse plug-in or command-line tool to
create the basic app structure, you’ll see that you stripped out the example servlet
configuration and are left with only what you need for this project. What’s left are
three important sections, so we’ll explain each.

 B The <servlet> element is used to register a servlet with the servlet container.
Here you give the servlet an arbitrary name with the <servlet-name> element, in this
case twitterServlet, and provide the full package and class name of the servlet in
the <servlet-class> element.

 c Next, you need to map the registered servlet to a URL, and that’s where the
<servlet-mapping> comes into play. Here you specify the same <servlet-name> that
you used in the <servlet> element. This is what ties this mapping to that servlet. In
addition, you use <url-pattern> to specify the path to the servlet. The URL that you
specify is relative to the servlet context, or the root of the project. The path is the
directory where the project is deployed plus the name you specified in the
@RemoteServiceRelativePath annotation in the service interface. In this case the
GWT application is deployed to /gtwitter, and the path used in the annotation was ser-
vice, which gives you the resulting path shown in listing 7.9.

 d The last item in your web.xml is a pointer to the welcome file. If configuring
servlets is new to you, this is the file that’s served if the user navigates to / on the appli-
cation. It’s the default page when none is defined.

Listing 7.9 Servlet deployment descriptor for the GTwitter application

Define
servlet

b

Define
mapping

c

Define the
welcome file

d

217Writing the client

TIP The most common cause for a non-working GWT-RPC service is when the
URL pattern defined in the mapping doesn’t match the URL used by the cli-
ent application. In section 7.7 we show you how to verify the URL used by the
client when we discuss how to debug remote calls.

With the servlet written and registered in the servlet descriptor, we can move on to
coding the client to call the service.

7.6 Writing the client
We’re almost at the end—only two steps left. As you might expect, we need to write
the code that calls the server and receives the result. As we explained earlier, a GWT-
RPC call is made asynchronously. And you may have noticed that the service interface
that we created for the server side won’t work for an asynchronous call. The reason is
that it doesn’t allow for a callback, meaning that there’s no way to handle the result
that’s returned at some time after the call is made. We need to start by creating one
last interface, which will allow for a callback.

7.6.1 Defining the asynchronous interface

The asynchronous interface is the interface that the client side is coded to. It’s a mirror
image of the service interface you already defined, assuming that the mirror you use is
one of those funhouse mirrors. Specifically, it’s an altered version of the service inter-
face, altered in a specific way. The next listing contains the code for this interface.

package com.gwtia.ch07.shared;

import java.util.ArrayList;
import com.google.gwt.user.client.rpc.AsyncCallback;

public interface TwitterServiceAsync
{
 void getUserTimeline(String screenName,
 AsyncCallback<ArrayList<FeedData>> callback);
}

This looks a lot like the service interface, but with two differences. The first is the
name of the interface. The asynchronous interface uses the same name as the service
interface plus Async B. So the TwitterService service interface will have a Twit-
terServiceAsync asynchronous interface. This interface must also reside in the same
package as the service interface.

 Second is the method definition. All methods in the asynchronous interface must
return void c and have an additional AsyncCallback parameter added d. The
AsyncCallback uses generics, so you’ll need to specify the return type here. If the
return type of the method is void, you’ll specify java.lang.Void.

 Of interest here is that this method doesn’t declare any exceptions. That’s because
the handling of the server side is taken care of by the AsyncCallback. We’ll look at the

Listing 7.10 Asynchronous interface used by the client side of the GTwitter application

Interface
name

b

Returns voidc
Add
AsyncCallback

d

218 CHAPTER 7 Communicating with GWT-RPC

callback code shortly, but for now let’s recap the set of steps to create the asynchro-
nous interface:

1 Copy the service to a new file with the same name plus Async (for example, Foo
to FooAsync).

2 Add an AsyncCallback parameter to each method, as the last parameter, using
the method’s return type as the generic’s type (for example, AsyncCall-
back<Foo>).

3 Change the return type of all methods to void.
4 Remove any exceptions declared on methods in the service interface.

If you’re using GPE, you can use an autofix function to create this interface for you
and save yourself some typing as well as reduce the possibility of introducing a bug.
Eclipse provides several ways to do this. One way is to open the service interface
TwitterService, click the interface name, and press Ctrl+1 (one, not L). This will
open the quick-fix menu. Select the first option, Create Asynchronous RemoteService
Interface ‘TwitterServiceAsync’, as shown in figure 7.3.

