

ASP.NET Ajax in Action
by Alessandro Gallo
David Barkol
and Rama Krishna Vavilala

Chapter 2

Copyright 2008 Manning Publications

brief contents

Sy Ot s 00 N~

10

Introducing ASP.NET AJAX 3

First steps with the Microsoft Ajax Library 36
JavaScript for Ajax developers 73

Exploring the Ajax server extensions 114
Making asynchronous network calls 141

Partial-page rendering with UpdatePanels 194

Under the hood of the UpdatePanel 231
ASP.NET AJAX client components 264
Building Ajax-enabled controls 299
Developing with the Ajax Control Toolkit 332

viii BRIEF CONTENTS

PART 3 ASP.NET AJAX FUTURESccceuvueenennnnnnnennnnnnnnnennnnnnns 371

11 = XML Script 373
12 = Dragging and dropping 410

PART 4 MASTERING ASP.NET AJAX ..ccoviiiiiiiiiniitnicinnnnnnnen. 441

13 = Implementing common Ajax patterns 443

Furst steps with the
Mucrosoft Ajax Library

In this chapter:

m Qverview of the Microsoft Ajax Library

m The Application model

m The abstraction API for working with the DOM
m JavaScript extensions

36

2.1

211

A quick overview of the library 37

In the age of Ajax programming, web developers need to be more JavaScript pro-
ficient than ever. You must accomplish a long list of tasks in an Ajax-enabled page
and coordinate activities on the client side. For example, you need the ability to
access server resources, process the results quickly, and maintain smooth web-
page interactivity. The need for programming patterns that build robust and
maintainable code is also on the rise. In a nutshell, a consistent client-side pro-
gramming environment that works on all modern browsers is essential.

This chapter is the first one dedicated to the Microsoft Ajax Library, which is
written on top of JavaScript and constitutes the client portion of the ASPNET AJAX
framework. In the tour of the basic framework components in chapter 1, you
began to write code using the library’s syntax. This chapter will provide more
examples and give you a comprehensive overview of the library’s features.

A quick overview of the library

The Microsoft Ajax Library provides a rich set of tools for managing nearly every
aspect of client development. The library isn’t just a simple framework for send-
ing asynchronous requests using the XMLHttpRequest object. Instead, one of its
main goals is to bring to the client side many coding patterns familiar to .NET
developers. Such .NET flavors include the possibility of exposing multicast events
in JavaScript objects and leveraging a component model on the client side. The
library also enhances the JavaScript language’s type system and lets you write cli-
ent code using object-oriented constructs like classes and interfaces. In addition,
you can easily access local web services using JavaScript and deal with the ASP.NET
application services, such as membership and profile, from the client side. None-
theless, this is just a taste of the goodies provided by the library.

Library features

The Microsoft Ajax Library is rich in features, which we’ve grouped into logical
categories. Because we can’t explore all of them in a single chapter, the following
list shows how the features are distributed in the book’s various chapters:

» Application model—When you enable the Microsoft Ajax Library in a web
page, an Application object is created at runtime. In section 2.2, you’ll dis-
cover that this object takes care of managing the client lifecycle of a web
page, in a manner similar to what the Page object does on the server side.
The Application object hosts all the client components instantiated in the
web page and is responsible for disposing them when the page is unloaded
by the browser.

38

CHAPTER 2
First steps with the Microsoft Ajax Library

= Components—The Microsoft Ajax Library brings to the client side a compo-
nent model similar to that provided by the .NET framework. You can create
visual or nonvisual components, depending on whether they provide a UL
In chapter 8, which is entirely dedicated to the client component model,
you’ll see also how visual components can be associated with Document
Object Model (DOM) elements.

» JavaScript extensions—As you’ll see in chapter 3, the library leverages the
object model provided by JavaScript by introducing an enhanced type sys-
tem that supports reflection and object-oriented constructs like classes,
interfaces, and enumerations. In addition, the builtin JavaScript objects
have been extended to support methods commonly found in .NET classes.

= Compatibility—Section 2.3 covers the abstraction API, which is a set of client
methods for writing code that runs smoothly in all the supported browsers.
This API abstracts common operations performed on DOM elements, such
as handling events and dealing with CSS and positioning.

= Ajax—The library isn’t exempt from providing a communication layer for
sending asynchronous HTTP requests using the XMLHttpRequest object.
Chapter 5 is entirely dedicated to the networking layer.

» Application services—By using the Microsoft Ajax Library, ASPNET develop-
ers can deal with the authentication, membership, and profile providers on
the client side. You can interact with the providers through proxy services
by writing JavaScript code in the page.

» Partial rendering—The UpdatePanel control, introduced in chapter 1, makes
it possible to update portions of the page’s layout without refreshing the
whole Ul This mechanism, called partial rendering, is leveraged on the client
side by an object called the PageRequestManager. In chapter 7, when we dis-
cuss what happens under the hood of the UpdatePanel, we’ll explain how
the Microsoft Ajax Library participates in the partial-rendering mechanism.

Some of the features in the ASP.NET Futures package are interesting, and we
decided to cover them in this book. Chapter 11 is dedicated to XML Script, a
declarative language—similar to the ASPNET markup language—used to create
JavaScript objects without writing a single line of JavaScript code. Chapter 12 talks
about how to perform drag and drop using the Microsoft Ajax Library.

Before proceeding, let’s establish a couple of conventions relative to the termi-
nology we’ll use throughout the book. JavaScript is an object-oriented language;
but, unlike C# or VB.NET, it doesn’t support constructs like classes and namespaces.
Nonetheless, as you’ll see in chapter 3, you can manipulate JavaScript functions in

212

A quick overview of the library 39

interesting ways to simulate these and other object-oriented constructs. For this
reason, when talking about client JavaScript code, we often borrow terms such as
class, method, interface, and others from the common terminology used in object-ori-
ented programming. For example, when we talk about a client class, we’re referring
to a class created in JavaScript with the Microsoft Ajax Library.

We’re ready to start exploring the library. The first step is learning how to load
the library’s script files in a web page.

Ajax-enabling an ASPNET page

The Microsoft Ajax Library is organized in client classes contained in namespaces.
The root namespace is called Sys. The other namespaces are children of the root
namespace. Table 2.1 lists the namespaces defined in the library and the type of
classes that they contain.

Table 2.1 Namespaces defined in the Microsoft Ajax Library. The root namespace defined by the
library is called Sys

Namespace Content
Sys Base runtime classes, Application object
Sys.Net Classes that belong to the networking layer
Sys.UI Classes for working with components and the DOM
Sys.Services Classes for accessing ASPNET services like profile, membership,

and authentication

Sys.Serialization Classes for JSON serialization/deserialization

Sys.WebForms Classes related to partial page rendering

The Microsoft Ajax Library consists of multiple JavaScript files loaded by the
browser at runtime. These files are embedded as web resources in the Sys-
tem.Web.Extensions assembly, which is installed in the Global Assembly Cache
(GAC) by the Microsoft ASPNET AJAX Extensions installer.

As you already know from chapter 1, the library files are automatically loaded
into an ASP.NET page as soon as you declare a ScriptManager control. Therefore,
every Ajax-enabled ASP.NET page must contain a ScriptManager control:

<asp:ScriptManager ID="TheScriptManager" runat="server" />

40

213

CHAPTER 2
First steps with the Microsoft Ajax Library

Table 2.2 lists the script files that make up the Microsoft Ajax Library, along with
the description of the functionality they provide.

Table 2.2 The Microsoft Ajax Library features are distributed across multiple JavaScript files.

Filename Features

MicrosoftAjax.js The core library that contains the JavaScript extensions, the type sys-
tem, classes for the object-oriented patterns, the communication layer,
classes for creating components, and classes for dealing with the
browser’s DOM

MicrosoftAjaxTimer.js Contains the client timer component used by the Timer server control

MicrosoftAjaxWebForms.js Contains classes for supporting the partial-update mechanism used by
the UpdatePanel server control

The Microsoft Ajax Library is written in pure JavaScript, so it isn’t tied to the
ASP.NET framework. If you want to work with the library without using ASP.NET,
you need to reference the script files with script tags in the web page. However,
the script files in the ASP.NET AJAX installation directory don’t include some
resources files needed by the library at runtime. For this reason, you need to
download the Microsoft Ajax Library package, which includes all the library files
and the resource files; it’s available for download at the ASP.NET AJAX official web-
site (http://ajax.asp.net).

