
M A N N I N G

Kevin Hazzard
Jason Bock
FOREWORD BY Rockford Lhotka

in .NET

S A M P L E C H A P T E R

Metaprogramming in .NET

by Kevin Hazzard
Jason Bock

 Chapter 1

 Copyright 2013 Manning Publications

v

brief contents
PART 1 DEMYSTIFYING METAPROGRAMMING1

1 ■ Metaprogramming concepts 3

2 ■ Exploring code and metadata with reflection 41

PART 2 TECHNIQUES FOR GENERATING CODE63

3 ■ The Text Template Transformation Toolkit (T4) 65

4 ■ Generating code with the CodeDOM 101

5 ■ Generating code with Reflection.Emit 139

6 ■ Generating code with expressions 171

7 ■ Generating code with IL rewriting 199

PART 3 LANGUAGES AND TOOLS ..221

8 ■ The Dynamic Language Runtime 223

9 ■ Languages and tools 267

10 ■ Managing the .NET Compiler 287

3

Metaprogramming concepts

The basic principles of object-oriented programming (OOP) are understood by
most software developers these days. For example, you probably understand how
encapsulation and implementation-hiding can increase the cohesion of classes.
Languages like C# and Visual Basic are excellent for creating so-called coarsely
grained types because they expose simple features for grouping and hiding both
code and data. You can use cohesive types to raise the abstraction level across a
system, which allows for loose coupling to occur. Systems that enjoy loose cou-
pling at the top level are much easier to maintain because each subsystem isn’t as
dependent on the others as they could be in a poor design. Those benefits are
realized at the lower levels, too, typically through lowered complexity and greater
reusability of classes. In figure 1.1, which of the two systems depicted would likely
be easier to modify?

 Without knowing what the gray circles represent, most developers would pick
the diagram on the right as the better one. This isn’t even a developer skill. Show the
diagrams to an accountant and she’ll also choose the one on the right as the less

In this chapter
■ Defining metaprogramming
■ Exploring examples of metaprogramming

4 CHAPTER 1 Metaprogramming concepts

complex. We recognize simplicity when we see it. Our challenge as programmers is in
seeing the opportunities for simplicity in the systems we develop. Language features
like encapsulation, abstraction, inheritance, data-hiding, and polymorphism are great,
but they only take you part of the way there.

The metaprogramming style of software development shares many of the goals of tra-
ditional OOP. Metaprogramming is all about making software simpler and reusable.
But rather than depending strictly on language features to reduce code complexity or
increase reusability, metaprogramming achieves those goals through a variety of librar-
ies and coding techniques. There are language-specific features that make metapro-
gramming easier in some circumstances. For the most part, however, metaprogramming
is a set of language-independent skills. We use C# for most of the examples in this
book, but don’t be surprised when we toss in a bit of JavaScript or F# here and there
when it helps to teach an idea at hand.

 If you know a little bit about metaprogramming, you may scoff at the idea that
metaprogramming reduces complexity. It’s true that some types of metaprogram-
ming require a deeper understanding of tools that may be out-of-sight from your per-

The I in SOLID
Along the way, we’ll refer to some of the five SOLID (single responsibility, open-
closed, Liskov substitution, interface segregation, and dependency inversion) princi-
ples of object-oriented design (OOD). While we’re thinking about coupling and cohe-
sion, it’s a good time to discuss the “I” in SOLID—the interface segregation principle
(ISP). The ISP says that many client-specific interfaces are better than one general-
purpose interface.

This seems to contradict the notion that high cohesion is always a good thing. If you
study the ISP along with the other four SOLID principles, though, you’ll discover that
it speaks to the correctness of the middle ground in software development. The dia-
gram on the left in figure 1.1 may represent absurdly tight coupling and low cohesion.
The one on the right may embody the other extreme. The ISP tells us that there may
be an unseen middle design that’s best of all.

Figure 1.1 Which
system is easier
to change?

5Metaprogramming concepts

spective today. You may have been told in the past that to do metaprogramming, you
must understand how compilers work. Many years ago that was largely true, but today
you can learn and use highly effective metaprogramming techniques without having
to know much at all about compilers. After all, complexity is in the eye of the
beholder, as the saying goes. As perceived complexity from the end user’s standpoint
goes down, internal complexity of the design often goes up. Complexity reduction
when metaprogramming follows the same rules. To achieve simplicity on the outside,
the code on the inside of a metaprogramming-enabled component typically takes on
added responsibilities.

 For example, so-called Domain-Specific Languages (DSLs) are often built with
metaprogramming tools and techniques. DSLs are important because they can funda-
mentally change the way that a company produces intellectual property (IP). When a
DSL enables a company to shift some of its IP development from traditional program-
mers to analysts, time to market can be dramatically reduced. Well-designed DSLs can
also increase the comprehension of business rules across the enterprise, allowing peo-
ple into the game from other roles that have been traditionally unable to participate
in the process. A flowcharting tool that produces executable code is a good example
of such a DSL because it enables business stakeholders to describe their intent in their
own vocabulary.

 The trade-off is that DSLs are notoriously difficult to design, write, test, and sup-
port. Some argue that DSLs are much too complex and not worth the trouble. But
from the consumer’s vantage point, DSLs are precious to the businesses they serve pre-
cisely because they lower perceived complexity. In the end, isn’t that what we do for a
living? We make difficult business problems seem simple. As you study metaprogram-
ming throughout this book, keep that thought in mind.

NOTE DSLs in Action by Debasish Ghosh (www.manning.com/ghosh) and
DSLs in Boo by Oren Eini writing as Ayende Rahien (www.manning.com/
rahien) are both excellent choices if your goal is to learn how to create full-
featured DSLs.

At times, you may struggle as you try to learn so many new things at once. There will
be enough promise in each new thing you learn to prove that the struggle is worth-
while. In the end, you’ll have many new tools for fighting software complexity and for
writing reusable code. As you begin to put metaprogramming to work in your proj-
ects, others will study what you’ve done. They’ll marvel at the kung fu of your
metaprogramming skills. Soon they’ll begin to emulate you, and, as they say, imitation
is the sincerest form of flattery.

 Let’s begin by defining what metaprogramming is. Then we’ll dive into a few inter-
esting examples to show how it’s used.

6 CHAPTER 1 Metaprogramming concepts

1.1 Definitions of metaprogramming
The classic definition for a metaprogram is “a computer program that writes new com-
puter programs.” This sounds a lot like the definition of a compiler. A compiler for a
programming language like C# could be thought of as the ultimate metaprogram,
because its only job is to produce other programs from source code. But to call the C#
compiler a metaprogram is a stretch. Unstated in the definition of a traditional com-
piler is the idea that the execution step is fixed in time, and the existence of the com-
piled outputs are somewhat unseen by end users. Also, metaprogramming techniques
are clearly different because they’re almost always used to deal with some sort of ever-
changing stimulus.

 There may be semistructured documents that need parsing on the fly. You may
need a way to express trading restrictions from your partners that change daily. Data-
base schemas change from time to time, and you may need a way to make your pro-
grams adapt gracefully. All of these problems are perfect for metaprogram-based
solutions. They don’t require compilers in the traditional sense. They do require the
flexibility that a compiler affords to adapt to situations at hand.

 The C# compiler in its current form is almost always invoked by programmers dur-
ing a build process to produce a new program. In the near future, that will be chang-
ing with the release of Microsoft’s Roslyn (code name) tools. Roslyn opens the black
box of the C# and VB compilers to make them available before, during, and after the
deployment of your applications. When that happens, we expect to see Microsoft’s
compilers used in many metaprogramming scenarios.

DEFINITION Metaprogramming may be among the most misunderstood terms
in computer jargon. It’s certainly one of the more difficult to define. To make
learning about it easier, each time you see the word metaprogramming in this
book, try to think of it as after-programming or beside-programming. The
Greek prefix meta allows for both of those definitions to be correct. Most of
the examples in this book demonstrate programming after traditional compi-
lation has occurred, or by using dynamic code that runs alongside other pro-
cesses. For each example, ask yourself which kind of metaprogramming
you’re observing. Some of the more in-depth examples demonstrate both
kinds simultaneously.

Also inherent in the classic definition of metaprogramming is the notion that the
code-generation process is embedded within an application to perform some type
of dynamic processing logic. The word dynamic gets tossed around a lot in discus-
sions about metaprogramming because it’s often used to add adaptive interfaces to
a program at runtime. For example, a dynamic XML application might read XML
Schema Definitions (XSD) at runtime to construct and compile high-performance
XML parsers that can be used right away or saved for future use. Such an applica-
tion would perform well and be highly adaptable to new types of XML without the
need for recompilation.

7Definitions of metaprogramming

 Another common definition for metaprogramming is “a computer program that
manipulates other programs at runtime.” Scripting languages often fit this mold, pro-
viding the simple but powerful tools for doing metaprogramming. A program that
manipulates another program doesn’t have to be a scripting language. The dynamic
keyword in C# can be used to emit a kind of manipulating code into a compiled appli-
cation, like this:

dynamic document = DocumentFactory.Create();
document.Open();

Using the dynamic keyword, the call to the Open() method shown here is embedded
into a bit of C# code known as a CallSite. We dive into CallSites in great detail
later in chapter 8. For now, all you need to understand is that what appears to be a
type-safe call to the Open() method in the document object is implemented through
C#’s runtime binder using the literal string "Open." When you dig around in the
Intermediate Language (IL) emitted by the compiler for the preceding snippet, you
may be surprised to see the literal string "Open" passed to the binder to invoke the
method. The C# code certainly didn’t look like a scripting language, but what was
emitted certainly has that flavor. Through the various runtime binders for interfacing
with plain old CLR objects (POCO), Python scripts, Ruby scripts, and COM objects, C#
CallSites exhibit the second definition of metaprogramming rather well. In chap-
ter 8, we show you how to interface with all those languages and object types using
C# dynamic typing.

