
M A N N I N G

Timothy Binkley-Jones
Massimo Perga
Michael Sync

IN ACTION

S A M P L E C H A P T E R

Windows Phone 7 in Action

by Timothy Binkley-Jones
Massimo Perga
Michael Sync

 Chapter 2

 Copyright 2013 Manning Publications

v

brief contents
PART 1 INTRODUCING WINDOWS PHONE...................................1

1 ■ A new phone, a new operating system 3

2 ■ Creating your first Windows Phone application 29

PART 2 CORE WINDOWS PHONE..55
3 ■ Fast application switching and scheduled actions 57

4 ■ Launching tasks and choosers 93

5 ■ Storing data 121

6 ■ Working with the camera 149

7 ■ Integrating with the Pictures and Music +
Videos Hubs 171

8 ■ Using sensors 199

9 ■ Network communication with push notifications
and sockets 227

PART 3 SILVERLIGHT FOR WINDOWS PHONE..........................257
10 ■ ApplicationBar, Panorama, and Pivot controls 259

11 ■ Building Windows Phone UI with
Silverlight controls 284

BRIEF CONTENTSvi

12 ■ Manipulating and creating media
with MediaElement 310

13 ■ Using Bing Maps and the browser 341

PART 4 SILVERLIGHT AND THE XNA FRAMEWORK369
14 ■ Integrating Silverlight with XNA 371

15 ■ XNA input handling 399

29

Creating your first
Windows Phone application

Now that you have the necessary background on the Windows Phone platform and
the Windows Phone Developer Tools, it’s time to get down to business and start
programming. You’ll start by building a Hello World project. For developers expe-
rienced with Visual Studio, simple Hello World projects may seem unduly remedial.
Windows Phone projects have several unique settings and features that you need to
understand to build proper applications and games. The Hello World project in
this chapter is designed to highlight these aspects of Windows Phone development.

 You’ll build a Hello World Silverlight application and explore a few of the
phone-specific extensions to Silverlight. Silverlight applications have several project
properties unique to Windows Phone. Two of these properties define the icons
used in the phone’s start screen and Applications List. Other properties deter-
mine the titles shown next to the start and application list icons. You’ll learn how
to use the Visual Studio project templates to generate a new application and how to

This chapter covers
■ Creating your first Silverlight application
■ Handling touch events
■ Navigating between pages
■ Trial licensing

30 CHAPTER 2 Creating your first Windows Phone application

use the item templates to generate a new page for your application. You’ll also learn
how to deploy the application to the emulator or a physical device and use the debug-
ger to step through code.

TIP If you’re new to Silverlight development, read the primers for Expres-
sion Blend and Silverlight in the appendices.

In most ways, building a Silverlight application for the phone is the same as building
one for the browser or the desktop, but there are some minor differences. You’ll see
some of the differences as you build your application. The Hello World application
that you’ll create is shown in figure 2.1.

 The application displays a title, draws a globe, and prompts the user to enter their
name. When the user presses the toolbar button, the application navigates to a greet-
ing page. You’ll start building your application by creating a new Silverlight project.

2.1 Generating the project
To start the Hello World application, you’ll use the Windows Phone Application proj-
ect template in Visual Studio. The Windows Phone Application project template is just
one of the several Silverlight project templates that are installed with Visual Studio.
Table 2.1 lists the available project templates.

 You’ll get started by opening Visual Studio and creating a new project. Figure 2.2
shows the new project dialog for the Hello World Silverlight application. Name the
project SilverlightHello.

Figure 2.1 The Silverlight
Hello World application

31Generating the project

Table 2.1 Windows Phone project templates

Project template Description

Windows Phone Application A basic application skeleton with a single page.

Windows Phone Databound
Application

An application demonstrating page navigation, databound list con-
trols, and the MVVM pattern.

Windows Phone Class Library A simple library for creating reusable components.

Windows Phone Panorama
Application

An application demonstrating a databound Panorama control and
the MVVM pattern. The Panorama control is covered in chapter 10.

