
SAMPLE CHAPTER

Hello Scratch!

by Gabriel Ford, Sadie Ford, and Melissa Ford

Sample Chapter 3

Copyright 2018 Manning Publications

PART 1 SETTING UP THE ARCADE 1
1 Getting to know your way around Scratch 3
2 Becoming familiar with the Art Editor 23
3 Meeting Scratch’s key blocks through

important coding concepts 47

PART 2 TURNING ON THE MACHINES 79
4 Designing a two-player ball-and-paddle game 81
5 Using conditionals to build a two-player

ball-and-paddle game 95

PART 3 CODING AND PLAYING GAMES 125
6 Designing a fixed shooter 127
7 Using conditionals to build your fixed shooter 144
8 Designing a one-player ball-and-paddle game 175
9 Using variables to build your one-player

ball-and-paddle game 194

Brief contents

10 Designing a simple platformer 221
11 Using X and Y coordinates to make a simple

platformer 239
12 Making a single-screen platformer 278
13 Using arrays and simulating gravity in a

single-screen platformer 297
14 Becoming a game maker 339

3
Meeting Scratch’s
key blocks through
important coding concepts

You want to make the games, right? I know. I want to jump straight to
the game making too. But I also know that learning key computer science
ideas first will make that whole game-making thing a lot easier. It will
help you jump into the coding in this book, help you design your own
games in the future, and even help you learn another coding language,
such as Python or JavaScript. The ideas covered in this chapter apply to
every programming language and every game you’ll ever make.

Think of this chapter as the first day of school, and you’re meeting your
new classmates—except your classmates happen to be computer science
concepts instead of humans. As you build the games and put these ideas
into practice, you’ll get to know them better. In fact, you’ll re-meet these
eight computer science ideas in every game you make in this book, so
you’ll know them quite well by the last chapter.

Here’s what you’ll encounter in this chapter:

 How to use the eight most common blocks you’ll need to build games,
and how these eight common blocks are tied to key computer science
concepts

 How to make eight mini scripts to see computer science in action
47

48 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
You’ll find all the blocks you need to meet in the center Block Menu.
What are the eight most commonly used blocks, and what do they do
inside a game? See table 3.1.

Make sure to clear your workspace of practice scripts at the
end of each section either by using File > New in the Grey

Toolbar or by clicking the top block in the script (usually When Flag Clicked),
dragging all the blocks together to the Block Menu, and releasing the mouse
button.

Let’s start with a nice, clean default workspace. Go to File > New in
the Grey Toolbar so the Scratch cat returns to your Stage, ready to do
everything you instruct him to do with your code.

Ready to get started?

Table 3.1 The eight most commonly used game-making blocks

Name of block
Where you’ll

find It
What it looks like What it can do

When Flag Clicked Events menu Tells the program when it
should run

Change X by 10 Motion menu Moves sprite on the screen

If/Then Control menu Triggers action if condition
is met

Forever Control menu Makes action continue in a
loop

Variable Data menu Tracks points in a game

Touching Color Sensing menu Triggers action when two
sprites touch

Create Clone of Myself Control menu Duplicate sprites mid-game

Broadcast Message Events menu Allows separate scripts to
communicate

IMPORTANT!IMPORTANT!

Starting a program with the When Flag Clicked block 49
Starting a program with the When Flag Clicked block
The first block to meet is the When Flag Clicked block, in the Events
block menu. Yes, you saw this block back in chapter 1, but now it’s
time to talk about how important it is for all the scripts you’ll make in
your games. This block, like the similar When Space Key Pressed
block, tells the program the action that is required to get the program
to run. It sets an “on” switch that the player can trigger (in this case, by
clicking the green flag above the Stage) when they are ready to play
the game. You’ll use it to create a small script that makes the sprite
move 100 steps to the right, as shown in figure 3.1.

Figure 3.1 The cat moves 100 steps to the right each time the green flag above the
Stage is clicked. At 100 spaces per click, he can cross the Stage in four clicks of
the green flag.

Finding your program’s on switch
When Flag Clicked may seem like a self-explanatory block, but it’s worth
talking about because every script in the game needs its own on switch.

Try putting a Move 10 Steps block in the Script Area and then clicking
the green flag above the Stage. What happens? Nothing, right? The cat
can’t move because the script doesn’t have an on switch. All scripts—
yes, every individual script in your game—need a way to start.

Starting point on the far
left side of the Stage

When the green flag above the
Stage is clicked once, the cat
moves 100 spaces to the right.

When the green flag is clicked a
second time, the cat moves another
100 spaces. He is now 200 spaces
from the starting point.

When the green flag is clicked
a third time, the cat moves
another 100 spaces. He is now
300 spaces from the starting point.

50 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
Scripting with the When Flag Clicked block
Let’s build that small script that tells
the sprite to walk 100 steps to the right,
as the cat is doing in figure 3.2. You
saw this script in chapter 1, but you
need to understand what this block
accomplishes.

To use the When Flag Clicked block

1 Navigate to the Block Menu and click the Events block option.

2 Click and drag a When Flag Clicked block and release it anywhere
in the Script Area.

3 Switch to the Motion block menu and click the Move 10 Steps
block.

4 Drag the Move 10 Steps block underneath the When Flag Clicked
block and snap the two blocks together. Remember, if the two blocks
aren’t touching, the program will try to run but nothing will happen.

5 Change the 10 in the center of the block to 100 by typing inside the
white bubble on the block.

The two blocks in figure 3.3 form a complete script. Click the green
flag above the Stage. What happens to the cat sprite? You should see it
move to the right.

This script in figure 3.3 is simple, but illustrates the idea that all scripts
need a starting point. It begins with a When Flag Clicked block. That
tells Scratch that you want the program to start when the green flag

Make the sprite move
100 spaces to the right.

