
M A N N I N G

Joseph Hocking
FOREWORD BY Jesse Schell

Covers Unity 5

Multiplatform game development in C#SAMPLE CHAPTER

Unity in Action
Multiplatform game development in C#

by Joseph Hocking

Chapter 1

Copyright 2015 Manning Publications

brief contents
PART 1 FIRST STEPS .. 1

1 ■ Getting to know Unity 3
2 ■ Building a demo that puts you in 3D space 21
3 ■ Adding enemies and projectiles to the 3D game 46
4 ■ Developing graphics for your game 69

PART 2 GETTING COMFORTABLE ... 93

5 ■ Building a Memory game using Unity’s new 2D
functionality 95

6 ■ Putting a 2D GUI in a 3D game 119
7 ■ Creating a third-person 3D game: player movement

and animation 140
8 ■ Adding interactive devices and items within the game 167

PART 3 STRONG FINISH ... 193

9 ■ Connecting your game to the internet 195
10 ■ Playing audio: sound effects and music 222
11 ■ Putting the parts together into a complete game 246
12 ■ Deploying your game to players’ devices 276

Part 1

First steps

It’s time to take your first steps in using Unity. If you don’t know anything
about Unity, that’s okay! I’m going to start by explaining what Unity is, including
fundamentals of how to program games in it. Then we’ll walk through a tutorial
about developing a simple game in Unity. This first project will teach you a num-
ber of specific game development techniques as well as give you a good overview
of how the process works.

 Onward to chapter 1!

2 CHAPTER

Getting to know Unity
If you’re anything like me, you’ve had developing a video game on your mind for a
long time. But it’s a big jump from simply playing games to actually making them.
Numerous game development tools have appeared over the years, and we’re going
to discuss one of the most recent and most powerful of these tools. Unity is a
professional-quality game engine used to create video games targeting a variety of
platforms. Not only is it a professional development tool used daily by thousands of
seasoned game developers, it’s also one of the most accessible modern tools for
novice game developers. Until recently, a newcomer to game development (espe-
cially 3D games) would face lots of imposing barriers right from the start, but Unity
makes it easy to start learning these skills.

 Because you’re reading this book, chances are you’re curious about computer
technology and you’ve either developed games with other tools or built other kinds

This chapter covers
■ What makes Unity a great choice
■ Operating the Unity editor
■ Programming in Unity
■ Comparing C# and JavaScript
3

4 CHAPTER 1 Getting to know Unity
of software, like desktop applications or websites. Creating a video game isn’t funda-
mentally different from writing any other kind of software; it’s mostly a difference of
degree. For example, a video game is a lot more interactive than most websites and
thus involves very different sorts of code, but the skills and processes involved in creat-
ing both are similar. If you’ve already cleared the first hurdle on your path to learning
game development, having learned the fundamentals of programming software, then
your next step is to pick up some game development tools and translate that program-
ming knowledge into the realm of gaming. Unity is a great choice of game develop-
ment environment to work with.

To start, go to the website www.unity3d.com to download the software. This book uses
Unity 5.0, which is the latest version as of this writing. The URL is a leftover from
Unity’s original focus on 3D games; support for 3D games remains strong, but Unity
works great for 2D games as well. Meanwhile, although advanced features are avail-
able in paid versions, the base version is completely free. Everything in this book
works in the free version and doesn’t require Unity Pro; the differences between those
versions are in advanced features (that are beyond the scope of this book) and com-
mercial licensing terms.

1.1 Why is Unity so great?
Let’s take a closer look at that description from the beginning of the chapter: Unity is
a professional-quality game engine used to create video games targeting a variety of
platforms. That is a fairly straightforward answer to the straightforward question “What
is Unity?” However, what exactly does that answer mean, and why is Unity so great?

1.1.1 Unity's strengths and advantages

A game engine provides a plethora of features that are useful across many different
games, so a game implemented using that engine gets all those features while adding
custom art assets and gameplay code specific to that game. Unity has physics simula-
tion, normal maps, screen space ambient occlusion (SSAO), dynamic shadows…and
the list goes on. Many game engines boast such features, but Unity has two main

A warning about terminology

This book is about programming in Unity and is therefore primarily of interest to coders.
Although many other resources discuss other aspects of game development and Unity,
this is a book where programming takes front and center.

Incidentally, note that the word developer has a possibly unfamiliar meaning in the
context of game development: developer is a synonym for programmer in disciplines
like web development, but in game development the word developer refers to anyone
who works on a game, with programmer being a specific role within that. Other kinds
of game developers are artists and designers, but this book will focus on programming.

www.unity3d.com

5Why is Unity so great?
advantages over other similarly cutting-edge game development tools: an extremely
productive visual workflow, and a high degree of cross-platform support.

