
M A N N I N G

Simon Morris

Covers JavaFX v 1.2

IN ACTION

SAMPLE CHAPTER

 JavaFX in Action

by

Simon Morris

Chapter 1

Copyright 2010 Manning Publications

vii

brief contents
1 ■ Welcome to the future: introducing JavaFX 1

2 ■ JavaFX Script data and variables 15

3 ■ JavaFX Scriptcode and structure 46

4 ■ Swing by numbers 79

5 ■ Behind the scene graph 106

6 ■ Moving pictures 132

7 ■ Controls,charts, and storage 165

8 ■ Web services with style 202

9 ■ From app to applet 230

10 ■ Clever graphics and smart phones 270

11 ■ Best of both worlds: using JavaFX from Java 300

appendix A ■ Getting started 315

appendix B ■ JavaFX Script: a quick reference 323

appendix C ■ Not familiar with Java? 343

appendix D ■ JavaFX and the Java platform 350

1

Welcome to the future:
 introducing JavaFX

“If the only tool you have is a hammer, you tend to see every problem as a nail,”
American psychologist Abraham Maslow once observed.

 Language advocacy is a popular pastime with many programmers, but what
many fail to realize is that programming languages are like tools: each is good at
some things and next to useless at others. Java, inspired as it was by prior art like C
and Smalltalk, sports a solid general-purpose syntax that gets the job done with the
minimum of fuss in the majority of cases. Unfortunately, there will always be those
areas that, by their very nature, demand something a little more specialized. Graph-
ics programming has typically been one such area.

 Graphics programming used to be fun! Early personal computer software
sported predominantly character-based UIs. Bitmap displays were too expensive,

This chapter covers
■ Reviewing the history of the internet-based application
■ Asking what promise DSLs hold for UIs
■ Looking at JavaFX Script examples
■ Comparing JavaFX to its main rivals

2 CHAPTER 1 Welcome to the future: introducing JavaFX

although some computers offered the luxury of hardware sprites. For the program-
mer, the simple act of poking values into RAM gave instant visual gratification.

 These days things are a lot more complicated; we have layers of abstraction separat-
ing us from the hardware. Sure, they give us the wonders of scrollbars, rich text edi-
tors, and tabbed panes, but they also constrain us. The World Wide Web raised the
bar; users now expect glossier visuals, yet the graphical toolkits used to create desktop
software are little evolved from the days of the first Macintosh or Amiga.

 But it’s not just the look of software that has been changed by the web. Increasingly
data is moving away from the hard disk and onto the internet. Our tools are also starting
to move that way, yet the fledgling attempts to build online applications using HTML
and Ajax have resulted in nothing more than pale imitations of their desktop cousins.
At the same time, consumer devices like phones and TV set top boxes are getting
increasingly sophisticated in terms of their UI, and faster wireless networks are reaching
out to these devices, allowing applications to run in places previously unheard of.

 If only there were a purpose-built tool for writing the next generation of internet
software, one that could serve up the same rich functionality of a desktop application,
yet with drop-dead-gorgeous visuals and rich media content within easy reach, deliv-
ered to whatever device (PC, television, or smart phone) we wanted to work from today.

 Sound too good to be true? Let me introduce you to JavaFX!

1.1 Introducing JavaFX
JavaFX is the name of a family of technologies for developing visually rich applications
across a variety of devices. Version 1.0 was launched in December 2008, focusing on
the desktop and web applets. Version 1.1 arrived a couple of months later, adding
phone support to the mix, and by summer 2009 version 1.2 was available, sporting a
modern UI toolkit. Later editions promise to expand the platform’s reach even fur-
ther, onto TV devices, Blu-ray disc players, and possibly even personal video recorders,
plus further enhance its desktop support with more next-gen UI controls.

 The JavaFX APIs have a radically different way of handling graphics, known as retained
mode, shifting focus away from the pixel-pushing immediate mode (à la the Java2D library
used by Swing), toward a more structured approach that makes animation cleaner and
easier. At JavaFX’s center is a major new programming language, JavaFX Script, built
from the ground up for modeling and animating multimedia applications. JavaFX
Script is compiled and object oriented, with a syntax independent of Java but capable
of working with Java class files. Together JavaFX Script (the language) and JavaFX (the
APIs and tools) create a modern, powerful, and convenient way to create software.