Windows Phone Pivot
Application

An application demonstrating a databound Pivot control and the
MVVM pattern. The Pivot control is covered in chapter 10.

Windows Phone Silverlight
and XNA Application

An application that mixes Silverlight and XNA Framework graphics. You’ll
build an application that uses both Silverlight and XNA in chapter 14.

Windows Phone Audio Playback
Agent

A library containing an application’s background audio logic. Audio
Playback Agents are covered in chapter 7.

Windows Phone Audio
Streaming Agent

A library containing an application’s background streaming
audio logic.

Windows Phone Scheduled
Task Agent

A library containing an application’s background processing logic.
Scheduled Tasks Agents are covered in chapter 3.

Each of the project templates listed here are available for both C# and Visual Basic projects.

Figure 2.2 Visual Studio’s New Project dialog box

32 CHAPTER 2 Creating your first Windows Phone application

Once you click OK, you’ll be prompted with a dialog ask-
ing you to pick the target operating system version. This
dialog can be confusing because it lists the Windows
Phone SDK versions and not the operating system ver-
sions. If you’re building an application that makes use of
the new features in the Windows Phone 7.5 operating sys-
tem, choose Windows Phone OS 7.1 from the drop-down.
After you click the OK button, a new Visual Studio solu-
tion and project are created. The IDE opens Main-
Page.xaml in the editor, and you’re ready to begin.
Before you start work, let’s take a look at what Visual Stu-
dio created. Figure 2.3 shows the new project in the
Solution Explorer.

 The project structure mirrors that of a regular Silver-
light project with Properties and References folders, App
.xaml, MainPage.xaml, AppManifest.xml, and Assembly-
Info.cs. Along with the references to the Microsoft
.Phone assemblies, a few additional files are present:

■ WMAppManifest.xml
■ ApplicationIcon.png
■ Background.png
■ SplashScreenImage.jpg

The PNG image files are used by the operating system when displaying the application
in the Start Experience, Application List, or Games Hub, and the splash image is
shown when the Silverlight application starts up. We’ll look at the image files in more
depth later in the chapter.

NOTE Background.png is used as the background for the start experience
tile. It’s not intended to be the default background of the application.

WMAppMainfest.xml contains metadata for the application, providing important
details about the application to the operating system. Information in WMAppManifest
.xml is also used by the Application Marketplace to validate and list an application.
Visual Studio adds the WMAppManifest file to the .xap file deployment package when
it builds an application. The final WMAppManifest.xml file that appears in the pack-
age downloaded to a user’s phone will not necessarily contain the same information
the developer specified when they built the application before submitting it to the
Marketplace. During the marketplace certification, the application is examined and
its manifest file is updated. A product identifier is added, the hub type or genre is set,
and the security capabilities are confirmed.

 Many of the settings in WMAppManifest.xml are set via the project property pages.
Open the WMAppManifest.xml file and look for the App element, specifically the
Genre attribute:

Figure 2.3 Files in the Solution
Explorer

33Generating the project

<App xmlns="" ProductID="{65438a9e-0537-451f-aaec-6ff25ca0bf85}"
 Title="Hello World" RuntimeType="Silverlight" Version="1.0.0.0"
 Genre="Apps.Normal" Author="" Description="" Publisher="">

The Genre attribute declares whether the application appears in the Application List
or the Games Hub. When developing and testing on the emulator, you should leave
the genre set to Apps.Normal since the Games Hub isn’t present on the emulator. If
you want to test integration with the Games Hub on a real device, you can change the
setting to Apps.Games.

 Your new Hello World project is ready to be built and deployed to the emulator or a
phone. Visual Studio’s Debugger is used to debug running Windows Phone applications.

2.1.1 Debugging phone projects

Once you’ve built a project, you’ll be able to
debug it both in the emulator and on a real
device. Before starting a debug session,
you’ll want to confirm the appropriate tar-
get is selected in the target deployment
device combo box. In figure 2.4, you can see
that Windows Phone Emulator is the target device, and the application will be
launched in the emulator.