 At this point we’ve created everything except the client-side code that will make
the call. Let’s look at that now.

7.6.2 Making the call to the server

For simplicity’s sake, we’ll build an overly simple client in order to show off how to call
a GWT-RPC service. Figure 7.4 shows what the final application looks like in the
browser.

Figure 7.3 Using the quick-fix menu in Eclipse can save you typing by creating
the asynchronous interface for you.

219Writing the client

As you can see, it’s basic. It includes a TextBox for input, a Button for activation, and a
VerticalPanel for output. The next listing shows the start of the application.

package com.gwtia.ch07.client;

import java.util.ArrayList;

... imports omitted for brevity ...

public class GTwitter implements EntryPoint {
 private TextBox txtScreenName = new TextBox();
 private Button btnGetTweets = new Button("Get Tweets");
 private VerticalPanel tweetPanel = new VerticalPanel();

 public void onModuleLoad() {
 RootPanel.get().add(txtScreenName);
 RootPanel.get().add(btnGetTweets);
 RootPanel.get().add(tweetPanel);

 // final AsyncCallback<ArrayList<FeedData>>
 // updateTweetPanelCallback = ...

 // btnGetTweets.addClickHandler(new ClickHandler() { ... }
 }
}

This is a basic application, and the purpose is to explore GWT-RPC, so we won’t pro-
vide any further explanation here. You need to add two things to complete the appli-
cation, as noted by the commented lines in listing 7.11. First, you need to create an
implementation of AsyncCallback that will receive the result from the server, and sec-
ond, you need to add a ClickHandler to the Button to trigger the server call.

 We’ll tackle the AsyncCallback first. The following listing shows the code for this;
it’s added to the body of the onModuleLoad on the EntryPoint.

final AsyncCallback<ArrayList<FeedData>> updateTweetPanelCallback
 = new AsyncCallback<ArrayList<FeedData>>() {

Listing 7.11 Basic structure for the GTwitter application’s EntryPoint

Listing 7.12 The AsyncCallback that will receive the GTwitter data from the server

Figure 7.4 The finished GTwitter
application running in the Google
Chrome browser

Anonymous
AsyncCallback

declaration b

220 CHAPTER 7 Communicating with GWT-RPC

 public void onFailure(Throwable e) {
 Window.alert("Error: " + e.getMessage());
 }

 public void onSuccess(ArrayList<FeedData> results) {
 tweetPanel.clear();
 for (FeedData status : results) {
 PredefinedFormat fmt = PredefinedFormat.TIME_SHORT;
 String dateStr =
 DateTimeFormat.getFormat(fmt).format(status.getCreatedAt());

 tweetPanel.add(new Label(dateStr + ": " + status.getText()));
 }
 }
};

As you saw when we developed the asynchronous interface, all calls to the server
require an AsyncCallback parameter, typed to the data type being returned from the
server. Let’s walk through listing 7.12 and examine the details.

 B In this example you create the callback as an anonymous class. You could create
a separate class for this, but an anonymous class works well for the purposes of this
example. You also declare the variable as final, which isn’t a requirement of GWT; it’s
a requirement of Java because of how you use this variable in the ClickHandler code
that we’ll look at soon. Notice that the type of your AsyncCallback matches the last
parameter of the getUserTimeline() of the asynchronous interface.

 c You need to implement two methods for the callback, the first of which is
onFailure. This method will be called if the server throws a checked exception (in
this case the GTwitterException), or if any number of other errors occur, for exam-
ple, if the target service is unavailable. In our code we show the error in an alert box.

 d The second method you need to implement is onSuccess, which will receive
the results from the server on a successful call. Notice that the parameter type is keyed
on the type you used in the AsyncCallback declaration, in this case ArrayList<Feed-
Data>. When you receive the callback, you clear the VerticalPanel used to display
the results and fill it with the results from the server.