1.1.1 Why do we need JavaFX Script? The power of a DSL

A very good question: why do we need yet another language? The world is full of pro-
gramming languages—wouldn’t one of the existing languages do? Perhaps JavaScript,
or Python, or Scala? Indeed, what’s wrong with Java? Certainly JavaFX Script makes
writing slick graphical applications easier, but is there more to it than that?

 What makes graphics programming such an ill fit for modern program-
ming languages? There are many problems; ask a dozen experts and you’ll get

3Introducing JavaFX

thirteen answers, but let me (your humble author) risk suggesting a couple of prime
suspects:

■ UIs generally require quite large nested data structures: trees of elements, each
providing a baffling array of configurable options and behaviors. Figure 1.1
demonstrates the hierarchy within a typical desktop application: controls laid
out within panels, panels nested within other panels (tabbed panes, for exam-
ple), ultimately held within windows. Procedural languages like to work in
clearly delineated steps, but this linear pattern conflicts with the tree pattern
inherent in most GUIs.

■ Graphics code tends to rely heavily on concurrency—processes running in par-
allel. Modern UI fashions have amplified this requirement, with several transi-
tion effects often running within a single interface simultaneously. The
boilerplate code demanded by many languages to create and manage these ani-
mations is verbose and cumbersome.

Perhaps you can think of other problems, but the above two I mentioned (at least in
my experience) seem to create more than enough trouble between them. It’s deep,
fundamental problems like these that a domain-specific language can best address.

Figure 1.1 A complex GUI typical of modern desktop applications. Two windows host scrolling
control palettes, while another holds an editable image and rulers.

4 CHAPTER 1 Welcome to the future: introducing JavaFX

A domain-specific language (DSL) is a programming language designed from the
ground up to meet a particular set of challenges and solve a specific type of problem.
The language at the heart of JavaFX, JavaFX Script, is an innovative DSL for creating
visually rich UIs. It boasts a declarative syntax, meaning the code structure mirrors the
structure of the interface. Associated UI components are kept in one place, not strewn
across multiple locations. Simple language constructs soothe the pain of updating and
animating the interface, reducing code complexity while increasing productivity. The
language syntax is also heavily expression-based, allowing tight integration between
object models and the code that controls them.

 In layperson’s terms, JavaFX Script is a tool custom made for UI programming.
 But JavaFX isn’t just about slick visuals; it’s also an important weapon in the arms

race for the emerging Rich Internet Application (RIA) market. But what is an RIA?

1.1.2 Back to the future: the rise of the cloud

Douglas Adams wrote, “I suppose the best way to find out where you come from is to
find out where you’re going, and then work backwards.”

 Sometimes we become so engrossed in the here and now, we forget to stop and
consider how we arrived at where we are. We know where we want to go, but can our
past better help us get there?

 In the pre-internet age, software was installed straight onto the hard drive. If sud-
denly overcome by an urge to share with friends your latest poetic masterpiece, you
needed at your disposal both the document file and the software to open it. Chances
are neither would be available. Your friends might be grateful, but clearly this was a
problem needing a solution.

 The World Wide Web was a small step toward that solution. Initially, applications
were nothing more than query/response database lookups, but web mail changed all
that (figure 1.2). Web mail marked a fundamental shift in the relationship between

Figure 1.2 Google’s Gmail is an example of a website application that attempts
to mimic the look and function of a desktop application.

5Introducing JavaFX

site and visitor. Previously the site held content that the visitor browsed or queried, but
web mail sites supplied no content themselves, relying instead on content from (or
for) the user. The role of the site had moved from information source to storage
depot, and the role of the visitor from passive consumer to active producer.

 A new generation of websites attempted to ape the look and feel of traditional
desktop software, earning the moniker “Rich Internet Application” after Macromedia
(subsequently purchased by Adobe) coined the term in a 2002 white paper noting the
transition of applications from the desktop onto the web. By late 2007 the term cloud
computing was in common use to describe the anticipated move from the hard disk to
the network for storing personal data such as word processor documents, music files,
or photos.

