
M A N N I N G

Doug Turnbull
John Berryman
FORE WORD BY Trey Grainger

With applications for Solr and Elasticsearch

S A M P L E C H A P T E R

Relevant Search
With applications for Solr and Elasticsearch

by Doug Turnbull
John Berryman

 Chapter 1

 Copyright 2016 Manning Publications

v

brief contents
1 ■ The search relevance problem 1

2 ■ Search—under the hood 16

3 ■ Debugging your first relevance problem 40

4 ■ Taming tokens 74

5 ■ Basic multifield search 107

6 ■ Term-centric search 137

7 ■ Shaping the relevance function 170

8 ■ Providing relevance feedback 204

9 ■ Designing a relevance-focused search application 232

10 ■ The relevance-centered enterprise 257

11 ■ Semantic and personalized search 279

1

The search
relevance problem

Getting a search engine to behave can be maddening. Whether you’re just getting
started with Solr or Elasticsearch, or you have years of experience, you’ve likely
struggled with low-quality search results. Out-of-the-box settings haven’t met your
needs, and you’ve fought to deliver even marginally relevant search results.

 When it comes to relevance ranking, a search engine can seem like a mystical
black box. It’s tempting to ignore relevance problems—turning the focus away
from search and toward other, less mystical parts of the application such as perfor-
mance or the UI. Unfortunately, the work of search relevance ranking can’t be

This chapter covers
■ The ubiquity of search (search is all around us!)
■ The challenge of building a relevant search

experience
■ Examples of this challenge for prominent

search domains
■ The inability of out-of-the-box solutions to solve

the problem
■ This book’s approach for building relevant

search

2 CHAPTER 1 The search relevance problem

avoided. Users increasingly need to work with large amounts of content in today’s
applications. Whether this means products, books, log messages, emails, vacation rent-
als, or medical articles—the search box is the first place your users go to explore and
find answers. Without intuitive search to answer questions in human terms, they’ll be
hopelessly lost. Thus, despite the maddening, seemingly mystical nature of search, you
have to find solutions.

 Relevant Search demystifies relevance. What exactly is relevance? It’s at the root of
the search engine’s value proposition. Relevance is the art of ranking content for a
search based on how much that content satisfies the needs of the user and the busi-
ness. The devil is completely in the details. Ranking search results for what content?
(Tweets? Products? Beanie Babies?) For what sorts of users? (Doctors? Tech-savvy
shoppers?) For what types of searches? (Written in Japanese? Full of grocery brands?
Filled with legal jargon?) What do those users expect? (A shopping experience? A
library card catalog?) And what does your employer hope to get out of this interac-
tion? (Money? Page views? Goodwill?) Search has become such a ubiquitous part of
our applications, creeping in inch by inch without much fanfare. Answering these
questions (getting relevance right) means the difference between an engaging user
experience and one that disappoints.

1.1 Your goal: gaining the skills of a relevance engineer
How will you get there? Relevant Search teaches you the skills of a relevance engineer. A
relevance engineer transforms the search engine into a seemingly smart system that
understands the needs of users and the business. To do this, you’ll teach the search
engine your content’s important features: attributes such as a restaurant’s location,
the words in a book’s text, or the color of a dress shirt. With the right features in
place, you can measure what matters to your users when they search: How far is the
restaurant from me? Is this book about the topic I need help with? Will this shirt
match the pants I just bought? These search-time ranking factors that measure what
users care about are called signals. The ever-present challenge, you’ll see, is selecting
features and implementing signals that map to the needs of your users and business.

 But technical wizardry is only part of the job (as shown in figure 1.1). Understand-
ing what to implement can be more important than how to do so. Ironically, the rele-
vance engineer rarely knows what “relevant” means for a given application. Instead,
others—usually nontechnical colleagues—understand the content, business, and users’
goals. You’ll learn to advocate for a relevance-centered enterprise that uses this broader
business expertise as well as user behavioral data to reveal the experience that users
need from search.

 We refine these concepts later in the chapter (and throughout this book). But to
help set the right foundation, the remainder of this chapter defines the relevance
problem. Why is relevance so hard? What attempts have been made to solve it? Then
we’ll switch gears to outline this book’s approach to solving relevance.