 Now that you’ve defined the handler for the response, you can make the call to the
server in the ClickHandler of your application’s action button, as shown in the next
listing.

btnGetTweets.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {
 TwitterServiceAsync service = GWT.create(TwitterService.class);

 service.getUserTimeline(txtScreenName.getText(),
 updateTweetPanelCallback);
 }
});

Listing 7.13 Calling the GTwitter service from within a button ClickHandler

Handles
exceptionsc

Handles receipt
of result datad

Create the async
implementation

b

Call the remote
method

c

221Writing the client

In your handler, which is attached to your action button, you trigger the call to the
server. Some explanation of what’s going on here is in order.

 B First, you create an instance of the TwitterServiceAsync interface by calling
GWT.create(), passing the service interface class object as the parameter. The imple-
mentation returned is the class that will handle the serialization of the parameters, the
call to the server, and the deserialization of the result.

 Under the hood this is all driven by GWT’s deferred-binding feature. Specifically
there’s a deferred binding that triggers code generation when the class passed to
GWT.create() extends the RemoteService interface. When this is encountered by the
GWT compiler, it kicks off a code generator that generates the asynchronous interface
implementation as well as the serialization and deserialization classes to handle the
calls defined in the interface. Although you don’t need to understand deferred bind-
ing to use GWT-RPC, it does help with understanding how this works. Deferred bind-
ing is covered in chapter 19.

 c You then make the call to getUserTimeline, passing your callback object as the
second parameter, which starts a chain of events that will result in a call to the onError
or onSuccess method of the AsyncCallback.

 One thing to note is that the service returned by GWT.create() also implements
ServiceDefTarget. This interface is used to alter how the generated service works,
including setting the URL of the service. For example, here is an altered version of
the server call that we already presented.

import com.google.gwt.user.client.rpc.ServiceDefTarget;
...
TwitterServiceAsync service = GWT.create(TwitterService.class);
((ServiceDefTarget) service).setServiceEntryPoint(GWT.getModuleBaseURL()
 + "service");

service.getUserTimeline(txtScreenName.getText(),
 updateTweetPanelCallback);
}

The only thing new here is that you cast the service to ServiceDefTarget and call the
setServiceEntryPoint method, passing the URL to the servlet that will handle the
request. This can be used instead of, or to override, the @RemoteServiceRelative-
Path annotation that we put in our service in section 7.5.

 In addition, you can also use this interface to specify a custom RequestBuilder, a
lower-level API used to make the call to the server. This allows you to make changes to
how requests are made, including setting custom header values and credentials. We’ll
discuss RequestBuilder in chapter 12.

 If you’ve been following along, you now have a finished application. It’s time to
launch it and take it for a test drive. We expect that everything went well and it works
out of the box, but if not, this next section is for you.

Listing 7.14 Calling the server service with an explicit server URL

222 CHAPTER 7 Communicating with GWT-RPC

7.7 Debugging GWT-RPC
There are a lot of ways to debug your GWT application. Speed Tracer,7 a plug-in for
Chrome, can provide you information on the headers sent between client and server
as well as execution times. Wireshark,8 an open source packet sniffer, will show you all
of the network traffic, allowing you to inspect interaction RPC calls over the network.
Eclipse can execute your application in debug mode, allowing you to step through the
application line by line.

 All of them are great at what they do, but Firebug, a Firefox add-on, possibly pro-
vides the most benefit for debugging GWT-RPC calls. You can learn about and down-
load Firebug from http://getfirebug.com/.

 The Firebug website has a great video to introduce you to the tool, but this isn’t a
book about Firebug, so we’ll only cover the bits of Firebug that apply to GWT-RPC. Fig-
ure 7.5 shows Firefox with the Firebug panel opened.

 With regard to accessing network resources, Firebug will show you the URLs
accessed by your browser. This is useful if you want to verify that your client-side code
is hitting the correct URL on the server.

7 Speed Tracer can be found at http://code.google.com/webtoolkit/speedtracer/.
8 Wireshark is available at www.wireshark.org/.

Figure 7.5 The finished GTwitter application as it runs in Firefox, with the Firebug panel opened

223Securing GWT-RPC against XSRF attacks

 When browsing a single request from the browser, you can then view the request/
response headers and the content passed. Assuming the service URL is correct and hit
the server, the most useful information is the contents of the request and reply. It’s
important to understand that the format of the serialization of GWT is unpublished
and changes from time to time, but it’s still fairly human readable. For example, it’s
easy to pick out the method name that was called by the client and the general con-
tents of the reply.