 Despite the enthusiasm, progress was slow and frustrating. Ajax helped paper over
some of the cracks, but at its heart the web was designed to show page-based content,
not run software. Web content is poured into the window, left to right down the page,
echoing the technology’s publishing origins, while input is predominantly restricted
to basic form components. Mimicking the layout and functionality of a desktop appli-
cation inside a document-centric environment was not easy, as numerous web devel-
opers soon discovered (figure 1.3).

Figure 1.3 Google Docs runs inside a browser and has a much simpler GUI than Microsoft
Office or OpenOffice.org. (Google Docs shown.)

6 CHAPTER 1 Welcome to the future: introducing JavaFX

At the bleeding edges of the software development world some programmers dared to
commit heresy; they asked whether the web browser was really the best platform for cre-
ating RIAs. Looking back they saw a wealth of old desktop software with high-fidelity UIs
and sophisticated interactivity. But this software used old desktop toolkits, bound firmly
to one hardware and OS platform. Web pages could be loaded dynamically from the
internet on any type of computer; web RIAs were nimble, yet they lacked any capacity
for sophistication.

1.1.3 Form follows function: the fall and rebirth of desktop Java

From its first release in 1995 Java had featured a powerful technology for deploying
rich applications within a web page. So called Java applets could be placed on any
page, just like an image, and ran inside a secure environment that prevented unau-
thorized tampering with the underlying operating system (figure 1.4). While applets
boosted the visibility of the Java brand, the idea initially met with mixed success. The
applet was a hard-core programming technology in a world dominated by artists and
designers, and while many page authors drooled over Java’s power, few understood
how to install an applet onto their own site, let alone how to create one from scratch.

 Java applet’s main rival was Macromedia Flash, an animation and presentation tool
boasting a more designer-friendly development experience. Once Macromedia’s plug-
in began to gain ground, the writing was on the wall for the humble Java applet. Already
Sun was starting to ignore user-facing Java in favor of big back-end systems running
enterprise web applications. The Java applet vanished almost as quickly as it arrived.

Figure 1.4
An applet (the game
3D-Blox) runs inside
a web page, living
alongside other web
content like text and
images.

7Introducing JavaFX

Fast forward 10 years and the buzz was once again about online applications: RIAs and
cloud computing. Yet Ajax and HTML were struggling to provide the kind of refined
UI many now wanted, and Flash’s strengths lay more in animation than solid functional
GUIs and data manipulation.

 Could Java be given a second chance?
 Java had proved itself in the enterprise space, amassing many followers in the soft-

ware community and a vast archive of third-party libraries. Yet Java still had one major
handicap—on the desktop it remained a tool for cola-swigging, black-T-shirt-wearing
code junkies, not trendy cappuccino-sipping, goatee-stroking artists. If Java was to be
the answer to the RIA dilemma, it needed to be more Leonardo da Vinci and less Bill
Gates (figure 1.5).

 In 2005 Sun Microsystems acquired SeeBeyond Technology Corporation, and in
the process it picked up a talented software engineer by the name of Chris Oliver. Oli-
ver’s experimental F3 (Form Follows Function) programming language sought to
make GUI programming easier by designing the syntax around the specific needs of
UI programming. As they pondered how best to exploit the emerging RIA market, the
folks at Sun could surely not have failed to note the potential of combining the exist-
ing Java platform with Oliver’s new graphics power tool. So in 2007, at the JavaOne
Conference (the community’s most important annual gathering), F3 was given center
stage as Java’s beachhead into the new RIA market.

 And as if to demonstrate its importance, F3 was blessed with a sexy new name: JavaFX!

Figure 1.5 The StudioMOTO demo, one of the original JavaFX examples, shows off a glossy UI with
animation, movement, and rotating elements all responding to the user’s interaction.