 Writing new programs at runtime and manipulating programs at runtime aren’t
mutually exclusive concepts. Many of the metaprogramming examples you’ll encoun-
ter in this book do both. First, they may use some sort of code-generation technique to
create and compile code on the fly to adapt to some emerging set of circumstances.
Next, they may control, monitor, or invoke those same programs to achieve the
desired outcome.

More metaprogramming jargon
There are a few more terms that you may encounter when you start reading articles
and other books on metaprogramming. You may run across the term metalanguage
to refer to the language used in the original program (the one that’s writing the others).
We prefer the term metaprogram because it’s more generic. Remember that metapro-
gramming is largely a language-independent craft.

Other terms you’re likely to hear are target language or object language, referring to
the code produced by the metaprogram. Both those terms imply that there’s an inter-
mediate language that the metaprogrammer cares about in the process. As you’ll
soon discover, the output of a .NET metaprogram could be Common Intermediate
Language (CIL) which, for all intents and purposes, you can regard as native code. In
those cases, there’s no target language in the classical sense.

8 CHAPTER 1 Metaprogramming concepts

1.2 Examples of metaprogramming
For most people, the best way to learn is by example. Let’s examine a few examples of
metaprogramming in action. We begin with the simplest of metaprogramming con-
cepts: invoking bits of dynamically supplied JavaScript at runtime. This prototype will
give you an appreciation for the flexibility that metaprogramming can add to a web
application, even though the example is contrived for simplicity.

 Next, we look at how to use introspective interfaces to drive application behavior at
runtime. Through it you’ll learn how to do simple reflection to peer into objects at run-
time. But the real purpose of that example is to help you understand the performance
considerations when deciding to metaprogramming-enable an interface to make it
friendlier and more adaptive at runtime.

 The third example in this section concerns code generation, arguably the classic
definition of metaprogramming. We show you two runtime types of code generation:
creating source code from a so-called object graph assembled by hand and creating
executable IL from a lambda expression. For the second type, we let the C# compiler
do the heavy lifting first. Then we build the lambda expressions by hand before turn-
ing them into runnable code.

 The last example in this section demonstrates how you can use the dynamic fea-
tures of the C# 4 compiler to do some fairly interesting metaprogramming with little
effort. You’ll learn a little bit about how the CallSite and CSharpRuntimeBinder
types work. The real goal of that example, though, is to highlight some of the best
practices around using dynamic types in C#.

 The examples here are designed to provide basic prototypes that you’ll need to learn
faster when reading future chapters. Also, by examining several simple approaches to
metaprogramming in rapid succession, we hope to give you a more holistic view of this
important programming paradigm.

1.2.1 Metaprogramming via scripting
There are many dynamic programming languages. Some of them are also considered
to be scripting languages. Languages like Python or Ruby would work well for our first
example because they have clean, easy-to-understand syntaxes and they’re loaded with
great metaprogramming capabilities. But rather than starting with one of those lan-
guages, which could steepen the learning curve if you don’t know them, let’s begin, in
the following listing, with the two most popular languages in the world.

<!DOCTYPE html>
<html>

<head>
 <script type="text/javascript">
 function convert() {
 var fromValue = eval(fromVal.value);
 toVal.innerHTML = eval(formula.value).toString();
 }

Listing 1.1 Dynamic Number Conversion (HTML and JavaScript)

9Examples of metaprogramming

 </script>
</head>
<body>
 fromValue:
 <input id="fromVal" type="text"/>

 formula:
 <input id="formula" type="text"/>

 <input type="button" onclick="javascript:convert();"
 value="Convert" />

 toValue:
</body>

</html>

The admittedly unattractive web page created by this
markup demonstrates a core metaprogramming concept.
After locating the DynamicConversion.htm file in the
book’s sample source code, load it up and enter some val-
ues into the fromValue and formula fields, as shown in fig-
ure 1.2. Be sure to use the token fromValue somewhere in
the formula to refer to the numeric value that you type
into the fromValue field.

 Figure 1.2 shows a calculation that multiplies the user-supplied fromValue by 25.4,
which is the simple formula for converting inches to millimeters. Typing in a from-
Value such as 3.25 and clicking Convert shows that 3.25 inches is equivalent to 82.55
millimeters. There are two bits of JavaScript code in this web page that make it work: a
function called convert() and the onclick event handler for the Convert button,
which invokes the convert() function when the button is clicked. In the convert()
function, the HTML Document Object Model (DOM) is used to fetch the value from
the first text box on the page, the one named fromVal. The string is evaluated by the
JavaScript DOM by passing it to the aptly-named eval() function:

var fromValue = eval(fromVal.value);

This is a neat trick, but how does it work? When we typed the string "3.25" into the
fromVal element, we weren’t thinking of writing JavaScript per se. We were trying to
express a numeric value. But the eval() function did interpret our input as JavaScript
because that’s all it can do. The eval() function gives you direct access to JavaScript’s
compiler at runtime, so the string "3.25" compiled as JavaScript code is treated as the
literal value for the floating point number we know as 3.25. That makes sense. The
parsed literal number is then assigned to a local variable defined in the script named
fromValue. The next line of code in the convert() function uses eval() once again:

toVal.innerHTML = eval(formula.value).toString();

The string "fromValue*25.4" looks a bit more like a script than the first input
because it contains a mathematical expression. The result of executing that script is a
number that’s converted into a string and written back to the web page for the user to

Figure 1.2
DynamicConversion.htm—
converting inches to
millimeters

10 CHAPTER 1 Metaprogramming concepts

see. Once again, in that single line of code, you can see the HTML DOM and the
JavaScript DOM working together to accomplish what’s required.

 The bit of metaprogramming lurking in this example is the way that the pre-
defined JavaScript variable called fromValue is referenced within the formula pro-
vided by the user. The token fromValue in the user-supplied formula is somehow
bound by the second eval() statement to the value of the predefined variable in the
DOM’s local execution scope. This kind of late binding is fairly common in metapro-
gramming. With JavaScript, writing a script that can refer to objects defined in the
larger execution context, otherwise called the script scope, is simple to do. When you
use libraries like jQuery or the Reactive Extensions for JavaScript (RxJS) for the first
time, how they can do so much in so few lines of code seems utterly magical. The
magic lies in the metaprogramming foundation upon which JavaScript was conceived,
which we examine at the end of this chapter. If JavaScript didn’t expose its compiler in
this ingeniously simple way, neither jQuery nor RxJS would exist.

 Defining the local variable fromValue is a convention
in the design of this particular web page. Rather than
using a variable with a specific name, you could inject
your own variable into the local scope and use it instead,
as shown in figure 1.3.

 As you can see in figure 1.3, the value in the pre-
defined fromValue variable is no longer being used in
the user-supplied formula. This example takes advantage
of the fact that when the first eval() statement runs in
the convert() function, any JavaScript code can be provided to the compiler. A new
variable named otherValue is injected into scope which the formula references
instead. This side effect functions properly because the inches to millimeters calcula-
tion produces the correct output.

 If you can create whole new objects using the
JavaScript DOM, who knows what else you might be
able to reference from a user-supplied script at run-
time? You might have access to some of JavaScript’s
built-in libraries, for example. Let’s give that a try. The
example shown in figure 1.4 uses JavaScript’s built-in
Math class to calculate the tangent value at 45 degrees.
In case you don’t remember your college trigonome-
try, the tangent line on a circle at 45 degrees should have a slope of 1.

 The tan() function needs radians, not degrees. The formula first converts the
degrees supplied by the user to radians using the constant for pi from JavaScript’s
Math class. In JavaScript, getting the constant for pi is as easy as pie, as the saying goes.
Then the Math class is used again to compute the tangent value using the trigonomet-
ric tan() function. The result shows a slight rounding error, but it’s pretty close and
neatly illustrates the idea of using JavaScript’s libraries from a dynamic script.

Figure 1.3
DynamicConversion.htm—
injecting variables into
JavaScript

Figure 1.4
DynamicConversion.htm—using
JavaScript’s Math class
dynamically

11Examples of metaprogramming

 As you can see, the name chosen for the convert() function is wearing a bit
thin as you begin to realize that this number converter can become pretty much
whatever the user wants. For example, pass a single-quoted string for the from-
Value and invoke one or more JavaScript strings in the formula to manipulate it.
As you’ll observe, the user-supplied input doesn’t have to be a number at all. So it
goes with metaprogramming in general. You’ll often find that the metaprogramming-
enabled interfaces you encounter seem simple from the outside. Beneath the sur-
face, however, a lot of interesting and useful functionality is often waiting to
be discovered.

 Having studied the important metaprogramming concepts of late binding and
runtime compilation, let’s turn our attention to another popular technique that’s
used throughout the .NET Framework Class Library (FCL) to make code easier to write
and comprehend.

1.2.2 Metaprogramming via reflection

The surface simplicity that many metaprogramming-enabled interfaces expose is
often quite deliberate. As you’ll see throughout this book, metaprogramming is com-
monly used to hide complexity by providing natural interfaces to complicated pro-
cesses. Let’s take a look at one of the simplest uses of this idea. Imagine that a ListBox
control exists named listProducts. Your goal is to load the control with a list of (you
guessed it) Product objects from a data context. Each Product contains a string prop-
erty named ProductName and an integer property named ProductID. You want
ProductName to be visible to the user, and when they click an item in the ListBox, you
want the associated ProductID to be the selected value. Since .NET 1.0, the code to do
that has been this simple:

listProducts.DisplayMember = "ProductName";
listProducts.ValueMember = "ProductID";
listProducts.DataSource = DataContext.Products;

In English, this code might be read as, “Bind these Product objects to this ListBox,
displaying each ProductName to the user and setting the ProductID for each item as
the selectable backing value.” Notice how the declarative quality of the code makes it
easy to understand what’s going on. In fact, the C# code and the English rendering of
it are quite similar.