 So if you need to ask the question, “Am I hitting the right URL?,” “Am I passing the
data I think I am to the server?,” or “Is the server sending me what I think it is?,” then
Firebug is a good tool for the job.

 Next up is something that we don’t talk too much about in this book, and that’s
security. We’ve opted to not make this a book about security because it’s a deep topic,
one that we hope you’ll explore thoroughly, but in this case GWT provides some
explicit support that’s worth sharing.

7.8 Securing GWT-RPC against XSRF attacks
XSRF (or CSRF) is short for cross-site request forgery, and it’s an attack that could
allow an attacker access to your web mail, your social networking account, or even
your bank account. If you haven’t come across this term before, we suggest that you
do some additional research, but let’s see if we can describe it briefly.

7.8.1 Understanding XSRF attacks

To help you better understand how an XSRF attack works, let’s examine a hypothetical
situation. Pretend you’re a high-ranking executive for company X-Ray Alpha Delta,
and you’re logged in to the top-secret extranet application doing some product
research. Once you log in to the top-secret application, it keeps track of who you are
by giving you a web cookie. Using cookies as a way of handling user sessions is a com-
mon tool used by most secured web applications.

 As you’re working on the top-secret extranet, you receive an email prompting you
to review some competitor content on the internet. You click the link and start read-
ing the page, which seems to be a legitimate news site. Unknown to you, the “news”
site is running JavaScript in your browser and is making requests against your top-
secret extranet.

 This is possible because your browser automatically passes your session ID con-
tained in a cookie to the top-secret extranet server, even though the JavaScript calling
the server originated from the “news” site. Now understand that this isn’t a bug in
your browser; it’s the way browsers work. The XSRF attack is taking advantage of how
browsers work, which is why this type of attack is so problematic.

224 CHAPTER 7 Communicating with GWT-RPC

Figure 7.6 shows the order of events in such an attack, allowing the malicious Java-
Script access to the “protected” site.

 The one advantage that you do have is that the attacker is making blind calls to the
server. The attacker can trigger a call to a secured web page but won’t be able to read
the result. So an attacker couldn’t use an XSRF attack to read an email on your web
mail site, but it could call a method on the server that the attacker knows will change
your password.

 It’s the fact that these attacks are blind that allows us to prevent them.

7.8.2 Adding XSRF protection to your RPC calls

Because XSRF takes advantage of your browser automatically sending your session ID
to the server, you can’t rely on that alone. What you need is a second key, but one that
your browser won’t automatically send.

 The mechanism that GWT-RPC can be enabled to use is to make an additional call
to the server to get a second secret key and then have your normal server calls pass
this extra key in the request. Now it’s true that someone could trigger a XSRF attack to
call the server service that creates the secret key, but as we said earlier an attacker can’t
read the result of the call, so they won’t be able to gain access to this key.

Warning: this code won’t work!

GWT-RPC’s XSRF protection requires that the browser have the ability to pass a cookie
value to the server, and for real protection this needs to be tied somehow to the ap-
plication authentication. In almost all Java deployment scenarios, this cookie name
is JSESSIONID. In a typical application, the JSESSIONID cookie value allows the ap-
plication server to tie the user to a Java HttpSession in memory, which in turn has
the user’s authentication information. A problem, however, is that when you run the
example code in Eclipse without any login mechanism, the Jetty server doesn’t create

Figure 7.6
XSRF attack, using
JavaScript to break into a
“secure” application

225Securing GWT-RPC against XSRF attacks

To implement the protection, you have to make changes to three parts, and all of the
changes are relatively minor. In the sections that follow we’ll show you how to imple-
ment the change on the server, on the service interface, and in the call you make to
the server.