 The first time you launch an application in the emulator, it’ll take some time to
boot and initialize the emulator prior to starting the application. You can also start
the emulator ahead of time from the Windows Phone SDK folder in the Start Menu.
Once the application has been launched, you’ll be able to debug and interact with it
in the emulator. The Windows Phone emulator can be kept running between debug-
ging sessions.

TIP An application can detect whether it’s running in the emulator by
checking the value of the Microsoft.Devices.Environment.DeviceType
static property. If the value is DeviceType.Emulator, the application is run-
ning in the emulator.

Prior to launching an application on a real device, the phone must be plugged into
the USB port and connected to your computer. The phone is considered connected
when the Zune software is running. If you don’t want to keep the Zune software run-
ning, you can connect the phone with the WPConnect tool. Before you can deploy and
debug an application on a real phone, you must register your phone with the Devel-
oper Registration Tool. The WPConnect and Developer Registration tools were intro-
duced in chapter 1.

 When the application is being debugged, it’ll automatically stop on the break-
points you have set in the source code. You can add or remove breakpoints during
the execution just like you would in any other desktop or Silverlight project. Finally,
when you’re done, you can stop debugging in the IDE or press the Back button on
the device.

Figure 2.4 Target Deployment Device selector

34 CHAPTER 2 Creating your first Windows Phone application

 Visual Studio allows you to install or deploy the project on the device without
starting a debugging session. You can do this by right-clicking on the project name
in the Solution Explorer and selecting the Deploy option from the menu. The appli-
cation will be copied to the device, and can be launched from the Applications List
on the phone. When the application is launched, Silverlight for Windows Phone
adds a few custom steps to the startup process that aren’t found in Silverlight for the
browser applications.

2.1.2 Application startup

Like any other Silverlight application, the entry point is a System.Windows.Application-
derived class found in App.xaml. All phone applications are Silverlight Navigation
Applications. In your phone application, the App class creates an instance of Phone-
ApplicationFrame, which is used as the RootVisual. Behind the scenes, the applica-
tion host calls the NavigationService directly to navigate to MainPage.xaml during
initial launch. When an application is reactivated, the application host navigates
directly to the active page’s XAML—see chapter 3 for more details on application
launching and activation.

 All this magic navigation is well and good; the application starts and MainPage is
automatically loaded. What happens when you decide to rename MainPage.xaml?
Since the XAML filename doesn’t have to match the name of the C# class that it
contains, changing the name of MainPage is a two-step process. Fortunately, Visual
Studio’s refactoring features make this a simple operation. In the Solution
Explorer, right-click MainPage.xaml, choose Rename, and change the filename to
HelloPage.xaml. Next, open MainPage.xaml.cs, select the MainPage text in the class
definition, and choose Rename from the Refactor menu, specifying HelloPage as
the new name.

 When you debug the application now, the App.RootFrame_NavigationFailed
event handler is called. Figure 2.5 shows the NavigationFailedEventArgs properties
sent to the event handler.

 Even though you renamed MainPage.xaml, the application is still configured to
use MainPage.xaml as the startup URI. The startup URI is declared in the WMApp-
Manifest.xml file as the NavigationPage attribute of the Task named “_default”.
Though a number of the WMAppManifest.xml settings can be set using the project
property editor, the default task URI must be specified by directly editing the XML

Figure 2.5 NavigationFailedEventArgs properties after renaming
MainPage.xaml

35Implementing Hello World

file. Open WMAppManifest.xml, update the URI attribute, and then save and run
the application:

<Tasks>
 <DefaultTask Name="_default"
 NavigationPage="HelloPage.xaml"/>
</Tasks>

In this section you created a new Windows Phone Application project and examined
the files created by the project template. You learned that a PhoneApplicationFrame
is the root visual for the application and that the Silverlight runtime uses the naviga-
tion framework to load the startup page. Now that the application is running, and
you’ve customized the name of the startup page, you’ll customize the page contents.