All the library files are provided in debug and release versions. The debug ver-
sion facilitates the debugging of the script files. It contains comments and takes
advantage of a number of tricks that make debuggers happy. For example, it
avoids using anonymous JavaScript functions to show more informative stack
traces. In addition, calls to functions are validated to ensure that the number and
types of parameters are those expected. The debug version of a library file is
slower and bigger than the release version; the release version is compressed,
comments are removed, and validation doesn’t take place. This results in faster
and considerably shorter code.

Let’s examine the options you have to load the desired version of a script file.

Script versions

You can load the desired version of a script through the ScriptManager control.
You can also load debug and release versions of custom script files. Debug and
release versions are distinguished by the file extension: The debug version has the
extension .debug.js, and the release version has the normal .js extension.

A quick overview of the library 41

To load either the debug or the release version, you have to set the ScriptMode
property of the ScriptReference control that references the script file in the
ScriptManager. For example, suppose you want to load the release version of a
custom script file called MyScriptFile js, stored in the ScriptLibrary folder of the
website. Here’s how the ScriptManager control will look:

<asp:ScriptManager ID="TheScriptManager" runat="server"s

<Scriptss>
<asp:ScriptReference Path=" ~/ScriptLibrary/MyScriptFile.js"
ScriptMode="Release" />
</Scripts>

</asp:ScriptManagers>

Because the ScriptMode property is set to Release, the script file loaded in the
page is MyScriptFile js. If you set the value of the property to Debug, the MyScript-
File.debug js file is loaded.

NOTE Regardless of whether you’re loading the debug or release version, the
name of the script file in the Path attribute must always be that of the
release version.

The ScriptMode attribute can take one of the following values:

= Auto—The name of the script file to load matches the one specified in the
Path property. This is the default value.

s Inherit—The ScriptManager control infers the name of the script file
from the compilation mode of the website, as configured in the web.config
file. If you’re running in debug mode, the ScriptManager loads the file with
the .debug.js extension. Otherwise, it loads the file with the .js extension.

= Debug—The ScriptManager loads the debug version of the script file.

» Release—The ScriptManager loads the release version of the script file.

In chapter 13, we’ll explain some techniques used to develop a debug version of a
custom script file.

After this quick overview of the Microsoft Ajax Library, let’s examine some of
the features in more detail. In the next sections, we’ll discuss the foundations of
the library: the Application model and the client page lifecycle.

42

2.2

CHAPTER 2
First steps with the Microsoft Ajax Library

The Application model

A web application is made up of pages. Because ASP.NET pages follow an object-
oriented model, each page is modeled with an instance of the Page class, which
encapsulates a hierarchy of controls. Controls follow the page lifecycle, which is a set
of processing steps that start when the Page instance is created and consists of
multiple, sequential stages. In the initial stages, like Init, controls are instantiated
and their properties are initialized. In the final stages, Render and Dispose, the
HTML for the page is written in the response stream, and all the controls and
resources, as well as the Page instance itself, are disposed.

NOTE To learn more about the ASP.NET page lifecycle, check the MSDN docu-
mentation at http://msdn2.microsoft.com/en-us/library/ms178472.
aspx.

Imagine that the web page has completed its lifecycle on the server side. The Page
instance and the controls raised their events, and you handled them to inject the
custom application logic. The HTML for the page is ready to be sent down to the
browser. If you enabled the Microsoft Ajax Library, a new lifecycle starts on the cli-
entside. As soon as the browser loads the main script file, MicrosoftAjax.js, the cli-
ent runtime creates a global JavaScript object—the Application object—and
stores it in a global variable called Sys.Application.

This new object becomes the brains of a web page in the browser. Despite its
name, it plays a role similar to the Page object on the server side. Once the Page
object is done on the server side, the processing on the client side is delegated to
Sys.Application, as illustrated in figure 2.1.

The introduction of a global Application object in the browser isn’t meant to
revolutionize the way you write the client code. The goal is to achieve consistency
between the programming models used on both the server and client sides. The
main objectives of Sys.Application are as follows:

Sys.Application

Figure 2.1

Onthe serverside,an ASP.NET page
is represented by an instance of the
Page class. In a similar manner, on
the client side, you have the global
Sys.Application object.

Web Server

System.Web.Ul.Page ﬂ]|:>
r/

221

The Application model 43

» Providing a centralized place to execule the client code—This goal is reached by
defining a custom page lifecycle on the client. As you’ll see in a moment,
the client page lifecycle starts when the browser loads the page and ends
when the user navigates away from the page or the page is reloaded. When
each stage in the lifecycle is entered, the Application object raises a corre-
sponding event.

» Hosting the client components instantiated in the page—Once instantiated, client
components become children of the Application object and can be easily
accessed through the Application object. Also, they’re automatically disposed
by the Application object when the web page is unloaded by the browser.

Client components and the client-page lifecycle are the key concepts we’ll dissect
in the following sections. Let’s start by illustrating the concept of a client compo-
nent. Then, we’ll focus on the client-page lifecycle and the events raised by the
Application object.

Client components

Let’s say you need a hierarchical menu for navigating the pages of a website.
Whether it’s written in C# or JavaScript—assuming it isn’t poorly designed—you
usually don’t have to know anything about the logic used to render the menu.
Instead, you only have to configure the menu and instantiate it in the page. If you
also need the same menu in a different page, you perform similar steps to include
and initialize it. The point is, the code should be packaged into a single, config-
urable object that can be reused in another application.

The primary tenet behind components is code reusability. Components imple-
ment a well-defined set of interfaces that allows them to interact with other com-
ponents and to be interchanged between applications. Thanks to the base
interfaces, the code encapsulated by components can change at any time without
affecting the other processing logic.

The Microsoft Ajax Library provides specialized client classes that simplify the
authoring of client components. The group of classes related to component
development is called the client component model and closely mirrors the model in
use in the .NET framework. In this way, you can write component-oriented client
applications using JavaScript code.

We’ll explore the nuts and bolts of client components in chapter 8. For now, it’s
enough to treata client component as a black box that encapsulates reusable client
logic and exposes it through methods, properties, and events, as shown in figure 2.2.
You’ve already met your first component: the Application object introduced in the
previous section. In the following section, we’ll explain how the Application object
and client components interact during the client-page lifecycle.

44

22.2

CHAPTER 2
First steps with the Microsoft Ajax Library

J Figure 2.2
A component encapsulates some logic and exposes

it through properties, methods and events.

Client-page lifecycle

Previously, we pointed out the Application object acts on the client side like the
counterpart of the Page object. The Page object manages the lifecycle of a web
page on the server side, and the Sys.Application object accomplishes the same
task on the client side. The client lifecycle of a web page is much simpler than the
server lifecycle of an ASP.NET page. It consists of only three stages: init, load, and
unload. When each stage is entered, the Sys.Application object fires the corre-
sponding event—init, load, or unload.

As shown in the activity diagram in figure 2.3, the client-page lifecycle starts
when the browser loads a page requested by the user and ends when the user nav-
igates away from the page. Let’s examine the sequence of events in more detail.

C Window) [Sys.ApplicatiorD (Component)
i o

opo———— |] [l
log—"""" 10

1. Open page

5. Close page

Figure 2.3 The client-page lifecycle starts when the browser loads a web page. The Sys.Application object
is responsible for hooking up the events raised by the window object and, in turn, firing its own events.
Client components are created during the init stage and disposed automatically in the unload stage.

223

The Application model 45

When the browser starts loading a web page, the DOM’s window object fires the
load event. This event is intercepted by the Application object, which, in turn,
starts initializing the Microsoft Ajax Library’s runtime. When the runtime has
been initialized, Sys.Application fires the init event. During the init stage, all the
client components you want to use should be instantiated and initialized. As you’ll
discover in chapter 8, client components are instantiated using a special function
called $create and are automatically hosted by the Application object.

