
SAMPLE CHAPTER

Claus Ibsen

 Appendix E

Camel in Action

Jonathan Anstey

Copyright 2011 Manning Publications

vii

brief contents
PART 1 FIRST STEPS...1

1 ■ Meeting Camel 3
2 ■ Routing with Camel 22

PART 2 CORE CAMEL...59
3 ■ Transforming data with Camel 61
4 ■ Using beans with Camel 93
5 ■ Error handling 120
6 ■ Testing with Camel 154
7 ■ Understanding components 188
8 ■ Enterprise integration patterns 237

PART 3 OUT IN THE WILD...281
9 ■ Using transactions 283

10 ■ Concurrency and scalability 315
11 ■ Developing Camel projects 359
12 ■ Management and monitoring 385
13 ■ Running and deploying Camel 410
14 ■ Bean routing and remoting 443

487

appendix E
Akka and Camel

by Martin Krasser

Akka aims to be the platform for the next-generation, event-driven, scalable, and
fault-tolerant architectures on the JVM. One of the core features of Akka is an
implementation of the Actor model. It alleviates the developer from having to deal
with explicit locking and thread management. Using the Actor model raises the
abstraction level and provides a better platform for building correct concurrent
and scalable applications.

 Akka comes with a Camel integration module that allows Akka actors to interact
with communication partners over a great variety of protocols and APIs. This
appendix presents selected Akka-Camel integration features by example. In partic-
ular, it covers the following:

■ An introduction to Akka’s Actor API
■ Implementing consumer actors for receiving messages from Camel end-

points
■ Implementing producer actors for sending messages to Camel endpoints
■ Using and customizing Akka’s CamelService
■ Camel’s ActorComponent for exchanging messages with actors

We’ll also look at a complete routing example that combines many of the features
presented in this appendix.

 The examples only scratch the surface of what can be done with Akka. Inter-
ested readers may want to refer to the Akka online documentation for details
(http://akkasource.org). The Actor model is also discussed on Wikipedia: http://
en.wikipedia.org/wiki/Actor_model. The code examples in this appendix are avail-
able in the source code for the book, and they include a README file that explains
how to build and run them.

http://akkasource.org
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model

488 APPENDIX E Akka and Camel

 Akka offers both a Scala API and a Java API for actors. Here, only the Scala API will
be covered. We’ll assume that you already have a basic knowledge of the Scala pro-
gramming language.

E.1 Introducing the Akka-Camel integration
In the Actor model, each object is an actor; an actor is an entity that has a mailbox
and a behavior. Messages can be exchanged between actors, and they’ll be buffered in
the mailbox. Upon receiving a message, the behavior of the actor is executed. An
actor’s behavior can be any piece of code, such as code that changes internal state,
sends a number of messages to other actors, creates a number of actors, or assumes
new behavior for the next message to be received.

 An important property of the Actor model is that there’s no shared state between
actors; all communications happen by means of messages. Messages are exchanged
asynchronously, but Akka supports waiting for responses as well. Also, messages are
always processed sequentially by an actor. There’s no concurrent execution of a single
actor instance, but different actor instances can process their messages concurrently.

 Akka, itself, is written in Scala, so applications often use Akka’s Scala API for
exchanging messages with actors. But this is not always an option, especially in the
domain of application integration. Existing applications often can’t be modified to
use the Scala API directly, but can use file transfer on FTP servers or low-level TCP to
exchange messages with other applications. For existing applications to communicate
with actors, a separate integration layer is needed, and this is where Camel fits in:
Camel is designed around the messaging paradigm, and it supports asynchronous
message exchanges as well.

 For implementing an integration layer between Akka actors and third-party appli-
cations or components, Akka provides the akka-camel module (http://doc.akkasource.
org/camel). With the akka-camel module, it’s almost trivial to implement message
exchanges with actors over protocols and APIs such as HTTP, SOAP, TCP, FTP, SMTP,
JMS, and others. Actors can both consume messages from and produce messages for
Camel endpoints.

 Another important feature of the akka-camel module is that it fully supports
Camel’s asynchronous, nonblocking routing engine: asynchronous message
exchanges with actors can be extended to a number of additional protocols and APIs.
Furthermore, all Camel components are supported in a generic way: whenever a new
Camel component is released by the Camel community, it can readily be used to
exchange messages with Akka actors.