2.2 Implementing Hello World
The project template created a default main page for your application, which you just
renamed to HelloPage.xaml. In this section you’re going to add a second page to the
application that will display a greeting message. The second will employ a pair of
TextBlock controls as well as a RichTextBox. You’re also going to customize Hello-
Page by drawing a globe, as well as asking the user to input their name. First we’ll take
a closer look at the page created for you by the project template.

2.2.1 Customizing the startup page

The Windows Phone Application project template created the startup page with sev-
eral elements meant to match the page design to the Metro style described in Micro-
soft’s User Experience Design Guidelines for Windows Phone. The design guide, found on
MSDN, details the expected look and feel of phone applications. The following listing
shows the XAML markup added by the project template for HelloPage’s content.

<Grid x:Name="LayoutRoot"
 Background="Transparent">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->
 <StackPanel x:Name="TitlePanel"
 Grid.Row="0"
 Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle"
 Text="MY APPLICATION"
 Style="{StaticResource PhoneTextNormalStyle}" />
 <TextBlock x:Name="PageTitle"
 Text="page name"
 Margin="9,-7,0,0"
 Style="{StaticResource PhoneTextTitle1Style}" />
 </StackPanel>

Listing 2.1 HelloPage’s content as created by the project template

LayoutRoot Grid
control with two rows

 b

TitlePanel with
two TextBlocks

 c

36 CHAPTER 2 Creating your first Windows Phone application

 <!--ContentPanel - place additional content here-->
 <Grid x:Name="ContentPanel"
 Grid.Row="1"
 Margin=”12,0,12,0”>
 </Grid>
</Grid>

The page’s root layout panel is a grid con-
trol that has been split into two rows B.
The first row contains TitlePanel c, which
stacks two TextBlock controls for the appli-
cation and page titles. The remainder of the
page is allocated to the ContentPanel d.
Figure 2.6 shows HelloPage.xaml as created
by the project template.

 Application and page titles aren’t
required by the design guidelines or mar-
ketplace specification but there are several
rules that should be followed when they’re
used. The application title should be the name of the application, and should be all
uppercase characters. The page title should be all lowercase characters and should
describe the data or features displayed in the page. The titles shouldn’t scroll or wrap;
when the title doesn’t fit on the screen, the text should appear truncated. If the title
panel appears on the main page, it should appear on all pages to provide the user with
a consistent experience.

 In HelloPage.xaml, update the application title to “WINDOWS PHONE 7 IN ACTION”
and the page title to “hello world”:

<TextBlock x:Name="ApplicationTitle"
 Text="WINDOWS PHONE 7 IN ACTION"
 Style="{StaticResource PhoneTextNormalStyle}" />
<TextBlock x:Name="PageTitle"
 Text="hello world"
 Margin="9,-7,0,0"
 Style="{StaticResource PhoneTextTitle1Style}" />

The title TextBlock controls each have their Style properties set to a static resource.
The style resources used here won’t be found anywhere in your project. They are styles
injected into your application by the Silverlight framework so that your application can
adhere to the user interface theme chosen by the user. Theme resources are covered in
more depth in chapter 11. Theme resources are also used in the root PhoneApplication-
Page tag to set the font and foreground color properties for the page:

FontFamily="{StaticResource PhoneFontFamilyNormal}"
FontSize="{StaticResource PhoneFontSizeNormal}"
Foreground="{StaticResource PhoneForegroundBrush}"

PhoneApplicationPage also has a couple of orientation properties—Orientation

and SupportedOrientations. The orientation property specifies whether the current

ContentPanel for
all other markup

 d

Figure 2.6 HelloPage.xaml’s TitlePanel in the
Visual Studio Designer

37Implementing Hello World

orientation is portrait or landscape. The
SupportedOrientations property declares
which orientations are supported by the page.
The visual designer supports both portrait and
landscape and allows you to quickly switch
between the two layouts, as shown in figure 2.7.
You can read more about page orientation in
chapter 11.