 The visual workflow is a fairly unique design, different from most other game
development environments. Whereas other game development tools are often a com-
plicated mishmash of disparate parts that must be wrangled, or perhaps a program-
ming library that requires you to set up your own integrated development
environment (IDE), build-chain and whatnot, the development workflow in Unity is
anchored by a sophisticated visual editor. The editor is used to lay out the scenes in
your game and to tie together art assets and code into interactive objects. The beauty
of this editor is that it enables professional-quality games to be built quickly and effi-
ciently, giving developers tools to be incredibly productive while still using an exten-
sive list of the latest technologies in video gaming.

NOTE Most other game development tools that have a central visual editor
are also saddled with limited and inflexible scripting support, but Unity
doesn’t suffer from that disadvantage. Although everything created for Unity
ultimately goes through the visual editor, this core interface involves a lot of
linking projects to custom code that runs in Unity’s game engine. That’s not
unlike linking in classes in the project settings for an IDE like Visual Studio or
Eclipse. Experienced programmers shouldn’t dismiss this development envi-
ronment, mistaking it for some click-together game creator with limited pro-
gramming capability!

The editor is especially helpful for doing rapid iteration, honing the game through
cycles of prototyping and testing. You can adjust objects in the editor and move things
around even while the game is running. Plus, Unity allows you to customize the editor
itself by writing scripts that add new features and menus to the interface.

 Besides the editor’s significant productivity advantages, the other main strength of
Unity’s toolset is a high degree of cross-platform support. Not only is Unity multiplat-
form in terms of the deployment targets (you can deploy to the PC, web, mobile, or
consoles), but it’s multiplatform in terms of the development tools (you can develop
the game on Windows or Mac OS). This platform-agnostic nature is largely because
Unity started as Mac-only software and was later ported to Windows. The first version
launched in 2005, but now Unity is up to its fifth major version (with lots of minor
updates released frequently). Initially, Unity supported only Mac for both developing
and deployment, but within a few months Unity had been updated to work on Win-
dows as well. Successive versions gradually added more deployment platforms, such as
a cross-platform web player in 2006, iPhone in 2008, Android in 2010, and even game
consoles like Xbox and PlayStation. Most recently they've added deployment to
WebGL, the new framework for 3D graphics in web browsers. Few game engines sup-
port as many deployment targets as Unity, and none make deploying to multiple plat-
forms so simple.

 Meanwhile, in addition to these main strengths, a third and subtler benefit comes
from the modular component system used to construct game objects. In a component

6 CHAPTER 1 Getting to know Unity
system, “components” are mix-and-match packets of functionality, and objects are
built up as a collection of components, rather than as a strict hierarchy of classes. In
other words, a component system is a different (and usually more flexible) approach
to doing object-oriented programming, where game objects are constructed through
composition rather than inheritance. Figure 1.1 diagrams an example comparison.

 In a component system, objects exist on a flat hierarchy and different objects have
different collections of components, rather than an inheritance structure where dif-
ferent objects are on completely different branches of the tree. This arrangement
facilitates rapid prototyping, because you can quickly mix-and-match different compo-
nents rather than having to refactor the inheritance chain when the objects change.

 Although you could write code to implement a custom component system if one
didn’t exist, Unity already has a robust component system, and this system is even inte-
grated seamlessly with the visual editor. Rather than only being able to manipulate
components in code, you can attach and detach components within the visual editor.
Meanwhile, you aren’t limited to only building objects through composition; you still
have the option of using inheritance in your code, including all the best-practice
design patterns that have emerged based on inheritance.

1.1.2 Downsides to be aware of

Unity has many advantages that make it a great choice for developing games and I
highly recommend it, but I’d be remiss if I didn’t mention its weaknesses. In particu-
lar, the combination of the visual editor and sophisticated coding, though very effec-
tive with Unity’s component system, is unusual and can create difficulties. In complex
scenes, you can lose track of which objects in the scene have specific components
attached. Unity does provide search functionality for finding attached scripts, but that
search could be more robust; sometimes you still encounter situations where you need

INHERITANCE

Enemy

Enemy
component

Enemy
component Enemy

component

Shooter
componentShooter

component

Motion
component

Motion
component

Mobile enemy

Mobile enemy

Mobile Shooter

Mobile shooter

Stationary
shooter

Stationary shooter

COMPONENT SYSTEM

The separate inheritance branches
for mobile and stationary enemies
need separate duplicated shooter
classes. Every behavior change and new
enemy type requires a lot of refactoring.