After the creation of components is complete, Sys.Application fires the load
event. This stage provides you with an opportunity to interact with the compo-
nents created in the init stage. This is also the best place to attach event handlers
to DOM elements and perform data access—for example, using the techniques
for sending asynchronous requests that we’ll illustrate in chapter 5.

When the user navigates away from the page or reloads it, the unload event of
the window object is intercepted by Sys.Application, which in turns fires its own
unload event. At this point, all the resources used by the page should be freed and
event handlers detached from DOM elements.

The events raised by the Sys.Application object and, in general, by client com-
ponents are different from the events raised by DOM elements. In chapter 3, we’ll
explain how to expose events in JavaScript objects. The event model used by the
Microsoft Ajax Library is similar to the model used by the .NET framework: Events
support multiple handlers and can be subscribed and handled in a manner similar
to the events raised by ASP.NET server controls.

It’s not difficult to deduce that one of the objectives of the Microsoft Ajax
Library is bringing .NET flavors to the client side. The Application object, client
components, events, and client-page lifecycle are the foundations of the Microsoft
Ajax Library. They let ASPNET developers use familiar development patterns even
when writing JavaScript code. Before we go any further, let’s take a moment to
reinforce what you’ve learned by putting together a simple program.

“Hello Microsoft Ajax!”

This example illustrates how to write a simple program with the Microsoft Ajax
Library. Because we’ve discussed the Application object and the client-page lifecy-
cle, we’ll show them in action in a page. The quickest way to start programming
with the Microsoft Ajax Library is to create a new Ajax-enabled website using the
Visual Studio template shipped with ASPNET AJAX. See appendix A for instruc-
tions on how to install the Visual Studio template. The template creates a new
website and adds a reference to the System.Web.Extensions assembly and a prop-
erly configured web.config file. In addition, it creates a Default.aspx page with a
ScriptManager control already in it. To run the following example, open the
Default.aspx page and insert the code from listing 2.1 in the page’s form tag.

CHAPTER 2
First steps with the Microsoft Ajax Library

Listing 2.1 Code for testing the client-page lifecycle

<script type="text/javascript"s
<!--
function pageLoad() {
alert ("Page loaded!");
alert ("Hello Microsoft Ajax!");

}

function pageUnload() {
alert ("Unloading page!");
1

//-->
</script>

The code in listing 2.1 is simple enough for a first program. It consists of two Java-
Script functions, pageLoad and pageUnload, embedded in a script tag in the
markup code of the web page. In the functions, you call the JavaScript’s alert
function to display some text in a message box on screen.

The names of the functions aren’t chosen at random. Provided that you’ve
defined them in the page, the Microsoft Ajax Library automatically calls the page-
Load function when the load stage of the client page lifecycle is entered. The
pageUnload function is automatically called when the unload stage is reached.

When you run the page, the code in pageLoad is executed as soon as the load
stage is entered. Figure 2.4 shows the example up and running in Internet
Explorer. To see what happens during the unload stage, you can either press the
F5 key or navigate away from the page.

ESEYTT ——
L O wroaborsie [0 [[cmtc
W Iﬁ 2.23 Client Page Lifecycle Ij o~ =

il Windows Internet Explorer

:‘i& Hello Microsoft Ajax!

Figure 2.4

I @ Intemet | Protected Mode: OFf ®100% - The “Hello Microsoft Ajax!” program
L =l = —| running in Internet Explorer

The Application model 47

The pageLoad function

When you’re using the Microsoft Ajax Library, the pagelLoad function is the best
place to execute the client code. Handling the window.load event isn’t safe be-
cause the library handles it to perform the runtime initialization. It's always safe
to run the code during the load stage of the client-page lifecycle, because the
runtime initialization is complete, all the script files referenced through the
ScriptManager control have been loaded, and all the client components have
been created and initialized.

If you want to detect the init stage, you have to do a little more work. Declaring a
pageInit function won’t have any effect. Instead, you have to write an additional
statement with a call to the add_init method of Sys.Application, as shown in list-

ing 2.2.

Sys.Application.add_init (pageInit) ;

function pagelInit () ({
alert ("Entered the Init stage!");
1

The add_init method adds an event handler for the init event of Sys.Applica-
tion. The event handler is the pageInit function you passed as an argument to
the method. The Application object also has add_load and add_unload methods,
which add event handlers to the load and unload events, respectively. However,
the pageLoad and the pageUnload functions offer a way to execute code during
the load and unload stages of the client page lifecycle.

The init stage is typically used to create instances of the client components you
use in the page. However, we won’t deal with it until chapter 8, where we’ll
explain the nuts and bolts of client components. The majority of the client code,
including attaching event handlers to DOM elements and sending Ajax requests,
can be safely executed in the pageLoad function.

Now that you’ve written your first program, let’s focus on the client code a lit-
tle more. Web developers use JavaScript primarily to access a web page’s DOM.
The DOM is an API used to access a tree structure built from a page’s markup
code. The following sections explore how to use the Microsoft Ajax Library to pro-
gram against the browser’s DOM.

48

2.3

23.1

CHAPTER 2
First steps with the Microsoft Ajax Library

Working with the DOM

When a browser renders a page, it builds a hierarchical representation (called the
DOM tree) of all the HTML elements like buttons, text boxes, and images. Every ele-
ment in the page becomes a programmable control in the DOM tree and exposes
properties, methods, and events. For example, an input tag with its type attribute
set to button is parsed into a button object with a value property that lets you set
its text. The button can also raise a click event when it’s clicked. The ability to
manipulate DOM elements makes the difference between static and dynamic
HTML pages. It’s possible to change the behavior of the Ul elements at any time,
based on the user’s inputs and interactions with the page.

But this is where life gets tricky. Almost all browsers implement the DOM pro-
gramming interface differently. In some cases, there are differences between ver-
sions of the same browser. This means a dynamic page that works on one
browser may stop working on another browser and complain about JavaScript
errors. At this point, you're forced to duplicate the code to work around the
browser incompatibilities.

The Microsoft Ajax Library addresses this serious problem by providing an
abstraction API whose purpose is to abstract common operations made on DOM
elements, such as handling their events and working with CSS. As we’ll explain,
the API frees you from having to know which functions are supported by the DOM
implementation of a particular browser. It takes care of calling the correct func-
tion based on the browser that is rendering the page.

The abstraction API

The Microsoft Ajax Library lets you access the DOM in a manner independent
from the browser that renders the page. The abstraction API consists of the meth-
ods exposed by two client classes: Sys.UI.DomElement and Sys.UI.DomEvent. The
first one abstracts a DOM element, and the second represents the event data
object that DOM event handlers receive as an argument.

Using this model, you prevent the code from dealing directly with the
browser’s API. Instead, you call methods defined in the Microsoft Ajax Library,
which takes care of calling the correct function based on the browser that is cur-
rently rendering the page. Figure 2.5 illustrates this concept by showing how the
DOM calls in a script file can be made through the Sys.UI.DomElement and
Sys.UI.DomEvent classes.

For example, suppose you want to hook up an event raised by a DOM element.
Instead of checking whether a browser supports an attachEvent rather than an
addEventListener method, you can call the addHandler method of the

23.2

Working with the DOM 49

Figure 2.5

(Internet Explorer T!1e Mlcrosc.\ft Ajax
Library provides a common

interface to different DOM

Firefox implementations. The
library translates the DOM

calls made with the

Sys.Ul.DomEvent . Sys.UI.DomElement
Safari - .
class into browser-specific

functions.

Sys.UI.DomEvent offers a
Opera .
cross-browser object for

representing event data.

Sys.Ul.DomElement

Sys.UI.DomElement class. Then, it’s up to the Microsoft Ajax Library to call the
correct function based on the detected browser.

You know that Firefox passes the event object as an argument to the event han-
dler, whereas Internet Explorer stores its custom event object in the win-
dow.event property. If you use the abstraction API, the same cross-browser event
object is always passed as an argument to the event handler. Thanks to the cross-
browser event object, you're also freed from the pain of dealing with different
properties that describe the same event data.