 The following section gives a brief introduction to Akka’s Actor API and shows how
to create actors and exchange messages with them.

E.2 Getting started with Akka actors
Let’s start with a simple example: an actor that prints any message it receives to std-
out. When it receives a special stop message, the actor stops itself.

http://doc.akkasource.org/camel
http://doc.akkasource.org/camel

489Getting started with Akka actors

 An actor implementation class must extend the Actor trait and implement the
receive partial function. Incoming messages are matched against the case patterns
defined in receive.

import akka.actor.Actor

class SimpleActor extends Actor {
 protected def receive = {
 case "stop" => self.stop
 case msg => println("message = %s" format msg)
 }
}

If one of the patterns matches, the statement after => is executed. Akka’s Actor API
doesn’t impose any constraints on the message type and format—any Scala object can
be sent to an actor.

 Before sending a message to the preceding actor, clients need to create and start
an instance of SimpleActor. This is done with the actorOf factory method, which
returns an actor reference, and by calling the start method on that reference. This
can be done as follows, where the client creates the actor and sends two messages to it:

import akka.actor.Actor._

val simpleActor = actorOf[SimpleActor].start

simpleActor ! "hello akka"
simpleActor ! "stop"

The actor reference, once it’s created, is also used for sending messages to the actor.
With the ! (bang) operator, clients send messages with fire-and-forget semantics. The
! operator adds the message to the actor’s mailbox, and the actor processes the mes-
sage asynchronously. The preceding example first sends a "hello akka" string that
matches the second pattern in the receive method. The message is therefore
written to stdout. The "stop" message sent afterwards is matched by the first pat-
tern, which stops the actor. Note that sending a message to a stopped actor throws
an exception.

 To run the example from the appendixE directory, enter sbt run on the com-
mand line and select camelinaction.SectionE2 from the list of main classes.

NOTE The source code for this book contains a README file in the appen-
dixE directory that explains how to install and set up the Simple Build Tool
(sbt). All the examples in this appendix can be run by executing sbt run
from the command line. This command displays a menu, from which you can
choose the example to run by its number.

The preceding example only uses a small part of Akka’s Actor API. It demonstrates
how clients can send messages to actors and how actors can match and process these
messages. The next step is to add an additional interface to the actor so that it can
receive messages via a Camel endpoint.

490 APPENDIX E Akka and Camel

E.3 Consuming messages from Camel endpoints
If you want to make actors accessible via Camel endpoints, actor classes need to mixin
the Consumer trait and implement the endpointUri method. Consumer actors can be
used for both one-way and request-response messaging.

E.3.1 One-way messaging

The following listing extends the example from the previous section and enables the
actor to receive messages from a SEDA endpoint.

import akka.actor.Actor
import akka.camel.{Consumer, Message}

class SedaConsumer extends Actor with Consumer {
 def endpointUri = "seda:example"

 protected def receive = {
 case Message("stop", headers) => self.stop
 case Message(body, headers) => println("message = %s" format body)
 }
}

The endpointUri method is implemented to return a SEDA endpoint URI. This causes
the actor to consume messages from the seda:example queue once it is started. One
important difference, compared to SimpleActor, is that the received messages are of
type Message, which are immutable representations of Camel messages. A Message
object can be used for pattern matching, and the message body and headers can be
bound to variables, as shown in listing E.1.

 For any consumer actor to receive messages, an application needs to start a
CamelService before starting a consumer actor:

import akka.actor.Actor._
import akka.camel._

val service = CamelServiceManager.startCamelService

service.awaitEndpointActivation(1) {
 actorOf[SedaConsumer].start
}

for (template <- CamelContextManager.template) {
 template.sendBody("seda:example", "hello akka-camel")
 template.sendBody("seda:example", "stop")
}

service.stop

A CamelService can be started with CamelServiceManager.startCamelService. The
started CamelService instance is returned from the startCamelService method call.

 When a consumer actor is started, the CamelService is notified and it will create
and start (activate) a route from the specified endpoint to the actor. This is done

Listing E.1 Actor as consumer receiving messages from a SEDA endpoint

491Consuming messages from Camel endpoints

asynchronously, so if an application wants to wait for a certain number of endpoints
to be activated, it can do so with the awaitEndpointActivation method. This
method blocks until the expected number of endpoints have been activated in the
block that follows that method.