The mix-and-match components
enable a single shooter component
to be added anywhere it’s needed,
on both mobile and stationary enemies.

Figure 1.1 Inheritance vs. components

7Why is Unity so great?
to manually inspect everything in the scene in order to find script linkages. This
doesn’t happen often, but when it does happen it can be tedious.

 Another disadvantage that can be surprising and frustrating for experienced pro-
grammers is that Unity doesn’t support linking in external code libraries. The many
libraries available must be manually copied into every project where they’ll be used, as
opposed to referencing one central shared location. The lack of a central location for
libraries can make it awkward to share functionality between multiple projects. This
disadvantage can be worked around through clever use of version control systems, but
Unity doesn’t support this functionality out of the box.

NOTE Difficulty working with version control systems (such as Subversion,
Git, and Mercurial) used to be a significant weakness, but more recent ver-
sions of Unity work just fine. You may find out-of-date resources telling you
that Unity doesn’t work with version control, but newer resources will
describe.meta files (the mechanism Unity introduced for working with
version-control systems) and which folders in the project do or don’t need to
be put in the repository. To start out with, read this page in the documentation:
http://docs.unity3d.com/Manual/ExternalVersionControlSystemSupport.html

A third weakness has to do with working with prefabs. Prefabs are a concept specific to
Unity and are explained in chapter 3; for now, all you need to know is that prefabs are
a flexible approach to visually defining interactive objects. The concept of prefabs is
both powerful and unique to Unity (and yes, it’s tied into Unity’s component system),
but it can be surprisingly awkward to edit prefabs. Considering prefabs are such a use-
ful and central part of working with Unity, I hope that future versions improve the
workflow for editing prefabs.

1.1.3 Example games built with Unity

You’ve heard about the pros and cons of Unity, but you might still need convincing
that the development tools in Unity can give first-rate results. Visit the Unity gallery at
http://unity3d.com/showcase/gallery to see a constantly updated list of hundreds of
games and simulations developed using Unity. This section explores just a handful of
games showcasing a number of genres and deployment platforms.

DESKTOP (WINDOWS, MAC, LINUX)

Because the editor runs on the same
platform, deployment to Windows or
Mac is often the most straightforward
target platform. Here are a couple of
examples of desktop games in different
genres:

■ Guns of Icarus Online (figure
1.2), a first-person shooter devel-
oped by Muse Games Figure 1.2 Guns of Icarus Online

http://unity3d.com/showcase/gallery
http://docs.unity3d.com/Manual/ExternalVersionControlSystemSupport.html

8 CHAPTER 1 Getting to know Unity
■ Gone Home (figure 1.3), an
exploration adventure developed
by The Fullbright Company

MOBILE (IOS, ANDROID)

Unity can also deploy games to mobile
platforms like iOS (iPhones and iPads)
and Android (phones and tablets).
Here are a few examples of mobile
games in different genres:

■ Dead Trigger (figure 1.4), a first-
person shooter developed by
Madfinger Games

■ Bad Piggies (figure 1.5), a physics
puzzle game developed by Rovio

■ Tyrant Unleashed (figure 1.6), a
collectible card game developed
by Synapse Games

CONSOLE (PLAYSTATION, XBOX, WII)

Unity can even deploy to game consoles,
although the developer must obtain
licensing from Sony, Microsoft, or Nin-
tendo. Because of this requirement and
Unity’s easy cross-platform deployment,
console games are often available on
desktop computers as well. Here are a
couple examples of console games in
different genres:

■ Assault Android Cactus (figure
1.7), an arcade shooter developed
by Witch Beam

■ The Golf Club (figure 1.8), a
sports simulation developed by HB
Studios

As you can see from these examples,
Unity’s strengths definitely can translate
into commercial-quality games. But
even with Unity’s significant advantages
over other game development tools,
newcomers may have a misunderstand-
ing about the involvement of program-
ming in the development process. Unity

Figure 1.3 Gone Home

Figure 1.4 Dead Trigger

Figure 1.5 Bad Piggies

Figure 1.6 Tyrant Unleashed

9How to use Unity
 is often portrayed as simply a list of fea-
tures with no programming required,
which is a misleading view that won’t
teach people what they need to know in
order to produce commercial titles.
Though it’s true that you can click
together a fairly elaborate prototype
using preexisting components even
without a programmer involved (which
is itself a pretty big feat), rigorous pro-
gramming is required to move beyond
an interesting prototype to a polished
game for release.