Figure 3.2 Every program, including
one that moves the cat 100 spaces,
begins with an on switch.

Begins with an on switch

Moves sprite 100 spaces
to the right

Figure 3.3 A script using the
When Flag Clicked block

Setting location with X and Y coordinates 51
above the Stage is clicked. The next block (Move 100 Steps) tells
Scratch what you want to have happen after the green flag is clicked:
you want the sprite you programmed to move 100 spaces to the right.
It will move the cat every time the green flag is clicked.

YOUR PROGRAM WON’T START! Oh no! Your program won’t
start. If your game won’t run when you test it out, your

troubleshooting starting point is to look at each of your scripts and make sure
they each have a block that triggers the code to run, such as the When Flag
Clicked block or the When Space Key Pressed block. If not, add one and see
if that fixes your problem.

Setting location with X and Y coordinates
In the last script, you asked Scratch to move the cat 100 steps, but
these “steps” are actually coordinate spaces. Coordinates tell a program
where the sprite is on the screen.

Many scripts use coordinates to
position or move sprites, but
coordinates aren’t only a com-
mon part of computer program-
ming. You’ve encountered X
coordinates in math if you’ve
ever jumped around on a num-
ber line. In figure 3.4, you can
see how 100 steps and 100
coordinate spaces are the same
thing in Scratch. Each time you
click the green flag above the
Stage, the cat moves 100 steps,
meaning 100 coordinate spaces.

Coordinates are used in every
area of STEAM, from grids in
art to map making. Coordinates
are how you state the exact
location of a place or object.

FIX ITFIX IT

100 200 300 400 500

▲ ▲

100 200 300 400 500

▲ ▲

100 200 300 400 500

▲ ▲

100 200 300 400 500

▲ ▲

Figure 3.4 The cat jumps ahead 100 coordinate
spaces each time the green flag is clicked.

52 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
Finding the sprite’s location with X and Y coordinates
All programming languages use math (in this case, coordinate num-
bers) to tell the program what you want it to do. This makes sense
because math is a constant; 2 + 2 always equals 4.

Scratch can understand a command such as “move the cat sprite 10
coordinates to the right” (which is clearly math-related), but it can’t
understand a command such as “move the cat sprite near the house.”
What house? Unless you assign the house a mathematical location,
Scratch has no clue where that house is on the screen.

Your directions—where you want sprites to move or where you want
objects to be positioned—all need to be described numerically in your
program.

In the top right corner of the Script Area is a tiny picture of the sprite
you’re currently programming (the cat) and two letters (X and Y) next
to a number, as in figure 3.5.

Click the cat on the Stage and drag it around the Stage. The numbers
next to the X and Y are changing, constantly logging the cat’s new
location.

The Stage is a grid constructed out of horizontal (X) and vertical (Y)
lines, called the X-axis and Y-axis. Every location on the Stage can be
plotted on those lines, which are its X and Y coordinates. In fact, you
can see where those lines are on the Stage by using Scratch’s grid
backdrop, which shows the axis lines.

Figure 3.5 The top right cor-
ner of the Script Area shows
the sprite and its X and Y
coordinate position. X: 0 and
Y: 0 is the center of the Stage.

Setting location with X and Y coordinates 53
To use the grid backdrop

1 Go to the Sprite Zone. Navigate to the left sidebar of the Sprite Zone
underneath the words New Backdrop.

2 Click the first icon of the painting to bring up a pop-up window with
the Scratch backdrop library.

3 Scroll to the bottom and choose the option XY-Grid. Click OK.

You should now see horizontal and vertical lines behind the cat, as in
figure 3.6, along with numbers where they intersect, such as 100 or
–100. This is an open grid, only showing every hundredth coordinate.
Ten coordinates or 10 steps is 1/10th of one of those squares on the
grid. In order to have the cat move the length of one square on that
grid, you need to program the cat to move 100 steps.

Figure 3.6 The XY-Grid backdrop

X coordinates run from left to right. Y coordinates run up and down.
The dot in the center of the screen where the lines meet is zero for both
the X and Y coordinates, which is why the numbers in figure 3.5 show

54 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
X and Y both set to zero (0). The cat sprite begins each new project in
the center of the Stage:

 Positive numbers on the X coordinate (such as 10) move your sprite
to the right.

 Positive numbers on the Y coordinate (such as 10) move your sprite
up.

 Negative numbers on the X coordinate (such as –10) move your
sprite to the left.

 Negative numbers on the Y coordinate (such as –10) move your
sprite down.

Scripting with the Change X by 10 block
Let’s build a small script that tells
the sprite to go to a certain place
on the screen. The cat in figure 3.7
is currently in the center of the
Stage, but the script you’ll write
will send the cat to a new position
when the green flag is clicked—
namely, 100 coordinate spaces
toward the top of the Stage.

To get your workspace ready to
program the cat

1 Click the Scripts tab in the Block
Menu in order to get back to the
blocks.

2 Navigate down to the Sprite Zone and make sure the blue box is
around the cat sprite.

You won’t need to do this every time, but you do right now because
Scratch is still in the backdrop menu.

Now you’re ready to get started. To use the Set Y to 0 block

1 In the Block Menu, click Events.

2 Click and drag a When Flag Clicked block into the Script Area.

Begins in the center of the Stage but
ends up here when the green flag is clicked

Figure 3.7 Send the cat 100 coordinate
spaces above the center of the Stage.

Setting location with X and Y coordinates 55
3 In the Block Menu, click Motion.

4 Click and drag a Set Y to 0 block into the Script Area and snap it
onto the When Flag Clicked block.

5 Change the 0 inside the block to 100.

Once again, the two blocks in figure 3.8 form a complete script. Now
click the green flag above the Stage.