 Windows Phone presents a status bar at the
top edge of the screen in portrait layout. In
landscape layout, the status bar is anchored to
the edge opposite the Start button as it moves
to the left or right, depending on the direction
the user rotates the phone. The status bar displays the signal strength, battery, current
time, and other indicators. The status bar consumes 32 pixels in portrait layout and
72 pixels in landscape layout. Screen designs should account for the space occupied
by the status bar. Silverlight applications can hide the status bar with the System-
Tray.IsVisible attached property. The project template sets this attached property
to True. You can provide more room for your application’s content and hide the status
bar by setting the property’s value to False. Before you choose to hide the status bar
in your application, you should know that many users consider the status bar an essen-
tial element and dislike applications that hide it.

 You’re making good progress. You’ve gotten your hands dirty with XAML and
started customizing your application. Along the way, you learned how to ensure your
application fits into the system look and feel. Your next step is to add a globe and text
box to the application content panel.

2.2.2 Adding application content
Remember that you want the first page of the application to draw a globe and prompt
the user to enter a name. These visual elements will be added to the ContentPanel
grid control that was created by the project template, as shown in the next listing.
You’ll start by dividing the ContentPanel into two rows, with one row using two thirds
of the panel, and the remaining third allocated to the second row.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.Resources>
 <SolidColorBrush x:Key="GlobeBrush"
 Color="{StaticResource PhoneAccentColor}" />
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="2*" />
 <RowDefinition Height="1*" />
 </Grid.RowDefinitions>
 <Canvas Width="200" Height="200" VerticalAlignment="Center"

Listing 2.2 Drawing the globe

GlobeBrush is
static resource b

Figure 2.7 Using the context menu to
switch between portrait and landscape
layouts

38 CHAPTER 2 Creating your first Windows Phone application

 Background="{StaticResource PhoneBackgroundBrush}" >
 <Ellipse Width="200" Height="200"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="10" />
 <Ellipse Width="100" Height="200"
 Canvas.Left="50"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="5" />
 <Path Data="M 100,0 100,200"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="5" />
 <Path Data="M 0,100 200,100"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="5" />
 <Path Data="M 30,40 A 100,50 0 0 0 170,40"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="5" />
 <Path Data="M 30,160 A 100,50 0 0 1 170,160"
 Stroke="{StaticResource GlobeBrush }"
 StrokeThickness="5" />
 </Canvas>
</Grid>

The globe is drawn using Silverlight’s Ellipse and Path drawing primitives. These are
just two examples of the drawing primitive classes found in the System.Windows
.Shapes namespace. The sphere of the globe and the two arced meridians are drawn
with ellipses. The straight meridian and the three parallels are drawn with paths. The
drawing canvas is centered in the first row of the ContentPanel.

TIP To improve an application’s performance, Microsoft recommends that
complex XAML graphics be captured in a PNG or JPG and displayed with an
image control.

Each of the shapes has its Stroke property bound d
to a static resource you create named GlobeBrush B.
GlobeBrush has its Color property bound to another
static resource named PhoneAccentColor. The canvas
has its Background bound to a static resource named
PhoneBackgroundBrush c. PhoneBackgroundBrush
and PhoneAccentBrush are other examples of the sys-
tem theme resources that the Silverlight Framework
injects into a Silverlight application. Both Expression
Blend and the Visual Studio designer allow selecting
system resources from their respective property win-
dows. The Expression Blend resource menu, shown in
figure 2.8, is accessed via the property editor.

 The Visual Studio resource picker, shown in fig-
ure 2.9, is accessed from the Apply Resource option
in a property’s Advanced Options menu.

Binding
to theme
brush c

Binding to
GlobeBrush d

Figure 2.8 Expression Blend’s
System Brush Resources selector

39Implementing Hello World

In this section, you added XAML markup to draw a globe, and bound the globe ele-
ments to system brushes to enable theme support. You still need to add UI controls to
implement the remaining requirement, which is to navigate to the greeting page and
display the user’s name. First you need to create the greetings page.