8 CHAPTER 1 Welcome to the future: introducing JavaFX

1.2 Minimum effort, maximum impact: a quick shot of JavaFX
It’s hard to visualize the difference a
new technology will make to your
working life from a description alone.
What’s often needed is a short but
powerful example of what’s possible.
A picture is worth a thousand words,
and so in lieu of a few pages of text, I
give you figure 1.6.

 Six shaded balls bounce smoothly
up and down onto a reflective shaded
surface, as the desktop is exposed
behind the balls. The window has
no title bar (the title bar you see
belongs to the text editor behind),
but clicking inside its boundary will
close the window and exit the bounc-
ing ball application.

 Now, the sixty-four-thousand-dollar question: how many lines of code does it take
to construct an application like this? Consider what’s involved: multiple objects mov-
ing independently, circular shading on each ball, linear shading on the ground, a
reflection effect, transparency against the desktop, and a click event handler. If you
said “less than 70,” then you’d be right! Indeed, the whole source file is only 1.4k in
size and weighs in at a mere 69 lines. Don’t believe me? Take a look at listing 1.1.

import javafx.animation.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.effect.*;
import javafx.scene.shape.*;
import javafx.scene.input.*;
import javafx.scene.paint.*;

var balls = for(i in [0..<6]) {
 var c = Circle {
 translateX: (i*40)+90; translateY: 30;
 radius: 18;
 fill: RadialGradient {
 focusX: 0.25; focusY:0.25;
 proportional: true;
 stops: [
 Stop { offset: 0; color: Color.WHITE; } ,
 Stop { offset: 1; color: Color.BLACK; }
]
 };
 }
}

Listing 1.1 The bouncing ball demo

Figure 1.6 The bouncing balls demo, with color
shading, reflection effect, and a shaped window
(that’s a text editor behind, with source code loaded,
demonstrating the app’s transparency).

9Minimum effort, maximum impact: a quick shot of JavaFX

Stage {
 scene: Scene {
 content: Group {
 content: [
 Rectangle {
 width: 380; height: 250;
 opacity: 0.01;
 onMouseClicked:
 function(ev:MouseEvent) { FX.exit(); }
 } , balls
]
 effect: Reflection {
 fraction: 0.25; topOffset: -18;
 topOpacity: 0.5; bottomOpacity: 0.125;
 }
 }
 fill: LinearGradient {
 endX: 0; endY: 1; proportional: true;
 stops: [
 Stop { offset: 0.74; color: Color.TRANSPARENT; } ,
 Stop { offset: 0.75; color: Color.BLACK } ,
 Stop { offset: 1; color: Color.GRAY }
]
 }
 };
 style: StageStyle.TRANSPARENT
};

Timeline {
 keyFrames: for(i in [0..<sizeof balls]) {
 KeyFrame {
 time: i*200ms;
 action: function() {
 Timeline {
 repeatCount: Timeline.INDEFINITE;
 autoReverse: true;
 keyFrames: [
 at (0s) { balls[i].translateY => 30 } ,
 at (1s) { balls[i].translateY => 230
 tween Interpolator.EASEIN }
]
 }.play();
 }
 }
 }
}.play();

Since this is an introductory chapter, I’m not going to go into detail about how each
part of the code works. Besides, by the time you’ve finished this book you won’t need
an explanation of its mysteries, because you’ll already be writing cool demos of your
own. Suffice to say although the code may look cryptic now, it’s all pretty straightfor-
ward once you know the few simple rules that govern the language syntax. Make a
mental note, if you want, to check back with listing 1.1 as you read the first half of this
book; you’ll be surprised at how quickly its secrets are revealed.

10 CHAPTER 1 Welcome to the future: introducing JavaFX

1.3 Comparing Java and JavaFX Script: “Hello JavaFX!”
So far we’ve discussed what JavaFX is and why it’s needed. We’ve looked at an example
of JavaFX Script and seen that it’s very different from Java, but just how different? For
a true side-by-side comparison to demonstrate the benefits of JavaFX Script over Java,
we need to code the same program in both languages. Listings 1.2 and 1.3 do just that,
and figure 1.7 compares them visually.