1.2 How to use Unity
The previous section talked a lot about
the productivity benefits from Unity’s
visual editor, so let’s go over what the
interface looks like and how it operates.
If you haven’t done so already, down-
load the program from www.unity3d
.com and install it on your computer (be sure to include “Example Project” if that’s
unchecked in the installer). After you install it, launch Unity to start exploring the
interface.

 You probably want an example to look at, so open the included example project; a
new installation should open the example project automatically, but you can also select
File > Open Project to open it manually. The example project is installed in the shared
user directory, which is something like C:\Users\Public\Documents\Unity Projects\ on
Windows, or Users/Shared/Unity/ on Mac OS. You may also need to open the example
scene, so double-click the Car scene file (highlighted in figure 1.9; scene files have the
Unity cube icon) that’s found by going to SampleScenes/Scenes/ in the file browser at
the bottom of the editor. You should be looking at a screen similar to figure 1.9.

 The interface in Unity is split up into different sections: the Scene tab, the Game
tab, the Toolbar, the Hierarchy tab, the Inspector, the Project tab, and the Console
tab. Each section has a different purpose but all are crucial for the game-building
lifecycle:

■ You can browse through all the files in the Project tab.
■ You can place objects in the 3D scene being viewed using the Scene tab.
■ The Toolbar has controls for working with the scene.
■ You can drag and drop object relationships in the Hierarchy tab.
■ The Inspector lists information about selected objects, including linked code.
■ You can test playing in Game view while watching error output in the Console tab.

Figure 1.7 Assault Android Cactus

Figure 1.8 The Golf Club

www.unity3d.com
www.unity3d.com

10 CHAPTER 1 Getting to know Unity
This is just the default layout in Unity; all of the various views are in tabs and can be
moved around or resized, docking in different places on the screen. Later you can
play around with customizing the layout, but for now the default layout is the best way
to understand what all the views do.

1.2.1 Scene view, Game view, and the Toolbar

The most prominent part of the interface is the Scene view in the middle. This is
where you can see what the game world looks like and move objects around. Mesh
objects in the scene appear as, well, the mesh object (defined in a moment). You can
also see a number of other objects in the scene, represented by various icons and col-
ored lines: cameras, lights, audio sources, collision regions, and so forth. Note that the
view you’re seeing here isn’t the same as the view in the running game—you’re able to
look around the scene at will without being constrained to the game’s view.

DEFINITION A mesh object is a visual object in 3D space. Visuals in 3D are con-
structed out of lots of connected lines and shapes; hence the word mesh.

The Game view isn’t a separate part of the screen but rather another tab located right
next to Scene (look for tabs at the top left of views). A couple of places in the interface
have multiple tabs like this; if you click a different tab, the view is replaced by the new

Project and Console
are tabs for viewing
all files in the project
and messages from
the code, respectively.

Navigate folders on the left, then
double-click the Car example scene.

Scene and Game are
tabs for viewing the
3D scene and playing
the game, respectively.

The whole top area is the Toolbar.
To the left are buttons for looking
around and moving objects, and in
the middle is the Play button.

The inspector fills the right side.
This displays information about
the currently selected object
(a list of components mostly).

Hierarchy shows a
text list of all objects
in the scene, nested
according to how
they’re linked together.
Drag objects in the
hierarchy to link them.

Figure 1.9 Parts of the interface in Unity

11How to use Unity
active tab. When the game is running, what you see in this view is the game. It isn’t
necessary to manually switch tabs every time you run the game, because the view auto-
matically switches to Game when the game starts.

TIP While the game is running, you can switch back to the Scene view, allow-
ing you to inspect objects in the running scene. This capability is hugely use-
ful for seeing what’s going on while the game is running and is a helpful
debugging tool that isn’t available in most game engines.

Speaking of running the game, that’s as simple as hitting the Play button just above the
Scene view. That whole top section of the interface is referred to as the Toolbar, and
Play is located right in the middle. Figure 1.10 breaks apart the full editor interface to
show only the Toolbar at the top, as well as the Scene/Game tabs right underneath.

 At the left side of the Toolbar are buttons for scene navigation and transforming
objects—how to look around the scene and how to move objects. I suggest you spend
some time practicing looking around the scene and moving objects, because these are
two of the most important activities you’ll do in Unity’s visual editor (they’re so impor-
tant that they get their own section following this one). The right side of the Toolbar
is where you’ll find drop-down menus for layouts and layers. As mentioned earlier, the
layout of Unity’s interface is flexible, so the Layouts menu allows you to switch
between layouts. As for the Layers menu, that’s advanced functionality that you can
ignore for now (layers will be mentioned in future chapters).