Figure 3.8 A script using the Set Y to 100 block

YOUR SPRITE ISN’T MOVING Wait a second! Your cat isn’t
moving even though you wrote a program. When things

don’t go according to plan with your program, chances are you didn’t program
the correct sprite. Did you check that the blue box was around the cat in the
Sprite Zone? Because you added a backdrop before you started this script,
Scratch switched the programming focus to that new backdrop. But you don’t
want the Stage to do the action; you want the cat to be the one moving to the
new coordinate position! Troubleshoot programs that don’t run according to
plan by making sure the scripts are assigned to the correct sprite. You can
check all the scripts assigned to a sprite by clicking the sprite in the Sprite
Zone and then looking at the scripts in the Script Area.

The cat will go directly to the 100th coordinate slot on the Y-axis (or Y
line). This is the type of program you’ll use to position a sprite on the
Stage at the beginning of a game.

HOW DO YOU POSITION THE CAT 100 SPACES BELOW CENTER?
Question: you know how to move a sprite up, but can you fig-

ure out how to make the cat move down?
Answer: place a minus sign in front of the number (–100) to indicate that it is
a negative number. Remember, negative numbers move the sprite to the left
and down. Positive numbers move the sprite to the right and up.

On switch

Sends the cat to the 100th coordinate
space on the Y-axis. Once it reaches
this point, it will stop moving, even
if the green flag is clicked again.

FIX ITFIX IT

ANSWER THISANSWER THIS

56 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
You can also change the X
and Y position of the sprite
at the same time. To move
the cat diagonally, swap out
the Set Y to 100 block for
two blocks: a Change X by
10 block and a Change Y by
10 block. Snap them under-
neath the When Flag Clicked

block, one on top of the other, as shown in figure 3.9. Change the 10 in
the X block to –20 to move the cat 20 coordinate spaces to the left, but
keep the 10 in the Y block to move the cat 10 coordinate spaces up.
The cat will move diagonally when you click the green flag because it is
moving to the left and up at the same time.

Clear the script from the Script Area but keep the grid backdrop for
the rest of the games in this chapter because it will help you to see the
position of your sprite on the screen.

STEPS AND COORDINATES In this case, the Move 10 Steps
block and the Change X by 10 block accomplish the same

thing. One block has a plain-English way of stating the instruction but is
dependent on the direction the sprite is facing (move 10 steps), and the other
has a mathematical way of stating the instruction (change the current X coor-
dinate number by 10). Both do the same task of moving the sprite 10 spaces to
the right and illustrate an important point: sometimes there is more than one
way to accomplish the same task in programming, and the code choices are up
to the programmer.

Using a conditional statement
You encounter conditional statements every day. Conditional state-
ments state what first needs to be true for something to happen. For
instance, your parents might say, “If you eat your vegetables, then you
can have dessert.” A condition is set. In order to get dessert, the vegeta-
bles need to be eaten. You know what you need to do if you want a piece
of chocolate cake: eat your carrots.

On switch

Moves sprite 20 coordinate
spaces to the left

Moves sprite 10 coordinate
spaces toward the top
of the Stage

Figure 3.9 A script that changes both the X and Y position
at the same time

FIX ITFIX IT

Using a conditional statement 57
How will your parents know if you’ve eaten your vegetables? They’ll
look on your plate. If the carrots are still there, the condition hasn’t
been met, and you won’t proceed to dessert. If the carrots are not there
(and I hope you’re not hiding them under the table!), then you’ll move
to the next step: getting dessert.

Computers work in the same way.

Finding conditions to set in your game
You can set a condition in a game, such as
“If the cat sprite is touching something
red, then make it stop moving.” The pro-
gram checks the cat sprite, as it’s doing in
figure 3.10.

Red pixels make up the outer edge of the
rainbow. If the cat is touching the red
band of the rainbow, the game will stop the cat from moving. But if the
cat sprite is not touching that part of the rainbow, the game will have
the cat keep moving until the condition is met.

How do you know if you are setting up a condition? It almost always
begins with an If statement when you talk about the game aloud.

Scripting with the If/Then block
Conditional statements are
set using the If/Then block.
Let’s build a script that
notes where the sprite is on
the screen and makes some-
thing happen when it moves
past a certain point. In this
case, you’re going to have
the cat stop moving when it
moves past the X coordinate
position of 50, marked on
the backdrop in figure 3.11.

Figure 3.10 Is the cat touching a
red pixel? Look at his foot.

When the sprite reaches
X :50, the script stops.

X :100

Figure 3.11 The cat will stop moving when it crosses
over the X coordinate position of 50, marked by the
red line.

58 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
To use the If/Then block

1 Click the Events block menu and grab a When Flag Clicked block.
Drag it into the Script Area to begin your script.

2 Switch to the Control block menu.

3 Drag an If/Then block to the Script Area and snap it to the When
Flag Clicked block. There is a similar-looking If/Then/Else block
option, but you want the If/Then block.

4 Click the Operators block menu and choose the Square < Square
block.

5 Place the Square < Square block inside the
empty hexagonal space on the If/Then block,
as in figure 3.12.

6 Click the Motion block menu and scroll to
the bottom of the menu.

7 Choose the X Position block and drag it
inside the left square in the Operators block.
This means that you’ve nested a Motion
block in an Operators block in a Control
block, as in figure 3.13.

8 Type the number 50 in the right
square of the Operators block.

9 Scroll up in the Motion block
menu and click and drag a
Move 10 Steps block into the
Script Area, placing it inside
the open mouth of the If/Then
block.

Figure 3.14 shows a slightly more
complicated script than you’ve
made up until this point. Click the green flag above the Stage a few
times and see what happens when the cat sprite moves too far to the
right side of the Stage.