ENABLING XSRF PROTECTION ON THE SERVER
Enabling XSRF protection on the server side is as simple as swapping out RemoteSer-
viceServlet and replacing it with XsrfProtectedServiceServlet. Back in section
7.5.3 you might recall that we implemented the class TwitterServiceImpl, which is
the server-side servlet that’s the target of GWT-RPC calls from the client. In the exam-
ple we had that class extend RemoteServiceServlet, which provides the glue that
connects incoming GWT-RPC calls to our class. The class XsrfProtectedServiceServ-
let is a drop-in replacement for RemoteServiceServlet, so all you need to do is
change the class declaration, as shown in the following listing.

package com.manning.gwtia.ch07.server;

import com.google.gwt.user.server.rpc.XsrfProtectedServiceServlet;
...other imports omitted...

public class TwitterServiceImpl extends XsrfProtectedServiceServlet
 implements TwitterService
{
 ...implementation omitted...
}

As you can see, it’s that simple; have your server-side code extend XsrfProtected-
ServiceServlet, and you’re finished with this class.

 But you do need to make some changes to the deployment descriptor. The next
listing provides an updated version of our project’s web.xml file, annotated to show
the new additions.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

(continued)

an HttpSession or pass a JSESSIONID to the server. To counter this, our example
code in the source download includes a ForceSessionCreationFilter that will
make sure that a JSESSIONID is issued to the client browser. Please review the source
code download for details on how we did this.

Listing 7.15 The GTwitter server-side implementation, now supporting XSRF protection

Listing 7.16 An updated web.xml with additions for supporting XSRF protection

226 CHAPTER 7 Communicating with GWT-RPC

 <context-param>
 <param-name>gwt.xsrf.session_cookie_name</param-name>
 <param-value>JSESSIONID</param-value>
 </context-param>

 <servlet>
 <servlet-name>twitterServlet</servlet-name>
 <servlet-class>
 com.manning.gwtia.ch07.server.TwitterServiceImpl
 </servlet-class>
 </servlet>

 <servlet>
 <servlet-name>xsrf</servlet-name>
 <servlet-class>
 com.google.gwt.user.server.rpc.XsrfTokenServiceServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>twitterServlet</servlet-name>
 <url-pattern>/gwtia_ch07_gwtrpc/service</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>xsrf</servlet-name>
 <url-pattern>/gwtia_ch07_gwtrpc/xsrf</url-pattern>
 </servlet-mapping>
</web-app>

The first thing you must add to the web descriptor is the name of the cookie that
holds the key to the user’s authentication information on the server B. In most cases
this will be JSESSIONID, which is the standard for Java servlet containers.

 To understand how this works, let’s connect the dots. Let’s assume that you use
Spring Security to serve all of your services on the server. Spring Security does this by
using a servlet filter that analyzes each URL that the browser is requesting, determin-
ing what the user does and doesn’t have access to. Spring Security, like most Java appli-
cations, stores the authentication information in the in-memory HttpSession
instance for that user. And the servlet container (such as Jetty or Tomcat) associates
the HttpSession with the individual request.

 Running that in the reverse order, that means the browser sends a JSESSIONID
cookie value to the server, which then uses that as a key that allows it to associate the
request with an HttpSession, which in turn is used by Spring Security to ensure the
user is allowed to access the requested resource. Simple, right?

 The next thing you need to do is configure the XsrfTokenServiceServlet c
using the <servlet> tag and map it to some path d using a <servlet-mapping>. The
XsrfTokenServiceServlet is a GWT-RPC service that will allow you to request a token
from the server. More on that in a bit. All you need to know at this point is that you’ve
installed the service and mapped it to the path /gwtia_ch07_gwtrpc/xsrf.

Specify session
cookie name

b

Add XSRF
token service

c

Map XSRF
service

d

227Securing GWT-RPC against XSRF attacks

 At this point you can run your application and it should work fine, but realize that
you haven’t protected anything yet. You need to do that on the service interface.

ENABLING XSRF PROTECTION ON THE SERVICE INTERFACE
In our GTwitter example we created an interface called TwitterService, which
extended the RemoteService interface. You can force XSRF in two ways; the first is to
secure individual methods by using annotations, and the second is to require XSRF
protection for all methods by changing the interface that your service extends. The
second way is the easiest and in many cases is the right thing to do, so we’ll visit that
one first.

 The following listing presents an updated version of TwitterService, which now
forces XSRF protection on all methods.

package com.manning.gwtia.ch07.shared;

import com.google.gwt.user.client.rpc.XsrfProtectedService;
...other imports omitted...