1.2.2 Using the mouse and keyboard

Scene navigation is primarily done using the mouse, along with a few modifier keys
used to modify what the mouse is doing. The three main navigation maneuvers are

Play Toolbar
Options for aspects of the scene to display
(e.g., toggle button to show lighting)

Light

Mesh object

Navigate
scene

Rect

Scale

Rotate

Translate

Figure 1.10 Editor screenshot cropped to show Toolbar, Scene, and Game

12 CHAPTER 1 Getting to know Unity
Move, Orbit, and Zoom. The specific mouse movements for each are described in
appendix A at the end of this book, because they vary depending on what mouse you’re
using. Basically, the three different movements involve clicking-and-dragging while
holding down some combination of Alt (or Option on Mac) and Ctrl. Spend a few min-
utes moving around in the scene to understand what Move, Orbit, and Zoom do.

TIP Although Unity can be used with one- or two-button mice, I highly rec-
ommend getting a three-button mouse (and yes, a three-button mouse works
fine on Mac OS X).

Transforming objects is also done through three main maneuvers, and the three
scene navigation moves are analogous to the three transforms: Translate, Rotate, and
Scale (figure 1.11 demonstrates the transforms on a cube).

 When you select an object in the scene, you can then move it around (the mathe-
matically accurate technical term is translate), rotate the object, or scale how big it is.
Relating back to scene navigation, Move is when you Translate the camera, Orbit is
when you Rotate the camera, and Zoom is when you Scale the camera. Besides the
buttons on the Toolbar, you can switch between these functions by pressing W, E, or R
on the keyboard. When you activate a transform, you’ll notice a set of color-coded
arrows or circles appears over the object in the scene; this is the Transform gizmo, and
you can click-and-drag this gizmo to apply the transformation.

 There’s also a fourth tool next to the transform buttons. Called the Rect tool, it’s
designed for use with 2D graphics. This one tool combines movement, rotation, and
scaling. These operations have to be separate tools in 3D but are combined in 2D
because there’s one less dimension to worry about. Unity has a host of other keyboard
shortcuts for speeding up a variety of tasks. Refer to appendix A to learn about them.
And with that, on to the remaining sections of the interface!

1.2.3 The Hierarchy tab and the Inspector

Looking at the sides of the screen, you’ll see the Hierarchy tab on the left and the
Inspector on the right (see figure 1.12). Hierarchy is a list view with the name of every

Translate Rotate Scale

Figure 1.11 Applying the three transforms: Translate, Rotate, and Scale. (The lighter lines are the
previous state of the object before it was transformed.)

13How to use Unity
object in the scene listed, with the names nested together according to their hierarchy
linkages in the scene. Basically, it’s a way of selecting objects by name instead of hunt-
ing them down and clicking them within Scene. The Hierarchy linkages group objects
together, visually grouping them like folders and allowing you to move the entire
group together.

 The Inspector shows you information about the currently selected object. Select an
object and the Inspector is then filled with information about that object. The infor-
mation shown is pretty much a list of components, and you can even attach or remove
components from objects. All game objects have at least one component, Transform,
so you’ll always at least see information about positioning and rotation in the Inspec-
tor. Many times objects will have several components listed here, including scripts
attached to that object.

1.2.4 The Project and Console tabs

At the bottom of the screen you’ll see Project and Console (see figure 1.13). As with
Scene and View, these aren’t two separate portions of the screen but rather tabs that
you can switch between. Project shows all the assets (art, code, and so on) in the

Figure 1.12 Editor screenshot cropped to show the Hierarchy and Inspector tabs

Figure 1.13 Editor
screenshot cropped to show
the Project and Console tabs

14 CHAPTER 1 Getting to know Unity
project. Specifically, on the left side of the view is a listing of the directories in the
project; when you select a directory, the right side of the view shows the individual files
in that directory. The directory listing in Project is similar to the list view in Hierarchy,
but whereas Hierarchy shows objects in the scene, Project shows files that aren’t con-
tained within any specific scene (including scene files—when you save a scene, it
shows up in Project!).

TIP Project view mirrors the Assets directory on disk, but you generally
shouldn’t move or delete files directly by going to the Assets folder. If you do
those things within the Project view, Unity will keep in sync with that folder.