 You may have written code that does data binding as we’ve described dozens of
times, but have you ever stopped to think about what’s going on behind the scenes?
How can strings be used in a statically typed language like C# to locate and bind
property values by name at runtime? After all, the strings assigned to the Display-
Member and ValueMember properties could have been variables instead of string liter-
als. The treatment of them by Microsoft’s data-binding code must be performed
completely at runtime.

 The answer is based on something known as the reflection application program-
ming interface (API), which can illustrate the inner workings of a class at runtime,

12 CHAPTER 1 Metaprogramming concepts

hence the name. Microsoft’s ListBox data-binding code uses reflection to use bits of
metadata left behind by the compiler, as shown in the following listing.

public System.Collections.IEnumerable DataSource
{
 set
 {
 foreach (object current in value)
 {
 System.Reflection.PropertyInfo displayMetadata =
 current.GetType().GetProperty(DisplayMember);
 string displayString =
 displayMetadata.GetValue(current, null).ToString();
 // ...

 System.Reflection.PropertyInfo valueMetadata =
 current.GetType().GetProperty(ValueMember);
 object valueObject =
 valueMetadata.GetValue(current, null);
 // ...
 }
 }
}

Keep in mind that Microsoft’s real data binding code is quite a bit more optimized
than this. As each element in the DataSource collection is iterated over, its type is
obtained using the GetType() method, which is inherited from System.Object.

NOTE If you have any doubts about how fundamental reflection is in the
.NET ecosystem, think for a moment about the significance that the Get-
Type() method is included in System.Object. The base class for all .NET
types is quite sparsely populated yet the GetType() method, which is critically
important for metadata discovery and metaprogramming, was deemed impor-
tant enough to be exposed from every single .NET object.

Declarative programming
In 1957, the FORTRAN programming language appeared—the great-grandparent of
all the so-called imperative programming languages. In English, the word imperative
is used to mean command or duty. FORTRAN and its descendants are called impera-
tive languages because they give the computer commands to fulfill in a specific
order. Imperative languages are good for instructing computers how to do work
using specific sequences of instructions. The data binding example at hand hints
at the power of a programming style called declarative that aims to move you from
demanding how the computer should work to declaring what you want done instead.
You can express what you want, and Microsoft’s data-binding code figures out how
to do it for you.

Listing 1.2 DataSource reflection logic (C#)

13Examples of metaprogramming

The System.Type object returned from GetType() has a method called GetProperty()
that returns a PropertyInfo object. In turn, PropertyInfo has a method defined
within it called GetValue() that’s used to obtain the runtime value of a property on an
object that implements the metadata described by the PropertyInfo.

 In the System.Reflection namespace, you may be interested in several of these
Info classes for expressing the various types of metadata, such as FieldInfo, MethodInfo,
ConstructorInfo, PropertyInfo, and so on. As seen in listing 1.2, these classes are
categorical in nature. Once you have an Info class in hand, you must supply an
instance of the type you’re interested in to do anything useful. In listing 1.2, the cur-
rent Product reference in the loop is passed to the GetValue() method to fetch the
instance values for each targeted property. Now that you know the Info classes in
reflection are categorical, you may be thinking about reusing them to optimize the
data binding code. Now that’s thinking like a metaprogrammer! The following listing
shows an optimized version of the code.

public IEnumerable DataSource {
 set {
 IEnumerator iterator = value.GetEnumerator();
 object currentItem;
 do {
 if (!iterator.MoveNext())
 return;
 currentItem = iterator.Current;
 } while (currentItem == null);

 PropertyInfo displayMetadata =
 currentItem.GetType().GetProperty(DisplayMember);
 PropertyInfo valueMetadata =
 currentItem.GetType().GetProperty(ValueMember);

 do {
 currentItem = iterator.Current;
 string displayString =
 displayMetadata.GetValue(currentItem, null).ToString();
 // ...

 object valueObject =
 valueMetadata.GetValue(currentItem, null);
 // ...
 } while (iterator.MoveNext());
 }
}

The first portion of the optimized DataSource data binding code shown in listing 1.3
iterates until it finds a non-null current item. This is necessary because you can’t
assume that the collection supplied as the DataSource has all non-null elements. The
first elements could be empty. Once an element is located, some of its type metadata is
cached for later use. Then the iteration over the elements uses the cached Property-
Info objects to fetch the values from each element. As you can imagine, this is a more

Listing 1.3 Optimized DataSource binding logic (C#)

14 CHAPTER 1 Metaprogramming concepts

efficient approach because you don’t have to perform the costly metadata resolution
for every single object in the collection. Using caching and other optimizations to
improve runtime performance is a common metaprogramming practice.

For brevity, Microsoft’s DataSource binding implementation isn’t shown here. It
includes many interesting optimizations you can learn from. When you’re ready, use
the skills you pick up in chapter 2 to introspect into Microsoft’s real data-binding code.
You’ll learn a lot from that exercise.

 Next, we turn our attention to the idea of code generation, which is how most
developers define metaprogramming.

1.2.3 Metaprogramming via code generation

So far we’ve looked at scripting and reflection as tools for metaprogramming. Now let’s
focus on generating new code at runtime. To ease into the subject, we focus on two of
the simpler approaches to code generation using the Microsoft .NET Framework:

■ Generating source code with the CodeDOM
■ Generating IL with expression trees

To be as illustrative as possible, the approaches are quite different, but the outcomes
only vary by the fact that one approach produces source code text, and the other
emits new functions that are immediately executable.

CREATING SOURCE CODE AT RUNTIME WITH THE CODEDOM
Document-oriented programming models are common in software design because
the document is such a powerfully simple metaphor for organizing information. You
may have used the HTML DOM and the JavaScript DOM to do web development, for
example. Microsoft has included something known as the CodeDOM in the .NET
Framework. As its name implies, the CodeDOM allows you to take a document-ori-
ented approach to code generation.

 The CodeDOM comes from the early days of .NET and reflects some of the most
primitive thinking about creating a standardized code-generation system for Micro-
soft’s platform. The term primitive isn’t pejorative in this case because the CodeDOM,

The magic string problem
One of the drawbacks of any metaprogramming approach that uses literal strings to
drive application behavior at runtime is the fact that compile-time verification by com-
pilers can’t be performed. What would happen if you misspelled the DisplayMember
value as "ProductNane"? You would discover that error during testing quickly. But
what if you allowed the user to specify that string through an application setting, or
worse, via a query parameter? Malicious users could begin probing for so-called
magic strings that could be used to exploit your code by injecting new behaviors. An
entire class of related exploits known as SQL injection attacks still plagues poorly
designed websites, despite the fact that fixing the problem takes only a few minutes.

15Examples of metaprogramming

despite the fact that Microsoft hasn’t focused its attention there in recent years, is still
an elegant code-generation system that many metaprogrammers still enjoy using. The
CodeDOM uses a so-called code graph-based approach to creating code on the fly.

 For all of the CodeDOM snippets shown in this section, the following namespace
imports are required:

using System;
using System.IO;
using System.Text;
using System.CodeDom;
using System.Diagnostics;
using System.CodeDom.Compiler;

To understand how the CodeDOM functions as a source code generator, let’s begin by
exploring which .NET programming languages the CodeDOM supports. The CodeDom-
Provider class is one of the central classes in the System.CodeDom.Compiler
namespace and it includes a handy, static method called GetAllCompilerInfo(),
which returns an array of CompilerInfo objects. Each CompilerInfo object has a
method called GetLanguages() you can use to obtain the list of tokens that can be
used to instantiate the language provider, like this:

foreach (System.CodeDom.Compiler.CompilerInfo ci in
 System.CodeDom.Compiler.CodeDomProvider.GetAllCompilerInfo())
{
 foreach (string language in ci.GetLanguages())
 System.Console.Write("{0} ", language);
 System.Console.WriteLine();
}

Running this snippet in a console application or in LINQPad generates the list of syn-
onyms for each of the installed language providers in the system. Figure 1.5 shows
LINQPad acting as a sort of C# scratchpad to execute this bit of code.

 As you can see in the LINQPad output, five language providers are installed on our
system: C#, Visual Basic, JavaScript, Visual J#, and Managed C++. Each provider allows
for the use of three or four synonyms for instantiating them. We come back to pro-
vider instantiation near the end of this example.

 Notice that F# isn’t among the supported languages. Microsoft hasn’t been putting
much effort into the CodeDOM in the last several years. There have been small
enhancements and corrections in recent releases of the .NET Framework, but don’t
expect to see whole new language providers appear, for example. Microsoft still uses
the CodeDOM heavily in its own major subsystems. The Text Templating Transforma-
tion Toolkit (T4) engine and the ASP.NET page generator still depend on the Code-
DOM for code generation. Going forward, however, Microsoft will almost certainly
continue to focus its research and development dollars for code generation in tools
like the Roslyn API.

 Next, let’s take a look at dynamically generating a class. The CodeDOM uses the
concept of a code graph to assemble .NET objects programmatically. As a C# source

16 CHAPTER 1 Metaprogramming concepts

file might start with the declaration of a namespace, a CodeDOM graph typically
begins with the creation of a System.CodeDom.CodeNamespace object. The Code-
Namespace serves as the root of the graph. Going back to the source code analogy,
the curly braces following a namespace declaration in C# are used to contain the
types that will be defined within it. The CodeNamespace type in the CodeDOM
behaves the same way. It’s a container in which various types and code can be
defined. Before jumping into the code sample, let us take a moment to describe
how the code works. Here are the steps:

1 Create a CodeNamespace that is the CodeDOM class that represents a CLR (Com-
mon Language Runtime) namespace. We’ll call our example namespace Meta-
World to make it memorable.

2 Create a CodeNamespaceImport to import the System namespace in the gener-
ated source code. These are like using declarations in C# or Import declara-
tions in Visual Basic.