To give you confidence using the API, let’s work on an example that explains
how to use some of the methods provided to handle an event raised by a DOM ele-
ment. Later, we’ll address CSS and positioning.

A dynamic, cross-browser text box

One of the main uses of JavaScript is to check and validate user input before a web
form is submitted to the server. To perform this task, you often have to write client
logic that limits the values a user can enter in a text field. As an example, suppose
you want a user to enter some text in a text box. The requirements say that the text
must contain only letters—no digits. To implement this task, you must access the
text-box element, handle its keypress event, and filter the text typed by the user.
Listing 2.3 shows how this task can be accomplished using the Microsoft Ajax
Library. Notably, the resulting code runs in all the browsers supported by the library.

<div>
Please type some text:</spans
<input type="text" id="txtNoDigits" />
</divs>

<script type="text/javascript'"s>

50

CHAPTER 2
First steps with the Microsoft Ajax Library

<!--

function pageLoad() { Access text
var txtNoDigits = $get ('txtNoDigits'); box element
SaddHandler (txtNoDigits, Attach event
'keypress', txtNoDigits_ keypress) ; handler

}

function pageUnload() {
SremoveHandler ($Sget ('txtNoDigits'),

'keypress', txtNoDigits keypress) ; Detach event

handler

}

function txtNoDigits keypress (evt)
var code = evt.charCode;

Handle keypress
if (code >= 48 && code <= 57) { event

evt.preventDefault () ;
}

}
//-=>

</script>

As you know, the code in the pageLoad function is executed as soon as the load
stage of the client page lifecycle is entered. The function body contains calls to
the $get and $addHandler methods.

Shortcuts

As we explained in chapter 1, functions prefixed with the character $ are aliases
or shortcuts used to access methods with longer names. This saves you a little
typing. Even if it seems like a minor detail, using shortcuts is useful for obtaining
shorter code and smaller JavaScript files. Table 2.3 lists some of the shortcuts
defined in the Microsoft Ajax Library together with the longer name of the asso-
ciated method.

The first method called in pageLoad is $get, which gets a reference to a DOM ele-
ment. $get accepts the ID of a DOM element and returns a reference to it. You can
also pass a reference to a DOM element as the second parameter. In this case, the
method searches an element with the given ID in the child nodes of the provided
DOM element.

Working with the DOM 51

Table 2.3 Shortcuts for common methods defined in the abstraction API

Shortcut Method Name Description

Sget Sys.UI.DomElement .getElementById | Returns a reference to a
DOM element

$addHandler Sys.UI.DomElement .addHandler Adds an event handler to
an event exposed by a DOM
element

SremoveHandler Sys.UI.DomElement .removeHandler Removes an event handler
added with $addHan-
dler

$addHandlers Sys.UI.DomElement .addHandlers Adds multiple event han-

dlers to events exposed by
DOM elements and wraps
the handlers with delegates

SremoveHandlers | Sys.UI.DomElement.removeHandlers | Removes all the handlers
added with $addHan-
dler and SaddHan-
dlers

The second method, $addHandler, adds an event handler for an event raised by a
DOM element. The first argument is a reference to the element that exposes the
event you want to subscribe. The second argument is a string with the name of the
event. The third argument is the JavaScript function that handles the event. The
syntax of $addHandler is illustrated in figure 2.6. Note that the string with the
name of the event must not include the prefix on.

You can remove the handler added with $addHandler at any time by passing
the same arguments—the element, the event name, and the handler—to the
$removeHandler method. It’s a good practice to always dispose event handlers

Event name
$addHandler (txtNoDigits, 'keypress', txtNoDigits keypress) ;
DOM element Event handler

Figure 2.6 Syntax for the $addHandler method, used for attaching
a handler to an event raised by a DOM element

52

CHAPTER 2
First steps with the Microsoft Ajax Library

added to DOM elements. You do so to prevent memory leaks in the browser that
could slow the application and cause a huge performance drop. As in listing 2.3, a
good place to use $removeHandler is in the pageUnload function, which is called
just before the browser unloads the web page.

In the previous example, the handler for the text box’s keypress event is the
txtNoDigits keypress function. The handler is called as soon as a key is pressed
in the text field. As you can see, the first argument passed to the txtNoDigits
_keypress function, evt, is an instance of the Sys.UI.DomEvent class. The main
characteristic of this object is that it contains the event data and exposes the same
properties in all the supported browsers.

NOTE The $addHandler method uses a private function to subscribe the event.
When the private handler is executed, the browser-specific event object is
converted into a Sys.UI.DomEvent instance. At this point, the original
event handler passed to $addHandler is called with the Sys.UI.Dom-
Event instance as an argument, in place of the original event object.

Among the various properties of the event object, charCode returns the code of
the typed character. The preventDefault method is invoked to avoid the execu-
tion of the default action for the subscribed event. In the example, this prevents
characters whose code corresponds to a digit from being displayed in the text
box. Table 2.4 lists all the properties of the cross-browser event object.

Table 2.4 Properties of the Sys.UI.DomEvent class, which provides a cross-browser object that
contains the event data for DOM events

Property Value
rawEvent Underlying event-data object built by the current browser
shiftKey True if the Shift key was pressed
ctrlKey True if the Ctrl key was pressed
altKey True if the Alt key was pressed
button One of the values of the Sys.Ul.MouseButton enumeration: leftButton, mid-

dleButton, rightButton

charCode Character code for the typed character

clientX During a mouse event, the x coordinate of the mouse location relative to the
client area of the page

clientY During a mouse event, the y coordinate of the mouse location relative to the
client area of the page

233

Working with the DOM 53

Table 2.4 Properties of the Sys.UI.DomEvent class, which provides a cross-browser object that
contains the event data for DOM events (continued)

Property Value
target Element that raised the event
screenX During a mouse event, the x coordinate of the mouse location relative to the

computer screen

screenY During a mouse event, the y coordinate of the mouse location relative to the
computer screen

type Name or type of the event (like click or mouseover)
preventDefault () Prevents execution of the default action associated with the event
stopPropagation () | Prevents the event from propagating up to the element’s parent nodes

Changing the layout of DOM elements is one of the main tasks in dynamic HTML
pages. For example, features like animations, scrolls, and drag and drop rely on the
positioning and the style of DOM elements. Let’s return to the Sys.UI.DomElement
class to examine a group of methods related to CSS and positioning.

CSS and positioning

The Sys.UI.DomElement class provides a group of methods for performing com-
mon tasks related to CSS and positioning. If you pass a DOM element and a
string with the name of a CSS class to the addCssClass method, you add the class
to the list of CSS classes associated with an element. If you pass the same argu-
ments to the removeCssClass method, you remove the class from the list of asso-
ciated CSS classes.

If there’s one thing that highlights the incompatibilities between the various
implementation of the DOM, it’s positioning. Due to the different ways in which
the many parameters related to the box model are computed, making a UI look
the same in multiple browsers can be a real challenge.

The box model

The box model describes the layout of DOM elements in a web page through a
set of parameters implemented in CSS. You can read a good article about the
box model at http://www.brainjar.com/css/positioning/.

54

234

CHAPTER 2
First steps with the Microsoft Ajax Library

The Microsoft Ajax Library tries to mitigate this issue by providing methods that
take into account bugs and different algorithms for computing the position and
bounds of DOM elements. To retrieve the location of an element, you write a state-
ment like the following:

var location = Sys.UI.DomElement.getLocation(element) ;

The getLocation method takes a reference to a DOM element and returns an
object with two attributes, x and y, which store the left and top coordinates of the
element relative to the upper-left corner of the parent frame:

var top = location.y;
var left = location.x;

The setLocation method accepts the x and y coordinates (specified in pixels)
and sets the element’s position using the left and top attributes of its style
object. In this case, the element’s location is set based on the positioning mode of
the element and its parent node. Consider the following statement:

Sys.UI.DomElement.setLocation(element, 100, 100);

If the parent node of element has a specific positioning mode (for example, rel-
ative or absolute), then its location—by CSS rules—is set relative to the parent
element and not to the parent frame.