Figure 3.12 Placing the
Square < Square block
inside the hexagonal space
in the If/Then block

Figure 3.13 The X Position block inside the
left square of the Operators block

Using a conditional statement 59
Figure 3.14 The If/Then block sets up a condition that only allows the sprite to
move 10 coordinate spaces to the right if the X position is less than 50.

Once the cat’s X position is 50 or higher, it no longer meets the condi-
tion, so the cat stops moving. If you want to try running this program
again, drag the cat back toward the left side of the Stage.

Putting conditional statements into your game means that Scratch
needs to constantly be evaluating whether or not the statement is true
or the condition has been met. That means that by using a single block,
you’ve set a lot of computational energy to work. This is a common way
of making things happen in games, and you’ll find that each computer
language has its own unique way of writing conditional statements.

LESS THAN (<), GREATER THAN (>),
AND EQUAL (=) A common prac-

tice in computer programming is to set up conditions
that use operators, asking the computer to solve what
amounts to a quick math problem as it runs. Three
common Operators blocks are the Square < Square
(less than), Square = Square (equal), and Square >
Square (greater than), all seen in figure 3.15.

These three Operators blocks allow for three different situations. In
the first block, the statement is true if the sprite is in an X position less
than 10. In the middle block, the statement is true if the sprite has an X
position equal to 10. In the last block, the statement is true if the sprite
has an X position greater than 10.

On switch

Sets a condition: If the X position
is less than 50 (49 to -240),
do the action inside the block.

Move 10 coordinate
spaces to the right.

LEARN ITLEARN IT

Figure 3.15 Three types
of Operators blocks used
in Scratch

60 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
Making loops
Sometimes you want an action to happen once. Other times you want
the action to happen over and over again. A loop is used when you
want a piece of code to run until either a condition is met or the red
stop sign above the Stage is clicked. For instance, you could make your
cat spin round and round, as in figure 3.16, just by putting the blue
Motion block inside the yellow Forever block.

Figure 3.16 The Forever block in the script makes the cat continue turning without needing to click
the green flag over and over again.

Finding places to use loops
There are a few loop blocks used in Scratch, all found in the Control
block menu. The most common and flexible one is the Forever block. If
you place other blocks inside a yellow Forever block, Scratch will
repeat those actions over and over again.

Think about times when you would want an action to occur without
needing player input, such as having the cat continue to move without
needing to continuously click the green flag. Loops allow you to set up

Making loops 61
a situation once and have it run over and over again, bringing fluidity
to the sprite’s movement on the screen.

Scripting with the Forever block
Any blocks you put inside the
Forever block will continue
their action without you need-
ing to click the green flag above
the Stage more than once to get
the loop started. Let’s make
that small script that will cause
your cat sprite to spin indefi-
nitely. See figure 3.17.

To use a Forever block

1 Navigate to the Events block
menu and click and drag a
When Flag Clicked block to the Script Area. Release the block near
the top of the workspace.

2 Switch to the Control block menu. Drag a Forever block to the
Script Area and snap it to the When Flag Clicked block.

3 Click the Motion block menu and choose a Turn 15 Degrees block.
Put this blue block inside the Forever block, as seen in figure 3.18.

When you click the green flag above the Stage, your sprite will start
spinning like a pinwheel. A circle is 360 degrees, so 15 degrees would
be turning 1/24 of a circle. The action looks smooth because Scratch
doesn’t pause between each 15 degree turn.

Figure 3.17 The cat is spinning so quickly due to
the Forever block repeating the action over and
over again that it looks like there are dozens of
cats.

On switch

Everything inside
the Forever block
runs on a loop.

Turn 15 degrees in a
clockwise motion.

Figure 3.18 This loop using
the Forever block causes the
cat to spin in a circle.

62 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
The example script consists of only three blocks, but with a single click
of a button, it can run forever.

Using variables
A variable is a way of tracking information. That information, called a
value, can be a number, word, or true/false condition. For instance, let’s
say you make a game and you want to give the player three chances to
have the cat catch a balloon. Each time the cat misses the balloon, the
game deducts a turn. To keep track of how many times the player has
tried to catch the balloon, you could make a variable called Turns and
give it a value of 3, meaning the player has 3 chances to catch the falling
balloon. Each time the player misses the balloon, the value of the vari-
able Turns decreases by 1.When the value hits 0, the game ends.

Check out the orange bubble at the top of the Stage in figure 3.19
showing that the player has three turns. That balloon is pretty far away
from the cat. Do you think it will make it across the Stage in time?

You could also create a variable called Score and have the value of that
variable increase by 1 every time the player gains another point. I like
to imagine variables as empty boxes, ready to hold any number, word,
or true/false value I place inside.

Finding types of variables
A game may have multiple variables at the same time. For instance, it
may be tracking how many lives the player has with a variable called

The variable called
Turns keeps track
of how many tries
the player has left
to win the game.

Figure 3.19 Variables are useful for keep-
ing track of information inside a game.

Using variables 63
Lives while simultaneously tracking how many points the player has
earned with a second variable called Score. It may even have variables
assigned to objects in the game so Scratch can know whether or not the
sprite “picked up” a tool or a jewel. Anything you want to track in the
game uses a variable.

Variables can have three types
of values, as shown in table 3.2.

The variable in figure 3.19 has
a numerical value. The variable
starts the game with a value of
3, which means that the player
has 3 tries. A variable can also
have a word value, called a
string in programming. A string is any word you could assign an
object, such as having a variable called Jewel and having the value
either be diamond, ruby, sapphire, or emerald. Diamond, ruby, sap-
phire, and emerald are all strings. A variable can also have a true/false
value, called a Boolean in programming. You’ll read more about these
in the next section when you learn about Touching blocks.