LINQPad: A tool that every .NET developer needs
It’s not often that we speak categorically about development tools. As polyglot pro-
grammers, we admire most development tools in a somewhat egalitarian fashion.
Once in a while though, a tool comes along that’s so valuable we feel we must rec-
ommend it to every developer we meet. LINQPad, written by Joe Albahari, is such a
tool. It can be used as a scratchpad for your .NET code. As its name implies, it’s also
good at helping to write and debug LINQ queries. As of this writing, you can freely
download LINQPad from http://LINQPad.net. If you don’t already have it, we encour-
age you to download it and begin exploring right away.

Figure 1.5 Enumerating the synonyms for the CodeDOM language providers using LINQPad

17Examples of metaprogramming

3 Create a CodeTypeDeclaration named "Program" for the class that will be gen-
erated. This is like using the class keyword in your code to declare a new type.

4 Create a CodeMemberMethod named "Main" that will serve as the entry point func-
tion in the Program class. The method object will be inserted into the Program
class. This follows how source code is written. The Program class is defined in
the namespace, and the Main function is defined in the Program class.

5 Create a CodeMethodInvokeExpression to call "Console.WriteLine" with a
CodePrimitiveExpression parameter of “Hello, world!”. This is the hardest
part to understand because of the nested way in which the code is structured.

You can probably see where this is going. We’ll be dynamically generating the time-
honored “Hello, world!” program with the code shown in the following listing.

partial class HelloWorldCodeDOM
{
 static CodeNamespace BuildProgram()
 {
 var ns = new CodeNamespace("MetaWorld");
 var systemImport = new CodeNamespaceImport("System");
 ns.Imports.Add(systemImport);
 var programClass = new CodeTypeDeclaration("Program");
 ns.Types.Add(programClass);
 var methodMain = new CodeMemberMethod
 {
 Attributes = MemberAttributes.Static
 , Name = "Main"
 };
 methodMain.Statements.Add(
 new CodeMethodInvokeExpression(
 new CodeSnippetExpression("Console")
 , "WriteLine"
 , new CodePrimitiveExpression("Hello, world!")
)
);
 programClass.Members.Add(methodMain);
 return ns;
 }
}

NOTE In chapter 4, we show in depth how to generate code dynamically
using the CodeDOM. In the small example shown here, we used the Code-
SnippetExpression for simplicity. Using that CodeDOM object can lock you
into producing code for one specific language, which often defeats one pur-
pose for using the CodeDOM to begin with.

The BuildProgram() method shown in listing 1.4 encapsulates the script outlined ear-
lier, returning a CodeNamespace object to the caller. You haven’t yet rendered the
source code. That comes next. The CodeNamespace object can be used by a CodeDom-
Provider to generate source code. Now you have to use one of the five language pro-
viders installed on our computer to do the work. The example in listing 1.5 performs
the following steps to do that:

Listing 1.4 Assembling the “Hello, world!” program with the CodeDOM (C#)

18 CHAPTER 1 Metaprogramming concepts

1 Create a CodeGeneratorOptions object to instruct the chosen compiler how
to behave. You can control indentation, line spacing, bracing, and more with
this class.

2 Create a StringWriter that the language provider will stream the generated
source code into. An attached StringBuilder holds the generated source code.

3 Create a C# language provider and invoke the GenerateCodeFromNamespace
method, passing the CodeNamespace constructed by the BuildProgram()
method shown in listing 1.4.

Once completed, the StringBuilder will contain the source code you’re after. The
example program dumps the emitted source code to the console. But it could as easily
be written to disk.

partial class HelloWorldCodeDOM
{
 static void Main()
 {
 CodeNamespace prgNamespace = BuildProgram();
 var compilerOptions = new CodeGeneratorOptions()
 {
 IndentString = " ",
 BracingStyle = "C",
 BlankLinesBetweenMembers = false
 };
 var codeText = new StringBuilder();
 using (var codeWriter = new StringWriter(codeText))
 {
 CodeDomProvider.CreateProvider("c#")
 .GenerateCodeFromNamespace(
 prgNamespace, codeWriter, compilerOptions);
 }
 var script = codeText.ToString();
 Console.WriteLine(script);
 }
}

Compile and run this little code-generator program to see the nicely formatted C#
program it produces in the following listing.

namespace MetaWorld
{
 using System;

 public class Program
 {
 static void Main()
 {
 Console.WriteLine("Hello, world!");
 }
 }
}

Listing 1.5 Generating source code from a CodeNamespace (C#)

Listing 1.6 CodeDOM-generated C# source code for “Hello, world!”

19Examples of metaprogramming

Generating C# source code is easy, isn’t it? But what if you wanted to generate man-
aged C++ source code for the same program? You might be surprised at how simple
that change is. Modify the string that reads "c#" in the call to CodeDomProver
.CreateProvider() in listing 1.5 to read "c++", and the metaprogram will generate
C++ code instead. The following listing shows the C++ version of the dynamically gen-
erated source code after making that small change.

namespace MetaWorld {
 using namespace System;
 using namespace System;
 ref class Program;

 public ref class Program
 {
 static System::Void Main();
 };
}
namespace MetaWorld {
 inline System::Void Program::Main()
 {
 Console->WriteLine(L"Hello, world!");
 }
}

The output of the slightly modified program is nicely formatted source code written
in Managed C++, which you could save to disk for compilation in a future build step,
for example. According to the output from the LINQPad run shown in figure 1.5, you
could also have used the synonyms "mc" and "cpp" to instantiate the C++ language
provider. The remaining providers for Visual Basic, JavaScript, and Visual J# are avail-
able to create well-formatted code in those languages, too. Give them a try to see that
switching the output language when generating source code from a CodeDOM code
graph is almost effortless.

 We hope this example reveals how straightforward it is to generate source code
at runtime. Yet we haven’t answered the central question about why you would want
to do such a thing. Why would you ever want to generate source code? Here are
some ideas taken from real-world projects that have used code-generation tech-
niques successfully:

■ Creating entity classes from database metadata for an object-relational mapping
(ORM) tool during a build process.

■ Automating the generation of a SOAP client to embed features in the proxy
classes that aren’t exposed through Microsoft’s command-line tools.

■ Automating the generation of boundary test cases for code based on simple
method parameter and return type analysis.

The list goes on and on. Whatever your reasons for wanting to generate source code,
the CodeDOM makes it fairly easy. The CodeDOM isn’t the only way to generate source
code in the .NET Framework, but once you become comfortable with the classes in the

Listing 1.7 CodeDOM-generated C++ source code for “Hello, world!”

20 CHAPTER 1 Metaprogramming concepts

System.CodeDom namespace, it’s not a bad choice. The preceding example is deliber-
ately simple. When you’re ready to dive deeper into the CodeDOM, see chapter 4,
which is dedicated to the CodeDOM and which shows many advanced metaprogram-
ming techniques with rich, reusable examples.

 Now that we’ve delved into expressing code as data, let’s turn our attention to a
more recently introduced way to do that in the .NET Framework.

CREATING IL AT RUNTIME USING EXPRESSION TREES

One of the most common metaprogramming techniques is expressing code as data.
That may sound a bit odd at first. The CodeDOM example in the last section described
code as a set of data structures to emit source code. An arguably more interesting
metaprogramming practice involves compiling the data that represents a body of code
into an assembly that can be saved to disk or executed immediately by the running
application. This cuts out the step of having to compile intermediate source code files.
Better still, if the code graph were somehow independent of the machine architecture,
it could be serialized to a remote computer to be compiled and executed there. The
remote computer need not be using the same operating system or even the same pro-
cessor architecture, as long as it has the means for compiling the serialized data struc-
ture. Those types of in-memory compilation scenarios are quite a bit more common in
metaprogramming than the ones for generating source in an intermediate step.

 To demonstrate this idea of in-memory compilation, the code graph must some-
how be assembled at runtime into IL. As it turns out, the CodeDOM classes you exam-
ined can compile code graphs and blocks of raw source code written in one of the
supported languages into .NET assemblies. Those dynamically generated assemblies
can be written to disk for future use or exposed as in-memory types for immediate use
by the currently executing application. There are also classes in the Reflection.Emit
namespace that are well-suited for IL generation. But both the CodeDOM and
Reflection.Emit approaches are a bit too complex for an introductory chapter
designed to bring developers up to speed who may be learning about metaprogram-
ming for the first time. Both the CodeDOM and Reflection.Emit approaches are
important, which is why we dedicate chapters 4 and 5, respectively, to them. To get
comfortable with dynamic IL generation in .NET right now, expression trees are the
best vehicle for learning the fundamentals.

 To understand expression trees, you need to understand a bit of history concern-
ing delegates in the .NET Framework and languages. Delegates were introduced in
the first version of the Framework. They were pretty slow in the early days, so a lot of
performance-conscious developers avoided using them for computationally inten-
sive work. Early delegates, as expressed in C# and Visual Basic, also had to be named
at compile time, which made them a bit awkward feeling. When the 2.0 Framework
shipped, anonymous methods were added to the C# language. Under the covers,
the runtime implementation of delegates also got a big performance boost at that
time. These were steps in the right direction. Higher-order functions could now be
declared inline without having to assign names to them. They performed well at

21Examples of metaprogramming

runtime, too. Anonymous methods made the C# delegate syntax much more coher-
ent, but the language still lacked the overall expressive power of truly functional
programming languages.

In 2006, Microsoft added expression trees to the Base Class Library (BCL) and lambda
expression support to the C# and Visual Basic languages. These features were added
to support LINQ. With LINQ, the .NET languages could seriously compete with more
functional languages for constructing what are known as list comprehensions. That term
goes way back into computer science history. For now, the best way to think about list
comprehension is that it enables lists of objects to be created from other lists. That
sounds as absurdly simple as it is. When you think about it, doesn’t most of our work

From C++ function pointers to .NET expression trees
The C++ language uses so-called function pointers to pass functions around as
parameters to other functions. Using this technique, a function caller can provide a
variety of implementations at runtime, passing the one that best suits the current
needs of the application. Does that sound familiar? Indeed, these so-called higher-
order functions in C++ enable a rudimentary kind of application composition that can
be used for metaprogramming.