3Why is search relevance so hard?

1.2 Why is search relevance so hard?
Search relevance is such a hard problem in part because we take the act of searching
for granted. Search applications take a user’s search queries (the text typed into the
search bar) and attempt to rank content by how likely it will satisfy.

 This act occurs so frequently that it’s barely noticed. Reflect on your own experi-
ences. You probably woke up this morning, made your coffee, and started fiddling
with your smartphone. You looked at the news, scanned Facebook, and checked your
email. Before the coffee was even done brewing, you probably interacted with a dozen
search applications without much thought. Did you send a message to a friend that
you found in your phone’s contact list? Search for a crucial email? Talk to Siri? Did
you satisfy your curiosity with a Google search? Did you shop around for that dream
50-inch flat-screen TV on Amazon?

 In a short time, you experienced the product of many thousands of hours of engi-
neering effort. You engaged with the culmination of an even larger body of academic
research that goes back a century in the field of information retrieval. Standing on the
shoulders of giants, you sifted through millions of pieces of information—the entire
human collection of information on the topic—and found the best reviewed and most
popular TV in mere minutes.

In
d
ex

in
g Query

Respon
se

SEARCH

ENGINE

Users

Stakeholders/
partners

Content
curatorSearch

engineer
Document

store

title: Som
Mothera

date:

2015.8.13

body: Bacon

can't beat

the ti..

title: Som
Mothera

date:

2015.8.13

body: Bacon

can't beat

the ti..

title: Best

Beaches for

Summer

date:

2015.8.13

body: In the

hot summer

months...

sentiment:positive

location:Barcelona

cluster-id:31536

Documents

Figure 1.1 The relevance engineer works with the search engine and back-end
technologies to express business-ranking logic. They collaborate on relevance closely
with a cross-functional team and are informed heavily by user metrics.

4 CHAPTER 1 The search relevance problem

 Or maybe you didn’t have such a great experience. It’s just as likely that you found
at least some of your search experiences frustrating. Maybe you couldn’t find a con-
tact on your phone because of a simple spelling mistake. Maybe the search engine
didn’t understand your idea of a dream TV. In frustration you gave up, uninstalling
the application while thinking, “Why should a reasonable search be so difficult?”

 In reality, a “simple” search that appears “reasonable” to users often requires
extensive engineering work. Users expect a great deal out of search applications. Our
search applications are asked, within the blink of an eye, to understand what informa-
tion users want based on a few hastily entered search terms. To make it worse, users
lack time to comb through dozens of search results. Users try your search a few fleet-
ing times, quickly getting frustrated if it seems the search doesn’t bring back what
they’re looking for. Your window for delivering relevant search results is small and
always shrinking.

 You might be thinking, “Sure the problem seems hard, but why isn’t it easily solved?”
Search has been around for a while; shouldn’t a search engine such as Solr or Elastic-
search always return the right result? Or why not just send users to Google? Why won’t
a canned, commercial solution such as Amazon’s A9 solve your search problems?

1.2.1 What’s a “relevant” search result?

We’re easily tricked into seeing search as a single problem. In reality, search applica-
tions differ greatly from one another. It’s true that a typical search application lets
the user enter text, filter through documents, and interact with a list of ranked
results. But don’t be fooled by superficial appearances. Each application has dramat-
ically different relevance expectations. Let’s look at some common classes of search
applications to appreciate that your application likely has its own unique definition
of relevance.

 First, let’s consider web search. As the web grew, early web search engines were easily
tricked by unsavory sites. Shady site creators stuffed phrases into their pages to mis-
lead the search engine. At best, early search engines returned any old match for a user
query. At worst, they led users to spammy or malicious web pages.

 Google realized that relevance for the web depended on trust, not just text. Users
needed help sifting through the untrustworthy riffraff on the web. So Google developed
its PageRank algorithm1 to measure the trustworthiness of content. PageRank computes
this trustworthiness score by determining how much the rest of the web links to a site.
Using PageRank, Google brings back not only content that matches the user’s search,
but content that’s seen as reliable and trustworthy by the rest of the web. This empha-
sis on returning trustworthy content continues today as Google plays a cat-and-mouse
game with malicious websites that continually attempt to game the system.