Scripting with the Variable block
Programming the falling bal-
loon part would make this script
a little complicated, so let’s sim-
plify the idea and build a script
that uses a variable called Lives
and have it deduct a life every
time the cat sprite reaches the
right side of the Stage. See fig-
ure 3.20.

Variables don’t exist in Scratch
until you create one. Once cre-
ated, Scratch gives variables an
initial numerical value of zero (0). You can change that value to be
anything you want—numerical, string, or Boolean.

Table 3.2 The three types of values

Type of value Example of value

Numerical 3

Word (or string) Diamond

True/False (or Boolean) True

Figure 3.20 Oh no! The variable Lives goes from
3 to 2 when the cat hits the right wall.

64 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
Before you begin, you need to create the variable. To create a variable
block

1 Navigate to the Block Menu and click Data.
2 Click Make a Variable. This will cause a pop-up window to open.
3 Give your variable a name, such as Lives. Leave it For All Sprites.

Click OK.

You should see your variable in two places: inside the Data block menu
and as a little box in the top left corner of the Stage.

Now you need to use your variable and give it a value. To use a vari-
able block

1 Click the Events block menu and drag a When Flag Clicked block into
the Script Area.

2 Switch to the Data block menu and choose a Set Lives to 0 block.
Click and drag it under the When Flag Clicked block in the Script
Area until they snap together.

3 Change the value in the Set Lives to 0 block to 3 in order to give the
player 3 lives.

4 Return to the Block Menu, choose Control, and grab a Forever
block. Snap that underneath the Set Lives to 0 block.

5 Switch to the Motion block menu and click and drag a Move 10
Steps block inside the Forever block.

6 Go back to Control and move an If/Then block underneath the
Move 10 Steps block inside the Forever block.

7 Click the Sensing block menu and
drag a Touching block to the If/
Then block. Drop it inside the
empty, hexagonal space in the If/
Then block. Open the drop-down
menu in the new block by clicking
inside its box, as seen in figure 3.21,
and click Edge so that the block
now says Touching Edge.

Figure 3.21 The drop-down menu that comes
with the Touching block from the Sensing menu

Using variables 65
Finally, you need the script to delete a life whenever the sprite hits the
wall. To deduct a life, continue filling the If/Then block:

1 Open the Data block menu and choose the Change Lives by 1. Drag it
inside the If/Then block in the Script Area.

2 Change the value from 1 to –1 in order to deduct (instead of add) a
life.

3 Switch to the Motion block menu and grab a Set X to 0 block. Snap
it underneath the Change Lives by –1 block inside the If/Then block.
Change the value from 0 to –200 to send your sprite back to the left
side of the Stage, because the –200 X coordinate is the far left side of
the Stage.

You can see the completed script in figure 3.22. This is your first long
script, and it completes a complex task. When you click the green flag
above the Stage, the cat should move toward the right. When it touches
the right wall, it should bounce back toward the left side of the Stage
while simultaneously deducting a life. Because you didn’t set an end
point, you should see your life count move from 3 into the negative
numbers.

Figure 3.22 The script deducts a life every time the sprite touches the wall.

You’ll notice every time you restart your game by clicking the green
flag again, the value of Lives resets to 3. This is an important step. If

Moves the sprite 10 steps
to the right over and over
again (because it’s in a loop)

Initially sets
the value of
Lives to 3.

Moves the cat sprite back
to the left side of the Stage
to the -200 X position

Sets up a condition: If the sprite
is touching the wall, then it should
do the actions inside the block.

On switch

Everything
inside the
Forever block
runs on a loop. Reduces the value of the

variable Lives by one

66 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
you don’t set that value at the start of the game, it will continue
wherever the last player left off. It wouldn’t be a fun game if the first
player used up the three lives and every other player that came after
that started with less than zero lives!

But the Set Lives to 3 block comes before the Forever block because
it’s something you only want to have happen once per game, right
when the game begins. Everything inside the Forever block is some-
thing you want to have happen throughout the game.

Talking about variables leads directly into another place where you can
use true/false or Boolean statements: touching blocks.

Using Booleans
As I mentioned earlier, a Bool-
ean is a fancy programming
term for a true/false statement.
For instance, what if you add a
unicorn sprite, and you want
to check whether or not your
cat sprite is touching the uni-
corn sprite, as shown in figure
3.23? It either is touching
(true) or it isn’t touching
(false)—it can’t both be touch-
ing and not touching the uni-
corn at the same time, right?

You can set up conditionals with Booleans so Scratch will keep check-
ing whether a statement is true or false. If it’s true, it will do one thing,
and if it’s false, it will not do that action.

Finding uses for Booleans
It’s easy to see why programmers like to use true/false statements.
There is no grey area: either the cat is (true) or is not (false) doing the
action established in the script, such as touching another sprite or
touching the edge of the Stage.

Figure 3.23 You can use Booleans in a script to
figure out whether two sprites are touching.

Using Booleans 67
Nowhere is this easier to see than when using the Touching Color
blocks. The Touching Color blocks provide an easy way to see Bool-
eans in action. If the sprite is touching even one pixel of a set color, the
statement is true. If the sprite isn’t touching the color, the statement is
false. You can set certain actions to run if the statement is true.

Scripting with Touching blocks and Booleans
Let’s make a script that looks
at whether or not the cat is
touching an apple sprite. If it
is touching the apple, it will
say, “Yum!” for two seconds,
as in figure 3.24.

To add a new apple sprite
from Scratch’s premade sprite
library

1 Navigate to the Sprite Zone.
Click the little head icon
next to New Sprite on the
Top Toolbar, as you did in
chapter 1 when adding the
bananas.