The problem with this approach is that the compiler can’t check that the parameters
or the return type of the referenced functions correctly match the expectations of the
caller. The .NET Framework 1.0 introduced delegates to deal with this problem. Del-
egates can be passed around like function references, but they fully enforce the call
contract in a type-safe way. Through several revisions of the .NET Framework, the dele-
gate concept has greatly evolved. Today we have .NET expression trees, which mas-
terfully blend the concepts of higher-order functions with code as data and a runtime
compiler into a rich instrument for everyday metaprogramming.

What makes a programming language functional?
According to computer scientist Dr. John Hughes, in his research paper “Why Func-
tional Programming Matters,” programming languages can be considered functional
if they have first-class support for both higher-order functions and lazy evaluation.
Higher-order functions are those that accept other functions as parameters or return
new functions to their callers. The C# language has had that capability since the
beginning, courtesy of delegates in the Common Language Runtime (CLR). Lazy eval-
uation means waiting until a calculation is needed to perform it. The .NET class library
includes the Lazy<T> type for deferring execution, but it’s not a language construct.
The C# and Visual Basic languages both support the yield return syntax in their
iterator blocks which, when chained together as the LINQ standard query operators
do, exhibits a useful kind of lazy evaluation for list comprehension. But this isn’t the
language-supported kind of lazy evaluation that Dr. Hughes was talking about. If you
want true lazy evaluation capability in a .NET language today, you should take a look
at F#, which is the only .NET language from Microsoft that supports it.

22 CHAPTER 1 Metaprogramming concepts

in software development involve list creation and manipulation? Indeed, list handling
is one of those core concepts that can make or break a programming language.

 With the new LINQ-oriented features added to C#, a function that generically
accepts two parameters and returns a result could be expressed as follows:

public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2);

Functions that compare one integer to another and return a Boolean result would
certainly fit this pattern. An instance of a function that tests whether a Left parameter
is greater than a Right parameter might be expressed this way:

public bool GreaterThan(int Left, int Right)
{
 return Left > Right;
}

It may seem odd to think about “instances of functions,” but that metaprogramming
concept will become clearer in the next few minutes. The GreaterThan function as it’s
defined above is okay, but using it as a predicate for filtering query results, for exam-
ple, is a bit cumbersome. The fact that it’s an independently defined and named func-
tion is part of the problem. To use it, you’d have to wrap it in a specific delegate type
or the closed generic type Func<int,int,bool>. C# now offers a much more succinct
way to do this using a lambda expression:

(Left, Right) => Left > Right

The => operator is read as “goes to,” so for this expression in English, you might read
it as “Left and Right parameters go to the result of testing if Left is greater than
Right.” Notice first of all that as a pure expression, there’s no requirement that the
Left and Right parameters be of any specific types. You could be comparing floating
point numbers, integers, strings—who knows? But for compilers like C#, which isn’t as
good at doing deep type inference as F# is, you need to get more specific, like this:

Func<int, int, bool> GreaterThan = (Left, Right) => Left > Right;

Now the Left and Right parameters are both known by the compiler to be inte-
ger types.

 We added the name GreaterThan back to the definition to show how this newfan-
gled functional delegate described as a lambda expression links back to the old-
fashioned function by the same name shown earlier. On the inside, both functions are
identical. You could invoke either of them with code like this:

int Left = 7;
int Right = 11;
System.Console.WriteLine("{0} > {1} = {2}",
 Left, Right, GreaterThan(Left, Right));

This would print to the console 7>11=False as you’d expect. Being able to define
functional delegates using lambda expressions sure makes the code more succinct.
The compiler support for lambda expressions is nice, but using lambda expressions in

23Examples of metaprogramming

this way isn’t how they add real value. Using them inline in LINQ expressions is more
typical. Figure 1.6 shows LINQPad being used again. This time, we’re performing a
cross-join in LINQ to multiply one range of numbers against another. The Dump()
function is a LINQPad feature that makes it easy to dump the results of an expression.
If you were running the example code in a console application, you’d need to write
out the results with custom code.

 With two ranges of 10 values each, the result contains 100 items as shown in LINQ-
Pad’s Results tab. Forty-five of those 100 results are redundant because the cross-joined
ranges overlap and multiplication is commutative. You can eliminate the duplicates by
comparing the row and column values in a predicate, by adding a filter like this:

qry.Where(a => a.Row >= a.Column).Dump();

Notice how the lambda expression passed to the Where() standard query operator
looks a lot like the GreaterThan Func<int,int,bool> shown earlier. The difference is
that rather than taking two parameters, the two compared values are accessed from
properties of a single parameter. By using that expression in the Where() standard
query operator, the results are filtered by it. We call this type of filtering function
a predicate.

 You could read the predicate expression a=>a.Row>=a.Column in English as
“Return true for items where the Row number is greater than or equal to the Column
number.” If you’re unaccustomed to LINQ, the way this expression is used in context
may be a bit confusing. What’s the a parameter? Where did it come from? What type is
it? One of the clues can be found in the Results tab in LINQPad. Notice in figure 1.6
that the result of the Dump() is of type IEnumerable<>. The query must produce a list

Figure 1.6 Cross-joining two ranges in LINQ

24 CHAPTER 1 Metaprogramming concepts

of something. Still, you don’t know what type those items in the list have because the
selectnew{…} syntax was used to produce an anonymous type which has no name
from the programmer’s perspective. You can tell from the output that each unnamed
thing has a Row property, a Column property, and a Product property. Behind the
scenes, the items in the list do have a named type, but you wouldn’t want to read it.
For anonymous types, the compiler generates a long, strange-looking name that only
has value internally. If LINQPad were to show you the name in the Results, it would
only get in the way.

 Now that you understand that the query produces a list of anonymously typed
objects, the parameter named a in the lambda expression might make a bit more
sense. In this case, the name a was chosen because each of the objects passed to
the function will be one of those anonymous types. You could have used any name
for the parameter. But when lambda functions are embedded like this, we often
use parameter names that are a bit more compact. This increases comprehension
because the use of the function is so close to its definition, long descriptive names
aren’t often needed. When functions are declared the old-fashioned way, totally
separated from their points of use, more descriptive parameter names tend to
increase comprehension.

 In figure 1.7, reading the numbers from top to bottom and left to right, you can
visualize what the improved results of the filtered query look like.

 The 45 duplicate values in the cross-join operation that would have appeared on
the bottom and left sides have been filtered out by the predicate. Try the filtered
query in LINQPad to see that it produces the result shown in figure 1.7. Then try using
some other predicates to manipulate the results in interesting ways. After all, the best
way to learn is to play.

 Now that you understand how to filter queries using a lambda expression in LINQ,
you’re ready to understand an interesting metaprogramming connection. Asking the
C# compiler to turn the lambda expression into a function is purely a compile-time
process. It may be newfangled looking, but it’s still sort of old school, as they say. What if
you need to be able to pass in a variety of filter predicates based on the circumstances

Figure 1.7 The results of filtering a cross-join
of two ranges with a lambda predicate

25Examples of metaprogramming

at the moment? Moreover, what if some of those filtering algorithms can’t be known at
compile time? Or perhaps they come from a remote process that can create new filters
on the fly, sending them across the wire to your application to compile and use.
Metaprogramming to the rescue!

 Moving from the idea of concrete, compile-time functions to a more generic
abstraction of those functions is fairly straightforward in .NET, thanks to so-called
expression trees and the latest compilers from Microsoft. You’ve already seen how the
C# compiler can turn a lambda expression into a real function that you can call like
any other. Internally, compilers operate by parsing the text of source code into
abstract syntax trees (AST). These trees follow certain basic rules for expressing code
as data. When lambda expressions are compiled, for example, they fit into the result-
ing AST as any other .NET constructs would.

What if you could preserve the AST created by the compiler so that it could be modi-
fied at runtime to suit your needs? If that were possible, all sorts of interesting things
would be possible. Unfortunately, as of this writing the parser and AST generator for
C# is still exposed in such a way that the average developer can’t use it to implement
the dynamic execution scenarios just described. But the aptly named expression trees
in the .NET Framework are an interesting step in that direction.

 Expression trees were introduced into .NET 3.0 to support LINQ. Then they got
great enhancements to support the Dynamic Language Runtime (DLR) in version 4.0
of the Framework. In addition to the expression tree enhancements in version 4.0, the

The importance of playfulness
For adults, some types of play are pure distraction. Blasting away at aliens in a first-
person shooting game for hours at a time can certainly wash away the worries of the
day, but it probably doesn’t help to establish and refine the prototypes that your mind
needs to absorb new ideas. Playfulness can be useful as a learning tool. Small children
lack analytical skills, so they use play to build experience and knowledge about how the
world works. As you get older, your play becomes more and more structured until even-
tually you may even forget how to do it. Throughout this book, we encourage you to be
playful with the topics we’re teaching you. When we show you one way to do something,
try a few variations to cement what you’ve learned deep into your mind.

What happened to Compiler-as-a-Service?
At the Microsoft Professional Developer Conference in 2008, Anders Hejlsberg hinted
at things to come in future versions of the C# programming language. One of them
was called Compiler-as-a-Service. The basic idea was to expose some of the C# com-
piler’s black box functionality for developers outside of Microsoft to use. Microsoft
has since dropped that name, but the ideas behind what was known as Compiler-as-
a-Service are alive and well. Jump ahead to chapter 10 to find out more right away.

26 CHAPTER 1 Metaprogramming concepts

.NET compilers got the ability to parse C# and Visual Basic code directly into expres-
sions. Think back to the GreaterThan() function defined as a lambda expression ear-
lier. Remember the Func<int,int,bool> that created a real, callable function at
compile time? Now evaluate the following line of code and look for the differences:

Expression<Func<int, int, bool>> GreaterThanExpr =
 (Left, Right) => Left > Right;

Syntactically, the GreaterThan Func<> has been enclosed in an Expression<> type and
renamed to GreaterThanExpr. The new name will make it clearly different in the dis-
cussion that follows. But the lambda expression looks exactly the same. What’s the
effect of the change? First, if you try to compile an invocation of this new Greater-
ThanExpr expression, it will fail:

bool result = GreaterThanExpr(7, 11); // won’t compile!