 The application is then ready to produce messages to the seda:example queue. A
Camel ProducerTemplate for sending messages can be obtained via CamelContext-
Manager.template.

 This returns an instance of Option[ProducerTemplate] that can be used with a
for comprehension. If the CamelService has been started, the body of the for com-
prehension will be executed once with the current ProducerTemplate bound to the
template variable. If the CamelService hasn’t been started, the for body won’t be
executed at all.

 Alternatively, applications may also use CamelContextManager.mandatory-

Template which returns the ProducerTemplate directly or throws an IllegalState-
Exception if the CamelService hasn’t been started.

 The application first sends a message that will be printed to stdout, and then it
sends a special stop message that stops the actor. Alternatively, clients can also send
Message objects directly via the native Actor API:

actor ! Message("hello akka-camel")

Finally, the application gracefully shuts down the CamelService.
 SedaConsumer is an actor that doesn’t reply to the initial sender. Request-response

message exchanges require a minor addition, as shown in the next section for a con-
sumer actor with a Jetty endpoint.

E.3.2 Request-response messaging

Listing E.2 shows how an actor can reply to the initial sender using the self.reply
method. In this example, the initial sender is an HTTP client that communicates with
the actor over a Jetty endpoint.

class HttpConsumer1 extends Actor with Consumer {
 def endpointUri = "jetty:http://0.0.0.0:8811/consumer1"

 protected def receive = {
 case msg: Message => self.reply("received %s"
 format msg.bodyAs[String])
 }
}

NOTE Valid initial senders can either be other actors or Camel routes to
that actor. This is an implementation detail: for the receiving actor, both
initial sender types appear to be actor references.

When POSTing a message to http://localhost:8811/consumer1, the actor converts the
received message body to a String and prepends "received " to it. The result is

Listing E.2 Actor acting as consumer which sends back replies to sender

492 APPENDIX E Akka and Camel

returned to the HTTP client with the self.reply method. The self object is the self-
reference to the current actor.

 The reply message is a plain String that’s internally converted to a Camel Message
before returning it to the Jetty endpoint. If applications additionally want to add or
modify response headers, they can do so by returning a Message object containing the
response body and headers. The next example creates an XML response and sets the
Content-Type header to application/xml.

class HttpConsumer2 extends Actor with Consumer {
 def endpointUri = "jetty:http://0.0.0.0:8811/consumer2"

 protected def receive = {
 case msg: Message => {
 val body = "<received>%s</received>" format msg.bodyAs[String]
 val headers = Map("Content-Type" -> "application/xml")
 self.reply(Message(body, headers))
 }
 }
}

Consumer actors wait for their clients to initiate message exchanges. If actors them-
selves want to initiate a message exchange with a Camel endpoint, a different
approach must be taken.

E.4 Producing messages to Camel endpoints
For producing messages to Camel endpoints, actors have two options. They can either
use a Camel ProducerTemplate directly or mixin the Producer trait in the actor
implementation class. This section will cover the use of the Producer trait. The use of
the Camel ProducerTemplate is explained in appendix C.

 The advantage of using the Producer trait is that actors fully leverage Camel’s asyn-
chronous routing engine. To produce messages to a Camel endpoint, an actor must
implement the endpointUri method from the Producer trait, as follows.

import akka.actor.Actor
import akka.camel.Producer

class HttpProducer1 extends Actor with Producer {
 def endpointUri = "http://localhost:8811/consumer2"
}

In this example, any message sent to an instance of HttpProducer1 will be POSTed to
http://localhost:8811/consumer2, which is the endpoint of the consumer actor in
listing E.3 (these two actors are communicating over HTTP).

 In the following code example, an application sends a message to the producer
actor with the !! (bangbang) operator, which means it sends and receives eventually:

Listing E.3 An actor sending back XML messages as reply to sender

Listing E.4 An actor as a producer sending messages to the defined HTTP endpoint

493Producing messages to Camel endpoints

the message is sent to the actor asynchronously, but the caller also waits for a
response.

import akka.actor.Actor._
import akka.camel.{Failure, Message}

val httpProducer1 = actorOf[HttpProducer1].start

httpProducer1 !! "Camel rocks" match {
 case Some(m: Message) => println("response = %s" format m.bodyAs[String])
 case Some(f: Failure) => println("failure = %s" format f.cause.getMessage)
 case None => println("timeout")
}

The return type of !! is Option[Any]. For a producer actor at runtime, the type can
be one of the following:

■ Some(Message) for a normal response
■ Some(Failure) if the message exchange with the endpoint failed
■ None if waiting for a response timed out

The timeout for a response is defined by the timeout attribute on the actor refer-
ence (ActorRef.timeout). The default value is 5000 (ms) and it can be changed by
applications.