1 Read more at “The Anatomy of a Large-Scale Hypertextual Web Search Engine” by Sergey Brin and Lawrence
Page at http://infolab.stanford.edu/~backrub/google.html.

5Why is search relevance so hard?

 Now let’s contrast web search to e-commerce. A site such as Amazon, which has com-
plete control over the content being searched, lacks the dire trustworthiness concern.
Instead, what’s relevant to e-commerce users is the same thing that matters to any kind
of shopper: affordable, highly rated products that will satisfy them. But it’s not just the
shoppers that matter to a store. E-commerce sites have their own selfish interests.
They must also return search results that generate profit, clear expiring inventory, and
satisfy supplier relationships.

 Search becomes the e-commerce site’s salesperson. The same priorities that matter
to the in-store sales experience must be programmed into the e-commerce search by
the relevance engineer. The relevance engineer hopes to build a search that under-
stands what shoppers want, so that they’ll leave the store with satisfactory purchases.
To e-commerce, relevant means not just leading users to satisfactory purchases, but
also making a buck.

 Still another kind of search, prominent in medicine, law, and research, digs deeper
into text for its definition of relevance. This expert search depends on understanding
jargon entered by specialists such as lawyers or doctors. These solutions must under-
stand the subtle, domain-specific relationships—for instance, that “Heart Attack” is
the same thing as “Myocardial Infarction”. Or that acute “Myocardial Infarction” is a
specific type of “Heart Attack”.

 Just as e-commerce search mirrors a shopper’s interactions with a salesperson,
expert search parallels a searcher’s conversation with a research librarian. These
librarians understand the lingo of specialized researchers. When asked a question,
they guide specialists toward data and related research that specialists couldn’t easily
find on their own.

 The basic definition of relevant to these search applications depends on solutions
originally intended to organize information for libraries. For example, in medicine, the
Medical Subject Headings (MeSH) taxonomy shown in figure 1.2 organizes medical
concepts to help retrieve information on synonymous, more-specific, or less-specific sub-
jects. To expert search, relevant means carefully linking subjects and topics between

• Cardiovascular stroke

• Cardiovascular strokes

• Stroke, cardiovascular

• Strokes, cardiovascular

• Heart attack

• Heart attacks

• Myocardial infarct

• Infarct, myocardial

• Myocardial infarcts

Words closely related

to myocardial infarction

All MeSH categories

Diseases category

Cardiovascular diseases

Heart diseases

Myocardial ischemia

Myocardial infarction

Anterior wall myocardial infarction

Inferior wall myocardial infarction

Shock, cardiogenic

A portion of the MeSH hierarchy

containing myocardial infarction

Figure 1.2 MeSH categorization of “Myocardial Infarction” (left) along with several
MeSH topics closely related to “Myocardial Infarction”

6 CHAPTER 1 The search relevance problem

search queries and content. A relevant result is something that delivers an “Aha!”
moment to stuck researchers—a sudden insight they couldn’t easily find on their own.

1.2.2 Search: there’s no silver bullet!

The classes of search problems we’ve just discussed only scratch the surface in the
amazing diversity of search. Is real-estate search a kind of e-commerce search? Cer-
tainly there’s a resemblance (satisfying users with a satisfactory purchase), but many
other factors come into play for a house buyer (good schools, neighborhood, number
of bedrooms). What about a local restaurant search application? Or searching for gro-
ceries? Ordering food from a restaurant’s menu? Searching volunteer opportunities?
Or searching for someone to shovel the driveway after a snowstorm? What about intra-
net search? And what about your application? How do you define what’s relevant?

 Given this dramatic diversity of relevance requirements, it’s surprising to find so
many vendors eager to deliver a surefire, silver-bullet solution. Your definition of rele-
vant is likely far more unique than you realize. Your users have expectations they may
not even be aware of. Your content and business carry challenges you haven’t appre-
ciated yet.