If you need to know the bounds of an element—its location and its dimen-
sions—the Sys.UI.DomElement.getBounds method takes a reference to a DOM
element and returns an object with four attributes: x, y, height, and width.

The main goal of the abstraction API isn’t to increase differences by adding a
new group of methods to learn and remember; the objective is to offer a consis-
tent programming interface to the browser’s DOM. When the Microsoft Ajax
Library evolves and adds support for new browsers, the code written with the API
will continue to work as before. This is possible because under the hood the
library takes care of all compatibility issues.

It’s time to leave the abstraction API, but your work with the DOM isn’t over.
Handling DOM events is one of the most common tasks when scripting against a
web page. In the next sections, we’ll introduce two useful methods for implement-
ing callbacks and delegates in JavaScript. We’ll show how you can use them to make
DOM event-handling easy and straightforward.

Client delegates

Think of a button on an ASP.NET page or on a Windows Forms form. When the
user clicks the button, the Button object realizes this and raises a click event,
which implicitly means, “Hey, someone clicked me, but I'm just a Button. What

Working with the DOM 55

should happen now?” In the .NET framework, objects use a delegate to invoke one
or multiple methods responsible for processing the event.

NOTE To learn more about delegates in the .NET framework, browse to the fol-
lowing URL: http://msdn.microsoft.com/msdnmag/issues/01/04/net/.

To implement a similar pattern in JavaScript, the Microsoft Ajax Library provides
a method called Function.createDelegate, which accepts two arguments and
returns a new function—let’s call it the client delegate. The first argument is the
object that will be pointed to by this in the client delegate. The second argument
is the function that you want to invoke through the client delegate.

When you invoke the client delegate, it calls the function you passed previ-
ously. The difference is that now, this points to the object you passed as the first
argument to createDelegate.

To understand why a client delegate is useful, recall what happens when you
add a handler to an event raised by a DOM element. In the handler, this always
points to the element that hooked up the event, which determines the scope you
can access. Using a client delegate lets you access—through the this keyword—a
different object than the DOM element that hooked up the event.

Listing 2.4 demonstrates how to use a client delegate to handle the click
event of a button element. In the event handler, you can access a variable stored
in a different scope.

<input type="button" id="testButton" value="Click Me" />

<script type="text/javascript"s

<l-- test property
function pageLoad() { of window

this.test = "I'm a test string!"; object

? Create client
var clickDelegate = delegate

Function.createDelegate (this, onButtonClick) ;

SaddHandler (Sget ('testButton'), 'click', clickDelegate) ;
} Handle click
function onButtonClick() { event with
lert (this.test) ;
} alert (this.test) Access the delegate
window object
//-->
</scripts>

56

2.3.5

CHAPTER 2
First steps with the Microsoft Ajax Library

The @ clickDelegate variable stores a client delegate that @ invokes the onBut -
tonClick function. In the function, this points to the object passed as the first
argument to createDelegate. Because pageLoad is a global function, this points
to the global object, which will be accessible in the @ onButtonClick function. To
demonstrate this, you alert the value of the @ test variable, which was added to
the window object in the first statement of the pageLoad function. If you try to pass
the onButtonClick function—instead of the client delegate—to the $saddHandler
method, you’ll notice that the test variable is undefined, because this now
points to the button element that raised the click event.

The Function.createDelegate method is useful because you don’t have to
store in a global variable—or even in a DOM element—the context that you want
to access in the event handler. Plus, the Microsoft Ajax Library provides two meth-
ods for subscribing to multiple DOM events, creating delegates for them, and dis-
posing both the delegates and the handlers automatically. These methods are
accessed through the $addHandlers and $clearHandlers shortcuts.

SaddHandlers and SclearHandlers

The main advantage of using $addHandlers and $clearHandlers is to avoid the
error-prone (and boring) job of creating client delegates, attaching handlers, and
then performing the reverse task, all multiplied by the number of events you're
subscribing. For example, the following statement automatically creates the client
delegates for the click and mouseover events of a button element:

$addHandlers (buttonElement, { click:onButtonClick,

mouseover : onMouseOver }, this) ;

The first argument passed to $addHandlers is the DOM element. The second
parameter is an object for which each property is the name of an event, and
whose value is the event handler. The last parameter is the owner of the handler,
which determines the context under which the event handler is executed. Usually
you pass this, which lets you access—in the handler—the object that subscribed
to the event.

If you need to detach all the event handlers from the element, you can do so
with a single statement:

SclearHandlers (buttonElement) ;

Note that the $clearHandlers method detaches all the event handlers attached
with $addHandler and $addHandlers. It also disposes all the delegates created
with the $addHandlers method.

Working with the DOM 57

NOTE Browsers can leak memory if event handlers aren’t correctly detached
from DOM elements. For this reason, it’s important to always detach all
the event handlers and dispose all the delegates when a client object is
cleaned up or the whole page is unloaded.

You don’t always need to switch the scope of an event handler to access the infor-
mation you need. Often, it’s enough to access a context object where you’ve
stored only the references that may be useful during the processing of the event.
In this case, a better approach is to handle a DOM event using a callback function.

2.3.6 Callbacks

The Microsoft Ajax Library provides a method called Function.createCallback,
which you can use to create a callback function thatan object can invoke atany time.
The main purpose of Function.createCallback is to call a function with a context
provided by the object that created the callback. The context is an object that, usu-
ally, contains application data that otherwise wouldn’t be accessible in the method,
because they belong to a different scope. Just like client delegates, callbacks are use-
ful for processing DOM events. The code in listing 2.5 shows how you can access, in
a DOM event handler, a custom object created in the pageLoad function.

<input type="button" id="myButton"
value="Time elapsed since page load" />

<script type="text/javascript"s

<!l--

function pageLoad() { J Co[‘teXt
var context = { date : new Date() }; object
var clickCallback = Create
Function.createCallback (onButtonClick, context) ; callback
SaddHandler (Sget ('myButton'), 'click', clickCallback) ;
} Attach handler to click evenjg

function onButtonClick (evt, context) {
var loadTime = context.date;

var elapsed = new Date() - loadTime; Access event

object and

context
alert ((elapsed / 1000) + ' seconds');

!
//-->

</scripts>

58

2.4

24.1

CHAPTER 2
First steps with the Microsoft Ajax Library

The @ context variable stores the time at which the pageLoad function was
invoked. You want to access this information in the function that handles the but-
ton’s click event. To do that, you @ create a callback that points to the onBut-
tonClick function. In the Function.createCallback method, you specify the
function to invoke and the context object. @ Then, you pass the callback to the
$addHandler method. @ When the onButtonClick function is called, the context
object is added to the list of arguments, just after the event object.

Callbacks and delegates are nice additions to the set of features you can lever-
age when programming against the DOM with the Microsoft Ajax Library. But in
the Ajax age of web applications, interacting with the DOM is just a small portion
of the tasks the client code should accomplish. You need features and tools that
simplify everyday programming with JavaScript. In the following sections, we’ll
explore some of the classes that the Microsoft Ajax Library provides to increase
productivity on the client side.

Making development with JavaScript easier

Since the first versions of JavaScript, developers have started writing libraries to
leverage the base functionality provided by the language. Every new library or
framework that sees the light—and lately, this seems to happen on a monthly
basis—aims at increasing the productivity of JavaScript developers by offering a
set of tools that makes it easier to design, write, and debug the client code. As you
may have guessed, the direction taken by the Microsoft Ajax Library is to achieve
the same goals by bringing some of the .NET coding patterns to the client side.
Let’s look at some of the client classes provided by the library, starting with the
enhancements made to the builtin JavaScript objects. Later, we’ll talk about
browser detection and client-side debugging.

The String object

String manipulation is one of the most common tasks in everyday programming.
JavaScript comes with a String object that contains various methods for dealing
with strings. However, some frequently desired methods such as format and trim
aren’t in the list. The good news is that the Microsoft Ajax Library extends—at
runtime—the String object to make it more similar to the counterpart class in the
.NET framework. For example, one of the methods added to the client String
object is format. You can use numbered placeholders like {0} and {1} to format
strings using variables, just as you do on the server side:

alert (String.format ("This code is running on {0} {1}",
Sys.Browser.agent, Sys.Browser.version)) ;

24.2

Making development with JavaScript easier 59

The Sys.Browser object can be used to get information about the browser that
loaded a page. We’ll return to browser detection in section 2.4.4. In the meantime,
look at table 2.5, which lists the new methods added to the JavaScript String object.