2 Choose the apple sprite by
double-clicking the picture.

3 Set up the Stage by drag-
ging the cat sprite toward
the left side of the screen
and the apple toward the
right side of the screen, as
in figure 3.25.

The apple is surrounded by a
black outline, which means in
this script (because the cat is
moving tiny amounts each time), the cat sprite will touch black pixels
before it ever gets to the red pixels inside the black outline.

Figure 3.24 The cat says "Yum!" when it touches
the black outline of the apple. If any part of the
cat sprite is touching any part of the apple out-
line, the script will work.

Figure 3.25 Setting up the Stage with the cat
on the left and the apple on the right

68 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
THE SPRITE TOUCHES THE WRONG COLOR Uh-oh—have you
made this mistake? The biggest mistake Scratchers make

when setting the Touching Color block is to skip over the outline and use the
overall color of the object, such as red for the apple. The sprite may touch
the outline before it touches any internal color depending on the script, so
note the color of the outline, too. Make the outline of any sprites that you
make one uniform color instead of many colors if you’re going to use a Touch-
ing Color block in your game.

Before you begin writing your program, check that the blue box is
around the cat in the Sprite Zone. If not, you’re programming the apple!

To use the Touching Color block

1 Navigate to the Events block menu and click and drag the When Flag
Clicked block into the Script Area. Release it near the top of the work-
space.

2 Go into the Control block menu and choose the Repeat Until block.
It has an empty, hexagonal space in the block. Snap this block
underneath the When Flag Clicked block.

3 Click the Sensing block menu and choose the Touching Color block.
It will not have the name of a color listed, but instead has a square
that contains a paint sample.

4 Set the color by clicking the tiny square inside the block so the cur-
sor arrow changes into a hand. Move the hand to the Stage and click
anywhere on the apple’s outline so that the square turns black. Once
the color is set, the hand will disappear and turn back to an arrow.

5 Return to the Block Menu and click Motion. Choose the Move 10
Steps block and place it inside the Repeat Until block.

6 Go to the Control block menu and choose an If/Then block. Place it
inside the Repeat Until block, underneath the Move 10 Steps block.

7 Duplicate the Touching Color block by either right-clicking the
block (on a PC) or control-clicking the block (on a Mac). A pop-up
window will give you the option to duplicate your block, as seen in
figure 3.26. Choose Duplicate and slide the copy of the Touching
Color block inside the empty hexagonal space in the If/Then block.

FIX ITFIX IT

Using Booleans 69
8 Switch to the Looks block menu and grab a Say Hello for 2 Secs
block. Put it inside the If/Then block.

9 Change the word Hello! to Yum! by erasing and typing inside the
small text window on the block.

Test the script shown in figure 3.27 by clicking the green flag above the
Stage. When the cat touches the apple, it says “Yum!” for two seconds.

Figure 3.27 If the cat is touching any black pixel on the screen, it will say, "Yum!"

It looks like the cat on the Stage can see the apple and exclaims,
“Yum!” when it gets beside it. All this is done behind the scenes with
Booleans and Touching Color blocks.

If there had been numerous other sprites on the Stage, all of which had
black pixel outlines, the cat wouldn’t have known whether it was

Figure 3.26 Duplicating a piece of
code within a script

That repeating action is
moving 10 spaces to the right.

Will repeat the actions inside this block until
the cat sprite is touching a black pixel

On switch

It will say the word, “Yum!” for two seconds.

If the cat touches a black pixel, then
it will do the action inside the block.

70 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
touching the apple or a different sprite. Keep that in mind as you make
tweaks to sprites in this book or build future games.

THINK LIKE A CODER Sometimes you need to get up from the
computer and do other things with your day, but that doesn’t

mean you can’t keep thinking like a coder. Look around you and you’ll see
your world is full of Booleans, or true/false situations, where something either
is or isn’t. Make your life into a video game by looking for all the true/false
moments. For instance, set a conditional while you eat breakfast: if my plate is
empty, then breakfast is over. Now keep checking your plate. If it’s empty, the
condition is true. If you still have some toast in front of you, the condition is
false. Practice thinking in Booleans to come up with creative video game ideas
to use in the future.

You can get rid of the apple sprite (as well as your last script) by click-
ing the scissor icon in the Grey Toolbar and clicking either the apple on
the Stage or in the Sprite Zone. Why do you need to clear the Stage?
Because you’re about to get a lot of cats popping up on the screen.

Cloning sprites
I’ll let you in on a little secret:
programmers love to find short-
cuts to lessen their workload. If
you’ve ever played a fixed
shooter that has you blowing
apart space rocks or played a
reflex-testing game like Tetris,
which has you guiding falling
shapes, you’ve seen cloning in
action. Cloning allows the pro-
grammer to make a few varieties
of enemy—in those examples,
space rocks or colorful shapes—
and then have the computer generate more copies as the game goes on,
like all the falling balloons in figure 3.28.

Although you can make a duplicate of a sprite before a game begins
using the stamp icon in the Grey Toolbar, cloning is about generating

LEARN ITLEARN IT

Figure 3.28 The falling balloons are generat-
ing mid-game using cloning. You only need to
make one sprite. Scratch will keep reproducing
new copies with a cloning script.

Cloning sprites 71
a new version of the sprite while the game is in action by writing it
into the code.

Finding sprites to clone mid-game
This will be your first time making multiple scripts work together in
order to perform an action. Cloning always requires at least two scripts
that work together. The first script creates the clone. The second script
uses the clone.

For instance, you may create one balloon for your game and then cre-
ate a first script that tells Scratch to generate clones of the balloon mid-
game. Next you have to create a second script that tells Scratch how to
use those clones. Maybe you’ll have them drop from the sky, one every
second. In games, you may have many scripts assigned to the same
sprite, each running one small part of what the sprite can do, so this is
excellent practice for the games ahead.