 Indeed, be grateful that Solr or Elasticsearch don’t work well for your problem out
of the box. You didn’t choose a programming language because your product is just a
module to import from its standard library. If that were true, there’d be nothing
unique about your product! Rather, think of Solr or Elasticsearch as a search program-
ming framework. An open source search engine lets you program your understanding
of what’s relevant into the search engine. We’ll teach you just that: the art and science of
delivering a relevance solution by using open source search technologies that satisfy
users and meet business goals.

1.3 Gaining insight from relevance research
Okay, so you see that your application has its own definition of what’s relevant. But
why is there no universal, defined practice for delivering relevant search results to
users? Search the web, and you’ll find any number of one-off solutions that solved any
author’s problem particularly well. What you’re not left with is a sense that search rel-
evance has any holistic grounding or common engineering principles but is instead a
bag of tricks that can’t be generally applied.

 In reality, there is a discipline behind relevance: the academic field of information
retrieval. It has generally accepted practices to improve relevance broadly across many
domains. But you’ve seen that what’s relevant depends a great deal on your applica-
tion. Given that, as we introduce information retrieval, think about how its general
findings can be used to solve your narrower relevance problem.2

2 For an introduction to the field of information retrieval, we highly recommend the classic text Introduction to
Information Retrieval by Christopher D. Manning et al. (Cambridge University Press, 2008); see http://nlp.stanford
.edu/IR-book/.

7Gaining insight from relevance research

1.3.1 Information retrieval

Luckily, experts have been studying search for decades. The academic field of infor-
mation retrieval focuses on the precise recall of information to satisfy a user’s informa-
tion need. What’s an information need? Think of it as a specification of the ideal content
that would satisfy the user’s search. This specification goes beyond the search string
itself. For example, consider a programming problem you’re attempting to solve. You
might be trying to figure out why the Java library function sort throws a NullPointer-
Exception. The information need could be specified as follows:

A solution as to why my particular use of the sort method causes a
NullPointerException. (Though I won’t admit it to myself, it’d be nice to
have some code to copy-paste that solved my problem so I can go to lunch!)

To satisfy this information need, you’re likely to formulate search queries to find solu-
tions to your particular problem—for example, “sort method NullPointerException”
or “<code snippet> NullPointerException.” If you’re fortunate, you’ll find a result
addressing a problem similar to your own. That information will solve your problem,
and you’ll move on.

 In information retrieval, relevance is defined as the practice of returning search
results that most satisfy the user’s information needs. Further, classic information
retrieval focuses on text ranking. Many findings in information retrieval try to mea-
sure how likely a given article is going to be relevant to a user’s text search. You’ll
learn about several of these invaluable methods throughout this book—as many of
these findings are implemented in open source search engines.

 To discover better text-searching methods, information retrieval researchers
benchmark different strategies by using test collections of articles. These test collec-
tions include Amazon reviews, Reuters news articles, Usenet posts, and other similar,
article-length data sets. To help benchmark relevance solutions, these collections
have been heavily annotated in an experimental search setting, grading which
results are most relevant for a given query. For example, when searching for “Mitt
Romney,” news articles about his 2008 or 2012 presidential run would be considered
highly relevant. Perhaps articles about Romney’s early management consulting work
would be considered moderately relevant. Articles that discuss his father, George
Romney, likely would be graded much less relevant. These annotated lists of search
results that are relevant with respect to a set of queries are known as judgment lists
(see figure 1.3).

 Using judgment lists, researchers aim to measure whether changes to text rele-
vance calculations improve the overall relevance of the results across every test collec-
tion. To classic information retrieval, a solution that improves a dozen text-heavy test
collections 1% overall is a success. Rather than focusing on one particular problem in
depth, information retrieval focuses on solving search for a broad set of problems.

8 CHAPTER 1 The search relevance problem

1.3.2 Can we use information retrieval to solve relevance?

You’ve already seen there’s no silver bullet. But information retrieval does seem to sys-
tematically create relevance solutions. So ask yourself: Do these insights apply to your
application? Does your application care about solutions that offer incremental, gen-
eral improvements to searching article-length text? Would it be better to solve the spe-
cific problems faced by your application, here and now?