 As you’ve probably realized, HttpProducer1 doesn’t implement a receive
method. This is because the Producer trait provides a default receive implementa-
tion that’s inherited by HttpProducer1. The default behavior of Producer.receive is
to send messages to the specified endpoint and to return the result to the initial
sender. In the preceding example, the initial sender obtains the result from the !!
method call.

 Actor classes can override the Producer.receiveAfterProduce method to, for
example, forward the result to another actor, instead of returning it to the original
sender. In this case, the original sender should use the ! operator for sending the
message; otherwise it will wait for a response until timeout. In the following exam-
ple, the producer actor simply writes the result to stdout instead of returning it to
the sender.

class HttpProducer2 extends Actor with Producer {
 def endpointUri = "http://localhost:8811/consumer3"

 override protected def receiveAfterProduce = {
 case m: Message => println("response = %s" format m.bodyAs[String])
 case f: Failure => println("failure = %s" format f.cause.getMessage)
 }
}

A producer actor by default initiates in-out message exchanges with the specified end-
point. For initiating in-only message exchanges, producer implementations must
either override the Producer.oneway method to return true or mixin the Oneway
trait. The following code shows the latter approach by mixin the Oneway trait:

494 APPENDIX E Akka and Camel

import akka.actor.Actor
import akka.camel.{Oneway, Producer}

class JmsProducer extends Actor with Producer with Oneway {
 def endpointUri = "jms:queue:test"
}

For producer and consumer actors to work with Camel, applications need to start the
CamelService, which sets up the CamelContext for an application. The next section
shows some examples of how applications can customize the process of setting up a
CamelContext.

E.5 Customizing CamelService
When started, a CamelService creates a default CamelContext and makes it accessible
via the CamelContextManager singleton. Applications can access the current Camel-
Context within a for (context <- CamelContextManager.context) { … } compre-
hension and make any modifications they want. Alternatively, a CamelContext can also
be obtained directly via CamelContextManager.mandatoryContext. This will throw
an IllegalStateException if the CamelService hasn’t been started.

 But modifying a CamelContext after it’s been started isn’t always an option. For
example, applications may want to use their own CamelContext implementations or to
make some modifications before the CamelContext is started. This can be achieved
either programmatically or declaratively, as explained in the following subsections.

E.5.1 Programmatic customization

If an application wants to disable JMX, for example, it should do so before the Camel-
Context is started. This can be achieved by manually initializing the CamelContext-
Manager and calling disableJMX on the created CamelContext:

import akka.camel._

CamelContextManager.init
CamelContextManager.context.disableJMX

CamelServiceManager.startCamelService

By default, the CamelContextManager.init method creates a DefaultCamelContext
instance, but applications may also pass any other CamelContext instance as an argu-
ment to the init method:

import akka.camel._

val camelContext: CamelContext = ...

CamelContextManager.init(camelContext)
CamelContextManager.context.disableJMX

CamelServiceManager.startCamelService

When the CamelService is started, it will also start the user-defined CamelContext.

495Customizing CamelService

E.5.2 Declarative customization

Alternatively, a CamelService can be created and configured within a Spring applica-
tion context. The following Spring XML configuration uses the Akka and Camel XML
namespaces to set up a CamelService and a CamelContext respectively. The custom
CamelContext is injected into the CamelService.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:akka="http://www.akkasource.org/schema/akka"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.akkasource.org/schema/akka
http://scalablesolutions.se/akka/akka-1.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camel:camelContext id="camelContext">

 </camel:camelContext>

 <akka:camel-service id="camelService">
 <akka:camel-context ref="camelContext" />
 </akka:camel-service>

</beans>

After creating an application context from the XML configuration, a CamelService B
runs and listens for consumer actors to be started. If an application wants to interact
with the CamelService directly, it can obtain the running CamelService instance
either via CamelServiceManager.service, CamelServiceManager.mandatoryService,
or directly from the Spring application context.