The Console is the place where messages from the code show up. Some of these mes-
sages will be debug output that you placed deliberately, but Unity also emits error
messages if it encounters problems in the script you wrote.

1.3 Getting up and running with Unity programming
Now let’s look at how the process of programming works in Unity. Although art assets
can be laid out in the visual editor, you need to write code to control them and make
the game interactive. Unity supports a few programming languages, in particular
JavaScript and C#. There are pros and cons to both choices, but you’ll be using C#
throughout this book.

Why choose C# over JavaScript?

All of the code listings in this book use C# because it has a number of advantages
over JavaScript and fewer disadvantages, especially for professional developers (it’s
certainly the language I use at work).

One benefit is that C# is strongly typed, whereas JavaScript is not. Now, there are
lots of arguments among experienced programmers about whether or not dynamic typ-
ing is a better approach for, say, web development, but programming for certain gaming
platforms (such as iOS) often benefits from or even requires static typing. Unity has
even added the directive #pragma strict to force static typing within JavaScript.
Although technically this works, it breaks one of the bedrock principles of how Java-
Script operates, and if you’re going to do that, then you’re better off using a language
that’s intrinsically strongly typed.

This is just one example of how JavaScript within Unity isn’t quite the same as Java-
Script elsewhere. JavaScript in Unity is certainly similar to JavaScript in web browsers,
but there are lots of differences in how the language works in each context. Many
developers refer to the language in Unity as UnityScript, a name that indicates similarity
to but separateness from JavaScript. This “similar but different” state can create
issues for programmers, both in terms of bringing in knowledge about JavaScript from
outside Unity, and in terms of applying programming knowledge gained by working in
Unity.

15Getting up and running with Unity programming
Let’s walk through an example of writing and running some code. Launch Unity and
create a new project; choose File > New Project to open the New Project window. Type
a name for the project, and then choose where you want to save it. Realize that a Unity
project is simply a directory full of various asset and settings files, so save the project
anywhere on your computer. Click Create Project and then Unity will briefly disap-
pear while it sets up the project directory.

WARNING Unity projects remember which version of Unity they were created
in and will issue a warning if you attempt to open them in a different version.
Sometimes it doesn’t matter (for example, just ignore the warning if it
appears while opening this book’s sample downloads), but sometimes you will
want to back up your project before opening it.

When Unity reappears you’ll be looking at a blank project. Next, let’s discuss how
your programs get executed in Unity.

1.3.1 How code runs in Unity: script components

All code execution in Unity starts from code files linked to an object in the scene. Ulti-
mately it’s all part of the component system described earlier; game objects are built
up as a collection of components, and that collection can include scripts to execute.

NOTE Unity refers to the code files as scripts, using a definition of “script”
that’s most commonly encountered with JavaScript running in a browser: the
code is executed within the Unity game engine, versus compiled code that
runs as its own executable. But don’t get confused because many people
define the word differently; for example, “scripts” often refer to short, self-
contained utility programs. Scripts in Unity are more akin to individual OOP
classes, and scripts attached to objects in the scene are the object instances.

As you’ve probably surmised from this description, in Unity, scripts are components—
not all scripts, mind you, only scripts that inherit from MonoBehaviour, the base class
for script components. MonoBehaviour defines the invisible groundwork for how com-
ponents attach to game objects, and (as shown in listing 1.1) inheriting from it pro-
vides a couple of automatically run methods that you can override. Those methods
include Start(), which is called once when the object becomes active (which is gener-
ally as soon as the level with that object has loaded), and Update(), which is called
every frame. Thus your code is run when you put it inside these predefined methods.

DEFINITION A frame is a single cycle of the looping game code. Nearly all
video games (not just in Unity, but video games in general) are built around a
core game loop, where the code executes in a cycle while the game is run-
ning. Each cycle includes drawing the screen; hence the name frame (just like
the series of still frames of a movie).

16 CHAPTER 1 Getting to know Unity

using UnityEngine;
using System.Collections;

public class HelloWorld : MonoBehaviour {

 void Start() {
 // do something once
 }

 void Update() {
 // do something every frame
 }
}

This is what the file contains when you create a new C# script: the minimal boilerplate
code that defines a valid Unity component. Unity has a script template tucked away in
the bowels of the application, and when you create a new script it copies that template
and renames the class to match the name of the file (which is HelloWorld.cs in my
case). There are also empty shells for Start() and Update() because those are the
two most common places to call your custom code from (although I tend to adjust the
whitespace around those functions a tad, because the template isn’t quite how I like
the whitespace and I’m finicky about that).