 To be more precise, classic information retrieval begs several questions when
brought to bear on applied relevance problems. Let’s reflect on these questions to see
where information retrieval research can help and where it might stop being helpful.

■ Do we care only about information needs? For many applications, satisfying users’
information needs isn’t the only goal. Search exists just as much to satisfy the
business behind the search application. You saw this with e-commerce earlier.
Although it’s often said “the customer is always right,” it’s also true that busi-
nesses can’t function without selling ads, making a profit, satisfying suppliers,

Searches to be evaluated

Content expert provides
judgment of relevance

of this result.

Figure 1.3 Example of making a relevance judgment for the query “Rambo” in Quepid, a
judgment list management application

9Gaining insight from relevance research

and moving inventory. Many incentives exist in any search experience that puts
business needs above the user’s information needs. Just like the used-car sales-
men trying to move an overpriced clunker off the lot, relevance engineers must
work with these factors to keep their employer in business.

■ What besides text reflects information needs? Classic information retrieval focuses on
a generic, one-size-fits-all measure of text relevance. These factors may not mat-
ter—at all—to your application. You need to focus with greater care on your
specific problems. We discussed one example: how Google revolutionized web
search by incorporating a numerical website trust measure (PageRank). Google
uses PageRank to get around pure text-based measures easily gamed in its
domain. Even text search doesn’t always neatly fit into information retrieval’s
focus on article-length text. Good results for short text snippets such as tweets
or titles require different thinking. You, not information retrieval researchers,
must decide which factors matter to your application, and implement those. An
approach that does poorly against the Reuters test set may be exactly what you
need to satisfy your users.

■ What does the user experience imply about information needs? Often the promises of
the application itself influence what users consider relevant. We discussed
expert search earlier. Consider two medical search applications. Both serve the
same users (doctors). Both hold the same content (medical articles). But
there’s one important difference: one helps doctors serve sick patients at their
bedsides, and the other allows doctors to explore their research interests casu-
ally in their offices. These dramatically different expectations mean a different
understanding of what’s relevant for the same search queries. A search for
“heart attack” at the patient’s bedside must provide actionable, reliable solu-
tions to a dire, life-and-death problem. The research application allows for
more variety: doctors search for “heart attack” to explore interesting and new
research findings less tied to solving specific problems.

Often the hardest part of being a relevance engineer is understanding the rela-
tionship between context and information needs. User searches arrive at your
search engine with a great deal of baggage attached. This baggage comes in part
as additional data, perhaps geolocation or user session. But other baggage is
entirely implied in the promises made by the search application. Is the applica-
tion built, sold, and marketed for sitting casually at one’s desk and performing
research? Or is it instead billed as almost an expert system, ready, willing, and able
to solve any problem asked of it, including helping a doctor save a life?

Considering these questions, you can see that information retrieval builds a founda-
tion for applying generally useful relevance measures to extremely broad classes of
problems. Your job is to solve relevance for your application. As you’ll see, much of this
exists outside the realm of search technology and speaks to broader product strategy
questions: Who are our users? What do they expect from this application? What implied
and unspecified information needs will search need to address?

10 CHAPTER 1 The search relevance problem

 In fact, before we move on, let’s refine our definition of relevance to what it takes to
solve an applied relevance problem:

Relevance is the practice of improving search results for users by satisfying
their information needs in the context of a particular user experience, while
balancing how ranking impacts our business’s needs.

1.4 How do you solve relevance?
Informed now by information retrieval, let’s focus on how to solve your relevance
problems. Open source search engines recognize that what’s relevant to your applica-
tion depends on a broad range of factors. Many of these are application-specific (how
far the user is from a restaurant, for instance). Others are broader, generic, text-ranking
components from information retrieval.

 Given the capabilities of open source search, how do you solve an applied rele-
vance problem? What framework can we define that incorporates both the narrower,
domain-specific factors alongside broader information-retrieval techniques?

 To solve relevance, the relevance engineer:

1 Identifies salient features describing the content, the user, or the search query
2 Finds a way to tell the search engine about those features through extraction

and enrichment
3 At search time, measures what’s relevant to a user’s search by crafting signals
4 Carefully balances the influence of multiple signals to rank results by manipu-

lating the ranking function

This process is shown in figure 1.4.