import javafx.scene.Scene;
import javafx.scene.text.*;
import javafx.stage.Stage;
Stage {
 title: "Hello World JavaFX"
 scene: Scene {
 content: Text {
 content: "Hello World!"
 font: Font { size: 30 }
 layoutX: 114
 layoutY: 45
 }
 }
 width:400 height:100
}

Listing 1.2 is a simple JavaFX Script program. Don’t panic if you don’t understand it
yet–this isn’t a tutorial; we’re merely contrasting the two languages. The program
opens a new frame on the desktop with “Hello World JavaFX” in the title bar and the
legend “Hello World!” as the window contents. Perhaps you can already decipher a
few clues as to how it works.

import javax.swing.*;
class HelloWorldJava {
 public static void main(String[] args) {
 Runnable r = new Runnable() {
 public void run() {
 JLabel l = new JLabel("Hello World!",JLabel.CENTER);
 l.setFont(l.getFont().deriveFont(30f));
 JFrame f = new JFrame("Hello World Java");
 f.getContentPane().add(l);
 f.setSize(400,100);
 f.setVisible(true);
 }
 };
 SwingUtilities.invokeLater(r);
 }
}

The Java equivalent is presented in listing 1.3. It certainly looks busier, although actually
it has been stripped back, almost to the point of becoming crude. The Java code is typical
of GUIs programmed under popular languages like Java, C++, or BASIC. The frame and

Listing 1.2 Hello World as JavaFX Script

Listing 1.3 Hello World as Java

11Comparing JavaFX with Adobe AIR, GWT, and Silverlight

the label holding the “Hello World” legend
are constructed and combined in separate
discrete steps. The order of these steps does
not necessarily tally with the structure of
the UI they build; the label is created before
its parent frame is created but added after.

 As the scale of the GUI increases, Java’s
verbose syntax and disjointed structure
(compared to the GUI structure) quickly
become a handful, while JavaFX Script, a
bit like the famous Energizer Bunny, can keep on going for far longer, thanks to its
declarative syntax.

 For readers unfamiliar with the Java platform, appendix D provides an overview,
including how the “write once, run anywhere” promise is achieved, the different edi-
tions of Java, and the versions and revision names over the years. Although JavaFX
Script is independent of Java as a language, it’s reliance on the Java runtime platform
means background knowledge of Java is useful.

1.4 Comparing JavaFX with Adobe AIR, GWT, and Silverlight
JavaFX is not the only technology competing to become king of the RIA space: Adobe,
Google, and Microsoft are all chasing the prize too. But how do their offerings com-
pare to JavaFX? Now that we’ve explored some of the concepts behind JavaFX, we’re
in a better position to contrast the platform against its alleged rivals.

 Comparing technologies is always fraught with danger. Each technology is a multi-
faceted beast, and it’s impossible to sum up all the nuanced arguments in just a few
paragraphs. Readers are encouraged to seek second opinions in deciding which tech-
nology to adopt.

1.4.1 Adobe AIR and Flex

Flex is a toolkit adding application-centric features to Flash movies, making it easier to
write serious web apps alongside games and animations. AIR (Adobe Integrated Run-
time, originally codenamed Apollo) is an attempt to allow Flex web applications to
become first-class citizens on the desktop. AIR programs can be installed just like regu-
lar desktop programs on a PC, Mac, or Linux computer, assuming the appropriate AIR
runtime has been installed beforehand. Using WebKit (the open source HTML/
JavaScript component), AIR provides a web-page-like shell in which HTML, JavaScript,
Flex, Flash, and PDF content can interact. AIR has made it possible to transfer web
programming skills directly onto the desktop, and Adobe plans to extend this concept
to allow AIR programmers to target mobile devices as well.

1.4.2 Google Web Toolkit

Google Web Toolkit (GWT) is an open source attempt to smooth over the bumps in
HTML/Ajax application development with a consistent cross-browser JavaScript library
of desktop-inspired widgets and functions. It’s said that GWT started as an internal

Figure 1.7 Separated at birth: “Hello World!” as
a JavaFX application and as a Java application

12 CHAPTER 1 Welcome to the future: introducing JavaFX

Google project to help write sites like Gmail and Google Calendar (although which
Google sites actually use GWT is unknown). GWT applications are coded in Java, com-
piled to JavaScript, and run entirely within the web browser. They can make use of
optionally installed plug-ins, such as Gears, to provide offline support.