Table 2.5 Methods added to the JavaScript String object

Method Description
endsWith Determines whether the end of the String object matches the specified string.
format Replaces each format item in a String object with the text equivalent of a corre-

sponding object's value.

localeFormat Replaces the format items in a String object with the text equivalent of a corre-
sponding object's value. The current culture is used to format dates and numbers.

startsWith Determines whether the start of the String object matches the specified string.
trim Removes leading and trailing white space from a String object instance.
trimEnd Removes trailing white space from a String object instance.

trimStart Removes leading white space from a String object instance.

An object familiar to .NET developers is the string builder. A string builder is an
object that speeds up string concatenations because it uses an array to store the
parts instead of relying on temporary strings. As a consequence, a string builder is
orders of magnitude faster than the + operator when you need to concatenate a
large number of strings.

Sys.StringBuilder

The Sys.StringBuilder class closely resembles the System.Text.StringBuilder
class of the .NET framework. In JavaScript, it’s common to build large chunks of
HTML dynamically as strings and then use the innerHTML property of a DOM ele-
ment to parse the HTML. Even if it isn’t a standard DOM property, innerHTML is
orders of magnitude faster than the standard methods for manipulating the DOM
tree. Listing 2.6 shows how to use an instance of the Sys.StringBuilder class to
format the URL of a web page and display it on a label. Instances of client classes
are created with the new operator in the same way as JavaScript custom objects.
We’ll return to client classes and other object-oriented constructs in chapter 3.

60

CHAPTER 2
First steps with the Microsoft Ajax Library

<script type="text/javascript">
<!--
function pageLoad (sender, e) Create instance of
var sb = new Sys.StringBuilder () ; StringBuilder

sb.append (
sb.append (
sb.append (window.location) ;
sb.append ('</i></h3>");

'<h3>You are now browsing: ');
'<i>"') ;

var myLabel = Sget ('urlLabel');
Inject HTML chunk

urlLabel.innerHTML = sb.toString() ; in span element

1
//-->
</scripts>

To add the various parts to the final string, you pass them to the append method.
When you’re done, you call the toString method to get the whole string stored
in the StringBuilder instance. The Sys.StringBuilder class also supports an
appendLine method that adds a line break after the string passed as an argument.
The line break is the escape sequence \r\n, so you can’t use it when building
HTML. Instead, you write something like this:

sb.append('
');

You can use the isEmpty method to test whether a StringBuilder instance
doesn’t contain any text. The following if statement performs this check and, if
the StringBuilder isn’t empty, clears all the text using the clear method:

if (1sb.isEmpty ()) {
sb.clear() ;
}

When the number of strings to concatenate is larger, the string builder becomes an
essential object to avoid huge performance drops. The Sys.StringBuilder class
relies on an array to store the strings to concatenate. Then, it uses the join method
of the String object to perform the concatenation and obtain the final string.

Arrays are probably one of the most used data structures in programming.
JavaScript provides a built-in Array object that the Microsoft Ajax Library extends
with methods commonly found in the .NET Array class.

Making development with JavaScript easier 61

2.4.3 The Array object

In JavaScript, an array is an ordered collection of values that can be of different
types. The built-in Array object exposes many methods to deal with arrays, but the
Microsoft Ajax Library extends it so it looks and feels similar to the Array object of
the .NET framework. Table 2.6 lists the new methods added to the Array object,
together with their descriptions.

Table 2.6 Extension methods added to the JavaScript Array object

Method Description
add Adds an element to the end of an Array object
addRange Copies all the elements of the specified array to the end of an Array object
clear Removes all elements from an Array object
clone Creates a shallow copy of an Array object
contains Determines whether an element is in an Array object
dequeue Removes the first element from an Array object
forEach Performs a specified action on each element of an Array object
indexOf Searches for the specified element of an Array object and returns its index
insert Inserts a value at the specified location in an Array object
parse Creates an Array object from a string representation
remove Removes the first occurrence of an element in an Array object
removeAt Removes an element at the specified location in an Array object

All the new methods added to the Array type act as static methods. As we’ll clarify
in chapter 3, one of the ways to extend an existing JavaScript object is to add a
method directly to its type. As a consequence, the new method can be called
directly on the type rather than on a new instance. This is similar to static meth-
ods in C# and shared functions in VB.NET; in practice, the usage is the same in
JavaScript. In listing 2.7, you create an array and play with some of the new meth-
ods introduced by the Microsoft Ajax Library.

62

CHAPTER 2
First steps with the Microsoft Ajax Library

<script type="text/javascript"s>
<!--
function pageLoad (sender, e)
var arr = new Array();

Array.add(arr, 3); Add
Array.addRange (arr, [4, 5, "Hello World!"]); items
Array.removeAt (arr, arr.length - 1);
Remove last
item
var sum = 0;
Array.forEach (arr,
function(item) { sum += item; }); Compu@
sum of items

alert (sum) ;
Clear

Array.clear (arr) ; array

}
//=-->

</script>

The first thing that .NET developers may notice is that methods have familiar
names. The code in listing 2.7 could have been written using the standard meth-
ods of the builtin Array object. On the other hand, the Microsoft Ajax Library
combines or renames them to achieve, wherever possible, consistency between
serverside and client-side classes.

As we said previously, the new methods added to the Array object are static. For
example, the addRange method is called as Array.addRange and accepts two argu-
ments: the array instance on which you’re working, and an array with the elements
you want to add to the instance. The reason for having static methods is that the
JavaScript for/in construct, if used to loop over the elements of an array, would
return any methods added to the Array object. This happens because the for/in
construct loops through the properties of a generic object. On the other hand,
static methods aren’t returned if you use for/in to loop over an array instance.

An interesting new method is Array.forEach, which loops through an array
and processes each element with the function passed as the second argument.
The example uses Array.forEach with a simple function that computes the sum
of the integers in the array.

Often, web applications have a much wider scope than a company’s intranet.
Many are websites that can be browsed by virtually any corner of the world. However,
different cultures have different ways to represent data such as dates, numbers, and

24.4

Making development with JavaScript easier 63

currencies. It’s important for applications to be aware of these differences and take
globalization and localization into account.

Globalization

On the server side, ASPNET does a great job at globalization by providing a group
of objects that store information about different cultures. For example, you can
rely on specific Culturelnfo objects to set a culture for the web application. These
objects contain all the settings relative to a particular culture, such as date and
number formats.

Such infrastructure isn’t available on the client side, where you usually have to
elaborate your custom strategy or, worse, renounce it to implement globalization.
Luckily, the Microsoft Ajax Library makes enabling globalization on the client
side a piece of cake. If you set the EnableScriptGlobalization property of the
ScriptManager control to true, the Culturelnfo object relative to the current cul-
ture (set on the server side) is serialized using the JSON data format and then sent
to the browser at runtime.

The serialized object is stored in the Sys . CultureInfo variable and contains two
child objects: InvariantCulture and CurrentCulture. These objects contain the set-
tings relative to the invariant culture and the current culture as set on the server
side. The serialized CultureInfo object is used in conjunction with a group of new
methods added to the Date and Number objects by the Microsoft Ajax Library.

The Date object provides formatting capabilities and localized parsing. You can
format date instances by passing a format string to the format method, like so:

var date = new Date() ;

var formatString =
Sys.CultureInfo.CurrentCulture.dateTimeFormat .LongDatePattern;

alert (date.format (formatString)) ;

This code snippet uses the CurrentCulture object to obtain a standard format
string, but you could also use a custom format string.

NOTE If you need more information about standard and custom format strings
for date and numbers, visit http://msdn2.microsoft.com/en-us/library/
427bttx3.aspx and http://msdn2.microsoft.com/en-us/library/97x6twsz.
aspx.