2.2.3 Adding the greetings page
The second page of your application will display a greeting message to the user, using
the name typed into the main page. Add the new page using the Windows Phone Por-
trait Page item template and name the file GreetingPage.xaml. The Portrait Page item
template is one of several item templates that ship with the Windows Phone Developer
Tools. Table 2.2 lists the Windows Phone item templates.

Table 2.2 Windows Phone item templates

Page Template Description

Windows Phone Portrait Page A basic application page with title and description fields. The
Orientation and SupportedOrientations properties are set
to Portrait.

Windows Phone
Landscape Page

An application page identical to a portrait page, except that the
Orientation and SupportedOrientations properties are set
to Landscape.

Windows Phone User Control A starting point for creating reusable XAML-based controls.

Windows Phone Panorama
Page

Adds an application page with Panorama control as its only content
element.

Windows Phone Pivot Page Adds an application page with Pivot control as its only
content element.

Figure 2.9 Visual Studio’s System resource menu

40 CHAPTER 2 Creating your first Windows Phone application

The new greeting page contains controls for the application and page title. Following
the same steps described for the hello page, change the application title to “WINDOWS
PHONE 7 IN ACTION” and the page title to “greetings”.

 The greetings page will use a couple of TextBlocks and a RichTextBox control to
display the message. The XAML markup for the page’s content panel is shown in the
next listing.

<Grid x:Name="ContentPanel"
 Grid.Row="1"
 Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="72" />
 <RowDefinition Height="100" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <TextBlock Margin="{StaticResource PhoneMargin}"
 Text="Hello" Style="{StaticResource PhoneTextLargeStyle}" />

 <TextBlock x:Name="helloMessage" Grid.Row="1"
 Margin="{StaticResource PhoneMargin}" Text="name goes here"
 Style="{StaticResource PhoneTextExtraLargeStyle}" />

 <RichTextBox Grid.Row="2" Margin="{StaticResource PhoneMargin}"
 VerticalAlignment="Bottom">
 <Paragraph FontSize="{StaticResource PhoneFontSizeNormal}">
 Welcome to</Paragraph>
 <Paragraph FontSize="{StaticResource PhoneFontSizeMedium}"
 Foreground="{StaticResource PhoneAccentBrush}" >
 <Italic>Windows Phone 7 in Action</Italic>
 </Paragraph>
 <Paragraph FontSize="{StaticResource PhoneFontSizeNormal}">
 Written by Massimo Perga, Timothy Binkley-Jones
 and Michael Sync.</Paragraph>
 </RichTextBox>
</Grid>

You start by dividing the content panel into three rows, specifying fixed heights for the
first two rows. In the first row you place a TextBlock containing the text “Hello”. You
use the PhoneMargin resource B to align the controls with the TextBlocks in the title
panel. Next, you add a second TextBlock and give it the name helloMessage c.
You’ll use this TextBlock to display the name of the user. Finally, you add a RichText-
Box d which you use to display formatted text. On Windows Phone, the RichTextBox
is read-only.

 You now have the two pages in your Hello World application setup and ready to go.
If you run the application now, you’ll see the hello page with the nice globe. Other
than look at the globe, you can’t do anything in the application. You still need to add
input controls to capture the user’s name. You also need something the user can use
to navigate to the greetings page. Let’s take a look at how you interact with the user.

Listing 2.3 GreetingPage’s content

Using
PhoneMargin

 b

TextBlock
for user’s

name

 c

Read-only
RichTextBox d

41Interacting with the user

2.3 Interacting with the user
Silverlight for Windows Phone provides most of the core user input controls that are
available to Silverlight for the browser. The input controls have been modified and
restyled to work in a touch-only environment and have new events that are raised
when the user touches the screen. To maintain compatibility with Silverlight for the
browser, the Windows Phone controls also provide mouse-related events and automat-
ically promote touch events into mouse events. Unless you’re specifically looking for
touch events, you’ll work with the input controls in nearly the exact same way you did
when building browser applications.