The GreaterThanExpr expression can’t be invoked directly as the GreaterThan func-
tion could. That’s because after compilation, GreaterThanExpr is data, not code.
Rather than compiling the lambda expression into an immediately runnable func-
tion, the C# compiler built an Expression object instead. To invoke the expression,
you need to take one more step at runtime to convert this bit of data into a run-
nable function.

Func<int, int, bool> GreaterThan =
 GreaterThanExpr.Compile();

bool result = GreaterThan(7, 11); // compiles!

The Expression class exposes a Compile() method that can be called to emit run-
nable code. This dynamically generated function is identical to the one produced by
both the old-fashioned, separately defined method named GreaterThan and the pre-
compiled Func<> delegate by the same name. Calling a method to compile expres-
sions at runtime may feel a bit odd at first. But once you experience the power of
dynamically assembled expressions, you’ll begin to feel right at home.

As you’ve seen in the previous example, the C# compiler can build an Expression for
you at compile time. That’s certainly convenient, but you can also assemble lambda

How LINQ uses Expressions
LINQ queries benefit directly from the way that Expressions can be compiled. But the
various LINQ providers don’t typically call the Compile() method as shown here. Each
provider has its own method for converting expression trees into code. When a predicate
like a => a.Row > a.Count is compiled, it might produce IL that can be invoked in a
.NET application. But the same expression could be used to produce a WHERE clause
in a SQL statement or an XPath query or an OData $filter expression. In LINQ, expression
trees act as a sort of neutral form for conveying the intent of code. The LINQ providers
interpret that intent at runtime to turn it into something that can be executed.

27Examples of metaprogramming

expressions by hand which may be useful in some applications. The code in the fol-
lowing listing shows how to construct and compile an Expression class programmati-
cally that implements the GreaterThan function seen previously.

using System;
using System.Linq.Expressions;

class ManuallyAssembledLambda
{
 static Func<int, int, bool> CompileLambda()
 {
 ParameterExpression Left =
 Expression.Parameter(typeof(int), "Left");
 ParameterExpression Right =
 Expression.Parameter(typeof(int), "Right");

 Expression<Func<int, int, bool>> GreaterThanExpr =
 Expression.Lambda<Func<int, int, bool>>
 (
 Expression.GreaterThan(Left, Right),
 Left, Right
);

 return GreaterThanExpr.Compile();
 }

 static void Main()
 {
 int L = 7, R = 11;
 Console.WriteLine("{0} > {1} is {2}", L, R,
 CompileLambda()(L, R));
 }
}

The CompileLambda() method starts by creating two ParameterExpression objects:
one for an integer named Left, and another for an integer named Right. Then the
static Lambda<TDelegate> method in the Expression class is used to generate a
strongly typed Expression for the delegate type you need. The TDelegate for the
lambda expression is of type Func<int,int,bool> because you want the resulting
expression to take two integer parameters and return a Boolean value based on the
comparison of them. Notice that the root of the lambda expression is obtained from the
GreaterThanproperty on the Expression class. The returned value is an Expression
subclass known as a BinaryExpression, meaning it takes two parameters. The
Expression type serves as a factory class for many Expression-derived types and other
helper members. Here are a few of the other Expression subtypes you’re likely to use
when building expression trees programmatically:

■ BinaryExpression—Add, Multiply, Modulo, GreaterThan, LessThan, and so on
■ BlockExpression—Acts as a container for a sequence of other Expressions
■ ConditionalExpression—IfThen, IfThenElse, and so on

Listing 1.8 Assembling a lambda Expression manually

28 CHAPTER 1 Metaprogramming concepts

■ GotoExpression—For branching and returning to LabelExpressions
■ IndexExpression—For array and property access
■ MethodCallExpression—For invoking methods
■ NewExpression—For calling constructors
■ SwitchExpression—For testing object equivalence against a set of values
■ TryExpression—For implementing exception handling
■ UnaryExpression—Convert, Not, Negate, Increment, Decrement, and so on

The list goes on and on. In fact, there are more than 500 methods and properties
returning dozens of expression types in that class. They cover about any coding con-
struct you can imagine (and probably many more that you can’t). Complex expres-
sion trees can be constructed entirely from Expression–derived objects instantiated
directly from static properties and methods in this base class.

 To round out this introductory section on the topic, let’s look at one more interest-
ing example. The manually assembled lambda expression shown earlier is nice, but it
only provides predicates for integers. Moreover, it emits code only for greater-than
operations. The following listing shows a more dynamic version of that code that can
be used for any data type and a variety of ordering comparisons.

using System;
using System.Linq.Expressions;

class DynamicPredicate
{
 public static Expression<Func<T, T, bool>>
 Generate<T>(string op)
 {
 ParameterExpression x =
 Expression.Parameter(typeof(T), "x");
 ParameterExpression y =
 Expression.Parameter(typeof(T), "y");
 return Expression.Lambda<Func<T, T, bool>>
 (
 (op.Equals(">")) ? Expression.GreaterThan(x, y) :
 (op.Equals("<")) ? Expression.LessThan(x, y) :
 (op.Equals(">=")) ? Expression.GreaterThanOrEqual(x, y) :
 (op.Equals("<=")) ? Expression.LessThanOrEqual(x, y) :
 (op.Equals("!=")) ? Expression.NotEqual(x, y) :
 Expression.Equal(x, y),
 x, y
);
 }
}

A generic function has been built to generate a type-safe expression based on the
compared type and a comparison operation using a type parameter and a standard
string parameter, respectively. The generator function is aptly named Generate. In the

Listing 1.9 A DynamicPredicate class using expression trees

29Examples of metaprogramming

following listing, notice how predicates for different data types can now be defined
and compiled dynamically.

static void Main()
{
 string op = ">=";
 var integerPredicate =
 DynamicPredicate.Generate<int>(op).Compile();
 var floatPredicate =
 DynamicPredicate.Generate<float>(op).Compile();

 int iA = 12, iB = 4;
 Console.WriteLine("{0} {1} {2} : {3}", iA, op, iB,
 integerPredicate(iA, iB));

 float fA = 867.0f, fB = 867.0f;
 Console.WriteLine("{0} {1} {2} : {3}", fA, op, fB,
 floatPredicate(fA, fB));

 Console.WriteLine("{0} {1} {2} : {3}", fA, ">", fB,
 DynamicPredicate.Generate<float>(">").Compile()(fA, fB));
}

The first predicate generated in this example uses
the greater-than-or-equal-to operator on integer
types. The next one is for the same operator com-
paring floating-point types. The predicates are
then used to perform simple comparisons. In the
last statement, a dynamic predicate is built for
the greater-than operator on floating-point types,
which is used to compare the same floating-point
values from the last invocation. Figure 1.8 shows
the result of running the code.

 We’ve only scratched the surface of what expression trees can do in .NET. The
power of LINQ and the DLR wouldn’t be possible without them. For example, LINQ’s
IQueryable interface can be used to consume dynamically assembled expressions, giv-
ing you a truly elegant way to make the search and query interfaces in your applica-
tions simple to extend over time. For that example and more, turn to chapter 6. In the
meantime, let’s take a look at one more way to do metaprogramming in .NET:
dynamic typing.

1.2.4 Metaprogramming via dynamic objects

Statically typed languages rule the roost, as they say, in the .NET world. Even though
Microsoft’s IronPython implementation of the venerable Python programming lan-
guage is impressive both in terms of performance and compatibility, programmers accus-
tomed to working on the Microsoft stack don’t seem to be as attracted to it as some of us
had hoped. It’s not just that old habits die hard. New skills are quite difficult to form, in

Listing 1.10 Invoking the DynamicPredicate

Figure 1.8 Exercising the
DynamicPredicate class

30 CHAPTER 1 Metaprogramming concepts

particular when one believes that the tools they use are excellent for problem-solving.
Asking C++ and Visual Basic 6 developers to upgrade their skills to learn C# and Visual
Basic .NET was difficult enough. Asking those developers to invest time and energy to
learn Python and Ruby has proven to be tougher still.

 Dynamic languages like JavaScript, Python, and Ruby have a lot to offer. The lan-
guages themselves are all wonderfully expressive. Well-developed platforms and librar-
ies like jQuery, Django, and Rails make it easy to get going. After working with these
languages for a while, one discovers what seems to be endless depth in the included
libraries. Almost anything you could ever want for building rich applications has been
created and captured in the standard libraries. Pythonistas say about their language
that it comes batteries included.

 Alas, dynamic languages may never be as popular on the .NET Framework as our
trustworthy, statically typed companions of old. But that doesn’t mean that the
dynamic programming language developers should have all the fun.

A C# DYNAMIC TYPING BACKGROUNDER

On Jan. 25, 2008, Charlie Calvert of Microsoft Corporation posted a blog article titled
“Future Focus I: Dynamic Lookup.” In that post, he wrote, “The next version of Visual
Studio will provide a common infrastructure that will enable all .NET languages,
including C#, to optionally resolve names in a program at runtime instead of compile
time. We call this technology dynamic lookup.”

 True to his word, version 4.0 of the C# programming language included great sup-
port for creating and handling dynamically typed objects. Charlie went on in the post
to list the key scenarios for using this new capability. Years later, his list is still compel-
ling. The list includes:

■ Office automation and COM interop
■ Consuming types written in dynamic languages
■ Enhanced support for reflection

We look at the first two scenarios in detail in Part 3 (chapters 8-10) of this book.
Because you’ve already gotten a taste of reflection in this chapter, let’s build on that
learning by examining Charlie’s third scenario. We begin by taking a quick tour of so-
called duck typing. This odd-sounding term traces its origins to James Whitcomb Riley,
a 19th century poet: “When I see a bird that walks like a duck and swims like a duck
and quacks like a duck, I call that bird a duck.” The current phrase, specific to ensur-
ing type-appropriateness in programming languages, is only a couple of decades old.