1.4.3 Microsoft Silverlight

With Silverlight, Microsoft is seeking to shift its desktop software prowess inside the
browser. Silverlight is a proprietary browser plug-in for recent editions of Windows
and Mac OS X. Linux is also covered via an open source project and a deal with Novell
(licensing difficulties may exist for non-Novell Linux customers). Silverlight supports
rich vector-based UIs, coded in .NET languages (like C#) and a UI markup language
called XAML (Extensible Application Markup Language). Microsoft worked hard to
create a fluid video/multimedia environment, with solid support for all the formats
supported by its Windows Media framework.

1.4.4 And by comparison, JavaFX

While other RIA technologies blur the line between desktop and browser, JavaFX
removes the distinction entirely. A single JavaFX application can move seamlessly
(quite literally, by being dragged from the browser window) from one environment to
the other. Desktop, applets, and smart phones can already be targeted, while Blu-ray
and other TV devices are expected to join this list at a later date. With a common core
across all environments, complemented by device-specific extensions, JavaFX lets us
target every device or exploit the full power of a particular device.

 While other RIA technologies recycle existing languages, JavaFX Script is built from
the ground up specifically for creating sophisticated UIs and animation. Studying
common working methods found in UI software, the JavaFX team created a language
around those patterns. The declarative syntax permits code and structure to be inter-
woven with a degree of ease not found in the bilingual approach of its rivals. Direct
relationships can be defined between an object and the data or functions it depends
on; the heavy lifting of model/view/controller is done for you. And because JavaFX
Script is compatible with Java classes, it has access to over a decade of libraries and
open source projects.

 It’s true that the need to learn a new language may discourage some, but the
reward is a much more powerful tool, shaped specifically for the job at hand. Picking
the best tool can often mean the difference between success and failure, while hold-
ing onto our familiar tools for too long can sometimes put us at a disadvantage. The
skill is in knowing when to embrace a new technology, and hopefully this section has
helped clarify whether JavaFX is the right technology for you!

1.5 But why should I buy this book?
Good question—indeed, why buy a book at all? The APIs are documented online, and
there are blogs aplenty guiding coders through that tricky first application.

13Summary

 This book specifically seeks not to regurgitate existing documentation, like so
many programming tomes tend to do. You won’t find laborious enumerations of every
variation of every shade of every nuance of every class. This book assumes you’re intel-
ligent enough to read the documentation for yourself, once pointed in the right
direction; you don’t need it reprinted here. So what is in this book?

 The early chapters give a quick and entertaining (yet comprehensive) guide to the
JavaFX Script language; then it’s straight into the projects! Each project chapter
houses a self-contained miniapplication requiring specific skills and works from initial
goals toward a solution in JavaFX. Successive projects reinforce acquired skills and add
new ones. Concepts are demonstrated and explained in real-world scenarios; it’s an
approach centered on common practices, solutions, and patterns, rather than merely
ticking off every variation of, for example, a scene graph node or animated transition
included in the API.

 The code in each chapter seeks to be ideas-rich but compact and fresh. What’s the
point of page upon page of stuff the reader already saw in previous chapters?
Although functional, each completed project leaves room for readers to experiment
further, practicing newfound skills by adding features or polishing the UI with extra
color blends and animations.

 For better or worse, the text attempts to remain agnostic of any particular IDE or
tool, other than those shipped with the standard JavaFX SDK. Illustrated click-by-click
guides for each IDE would be page hungry and offer little over the online tutorials
already provided with (or for) each plug-in. Again, it’s about complementing available
documentation, not reproducing it, leaving more room for JavaFX examples and
advice, not IDE-specific tutorials. (This is, after all, JavaFX in Action not NetBeans in
Action!) Relevant plug-in/IDE links are provided in the appendices.

 So, is this book for you? If you’re merely looking for a hard copy of the API docu-
mentation, perhaps not. But if you want something that goes deeper, exploring JavaFX
through real-world code, solving real-world problems, I hope you’ll find what you’re
looking for in the pages to come.