You can clone any sprite, which means you can even create multiple
copies of the cat mid-game. In fact, let’s make a script that does that.

Scripting with Cloning blocks
This two-part script is going
to fill your screen with identi-
cal cats. The first script will
duplicate a new cat sprite
every second. The second
script will make those cats
march to the left or right.
Watch out! The Stage is
about to get very crowded, as
it is in figure 3.29.

To clone a sprite during a
game

1 Click the Events menu, choose the When Flag Clicked block, and drag
it to the Script Area. Release it near the top of the workspace.

2 Go into Control and grab a Forever block. Snap the Forever block
directly under the When Flag Clicked block.

Figure 3.29 The cats keep duplicating and march-
ing across the Stage in a two-part cloning script.

72 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
3 Scroll down the Block Menu and click the Create Clone of Myself
block. Drag it inside the Forever block.

4 Scroll up and choose the Wait 1 Secs block, and place that under the
Create Clone of Myself block inside the Forever block.

The first script is complete. It’s now time to start the second script,
which will be placed right underneath the first script in the Script Area:

1 Begin a second script by leaving a small space between the first script
and the second script. In the Control block menu, choose a When I
Start as a Clone block and drag it to the Script Area.

2 Click a Forever block and snap it underneath the When I Start as a
Clone block in the workspace.

3 Switch to the Motion block menu.

4 Slide a Move 10 Steps block inside the Forever block.

5 Slide an If on Edge, Bounce block underneath the Move 10 Steps
block inside the Forever block.

Now click the green flag above the Stage and you should see dozens of
cats march across the screen as a new one is added every second. Com-
pare your scripts to the ones in figure 3.30.

Figure 3.30 The completed clone scripts work together to create an infinite number of cats.

Creates a new copy of the cat over and
over again (because it’s in the loop)

Everything inside the Forever
block runs on a loop.

On switch

Pauses one second

Moves the sprite 10 steps to the right
over and over again (because it’s in the loop)

Everything inside the Forever
block runs on a loop.

Begins whenever a clone is made

Makes the sprite bounce and go the
other direction when it hits the wall

Cloning sprites 73
Why insert a one-second delay into the program? That small pause will
make a space between the clones so you’ll be able to see each individual
version of the cat rather than having them all mash together on top of
one another.

These two scripts will work together indefinitely because no end condi-
tion has been set. That means if you start this program and walk away,
you’ll return to a thick line of cat sprites on your Stage.

Congratulations! You now have a screen full of cats, but you can also
use this script to make games more exciting while making your work-
load a bit smaller.

HOW CAN YOU KEEP THE CATS FROM FLIPPING UPSIDE DOWN?
Question: those upside-down cats are probably feeling a bit

sick hanging in midair. Why are some cats upside-down and others are right-
side-up?
Answer: when the cat reaches the right or left side of the screen, it bounces off
the edge and switches direction. Rather than twist around, your cat hits the
edge and flips over before it continues back in the other direction and gener-
ates again. If you want your cats to remain right-side-up, navigate to the
Sprite Zone and click the lowercase i in the top left corner of the blue box
around the sprite. That will open the pop-up menu seen in figure 3.31. Next to
Rotation Style, click the straight left-and-right arrow instead of the curved
arrow. To exit the pop-up menu, click the blue arrow in the top left corner of
the box. Now click the green flag. Do your cats remain right-side-up?

You just made two scripts work together to make and use cloned
sprites. The final script in this chapter will allow you to make unrelated
scripts communicate with one another.

ANSWER THISANSWER THIS

Figure 3.31 Click the i to
change how your sprite moves.

74 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
Broadcasting messages
Have you ever been in a relay race where you are
passed a baton and begin to run? Scratch has a way
of sending messages between two unrelated scripts
so one script can pass a virtual baton to the other
script and tell it to run. For instance, a broadcasting
script could be used to track the number of tries left
in the variable Lives. When it reaches zero, it sends
the second script a message to flash the Game Over
sprite on the screen, as shown in figure 3.32.

Finding a message to broadcast
Broadcasting allows two scripts to speak to one
another by letting the first script tell the second
script (or more) that it’s time to spring into action.

This is different from the way the two cloning scripts worked together.
With cloning, an action happens that sets off another action, almost
like dominos. In broadcasting, you set up one script to send the other
script a message that it is time to begin without the first script making
or doing anything.

You’ll once again make two scripts. The second script won’t do any-
thing until it gets the signal from the first script. Then the second script
will spring into action.

Scripting with the Broadcasting block
A cat walks up to a bear. When the cat
reaches a certain point on the Stage,
the first script will broadcast a message
to the second script to spring into
action, and the bear will call out,
“Hello!” It’s a friendly bear, as you can
see in figure 3.33.

Figure 3.33 The bear sprite calls out “Hello!” to the
cat when it passes over a certain point on the Stage.

Figure 3.32 You can use
broadcasting to send a Game
Over message when the player
uses up all of the lives.

Broadcasting messages 75
So what is happening behind the scenes in Scratch? Script One tells
the cat to (1) start walking. In fact, it sticks that walking command
inside a loop so it keeps happening until a condition is met. And what is
that condition? To do something when (2) the cat reaches the middle of
the screen. That something is to send a message, which is the virtual
baton being passed to the next script. Script Two receives that broad-
casted message and begins going through a series of actions. Well,
really, one action: that friendly bear says “Hello!” once it receives the
message sent from the first script saying that the second script is ready
to run. If you didn’t set it up this way, the bear may be calling out,
“Hello!” before the cat is nearby. And then how would the cat know
that this is a friendly bear?