 The following code shows how you can use the former approach for obtaining the
CamelService from the CamelServiceMananger:

import org.springframework.context.support.ClassPathXmlApplicationContext
import akka.actor.Actor._
import akka.camel._

val appctx = new ClassPathXmlApplicationContext("/sample.xml")
val camelService = CamelServiceManager.mandatoryService

appctx.destroy

When the application context (appctx) is destroyed, the CamelService and the
CamelContext are shut down as well.

 In all the examples so far, routes to actors have been automatically created by the
CamelService. Whenever a consumer actor has been started, this was detected by the
CamelService and a route from the actor’s endpoint to the actor itself was added to

Listing E.5 Spring XML file setting up Akka and Camel

Camel routes
go here

Akka
CamelService

B

Do something
with CamelService

496 APPENDIX E Akka and Camel

the current CamelContext. Alternatively, applications can also define custom routes to
actors by using Akka’s ActorComponent.

E.6 The Actor component
Accessing an actor from a Camel route is done with the Actor component, a Camel
component for producing messages to actors. For example, when starting Seda-
Consumer from listing E.1, the CamelService adds the following (simplified) route to
the CamelContext:

from("seda:example").to("actor:uuid:<actoruuid>")

The route starts from seda:example and goes to the started SedaConsumer instance,
where <actoruuid> is the consumer actor’s UUID. An actor’s UUID can be obtained
from its reference. Endpoint URIs starting with the actor scheme are used to produce
messages to actors.

 The Actor component isn’t only intended for internal use but can also be used by
user-defined Camel routes to access any actor; in this case, the target actor doesn’t
need to implement the Consumer trait. The Actor component also supports Camel’s
asynchronous routing engine and allows asynchronous in-only and in-out message
exchanges with actors.

 Listing E.6 shows an example: a user-defined Camel route that sends a message to
an instance of HttpProducer1 (the producer actor from listing E.4). This producer
actor sends a message to http://localhost:8811/consumer2. If the communication
with the HTTP service succeeds, the producer actor returns a Message object contain-
ing the service response or a Failure object with the cause of the failure. If the pro-
ducer can’t connect to the service, for example, the failure cause will be a
ConnectException. This exception can be handled in the route. Other exceptions are
possible, but they aren’t included here, to keep the example simple.

import java.net.ConnectException
import org.apache.camel.builder.RouteBuilder
import akka.actor.Actor._
import akka.actor.Uuid
import akka.camel._

class CustomRoute(uuid: Uuid) extends RouteBuilder {
 def configure = {
 from("direct:test")
 .onException(classOf[ConnectException])
 .handled(true).transform.constant("feel bad").end
 .to("actor:uuid:%s" format uuid)
 }
}

val producer = actorOf[HttpProducer1].start

CamelServiceManager.startCamelService

Listing E.6 Camel route sending message to Akka actor

Camel route
sending to actor

497A routing example

for (context <- CamelContextManager.context;
 template <- CamelContextManager.template) {
 context.addRoutes(new CustomRoute(producer.uuid))
 template.requestBody("direct:test", "feel good", classOf[String]) match {
 case "<received>feel good</received>" => println("communication ok")
 case "feel bad" => println("communication failed")
 case _ => println("unexpected response")
 }
}

After starting the target actor and a CamelService, the application adds the user-
defined route to the current CamelContext. It then uses a ProducerTemplate to initi-
ate an in-out exchange with the route and tries to match the response, where the
response either comes from the HTTP service or from the error handler.

 We’ll now move on to a more advanced example that applies many of the features
described so far. It combines different actor types to a simple integration solution for
transforming the content of a web page.

E.7 A routing example
Camel applications usually define message-processing routes with the Camel DSL.
Akka applications can alternatively define networks of interconnected actors, in com-
bination with consumer and producer actors, to set up message-processing routes.

 This section shows a simple example of how to set up a message-processing route
with actors. The goal of this example is to display the Akka homepage (http://akka-
source.org) in a browser, with occurrences of Akka in the page content replaced with
an uppercase AKKA. The example combines a consumer and a producer actor with
another actor that transforms the content of the homepage.

 The setup of the example application is sketched in figure E.1; the corresponding
code is shown in listing E.7.