1.6 Summary
This chapter has been an introduction to the world of JavaFX and JavaFX Script. We
started by considering the power of domain-specific languages, designed specifically
to meet the needs of particular tasks. Then we considered the rise of the RIA and the
challenges in developing such applications using current browser-based technolo-
gies. We revisited Java’s disappointing track record on the desktop, particularly with
lightweight internet applications like applets, but saw how this could change with the
introduction of JavaFX to address a new generation of internet applications. We saw
an example of JavaFX Script doing modestly impressive things in only a few dozen
lines of code, and we reviewed side-by-side the differences in styles and size of Java
and JavaFX Script source code. Finally, we considered how JavaFX stacks up against
the apparent opposition.

14 CHAPTER 1 Welcome to the future: introducing JavaFX

 I hope this has been enough to grab your attention and fire your imagination,
because in the next chapter we leave the theory behind and dive straight into the
detail.

 Over the next couple of chapters we’ll tour the JavaFX Script language, with, I
hope, plenty of nice surprises along the way. This will get us ready to tackle subse-
quent chapters, where we use practical miniprojects to demonstrate different aspects
of JavaFX. (For those expert Java programmers who would prefer more of a whistle-
stop tour of the new language, appendix B acts as both a flash-card tutorial and
an aide-mémoire).

 Before we move on, you will almost certainly want to take a detour to appendix A,
which acts as a setup guide for downloading and installing JavaFX, plus getting your
code to build. It also features some very useful JavaFX links for help and further read-
ing. Also, if you’re not a Java programmer, let me draw your attention to the crash
course in object-oriented programming in appendix C and the introduction to the
Java platform (and how JavaFX fits into it) in appendix D.

 So that’s the introduction out of the way. Are you excited? Well, I certainly hope
so! Let the fun begin.

ISBN 13: 978-1-933988-99-3
ISBN 10: 1-933988-99-1

9 7 8 1 9 3 3 9 8 8 9 9 3

99445

W
ith JavaFX you can create dazzlingly rich applications
for the web, desktop, and mobile devices. It is a complete
RIA system with powerful presentation and animation

libraries, a declarative scripting language, and an intuitive coding
model—all fully integrated with the Java platform.

Assuming no previous knowledge of JavaFX, JavaFX in Action
makes the exploration of JavaFX interesting and easy by using
numerous bite-sized projects. You’ll gain a solid grounding in
the JavaFX syntax and related APIs and then learn to apply key
features of the JavaFX platform through the examples. JavaFX
expert Simon Morris helps you transform variables and opera-
tors into bouncing raindrops, brilliant colors, and dancing
interface components. And, below the chrome, you’ll master
techniques to make your business applications more responsive
and user friendly.

What’s Inside
Covers JavaFX 1.2!
JavaFX Script language tutorial
Techniques for desktop, web, and mobile development
How to mix Java and JavaFX
How to connect to resources in the Cloud

Based in the UK, Simon Morris builds web and desktop applica-
tions for commercial, academic, and government clients. He
blogs at Java.net.

For online access to the author, and a free ebook for owners
of this book, go to manning.com/JavaFXinAction

$44.99 / Can $56.99 [INCLUDING eBOOK]

JAVAFX IN ACTION

JAVA/WEB DEVELOPMENT

Simon Morris

“Handy book for RIA
 developers.”
 —Carol McDonald, Java Architect
 Sun Microsystems

“Highly recommended!”
 —Horaci Macias Viel, Soft ware
 Solutions Architect, Avaya

“Everyone will learn something
 from this book. I did!”
 —Jasper Potts, JavaFX Engineer
 Sun Microsystems

“With JavaFX you can brew up
 industrial grade RIAs, and
 this book can help you craft
 mighty tasty pints.”
 —Kevin Munc, UI Consultant
 Nationwide Insurance

“An excellent and easy-to-read
 introduction to the very latest
 in JavaFX technologies.”
 —Jonathan Giles, Soft ware Engineer
 JavaFX Team, Sun Microsystems

M A N N I N G

SEE INSERT