The format method uses the Sys.CultureInfo.InvariantCulture object to produce
a string with the formatted date. If you want to use the CurrentCulture object,
you have to pass the format string to the formatLocale method:

alert (date.formatLocale (formatString)) ;

64

CHAPTER 2
First steps with the Microsoft Ajax Library

@ Clobalization - Mozilla Firefox 4 4 W & & & E=10-3)

File Edit View History Bookmarks Tools Help
N

@D @ Qe ;

The page at httpy/localhost:51632 says:

Please open tl 1\ lonedt 2 maggio 2007, 12:4223

[6]: July -

[71: August

[8]: Septesbez

[9]): October f .

[10]: Hovember Flgure 2:7

[11]: December = A Date instance can be

fai: b formatted using the current

;” o@ culture as set in an ASP.NET

L — — - e — page on the server side.

Figure 2.7 shows how a Date instance is formatted in the Italian culture (it-IT).
Similar rules are used for parsing strings that contain date representations. The
Date.parselnvariant method parses a string representation of a date using the
InvariantCulture object. On the other hand, the Date.parseLocale method takes
advantage of the CurrentCulture object.

The Number object has been extended with similar methods. You have format
and localeFormat methods to format Number instances using the invariant cul-
ture or the current culture, as set on the server side. Similarly, the parse and
parseLocale methods are responsible for parsing a string with a number repre-
sentation using the desired culture settings.

NOTE You can browse the MSDN documentation for globalization and localiza-
tion at http://msdn2.microsoft.com/en-us/library/c6zyy3s9.aspx.

In addition to globalization, the ASP.NET AJAX framework provides support for
localization. You can think of localization as the translation of a page into a partic-
ular culture: Client resources like JavaScript files and strings can now be localized
from the client, not just the server. Chapter 4 will walk you through how this
is attainable.

Now that you know how to deal with the enhanced JavaScript object, let’s focus
on the common tasks performed in everyday programming with JavaScript. Since
web developers started scripting against web pages, browser detection has played
a major role, especially due to the incompatibilities in the JavaScript implementa-
tions of different browsers.

2.4.5

Making development with JavaScript easier 65

Browser detection

The Microsoft Ajax Library extracts information about the browser that is render-
ing the page from the DOM’s navigator object. This information is stored in an
object called Sys.Browser, which you can use to perform browser detection on the
client side. To see browser detection in action, the code in listing 2.8 displays a
message with the name and the version of the detected browser.

Listing 2.8 Using the Sys.Browser object to perform browser detection

<script type="text/javascript"s
<!--
function pageLoad (sender, e) {
var browser = String.format ("Your browser is {0} {1}",
Sys.Browser.name, Sys.Browser.version);

alert (browser) ;

1
//-->
</scripts>

The name and agent properties of the Sys.Browser object contain the browser’s
name and the current version. Figure 2.8 shows how this information is displayed
in a message box in the Opera browser.

-
o 2.4.4 Browser Detection - Opera =@ %]

File Edit View Bookmarks Widgets Tools Help

E TP I 2.4.4 Browser Detection | 'X l ij T

e s :l,_]:r%ZODetection‘aspK,? tQ; Google ﬂéa

f JavaScript

<localhost>

Your browser is Opera 9.1

M Stop executing scripts on this page

L% J

Figure 2.8 You can use the Sys.Browser object to perform browser detection at runtime.

66

2.4.6

CHAPTER 2
First steps with the Microsoft Ajax Library

Sometimes it’s useful to take an action only if a particular browser is detected. In
this case, you can test against the object returned by Sys.Browser.agent. For exam-
ple, add the following statement in listing 2.8, after the call to the alert function:

if (Sys.Browser.agent == Sys.Browser.InternetExplorer) ({
alert ('This message is displayed only on Internet Explorer!');

1
As you can easily verify, the message box in this code is displayed only in Internet
Explorer. You can also test the Sys.Browser.agent property against Sys.Brows-
er.Firefox, Sys.Browser.Opera, and Sys.Browser.Safari.

Performing browser detection is a small step toward the goal of writing client
code that runs smoothly and behaves as expected in all the browsers you're target-
ing. Ajax web applications have introduced the need to dedicate even more time
to debugging. The following sections will examine the tools available for debug-
ging JavaScript code. We’ll also discuss how the Microsoft Ajax Library can help
you improve your debugging experience and handle errors.

Debugging

Debugging JavaScript code has never been the most exciting experience for a web
developer. On one hand, browsers don’t have embedded debuggers and often
provide cryptic error messages that give no clue what went wrong. On the other
hand, JavaScript continues to lack a real development environment, and almost
all the debuggers are available as external tools. Given this situation, it shouldn’t
come as a surprise that one of the preferred debugging techniques has always
been displaying messages on screen by calling the alert function at the right time
in the code.

The situation is slowly getting better. All the modern browsers have a JavaScript
console that logs client errors, and interesting tools are being developed. Among
these, Firebug for Firefox and Web Development Helper for Internet Explorer
have proven to be must-have tools for Ajax developers. These tools integrate with
the browser and let you inspect and debug web pages directly in the browser. The
next version of Visual Studio (codename “Orcas”) will provide a real development
environment for JavaScript, with features such as improved debugging and Intel-
liSense in script files. This book’s Resources section points you to the URLs where
you can download some of these tools. Also, Appendix B contains instructions on
how to install them, together with an overview of their features.

The Microsoft Ajax Library offers support for code debugging through a class
called Sys.Debug. This class exposes methods for logging messages to the
browser’s console and dumping client objects. To log a message to the console,

Making development with JavaScript easier 67

you can call the Sys.Debug.trace method anywhere in the code, passing a string
with the message as an argument:

Sys.Debug.trace("I'm a debug message.");

You can also dump an object by passing it to the Sys.Debug.traceDump method.
An object dump displays all the properties of an object, together with their values,
and can be helpful during debugging. The following example logs to the console
the properties of the object returned by the getBounds method of the
Sys.UI.DomElement class:

Sys.Debug. traceDump (Sys.UI.DomElement .getBounds (document .body)) ;

Figure 2.9 shows the logged messages in the Firebug console of the Firefox
browser. If you prefer to see the messages directly on the page area rather than in
the JavaScript console, declare a textarea element with an ID of TraceConsole,
like so:

<textarea id="TraceConsole" rows="30" cols="50"></textareas

In this way, all messages passed to Sys.Debug. trace are displayed in the textarea
element.

If you consider the two main tasks performed by Ajax applications—updating
portions of the page layout and performing data access in the background—it’s
clear that a relevant part of the application logic consists of sending asynchronous
HTTP requests to the server. For this reason, there’s an increasing need for Ajax
developers to monitor what happens during data transfers and to inspect the con-
tent of the requests and responses sent during the life of a web page.

@ 2.46 Debugging - Mozl Firciox e e =[O i)
|| File Edit View History Bookmarks Tools Help 3

G- - @ L @O ntpvnocanostsisa | < [B [[Gl=[coogle [E]

-

Please open the browser's console. i
#" Inspect Clear Profile & 26

| Console | HTML S5 Script DOM Net Options ~
I'm a debug message
craceDump {Sys.UI.Bounds}

x: 0

¥: 0

height: 27

widch: 512

»>> [
Done (v]

Figure 2.9
Debug messages logged to the
) Firebug console in Firefox

68

CHAPTER 2
First steps with the Microsoft Ajax Library

For example, a response that never arrives may suggest that you have problems
related to server availability or to network latency. On the other hand, receiving a
response with a status code of 500 indicates that something went wrong on the
server. In chapter 5, we’ll develop techniques for detecting errors during HTTP
transactions; but in some cases you need to inspect the headers or the payload of
a request or a response.

HTTP debugging is provided by some of the tools recently available to Ajax
developers. Fiddler, Firebug for Firefox, and Web Development Helper for Inter-
net Explorer offer this kind of functionality. Figure 2.10 shows a request traced
using the Fiddler tool.

Web Development Helper was developed by a member of the ASPNET team and
provides specific functionality for inspecting the content of a response sent during
partial rendering. You’ll see this tool in action in chapter 7, where we’ll go under
the hood of the UpdatePanel control and the partial rendering mechanism.