This example needs two sprites, and you’ll need to be careful that
you’re programming the correct sprite. The sender is the cat, and the
receiver is the bear.

Before you begin, you’ll need to add a second sprite to the Stage. Navi-
gate to the Sprite Zone and click the head icon next to New Sprite.
Double-click the bear sprite. Now set up your Stage by dragging your
cat to the left side of the Stage and your bear to the right side of the
Stage. Now you’re ready to program the cat. Make sure the blue box is
around the cat in the Sprite Zone.

To make your first script

1 Navigate to the Events block menu and choose a When Flag Clicked
block. Drag it over to the Script Area.

2 Click Control, choose the Forever block, and place it under the
When Flag Clicked block.

3 Switch to the Motion block menu and click and drag the Change X
by 10 block to the Script Area. Place it inside the Forever block.

4 Change back to the Control block menu and choose an If/Then
block that goes under the Change X by 10 block inside the Forever
block.

5 Go to the Operators block menu and choose a Square > Square block.
Place it inside the empty hexagonal space in the If/Then block.

76 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
6 Return to Motion and scroll down until you find the X Position
block. Slide it into the left square on the Square > Square block.
Type a zero (0) in the right square.

7 Navigate back to Events and choose a Broadcast Message1 block.
Open the drop-down menu and click New Message. Type Hello in
the pop-up window.

8 Go back to Control and slide a Wait 1 Secs block underneath the
Broadcast Hello block. Change the 1 to a 3. This will put a pause
into the script so it will be easier to see the bear say hello.

The completed first script in figure 3.34 sets when the cat sprite will
send out the message.

Figure 3.34 The first script broadcasts a message once the cat passes the center
point on the Stage.

Now the bear needs to receive the message. Switch to programming
the bear by clicking the bear in the Sprite Zone.

YOUR SCRIPT DISAPPEARED! Watch out! Looking in your
Script Area and seeing it empty may cause you a moment of

panic, but don’t worry. Your scripts are safe and sound; they’re attached to a
different sprite. The Script Area only shows the scripts applied to the sprite
chosen in the Sprite Zone. When you click the bear, the script for the cat dis-
appears. Click the cat, and the script reappears. If you ever have a script dis-
appear, click each of the sprites in the Sprite Zone and check the Script Area.
Chances are your script isn’t gone; it’s attached to a different sprite.

Everything inside the Forever
block runs on a loop.

On switch

If the sprite’s X position is greater
than 0 (the center of the Stage),
do the actions inside the block.

Moves the sprite 10 steps to the right

Send the message called Hello.

Pause for 3 seconds.

FIX ITFIX IT

Broadcasting messages 77
To start the receiving script

1 Navigate to the Events menu and choose a When I Receive Hello
block. Drag it into the Script Area and release it near the top of the
workspace.

2 Click Looks and drag the Say Hello! for 2 Secs block. Snap it under-
neath the When I Receive Hello block.

In figure 3.35, you can see the completed receiving broadcasting script.
Click the green flag above the Stage. What happens when the cat starts
moving?

These two scripts interact with one another to make the bear say
“Hello!”when the cat crosses over the middle of the Stage. The first
script sends the message, but it does more than that. It monitors where
the cat is on the Stage, checking its X position to see if it is more than 0.
It has instructions to send the message to the other script once the cat
passes the center of the Stage, because 0 is the midway point on the
X-axis. You should also see the cat slow down and move in small jumps
after it gets to the midway point due to the Wait 3 Secs block, which
you inserted so you could see the bear’s script. It’s not just pausing
sending the message—it’s pausing the cat’s movement. It still moves 10
steps, but only every 3 seconds after it passes the midway point on the
Stage.

And what is the bear’s script? It’s pretty simple. The first block, When
I Receive Hello, is the receiver block. It’s like the baton being put in
the bear’s hand and telling him it’s his turn. It starts the action attached
to this second on switch: to say “Hello!” for two seconds.

The ability to send messages between scripts means you can create
some pretty complicated games in Scratch.

Says “Hello!” for two seconds

Begins whenever the Hello
message is sent

Figure 3.35 The brief
receiving script has the
bear say "Hello!"

78 CHAPTER 3 Meeting Scratch’s key blocks through important coding concepts
Learning in action
Welcome to the world of computer science. You learned eight com-
puter science concepts in a single chapter. You’ll explore these ideas in
depth through the rest of the book as you make games. Getting com-
fortable with these ideas is important because they’re the foundation
for every coding language, from Scratch to Ruby to Java and beyond.
Understanding them in Scratch will help you springboard later on into
the larger programming world.

Make sure you understand these coding concepts by making
your own example scripts in the style of the exercises in this

chapter. Can you make a simple conditional statement? Figure out a use for a
variable? Set up directions to run in a loop?

Pause for a moment to think about how much you’ve already learned:

 How to set a starting point for your program so it can run
 How to find a sprite’s X and Y coordinates to know its location on

the Stage
 How to write conditional statements so you can have actions happen

at a certain moment
 How to create loops to keep pieces of code running indefinitely
 How to build variables so you can track information
 How to understand Booleans and how important true/false state-

ments are for programming
 How to make clones of sprites in the middle of a game
 How to broadcast messages between two scripts

You’ll use all these programming elements in the games that appear in
this book. In fact, let’s get started with the first game, a two-player ball-
and-paddle game called Breakfast Wars. Yes, it’s time to conclude all
the preparatory work that you accomplished in the chapters of part
one, “Setting up the arcade,” and move onto part two, “Turning on the
machines.” For the next two chapters, you’ll learn how to make a game
with step-by-step instructions and a lot of reminders. Ready to put this
computer science knowledge to work?

CHALLENGECHALLENGE

	SCFord-front
	3SampleChapterPages
	chapter3
	FordScratch_back