In
d
ex

in
g Query

Resp

on
se

SEARCH

ENGINE

The duties of aDocument
store

Maintain
documents

Enrich

documents

Craft signals and

build ranking

functions

Monitor

user

behavior

Extract

features

(analysis)

star trek search

Star Trek

Wish Upon a Star

Star Search

SEARCH APPLICATION

Build an

engaging

application
title: Som
Mothera
date:
2015.8.13
body: Bacon
can't beat
the ti..

title: Som
Mothera
date:
2015.8.13
body: Bacon
can't beat
the ti..

title: Best
Beaches for
Summer
date:
2015.8.13
body: In the
hot summer
months...

sentiment:positive

location:Barcelona

cluster-id:31536

relevance engineer
User

Documents

Figure 1.4 Relevance engineers select, enrich, or create important features from back-end
systems and express ranking signals in terms of those features.

11How do you solve relevance?

That sounds a bit abstract. What exactly do we mean? We discussed an example ear-
lier: how Google susses out the feature of PageRank for websites (step 1). This feature
is encoded in Google’s search engine alongside each web page (thus achieving step 2).
When you issue a search, Google measures many factors that you, with this search,
consider relevant (step 3). For example, Google uses PageRank directly as a trustwor-
thiness ranking signal. Other signals could include how frequently your search string
is mentioned in a page’s title/body or personalization factors using knowledge about
your preferences. Google blends all of these signals (step 4) into a bigger ranking
computation that orders search results in a way that it hopes you’ll find satisfactory.

 We discussed these ideas earlier in the chapter. But let’s lay down some more-precise
definitions. A feature is an attribute of the content or query. Features drive decisions.
Much of the engineering work in search relevance is in feature selection—the act of dis-
covering and generating features that give us the appropriate information when a
user searches.

 Those familiar with machine learning or classification may see something recogniz-
able in these features. When performing classification, you identify new features of your
data to make better classification decisions. Is a fruit a banana or an apple? If you know
the color is yellow, there’s a reasonable chance it’s a banana. If you add data about the
shape—round or long—then you can make an even more definitive decision. As you’ll
see, these features also help search solutions make definitive decisions about data.

 Features describe, but what happens when users search? With signals, you program
the search engine to rank by using your definition of what’s relevant. Signals measure
whether items are relevant for a given search (using features, of course!). For exam-
ple, in our fruit search engine, the user might search for “yellow fruit.” The search
engine must evaluate whether a Golden Delicious apple might be relevant for this
user. We know color matters to fruit shoppers, so one signal might measure how much
this fruit’s color corresponds to a color being searched for.

 It’s rare to have only one signal that measures relevance. More often, multiple sig-
nals combine to rank search results in the search engine’s ranking function. For exam-
ple, in addition to matching on color, perhaps the fruit shopper considers the
freshness of produce. Or the user might recall preferred brands, using that as an addi-
tional signal. We’ll teach you how to control the search engine’s ranking function to
rank results in a way that seems eerily “smart”—factoring in all the considerations (sig-
nals) that your users factor into their definitions of relevant.

 Fear not—we know these ideas are abstract right now. As you get your hands dirty
in future chapters, you’ll begin to have the Aha! moment you need to grok what we
mean. But to get the general idea, let’s consider examples of features, and how they
can be used as ranking-time search signals:

■ Sales data, user ratings—Features used to signal popular results that users will
probably be happier with.

■ Text with positional information—Used to signal when phrases from the user’s
query match the content.

12 CHAPTER 1 The search relevance problem

■ Text with synonyms—Whether synonyms of query terms match the content.
■ Geolocation—Whether something is near or far: Is the searcher close to the con-

tent? Is the sushi restaurant next to the user or in Manhattan?
■ Machine learning/classification features—Is the search more easily classified into

one type of content (a search for movies) and not easily classified into other
types (a search for lawn equipment)?

■ Personalization/recommendation—Has the user shown an affinity for any particu-
lar kind of content over others? Can you identify other users who are similar to
the user making a search? Perhaps the historic preferences of the user issuing a
search could be used as a signal to influence the search results.