Help

<<_| Performance Statstics Session Inspector | autoResponder | Request Bulder |
Host [URL = || Meaders | Textview | Forms | Hex Auth | Raw |

(Do 200 WP wee. fiddlertool.com ffiddler fupdatecheck, . ' . -

C] i google.com fmaljchannelbind7at Request Headers [Raw] [Header Definitions]
| i vy GET /HTTR/1.1

= Client -

B w o T mscoms

(O 00 HTTR . -

82 00 HTTR Piscon

83 00 HTTP REBCOMY - _utma=237414864. 1715050748, 1170697145, 1179489160, 1179596660, 101

|8 1+ 00 HTTP EscomnUn st =
%) s 00 HTTP ASComnUn 4] 3
' g ; _;0 g . N Responseis encoded and may need to be decoded before inspection. Double-dick here to transform.

1 20 T WO, e images sites msdn. g 1 i i
I@:s 200 HITP 5 ' ebResource.axd?d U | Headers™ | Textview | imageview | Hex | uth | Coching | Privacy | Raw |
@19 20 WP ajaw.asp.net [SoptRescurce.axd?| Jf] XML
:gzo 200 HITP ja,asp. aptescurce.and? || [TE————m—"y— [Raw] [Header Definitions]
21 20 HITP ja, 2 HTTP/1.1 200 OK

ffRzz w0 e R = Transport -
|g“ 20 HITP . L Transfer Encodng: dhurked -

[L ! & Cookies / Login
I!:]:ls 00 HITP . Cooki as. asp.net; expires=Tus, 22-May pathe=/
82 20 wre aax.s | cet-Cooke: . S o |
I8z 20 we ajax, & Cache L
Bz w0 . |- Cache-Controk: private
I [CEEI jarx, i v, 21 May 2007

Lﬂso 200 MR .. —Vary:

O jax. £ Entity

™32 200 HTTP ja. ~— Content-Type: text/himl; charset=utf-8
=) 2 200 HITP . — Content-Encoding: gzip

el 24 M0 TR o -|| & Miscellaneous |
] « m » - Server: Mirosoft-I15/6.0 -~
) . 3
[| 157 ajaxaspnet/ P
=

Figure 2.10 Fiddler is a free tool that lets you debug HTTP traffic.

2.4.7

Making development with JavaScript easier 69

Appendix B contains walkthroughs for configuring these tools and getting them up
and running in a few minutes.

We’ll end our discussion of debugging by returning to code. If debuggers do
their best to help developers spot errors, we should ask what we can do—as pro-
grammers—to make debugging code easier. A good practice is to always raise
meaningful and well-documented errors, as we’ll explain in the next section.

Typed errors

In the .NET framework, you can raise either built-in or custom errors by leverag-
ing the Exception class. For example, if you try to access an element beyond the
bounds of an array, an exception of type IndexOutOfBoundsException is thrown
at runtime. The purpose of this and the other typed exceptions is to carry infor-
mation about the errors that occur at runtime.

To work with and detect exceptions, a programming language usually provides
a special construct. For example, G# and VB.NET let you wrap a portion of code in
a try-catch block. The catch block detects exceptions that are raised in the code
encapsulated in the try block.

On the client side, JavaScript supports the try-catch construct and uses the
builtin Error object as the base type to provide information about errors that
occur at runtime. The Microsoft Ajax Library extends the Error object to make it
possible to create typed exceptions on the client side. For example, to signal that
a function lacks an implementation, you do the following:

function doSomething()
throw Error.notImplemented() ;
1

The notImplemented method throws a client exception that you can detect using a
try-catch block. In general, an error can be raised anywhere in the code using
the JavaScript throw keyword. To catch the error, you have to wrap the call to
doSomething with a try-catch block:

function pageLoad() {

try {
doSomething() ;
1

catch(e) {
alert (e.message) ;
Dump error object

Sys.Debug.traceDump (e) ; qgthOCOHSOh

70

CHAPTER 2
First steps with the Microsoft Ajax Library

Every Error object captured in a catch block has a message property that indi-
cates the nature of the error. Figure 2.11 shows the exception message displayed
with a call to the alert function. If you run the previous example with the
browser’s console opened, you can also see a dump of the Error object captured
in the catch block. Interestingly, the Error object also has a stack property that
returns a string with the stack trace.

Note that, in the message box in figure 2.11, the error raised by calling
Error.notImplemented () is reported as an exception of type Sys.NotImplement-
edException. The information about the exception type is stored as a string in
the name property of the Error object. As a consequence, you can use the string
returned by the name property to identify a particular exception in a catch block,
as in the following code:

try {
doSomething () ;
1

catch(e) {
if (e.name == "Sys.NotImplementedException") {
// Handle this particular exception.
1

NOTE To browse the list of exception types defined by the Microsoft Ajax
Library, consult the official documentation topic at http://ajax.asp.net/
docs/ClientReference/Global/JavascriptTypeExtensions/ErrorType-
Ext/default.aspx.

You can create custom exception types using the Error.create method. This
method accepts two arguments: a string with the name of the exception type that
the custom error represents, and a custom object whose properties are added to the
Error objectreturned by Error.create. As a general rule, the custom object should
contain at least a name property with the name of the exception type. Listing 2.9
shows an example of a custom error type created with the Microsoft Ajax Library.

-
Windows Internet Explorer g

l Sys.MotlmplementedException: The method or operation is not
| A implemented.

Figure 2.11
An exception message
J displayed using typed errors

Making development with JavaScript easier 71

<script type="text/javascript"s
<!l--

Error.myCustomError = Error.create('This is my custom exception

message. ',
{
name : 'Sys.MyCustomException',
additionalInfo : 'Additional information about the error.'
1 .
) Custom properties
attached to error object
function pageLoad() ({
try {

throw Error.myCustomError;

}

catch(e) { Dump error object
Sys.Debug. traceDump (e) ; to console
alert (e.name + '\r\n' + e.message + Format
'"\r\n' + e.additionallInfo) ; error info
1
1
//-->
</scripts>

This listing defines a Sys.MyCustomError exception by using the Error.create
method. The first argument passed to the method is the exception message. The
second argument is an object with two properties: name and additionalInfo. The
name property always contains a string with the exception type. The addition-
alInfo property is a custom property that should contain additional information
about the error. If you need to add more properties, you can do so by expanding
the object passed to the Error.create method.

The method returns a new function that you store in the Error.myCustomEx-
ception property. This function raises the client exception. You call it in the
pageLoad function, in the try block. In the catch block, you access the Error
object and display the exception message in a message box onscreen. You dump
the contents of the Error object in the browser’s console. Note that you're able to
access the additionallInfo property supplied in the custom object.

72

2.5

CHAPTER 2
First steps with the Microsoft Ajax Library

Summary

The Microsoft Ajax Library isn’t just a library for performing Ajax requests.
Instead, it provides a full featured framework for easily writing complex JavaScript
applications. In this chapter, we have given a high-level overview of the library’s
features and explained the Application model, together with the concepts of cli-
ent components and client page lifecycle.

One of the goals of the Microsoft Ajax Library is to make possible writing code
that runs without incompatibilities in all the supported browsers. We have
explored the compatibility layer, which is implemented with an abstraction API
that turns library calls into browser-specific calls. The abstraction API takes into
account DOM event handling, CSS, and positioning. Furthermore, the Microsoft
Ajax Library allows you to easily create callbacks and client delegates in order to
handle DOM events.

The Microsoft Ajax Library extends the built-in JavaScript objects to make
them more similar to their .NET counterparts. The String object now offers for-
matting capabilities, and arrays can be easily manipulated. Furthermore, the Date
and Number objects are enhanced to support globalization and localization. The
library also provides a set of objects to perform common tasks in JavaScript appli-
cations, from fast string concatenations to browser detection and support
for debugging.

In the next chapter, you will see how the Microsoft Ajax Library makes it easier
to program in JavaScript using object-oriented constructs such as classes, inter-
faces, and enumerations.