Figure E.1 The setup of the example application. A consumer and a producer actor provide connectivity
to external systems. The consumer actor receives requests from a browser and forwards them to a
producer actor, which fetches the HTML page. The HTML page is then forwarded to an actor that
transforms the content of the page and returns the transformation result to the initial sender, so that it
can be displayed in the browser.

http://akkasource.org
http://akkasource.org

498 APPENDIX E Akka and Camel

import org.apache.camel.Exchange
import akka.actor.Actor._
import akka.actor.{Actor, ActorRef}
import akka.camel._

class HttpConsumer(producer: ActorRef) extends Actor with Consumer {
 def endpointUri = "jetty:http://0.0.0.0:8875/"
 protected def receive = {
 case msg => producer forward msg
 }
}

class HttpProducer(transformer: ActorRef) extends Actor with Producer {
 def endpointUri = "jetty:http://akkasource.org/?bridgeEndpoint=true"

 override protected def receiveBeforeProduce = {
 case msg: Message =>
 msg.setHeaders(msg.headers(Set(Exchange.HTTP_PATH)))
 }

 override protected def receiveAfterProduce = {
 case msg => transformer forward msg
 }
}

class HttpTransformer extends Actor {
 protected def receive = {
 case msg: Failure => self.reply(msg)
 case msg: Message => self.reply(msg.transformBody[String] {
 _ replaceAll ("Akka ", "AKKA ")
 })
 }
}

CamelServiceManager.startCamelService

val httpTransformer = actorOf(new HttpTransformer).start
val httpProducer = actorOf(new HttpProducer(httpTransformer)).start
val httpConsumer = actorOf(new HttpConsumer(httpProducer)).start

HttpConsumer is an actor that accepts HTTP GET requests on port 8875 and is config-
ured to forward requests to an instance of HttpProducer. When an actor forwards a
message to another actor, it forwards the initial sender reference as well. This refer-
ence is needed later for returning the result to the initial sender.

 A forwarded message causes the HttpProducer to send a GET request to http://
akkasource.org. Before doing so, it drops all headers B from the request message,
except for the HTTP_PATH header, which is needed by the bridge endpoint. This pre-
processing is done in the producer’s receiveBeforeProduce method. The received
HTML content from http://akkasource.org is then forwarded C to an instance of
HttpTransformer.

 The HttpTransformer D is an actor that replaces all occurrences of Akka in the
message body with an uppercase AKKA and returns the result to the initial sender. The
reference to the initial sender has been forwarded by the producer actor C.

Listing E.7 Akka consumer and producer example

Drops message
headers except
HTTP_PATH

B

Forwards message
to transformer

C

Transforms
the message

D

http://akkasource.org
http://akkasource.org
http://akkasource.org

499Summary

 After starting the CamelService, the actors are wired and started.
 To run the example from the appendixE directory, enter sbt run on the com-

mand line, and select camelinaction.SectionE7 from the list of main classes. Access
http://localhost:8875 from a browser, and a transformed version of the Akka home-
page should be displayed.

 Finally, it should be noted that the actors and the Jetty endpoints in this example
exchange messages asynchronously; no single thread is allocated or blocked for the full
duration of an in-out message exchange. Although it’s not critical for this example,
exchanging messages asynchronously can help to save server resources, especially in
applications with long-running request-response cycles and frequent client requests.

E.8 Summary
This appendix shows you how to exchange messages with Akka actors over protocols
and APIs supported by the great variety of Camel components. You saw how consumer
actors can receive messages from Camel endpoints and producer actors can send mes-
sages to Camel endpoints. Setting up a Camel endpoint for an actor is as easy as defin-
ing an endpoint URI for that actor.

 The prerequisite for running consumer and producer actors is a started Camel-
Service that manages an application’s CamelContext. Applications can configure the
CamelService either programmatically or declaratively based on custom Spring XML
schemas provided by Akka and Camel.

 You also saw how to use Akka’s Actor component to access any actor from a user-
defined Camel route. Actor endpoints are implemented by defining an actor end-
point URI in the route. A routing example finally demonstrated how to combine con-
sumer and producer actors to develop a simple integration solution for transforming
the content of a web page.

 The features described in this appendix are those of Akka version 1.0. If you want
to keep track of the latest development activities, get in touch with the Akka commu-
nity via the Akka User List (http://groups.google.com/group/akka-user) and the
Akka Developer List (http://groups.google.com/group/akka-dev). Your feedback is
highly welcome.

http://groups.google.com/group/akka-user
http://groups.google.com/group/akka-dev