@RemoteServiceRelativePath("service")
public interface TwitterService extends XsrfProtectedService
{
 ...implementation omitted...
}

The change in the previous listing, as with the server implementation, is subtle. The
only change made to the interface is to change the interface that you extend. Where
the version without XSRF protection implements RemoteService, it now implements
XsrfProtectedService. By having your service interface extend XsrfProtected-
Service, you’re now requiring that all method calls include a token, which acts as a
key. If the token passed along with the server call is valid, the server will accept it; if it’s
invalid, it’s rejected.

 Before we show you how the tokens work, let’s first concentrate on what we have
here. As we mentioned, all methods are now secured, but what if for some reason
XSRF protection is enforced only for some methods while leaving others unsecured?
For that you can use method-level annotations.

 For those rare occasions when you need to protect only some of the methods in your
interface, you can extend XsrfProtectedService and turn off protection on individual
methods by using the annotation @NoXsrfProtect. Alternatively, you can go the oppo-
site way and have your service interface extend RemoteService, which provides no pro-
tection, and then mark methods that should be protected with @XsrfProtect.

 Now that the methods are protected, you’ll find that the GTwitter application no
longer works. Each GWT-RPC request will come back with the error message “Invalid
RPC token (XSRF token missing).” If you get this, it means that your methods are now
secured. Next, let’s look at how to change the GWT-RPC call from the client side.

Listing 7.17 An updated TwitterService with XSRF protection

228 CHAPTER 7 Communicating with GWT-RPC

ADDING XSRF PROTECTION IN YOUR CLIENT-SIDE RPC CALLS
XSRF protection changes how you make calls from the server. Where you were making
only a single call, you now need to make two. The first call to the server is to fetch a
token. The default implementation takes the cookie value passed to the server and
creates an MD5 hash from it, returning the result to the client. The client then uses
this token as a key for calling the target GWT-RPC method.

 The next listing shows the changes to the client-side call from our GTwitter applica-
tion. Following the listing we discuss what’s going on in the code.

XsrfTokenServiceAsync xsrf = GWT.create(XsrfTokenService.class);

((ServiceDefTarget)xsrf).setServiceEntryPoint(
 GWT.getModuleBaseURL() + "xsrf");

xsrf.getNewXsrfToken(new AsyncCallback<XsrfToken>() {

 public void onSuccess (XsrfToken token)
 {
 TwitterServiceAsync service = GWT.create(TwitterService.class);
 ((HasRpcToken) service).setRpcToken(token);

 service.getUserTimeline(
 txtScreenName.getText(), updateTweetPanelCallback);
 }

 public void onFailure (Throwable caught)
 {
 try {
 throw caught;
 }
 catch (RpcTokenException e) {
 Window.alert("Error: " + e.getMessage());
 }
 catch (Throwable e) {
 Window.alert("Error: " + e.getMessage());
 }
 }
});

For brevity, listing 7.18 includes only the code that’s changed. If you want to review
the rest of the class, you should refer back to section 7.6.2. Listing 7.18 should look
familiar, because it’s a GWT-RPC call. What’s different is that you nest the original call
inside the onSuccess() method. That’s useful to understand, but let’s talk specifics.

 In order to get a token, you use GWT.create() to get a service for XsrfToken-
Service B and set the end point, which in this case is the module base URL plus
/xsrf. This matches the mapping that you added to the web.xml for the XsrfToken-
ServiceServlet.

Listing 7.18 Updated GTwitter client using XSRF token to unlock the service method

Create
token
serviceb

Call token
servicec

Set tokend

229Summary

 You then use the service to call the method getNewXsrfToken() c. The purpose
of this method is to call the server, which will then return a token to the client.

 In the onSuccess() method of the callback, you use the token as a parameter to
setRpcToken() on your TwitterService method call d. The setRpcToken() method
is made available by casting the TwitterService asynchronous implementation to
HasRpcToken. You then call your service method as usual, but now it will include the
token that will be used like a key to unlock the service.

 At this point we want to point out that this code only works if your browser passes a
JSESSIONID cookie to the server, which is then turned into the token. If you see errors
on the server saying “Session cookie is not set or empty,” go back to the beginning of
section 7.8.2 and review the sidebar titled “Warning: this code won’t work!”