 With respect to computer programming, you might translate Riley’s “walk like a
duck…” line into “If an object supports the methods and properties I expect, I can
use them.”

 We use the word expect deliberately because the duck-typing concept is all about
compile-time versus runtime expectations. If you expect an object to have a method
named CompareTo in it, taking one Object parameter and returning an integer result,
do you care how it got there? The answer depends somewhat on your worldview. More

31Examples of metaprogramming

importantly, it depends on your tools. Examine the code in figure 1.9, which throws
an exception at runtime while trying to perform a simple sort.

The L in SOLID
The programming acronym SOLID packs a lot of meaning into five little letters. The L
stands for the Liskov substitution principle (LSP), which has a genuinely formidable
sounding ring to it. Although it may sound a bit unnerving, the LSP isn’t all that chal-
lenging to understand. It means that subtypes behave like the types from which
they’re derived. Inherent in the LSP is that the compiler gives the programmer support
for enforcing type correctness at compile time.

Why is this significant to understand in a discussion about duck typing? Well, in stati-
cally typed languages like C#, classes behave like contracts. They make promises
about their members, the count, order, and type of parameters that must be pro-
vided, and the return types. Truly dynamic languages don’t enforce contracts this
way, which makes them feel different to the programmer who’s accustomed to get-
ting LSP support from the compiler. This will be important to keep in mind as you
learn about C#’s dynamic typing capabilities.

Figure 1.9 Simple sorting that throws an exception

32 CHAPTER 1 Metaprogramming concepts

The code looks okay, and indeed, it compiles perfectly. But an ArgumentException is
thrown at runtime from the Sort function, indicating that “At least one object (in
the comparison) must implement IComparable.” If you were new to C#, having
come from the Python or Ruby worlds, this error might cause real confusion. Having
looked to other C# programs as examples, a dynamic-language programmer might
have concluded that implementing a CompareTo function in a class with the
expected method signature was all that’s required to do sorting of arrays containing
that type. The Sort function implementation is a bit more demanding than that,
however. Not only must you include a CompareTo method in your class, it must specif-
ically be of the type IComparable.CompareTo. Adding that one simple declaration to
the Thing class solves the problem:

public class Thing : IComparable
{
 public string Name { get; set; }
 public int CompareTo(object other)
 {
 return Name.CompareTo(((Thing)other).Name);
 }
}

This kind of demand is foreign to programmers accustomed to working in dynamic
languages because it doesn’t seem substantive to them. In fact, to a dynamic-language
programmer, this sort of demand feels downright offensive. Why should the Array.Sort
function care how the CompareTo method got into the Thing class? To them, the exis-
tence of the function at runtime should be enough.

The question that Charlie Calvert and the C# compiler team posed in 2008 is: “Can
one modern programming language support both the static and dynamic typing mod-
els well?” With all due respect, the answer to that question is resoundingly no. C# is
still a statically typed language. The dynamic capability in version 4.0 has been bolted
on to the side of the language, as you’ll discover in a moment. Declaring and using a
dynamic object in C# could hardly be easier:

dynamic name = "Kevin";
System.Console.WriteLine("{0} ({1})",
 name, name.Length);

No value in religious debate
This is the point in the discussion where we could spiral downward into a somewhat
religious argument about the worth of various programming models, but we’re going
to resist the urge. The dynamic way of programming is no better or worse than the
static way. It’s different. Some problems are well-suited to one type of solution or
another. The fact of the matter is that software developers get great work done in
statically typed environments and dynamically typed ones, too. That makes both
approaches worthy of study and respect.

33Examples of metaprogramming

Run that code in LINQPad after selecting C# Statements from the Language drop-
down list to see that it dutifully formats and prints the name and the length of the
string as 'Kevin(5)' to the Results tab. Now change the declared type for the name
variable to a string and run it again. You’ll notice that the output in the Results tab is
identical. What’s the difference? While you have the name variable defined as a
string, switch to LINQPad’s IL tab. This will show you the compiled IL for the code,
which will look something like figure 1.10.

 Your introduction to IL is coming in chapter 2, but this code is so simple, you
should be able to make out what’s going on. The two literal strings you see in the C#
code are pushed onto the stack before the get_Length method is called on the System
.String class using the callvirt opcode. If you’ve never looked at IL, you may be sur-
prised to find that the Length property accessor for a string is implemented with the
name get_Length. The result of calling get_Length is of type System.Int32, but
the Console.WriteLine method expects parameters of type of System.Object. The
box opcode is used to box that integer value type as an object before calling System
.WriteLine. All this was done with eight IL opcodes.

 Now change the type of the name variable back to dynamic, rerun the code,
and observe the IL it produces. We won’t show that IL listing here because it
would take up a couple of pages and require several more pages to fully describe.
In chapter 8, we do a deeper investigation of the CallSite class and other
metaprogramming-relevant classes from the System.Runtime.CompilerServices
and Microsoft.CSharp namespaces. As you scroll through the IL on your own,
take time to notice two literal strings that are pushed on the stack that weren’t
pushed in the previous example:

Figure 1.10 The IL from writing a string to the console

34 CHAPTER 1 Metaprogramming concepts

IL_0012: ldstr "WriteLine"
//... some code omitted ...
IL_0089: ldstr "Length"

You may also notice that the reference to the get_Length method is also missing from
the IL. How could the get_Length method be invoked if it’s not in the IL? The fact
that it’s missing is an interesting clue, as it turns out. Also, do you see literal strings for
"WriteLine" and "Length" in the original C# code? No, so why do these literal strings
appear in the IL now? When the type of the name variable was changed from string to
dynamic, many changes happened under the covers, as you can see.

 The outermost change involves the emission by the C# compiler of CallSite
objects into the IL. A CallSite is literally the site in the code where something
dynamic happens. It may surprise you that in this code, there are two CallSite
objects. One is used to invoke the Length property accessor on the name, which hap-
pens through a call to the runtime binder’s GetMember method:

IL_0089: ldstr "Length"
//... some code omitted ...
IL_00AA: call Microsoft.CSharp.RuntimeBinder.Binder.GetMember

That makes sense given that the name variable was marked as dynamic. Using the dot
operator after the name variable to invoke the Length property ends up passing the lit-
eral string "Length" to the C# runtime binder to reflect against the object to get the
value. Do you remember that Charlie said in his blog post how dynamic lookup would
simplify reflection? The reflection that the C# runtime binder is doing for you also
explains why the call to the get_Length function is conspicuously absent in this ver-
sion of the code. There’s no need to bind up a call to get_Length at compile time
because the invocation is going to happen at the CallSite at runtime via reflection.

 The remaining mysteries at this point are (a) that literal string "WriteLine" that
you found in the IL, and (b) that second CallSite that was emitted into the site con-
tainer. Could they be related? Indeed, they are related. The second CallSite is used
to call InvokeMember on the C# runtime binder to dispatch a dynamic call to the static
"WriteLine" method on the System.Console class. The question that might pop into
your mind is: “Why on Earth is the WriteLine method being called dynamically?”
After all, nothing about System.Console was declared to be dynamic.

 This code highlights one of the biggest concerns that many developers have about
dynamic typing in C#. When you pass a type declared as dynamic to a method, or if that
method returns such a type, that method call will also be implemented dynamically
through a CallSite that’s emitted by the compiler. Most developers expect to pay a price
for using the dynamic keyword in C#, but they don’t expect that it will have a ripple effect,
causing other nearby function calls and member accesses to become dynamically invoked
as well. The best advice we can give is to be careful when using C#’s dynamic keyword.

 Now that you have an appreciation for what’s happening behind the scenes with
dynamic typing in C#, let’s turn our attention to a simple but useful class that can be
used to implement dynamic property bags.

35Examples of metaprogramming

IMPLEMENTING METAOBJECTS IN C#
Many dynamic languages allow any object to be treated like a property bag. Members
can be added to or removed from the bag at will. Some dynamic languages even let
you modify the class definitions on the fly so that newly instantiated objects of those
types will get the updated definition. Using Python, for example, it’s simple to add
properties to an instance on the fly using code like this:

>>> class PyExpandoObject():
... pass
...
>>> container = PyExpandoObject()
>>> container.Name = 'Jenny'
>>> container.PhoneNumber = 8675309
>>> print container.Name, '-', container.PhoneNumber
Jenny - 8675309

In this code, The PyExpandoObject class is defined as an empty class using the pass
keyword. Then an instance of the PyExpandoObject named container is allocated.
What happens next may seem odd to a developer using statically typed languages, but
it’s common in many metaprogramming environments. Two new members called
Name and PhoneNumber are added by assigning values to their names. A print state-
ment is used to report the values of the new members back to the console. Python
infers the types of the new members correctly, which you can test by using Python’s
type() function.

>>> type(container.Name)
<type 'str'>
>>> type(container.PhoneNumber)
<type 'int'>

Internally, Python manages a dictionary of its members, which it can modify on the fly,
adding new members or redefining them as necessary. Python even allows the pro-
grammer to delete members programmatically. Adding new members to a class
instance in C# 4.0 is similarly simple when using the ExpandoObject class:

dynamic container = new System.Dynamic.ExpandoObject();
container.Name = "Jenny";
container.PhoneNumber = 8675309;

No dynamic type in C#
You may be surprised to find that there’s no backing type for the dynamic keyword
in C#. The functionality enabled by the dynamic keyword is a clever set of compiler
actions that emit and use CallSite objects in the site container of the local execu-
tion scope. The compiler manages what programmers perceive as dynamic object ref-
erences through those CallSite instances. The parameters, return types, fields,
and properties that get dynamic treatment at compile time may be marked with some
metadata to indicate that they were generated for dynamic use, but the underlying
data type for them will always be System.Object.