 To create a script, select C# Script from the Create menu that you access either
under the Assets menu (note that Assets and GameObjects both have listings for Cre-
ate but they’re different menus) or by right-clicking in the Project view. Type in a
name for the new script, such as HelloWorld. As explained later in the chapter (see
figure 1.15), you’ll click-and-drag this script file onto an object in the scene. Double-
click the script and it’ll automatically be opened in another program called Mono-
Develop, discussed next.

1.3.2 Using MonoDevelop, the cross-platform IDE

Programming isn’t done within Unity exactly, but rather code exists as separate files
that you point Unity to. Script files can be created within Unity, but you still need to
use some text editor or IDE to write all the code within those initially empty files. Unity
comes bundled with MonoDevelop, an open source, cross-platform IDE for C# (figure
1.14 shows what it looks like). You can visit www.monodevelop.com to learn more
about this software, but the version to use is the version bundled along with Unity,
rather than a version downloaded from their website, because some modifications
were made to the base software in order to better integrate it with Unity.

NOTE MonoDevelop organizes files into groupings called a solution. Unity
automatically generates a solution that has all the script files, so you usually
don’t need to worry about that.

Because C# originated as a Microsoft product, you may be wondering if you can use
Visual Studio to do programming for Unity. The short answer is yes, you can. Support

Listing 1.1 Code template for a basic script component

Include namespaces for
Unity and Mono classes.

The syntax for inheritance

Put code in here that runs once.

Put code in here that
runs every frame.

www.monodevelop.com

17Getting up and running with Unity programming
tools are available from www.unityvs.com but I generally prefer MonoDevelop, mostly
because Visual Studio only runs on Windows and using that IDE would tie your work-
flow to Windows. That’s not necessarily a bad thing, and if you’re already using Visual
Studio to do programming then you could keep using it and not have any problems
following along with this book (beyond this introductory chapter, I’m not going to
talk about the IDE). Tying your workflow to Windows, though, would run counter to
one of the biggest advantages of using Unity, and doing so could prove problematic if
you need to work with Mac-based developers on your team and/or if you want to
deploy your game to iOS. Although C# originated as a Microsoft product and thus
only worked on Windows with the .NET Framework, C# has now become an open lan-
guage standard and there’s a significant cross-platform framework: Mono. Unity uses
Mono for its programming backbone, and using MonoDevelop allows you to keep the
entire development workflow cross-platform.

 Always keep in mind that although the code is written in MonoDevelop, the code
isn’t actually run there. The IDE is pretty much a fancy text editor, and the code is run
when you hit Play within Unity.

1.3.3 Printing to the console: Hello World!

All right, you already have an empty script in the project, but you also need an object
in the scene to attach the script to. Recall figure 1.1 depicting how a component sys-
tem works; a script is a component, so it needs to be set as one of the components on
an object.

 Select GameObject > Create Empty, and a blank GameObject will appear in the
Hierarchy list. Now drag the script from the Project view over to the Hierarchy view
and drop it on the empty GameObject. As shown in figure 1.15, Unity will highlight

Solution view
shows all script
files in the project.

Don’t hit the Run button within MonoDevelop;
hit Play in Unity to run the code.

Script files open as tabs in the main viewing
area. Multiple script files can be open at once.

Document Outline
may not be showing
by default. Select it
under View>Pads
and then drag the tab
to where you want it.

Figure 1.14 Parts of the interface in MonoDevelop

www.unityvs.com

18 CHAPTER 1 Getting to know Unity
valid places to drop the script, and dropping it on the GameObject will attach the
script to that object. To verify that the script is attached to the object, select the object
and look at the Inspector view. You should see two components listed: the Transform
component that’s the basic position/rotation/scale component all objects have and
that can’t be removed, and below that, your script.

NOTE Eventually this action of dragging objects from one place and drop-
ping them on other objects will feel routine. A lot of different linkages in
Unity are created by dragging things on top of each other, not just attaching
scripts to objects.

When a script is linked to an object,
you’ll see something like figure 1.16,
with the script showing up as a compo-
nent in the Inspector. Now the script
will execute when you play the scene,
although nothing is going to happen
yet because you haven’t written any
code. Let’s do that next!

 Open the script in MonoDevelop to
get back to listing 1.1. The classic place
to start when learning a new program-
ming environment is having it print the
text “Hello World!” so add this line inside the Start() method, as shown in the
following listing.

Click-and-drag the script from the
Project view up to the Hierarchy
view and release on the GameObject.