 As an alternative for the purposes of testing, you could also add this code snippet
to your application, which generates a random value and sets the JSESSIONID cookie:

if (Cookies.getCookie("JSESSIONID") == null)
 Cookies.setCookie("JSESSIONID", Double.toString(Math.random()));

This isn’t ideal to have in production code, because it’s better to be able to tie the ses-
sion ID to the user’s authentication, but it works great for testing this example. For
more information on GWT and security, we recommend that you visit the security sec-
tion of the online documents for GWT. It’s fairly comprehensive and goes beyond what
we discuss in this book.

 With that, we need to wrap up our tour of GWT-RPC. So let’s review what we cov-
ered in this chapter.

7.9 Summary
In the last few dozen pages we showed you everything you need to know about GWT-
RPC, but it was a long journey. You might be asking how this helps you simplify your
GWT applications over other remoting methods. We could take a mother’s approach
and say that you should take your medicine because it’s good for you. But we’re all big
boys and girls now and can make our own decisions.

 The biggest benefit of using GWT is that you can use Java objects throughout, shar-
ing data objects on both the client and server and reducing the code you need to write
because all the serialization is handled for you. But you will pay a price for less code,
and it’s in complexity. In order for GWT to generate the serialization code for you, it
needs you to provide enough information so that it can do its job. This could be as
simple as tacking on the IsSerializable interface to your DTOs, or it could require
you to create custom serializers.

 As programmers we know that the best way to deal with complexity is practice. The
more you practice, the easier it gets, and over time it becomes habitual, requiring lit-
tle thought to accomplish. We never said that GWT-RPC is the right solution for every
problem. That’s an architectural decision that you’ll need to make on each and every
project.

230 CHAPTER 7 Communicating with GWT-RPC

 Getting beyond the reasons for using GWT-RPC, in this chapter we reviewed the
four components of GWT-RPC that you need to build yourself: the model, the servlet,
the service interface, and the asynchronous service interface. We provided tips on
debugging and showed you how to handle serialization of JPA and JDO entities, how to
deploy to your GWT-RPC servlet, how to lay out your project, and much more.

 Next, we’ll look at another tool in GWT’s repertoire for managing entities:
RequestFactory.

Tacy ● Hanson ● Essington ● Tökke

G
oogle Web Toolkit works on a simple idea. Write your
web application in Java, and GWT crosscompiles it into
JavaScript. It is open source, supported by Google, and

version 2.5 now includes a library of high-quality interface
components and productivity tools that make using GWT a
snap. Th e JavaScript it produces is really good.

GWT in Action, Second Edition is a revised edition of the best-
selling GWT book. In it, you’ll explore key concepts like
managing events, interacting with the server, and creating UI
components. As you move through its engaging examples,
you’ll absorb the latest thinking in application design and
industry-grade best practices, such as implementing MVP,
using dependency injection, and code optimization.

What’s Inside
● Covers GWT 2.4 and up
● Effi cient use of large data sets
● Optimizing with client bundles, deferred binding,
 and code splitting
● Using generators and dependency injection

Written for Java developers, the book requires no prior know-
ledge of GWT.

Adam Tacy and Robert Hanson coauthored the fi rst edition of
GWT in Action. Jason Essington is a Java developer and an active
contributor to the GWT mailing list and the GWT IRC channel.
Anna Tökke is a programmer and solutions architect working
with GWT on a daily basis.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/GWTinActionSecondEdition

$49.99 / Can $52.99 [INCLUDING eBOOK]

GWT IN ACTION, Second Edition

JAVA/WEB DEVELOPMENT

M A N N I N G

“Covers all the newest
features—a must-read for any

GWT professional.”—Michael Moossen
 Allesklar.com AG

“Clear, practical, effi cient ...
in action.”

—Olivier Nouguier
Agilent Technologies, Inc.

“You will appreciate
 the abundance of

 tutorial material.”—Jeff rey Chimene
Systasis Computer Systems

“Up-to-date and detailed—
 a thorough guide.”—Olivier Turpin, IpsoSenso

“A quick and easy source
for learning GWT.”—Levi Bracken, OPNET

SEE INSERT

	Tacy-GWT-2ed-front.pdf
	ASC-SampleChapter7
	ASC-Ch07
	Tacy-GWT-2ed-back