As you work through future chapters, you’ll see an approach that systematically
improves search relevance based on selecting features and programming ranking
signals. To form a foundation for this work, we’ll first give you an overview of the
search engine’s internal mechanics and how to debug them in chapters 2 and 3.
Chapters 4–7 get at the meaty problems of building features and signals. In chapter 8,
we point out alternate strategies to guide users to relevant content when search by
itself won’t do.

 Throughout this book, we use Elasticsearch as our example search engine. Elastic-
search is a modern search engine built upon Lucene, a commonly used Java search
library. This book also applies to Solr, another search engine based on Lucene.
Though our examples focus on Elasticsearch, these ideas are generally applicable.
Solr readers in particular should follow along with appendix B, which helps map fea-
tures between the two search engines.

1.5 More than technology: curation, collaboration,
and feedback
Is a technical foundation enough to solve the search relevance problem? Armed with
new skills from this book, you might be hungry to improve your employer’s search.
Targeting what you think are the biggest relevance problems, you deliver to your users
what you consider to be an amazing search experience. You release your updates with-
out much fuss; to the organization, that’s yet another one of those heads-down, back-
end tasks that engineers go off and just figure out. It’s something akin to squeezing
more performance out of the SQL database, right?

 Unfortunately, shortly after the release, your boss is at your door. Things look
pretty grim. Despite your best efforts, something is deeply amiss. Somehow, users
aren’t making purchases. They can’t find the information they need. Instead, they’re
giving up and going to the competition. With revenue headed south, your boss grits
her teeth. In desperation, she looks at you square in the face and pleads for you to
“make it more relevant!” In other words, fix the bug, implement the feature—stay all
weekend if you have to; just make it work!

13More than technology: curation, collaboration, and feedback

 “Make it more relevant”? Let’s recall our definition of relevance. Perhaps if you med-
itate on this definition, you’ll see how the organization in this story misses the mark:

Relevance is the practice of improving search results for users by satisfying
their information needs in the context of a particular user experience, while
balancing how ranking impacts our business’s needs.

When you think about this definition, you quickly see that relevance engineers have no
idea what relevant search should be! To satisfy your users’ information needs, you need to
understand their goals, their domains, and the context of their searches. These could
vary wildly, from a doctor helping a struggling patient to a grandparent shopping for
baby shower presents. Satisfying these users means getting inside their heads. Under-
standing these users goes far beyond search technology, touching nearly every compe-
tence in the organization. This is especially true as you work to understand business
needs such as politics, profit, business goals, and other internal factors.

 Solving the search relevance problem requires shifting the organization’s culture
to emphasize cross-functional collaboration. How can the organization teach rele-
vance engineers to understand the users’ vernacular and what they expect from
search? What happens when the application is built for doctors or lawyers? Who helps
the engineer understand these users’ domains? How does the organization teach a
relevance engineer what makes the company the most money? Which suppliers
should be kept happy? What content has “premium” access in search (and what’s that
even supposed to mean)?

 Even seemingly mundane search applications can be fraught with these complica-
tions. Consider a restaurant search application. Your marketing colleagues worked
hard to bring users “into the doors” of your application. Now the search, acting as the
site’s salesperson (or perhaps concierge?), needs to satisfy them and make them eager
to come back for more.

 Relevance engineers, though, aren’t the sales department. When a user types
“sushi” into the search bar, what restaurants does that user expect? Takeout? High-end
restaurants? Nearby ones? Depends on the user? Others in the organization, not the
relevance engineer, understand what goals users hope to achieve. The relevance engi-
neer is working in isolation to define relevance ranking and might as well be painting
a house blindfolded.

 Further, this collaboration goes beyond simply educating the relevance engineer.
Curation, the manipulation of content to be easily found by user searches, can matter
just as much as teaching a relevance engineer. Recall the expert search examples ear-
lier in this chapter. Here the expertise of the librarian can help you build better
search by organizing content to make it easier to find. Often this organization
requires a close meeting of the minds between those who understand the content
deeply and the relevance engineers who grok how the search engine works.