36 CHAPTER 1 Metaprogramming concepts

Console.WriteLine("{0} - {1}",
 container.Name, container.PhoneNumber);

This C# code will write the same string to the console that the preceding Python code
did. In Python, any object can act as a dynamic property bag. In C#, though, you must
use an ExpandoObject or build that functionality into one of your own classes. Not
surprisingly, the ExpandoObject uses a dictionary object internally to mimic the func-
tionality that Python offers. What’s unclear, however, is how the C# compiler under-
stands how to interact with the ExpandoObject class to enable new name value pairs to
get into the internally managed dictionary.

 In the example shown earlier involving a dynamic string, the GetMember function
from the C# runtime binder was invoked to reflect on the string to obtain the value of
its Length property. The GetMember function was called because you were trying to get
the value of the Length property to display on the console. In the previous C# code
using ExpandoObject, the assignment to container.Name and container.Phone-
Number are clearly not going to invoke GetMember in the binder, because you’re
attempting to mutate the values, not fetch them. As you can imagine, the DLR also
includes a SetMember function in the C# runtime binder for this purpose. The IL that
sets the value "Jenny" to the Name property follows this abbreviated flow:

IL_000E: ldstr "Name"
//... some code omitted ...
IL_0039: call Microsoft.CSharp.RuntimeBinder.Binder.SetMember
//... some code omitted ...
IL_0058: ldstr "Jenny"

The C# compiler emits a call to SetMember for the "Name" property to set the value
"Jenny." The C# compiler seems to have done its part well, but you still don’t know
how the name value pair "Name", "Jenny") is going to get into the ExpandoObject’s
internal dictionary. The answer to that comes by looking at the implementation of
ExpandoObject, which implements six interfaces:

IDynamicMetaObjectProvider
IDictionary<string,object>
ICollection<KeyValuePair<string,object>>
IEnumerable<KeyValuePair<string,object>>
IEnumerable
INotifyPropertyChanged

The first interface in the list is the one that enables the standard C# runtime binder’s
SetMember function to call custom code to manage ExpandoObject’s internal dictionary
object. The definition of IDynamicMetaObjectProvider is deceptively simple looking:

public interface IDynamicMetaObjectProvider
{
 DynamicMetaObject GetMetaObject(Expression parameter);
}

In this interface, you’re beginning to see common metaprogramming terms that you
can recognize from examples in this chapter. You know what dynamic means. You

37Examples of metaprogramming

know what Expressions are. Metaobjects aren’t yet well-defined, but they’re almost
certainly some kind of type used in metaprogramming.

By implementing this interface, the ExpandoObject can interact with the C# runtime
binder by providing handlers for specific events that occur in the lifecycle of those
types. The DynamicMetaObject returned by the GetMetaObject function in the inter-
face has many virtual methods that can be overridden to provide specific types of run-
time binding functionality. We cover all of these methods in detail in chapter 8. For
now, the two methods required to understand the interface between C#’s runtime
binder and ExpandoObject’s internal dictionary are

BindGetMember
BindSetMember

When the runtime binder observes that the dynamic object it’s operating on implements
the IDynamicMetaObjectProvider interface, it defers the binding calls to the methods in
the DynamicMetaObject that’s provided through that interface rather than trying to
resolve them with reflection. This multistep process is admittedly arcane sounding, but
once you get the hang of using it, you’ll understand that it’s as simple as it needs to be
and flexible enough to handle nearly any metaprogramming scenario.

 To remove any remaining mystery, let’s implement an expandable property bag
called MyExpandoObject, providing custom implementations for GetMember and
SetMember at runtime. Rather than implementing the entire IDynamicMetaObject-
Provider contract, let’s take a shortcut. A helper class has been included in the
.NET Framework called DynamicObject that implements IDynamicMetaObject-

Provider for you, hiding the somewhat complex Bind* methods and exposing a set
of similarly named but simpler Try* methods instead. To implement the dynamic
property bag, you’ll need to derive your class from DynamicObject and override the
TryGetMember and TrySetMember functions to provide your custom binding code.
The following listing shows the definition of the MyExpandoObject type.

Meta madness!
The appearance of the prefix meta over and over again in metaprogramming jargon
can be a bit overwhelming. It’s not a prefix that we encounter on English words all
that often, so it can be a bit confusing. Remember that in Greek, meta means after
or beside. You might read the DLR term metaobject to mean after-object or beside-
object. The way the DLR uses metaobjects in conjunction with the runtime binders,
they fit the beside-object definition better. Metaobjects run alongside other types
like the ExpandoObject to help the runtime binder in binding up specific methods
like SetMember and GetMember when the code demands to set or get named val-
ues, respectively.

38 CHAPTER 1 Metaprogramming concepts

using System;
using System.Collections.Generic;
using System.Dynamic;

public class MyExpandoObject : DynamicObject
{
 private Dictionary<string, object> _dict =
 new Dictionary<string, object>();

 public override bool TryGetMember(
 GetMemberBinder binder, out object result)
 {
 result = null;
 if (_dict.ContainsKey(binder.Name.ToUpper()))
 {
 result = _dict[binder.Name.ToUpper()];
 return true;
 }
 return false;
 }

 public override bool TrySetMember(
 SetMemberBinder binder, object value)
 {
 if (_dict.ContainsKey(binder.Name.ToUpper()))
 _dict[binder.Name.ToUpper()] = value;
 else
 _dict.Add(binder.Name.ToUpper(), value);
 return true;
 }
}

For this implementation, we’ve decided that the properties inserted into the bag
shouldn’t have case-sensitive names. Programmers should be able to save a value into the
property bag named JABBERWOCKY and retrieve it later with the name jAbBeRwOcKy, for
example. The ToUpper function on the string class is used whenever properties are set
and fetched from an internally managed dictionary containing the name value pairs.
The code in the following listing shows how the MyExpandoObject might be used.

class TestMyExpandoObject
{
 static void Main()
 {
 dynamic vessel = new MyExpandoObject();
 vessel.Name = "Little Miss Understood";
 vessel.Age = 12;
 vessel.KeelLengthInFeet = 32;
 vessel.Longitude = 37.55f;
 vessel.Latitude = -76.34f;
 Console.WriteLine("The {0} year old vessel " +

Listing 1.11 MyExpandoObject: a DLR-based dynamic property bag

Listing 1.12 Exercising MyExpandoObject

39Summary

 "named {1} has a keel length of {2} feet " +
 "and is currently located at {3} / {4}.",
 vessel.AGE, vessel.name,
 vessel.keelLengthINfeet,
 vessel.Longitude, vessel.Latitude);
 }
}

After instantiating a MyExpandoObject and assigning the reference to a dynamic vari-
able named vessel, properties of different types are placed into the property bag.
Each assignment will invoke the overridden TrySetMember implementation, which
will place them into the internal dictionary object. At the end, the properties are
fetched from the property bag by name. To exercise the case-insensitive handling of
property names, they’ve been deliberately cased differently than they were in assign-
ments beforehand. Figure 1.11 shows the result of running the code in listing 1.10
and listing 1.11 in LINQPad.

 This little metaprogramming-enabled class does a great job of raising the abstrac-
tion level for managing name value pairs, making the code highly reusable. It also
increases comprehension by providing a natural interface while reducing the per-
ceived complexity.

1.3 Summary
In this chapter, we spent time trying to convey that metaprogramming might some-
times be a bit complex on the inside, but it can greatly reduce the perceived complex-
ity on the outside of the classes that you provide to your team. You also learned how
cohesion and abstraction relate to complexity and how metaprogramming can help to

Figure 1.11 The metaprogramming class called MyExpandoObject in action

40 CHAPTER 1 Metaprogramming concepts

put them in balance. You discovered that you could use the synonyms after-programming
and beside-programming to put the two basic ways in which metaprogramming is often
implemented into contrast to enable future learning. Then you dove into common
examples of metaprogramming that you may encounter working in and around the
.NET Framework.

 That’s certainly a lot of material, but, to be honest, we’ve only been able to scratch
the surface of the kinds of metaprogramming that can be done using the Microsoft
.NET Framework. We made the examples in this chapter deliberately simple to get you
started on the journey. We hope that these prototypes will serve you well as you con-
tinue your voyage through the remainder of the book.

Hazzard ● Bock

W
hen you write programs that create or modify other pro-
grams, you are metaprogramming. In .NET, you can use
refl ection as well as newer concepts like code generation

and scriptable soft ware. Th e emerging Roslyn project exposes
the .NET compiler as an interactive API, allowing compile-time
code analysis and just-in-time refactoring.

Metaprogramming in .NET is a practical introduction to the use
of metaprogramming to improve the performance and main-
tainability of your code. Th is book avoids abstract theory and
instead teaches you solid practices you’ll fi nd useful immediately.
It introduces core concepts like code generation and application
composition in clear, easy-to-follow language, and then it takes
you on a deep dive into the tools and techniques that will help
you implement them in your .NET applications.

What’s Inside
● Metaprogramming concepts in plain language
● Creating scriptable soft ware
● Code generation techniques
● Th e Dynamic Language Runtime

Written for readers comfortable with C# and the .NET frame-
work—no prior experience with metaprogramming is required.

Kevin Hazzard is a Microsoft MVP, consultant, teacher, and
developer community leader in the mid-Atlantic USA.
Jason Bock is an author, Microsoft MVP, and the leader
of the Twin Cities Code Camp.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/Metaprogrammingin.NET

$44.99 / Can $47.99 [INCLUDING eBOOK]

Metaprogramming IN .NET

.NET/PROGRAMMING

M A N N I N G

“An excellent way to start
fully using the power of
metaprogramming.”—From the Foreword by

Rockford Lhotka, Creator of the
CSLA .NET Framework

“A thorough and compre-
hensive distillation of the

vast array of code generation
options in .NET.”

—Harry Cummings, Soft wire

“An extensive collection
 of aha! discoveries on

developing applications
 beyond the mere compiler.”—William Lee, Qualcomm, Inc.

“An excellent reference …
insightful examples.”—Arun Noronha

Guardian Protection Services

SEE INSERT