Figure 1.15 How to link a script to a GameObject

Figure 1.16 Linked script being displayed in the
Inspector

19Getting up and running with Unity programming

void Start() {
 Debug.Log("Hello World!");
}

What the Debug.Log() command does is print a message to the Console view in Unity.
Meanwhile that line goes in the Start() method because, as was explained earlier,
that method is called as soon as the object becomes active. In other words, Start()
will be called once as soon as you hit Play in the editor. Once you’ve added the log
command to your script (be sure to save the script), hit Play in Unity and switch to the
Console view. You’ll see the message “Hello World!” appear. Congratulations, you’ve
written your first Unity script! In later chapters the code will be more elaborate, of
course, but this is an important first step.

You could now save the scene; that would create a .unity file with the Unity icon. The
scene file is a snapshot of everything currently loaded in the game so that you can
reload this scene later. It’s hardly worth saving this scene because it’s so simple (just a
single empty GameObject), but if you don’t save the scene then you’ll find it empty
again when you come back to the project after quitting Unity.

Listing 1.2 Adding a console message

“Hello World!” steps in brief

Let’s reiterate and summarize the steps from the last several pages:

1. Create a new project.
2. Create a new C# script.
3. Create an empty GameObject.
4. Drag the script onto the object.
5. Add the log command to the script.
6. Press Play!

Errors in the script

To see how Unity indicates errors, purposely put a typo in the HelloWorld script. For
example, if you type an extra parenthesis symbol, this error message will appear in
the Console with a red error icon:

Add the logging command here.

Script containing
the error

Description
of the errorLocation within that script

(line, character)

20 CHAPTER 1 Getting to know Unity
1.4 Summary
In this chapter you’ve learned that

■ Unity is a multiplatform development tool.
■ Unity’s visual editor has several sections that work in concert.
■ Scripts are attached to objects as components.
■ Code is written inside scripts using MonoDevelop.

Joseph Hocking

T
his book helps readers build successful games with the
Unity game development platform. You will use the
powerful C# language, Unity’s intuitive workfl ow tools,

and a state-of-the-art rendering engine to build and deploy
mobile, desktop, and console games. Unity’s single code-base
approach minimizes ineffi cient switching among development
tools and concentrates your attention on making great interac-
tive experiences.

Unity in Action teaches you how to write and deploy games.
You’ll master the Unity toolset from the ground up, add-
ing the skills you need to go from application coder to game
developer. Each sample project illuminates specifi c Unity
features and game development strategies. As you read and
practice, you’ll build up a well-rounded skill set for creating
graphically driven 2D and 3D game applications.

What’s Inside
● Program characters that run, jump, and interact
● Build code architectures that manage the game’s state
● Connect your games to the internet to download live data
● Deploy games to platforms including web and mobile
● Covers Unity version 5

You’ll need to know how to program, in C# or a similar OO
language. No previous Unity experience or game development
knowledge is assumed.

Joe Hocking is a software engineer specializing in interactive
media development. He works for Synapse Games and teaches
classes in game development at Columbia College Chicago.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/UnityinAction

$44.99 / Can $51.99 [INCLUDING eBOOK]

Unity IN ACTION

GAME PROGRAMMING

M A N N I N G

“Joe Hocking wastes none
of your time and gets
 you coding fast.”

—From the Foreword by
Jesse Schell, author of

The Art of Game Design

“Gets you up and
 running in no time.”—Sergio Arbeo, codecantor

“The text is clear
and concise, and the

 examples are outstanding.”
—Dan Kacenjar, Sr.

 Wolters Kluwer

“All the roadblocks
evaporated, and I took
 my game from concept

to build in short order.”—Philip Taffet, SOHOsoft LLC

SEE INSERT

	Hocking-Unity-front-SC.pdf
	ASC1
	ASCh-01
	1
	Getting to know Unity
	1.1 Why is Unity so great?
	1.1.1 Unity's strengths and advantages
	1.1.2 Downsides to be aware of
	1.1.3 Example games built with Unity

	1.2 How to use Unity
	1.2.1 Scene view, Game view, and the Toolbar
	1.2.2 Using the mouse and keyboard
	1.2.3 The Hierarchy tab and the Inspector
	1.2.4 The Project and Console tabs

	1.3 Getting up and running with Unity programming
	1.3.1 How code runs in Unity: script components
	1.3.2 Using MonoDevelop, the cross-platform IDE
	1.3.3 Printing to the console: Hello World!

	1.4 Summary

	Part 1
	First steps

	Hocking-Unity-ebook-back