 Rooted in these forms of collaboration is the notion of feedback. An effective orga-
nization strives to bring relevance engineers accurate and quick feedback to inform

14 CHAPTER 1 The search relevance problem

and guide their efforts. You can visualize several important feedback loops as a series
of increasingly focused circles, as shown in Figure 1.5. Starting on the outermost loop,
the search developers operate within an organization, blissfully unaware of the impact
of search relevance. As the organization evolves, it moves to inner, more mature forms
of feedback: incorporating user behavioral data and expert feedback. Finally, the
organization encodes its wisdom into relevance tests, enabling test-driven relevancy
practice—the most mature organizational form.

This book primarily teaches you about the technical craft of relevance engineers. But
reflecting on what you should be doing hopefully echoes in your mind as you learn
these technical lessons. In many examples, we state unequivocally that a particular
search result is what users want to see. We do this to teach you technical skills to
manipulate the search to get those results. As you work through those examples,
remember the examples in this section before applying lessons directly to your rele-
vance problems. We’ll dive deeper into organizational challenges in chapter 10.

1.6 Summary
■ Relevance problems are pervasive. Even established domains such as web search,

e-commerce, and expert search continue to struggle to improve the relevance
of search results.

■ Bringing users to relevant search results can turn into a multibillion-dollar busi-
ness advantage; failing to do so can mean losing out to the competition.

■ Information retrieval is the academic field of bringing users to content that satis-
fies their information needs, largely as specified in search queries.

Te
st

-d
riven relevance

Poor feedback/upset users/lost sales

Business and domain awareness

Content curation

Paire
d relevance tuning

Figure 1.5 Forms of search-
relevance feedback

15Summary

■ In practice, relevance is more than satisfying information needs as specified by
searches. It also means satisfying business needs. Further, understanding a
user’s information needs often depends on implicit information, such as the
application’s context, purpose, marketing, and user experience.

■ Relevance can be achieved by identifying the valuable features of your content,
and using those features to compute relevance signals.

■ Technologists can’t do it alone. Based on business needs, the user audience,
and the content domain, the relevance engineer often doesn’t have the skills to
evaluate what content is relevant for user searches.

■ Feedback is vital. From the perspective of the relevance engineer, measuring
the impact of relevance changes helps avoid delivering poor search to users.

Turnbull ● Berryman

U sers are accustomed to and expect instant, relevant search
results. To achieve this, you must master the search
engine. Yet for many developers, relevance ranking is

mysterious or confusing.

Relevant Search demystifi es the subject and shows you that a
search engine is a programmable relevance framework. Using
Elasticsearch and Solr, it teaches you to express your busi-
ness’s ranking rules in this framework. You’ll discover how to
program relevance and how to incorporate secondary data
sources, taxonomies, text analytics, and personalization. In
practice, a relevance framework requires softer skills as well,
such as collaborating with stakeholders to discover the right
relevance requirements for your business. By the end, you’ll
be able to achieve a virtuous cycle of provable, measurable
relevance improvements over a search product’s lifetime.

What’s Inside
● Techniques for debugging relevance
● Applying search engine features to real problems
● Using the user interface to guide searchers
● A systematic approach to relevance
● A business culture focused on improving search

For developers trying to build smarter search with
Elasticsearch or Solr.

Doug Turnbull is lead relevance consultant at OpenSource
Connections, where he frequently speaks and blogs.
John Berryman is a data engineer at Eventbrite, where he
specializes in recommendations and search.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/relevant-search

$44.99 / Can $51.99 [INCLUDING eBOOK]

Relevant SEARCH

SEARCH

M A N N I N G

“One of the best and most
engaging technical books

I’ve ever read.”
—From the Foreword

by Trey Grainger
Author of Solr in Action

“Will help you solve
real-world search relevance
problems for Lucene-based

search engines.”
—Dimitrios Kouzis-Loukas

Bloomberg L.P.

“An inspiring book revealing
the essence and mechanics

of relevant search.”
—Ursin Stauss, Swiss Post

“Arms you with invaluable
knowledge to temper the
relevancy of search results
and harness the powerful

features provided by
 modern search engines.”—Russ Cam, Elastic

SEE INSERT