 There will be situations where you want to work with the touch events and ges-
tures. Raw touch events are decomposed into start, delta, and stop events. Touch gestures
combine several raw touch events into well-known gestures such as Tap, Double Tap,
Hold, Pinch, Pan, and Flick. In this section you’ll learn how to capture Tap and Dou-
ble Tap gestures to change the color of the globe. First let’s take a closer look at how
the common TextBox control operates on Windows Phone.

2.3.1 Touch typing

The Hello World application uses a TextBox control for text entry and a TextBlock
for a label. These two controls are placed inside a StackPanel and added to the sec-
ond row of the ContentPanel. Since you’ll need to reference the TextBox from code
when you display the greeting message, give it the name nameInput:

<StackPanel Grid.Row="1" Margin="{StaticResource PhoneMargin}">
 <TextBlock>Enter your name:</TextBlock>
 <TextBox x:Name="nameInput" InputScope="Text"/>
</StackPanel>

When you run the application (see figure 2.1), you’ll notice that the font sizes for the
two controls are different, even though you didn’t specify any font information. The
TextBlock adopts the FontSize of its parent containers, in this case from the page
itself. Remember that the project template set the page’s FontSize to the PhoneFont-
SizeNormal system resource.

 The TextBox retrieves its font information from the default TextBox control tem-
plate. The TextBox control template sets FontSize to the PhoneFontSizeMediumLarge
system resource:

<Setter Property="FontFamily"
 Value="{StaticResource PhoneFontFamilyNormal}"/>
<Setter Property="FontSize"
 Value="{StaticResource PhoneFontSizeMediumLarge}"/>

When the user touches inside the TextBox the on-screen keyboard is displayed if the
device doesn’t have a physical keyboard. By default, the standard QWERTY keyboard is dis-
played as shown in figure 2.10. We recommend that you always specify an InputScope,
even if you just use the Text input scope that you’ve used here. The Text input scope pro-
vides word correction features that aren’t available with the default input scope. Other

42 CHAPTER 2 Creating your first Windows Phone application

keyboard layouts, such as Number or Url, can be specified.
InputScopes are covered in more depth in chapter 11.

 The on-screen keyboard also exposes clipboard copy
and paste operations. TextBox automatically supports
the clipboard, and your application doesn’t need to do
anything special to enable clipboard operations. Devel-
opers can programmatically copy text to the system clip-
board to share with other applications. Before we show
you how to copy text to the clipboard, let’s look at how
touch gestures are supported. Your application can listen
for Tap gestures and perform custom actions in response
to gesture events.

2.3.2 Touch gestures
The User Experience Design Guidelines for Windows Phone defines the touch gestures Tap,
Double Tap, Hold, Pan, and Flick. The initial Windows Phone SDK didn’t expose any
gestures from Silverlight controls. The Windows Phone SDK 7.1 introduced three ges-
ture events:

■ Tap
■ DoubleTap
■ Hold

To demonstrate how touch gestures can be used in an application, you’re going to
change the color of the globe when it’s tapped by the user. Changing the color of the
globe can be accomplished by changing the color of the brush used to draw the
globe’s ellipse and path graphics. Remember that you bound all of the graphic ele-
ments to the static resource named GlobeBrush. To access the brush resource from
code, you need to define a field and then initialize the field with the SolidColorBrush
that’s stored in the ContentPanel’s resource dictionary:

SolidColorBrush globeBrush;

public HelloPage()
{
 InitializeComponent();
 globeBrush = (SolidColorBrush)ContentPanel.Resources["GlobeBrush"];
}

Before you implement the Tap and DoubleTap event handlers, you need to add a cou-
ple of fields to enable color changes. The first is an array of colors and the second is
an index of the current color:

Color[] colors = new Color[] { Colors.Red, Colors.Orange,
 Colors.Yellow, Colors.Green, Colors.Blue, Colors.Purple };
int colorIndex = 0;

Next, you hook up the Tap and DoubleTap events to the canvas panel containing
the globe:

Figure 2.10 Inputting text with
the on-screen keyboard

43Interacting with the user

<Canvas Width="200" Height="200" VerticalAlignment="Center"
 Background="{StaticResource PhoneBackgroundBrush}"
 Tap="Canvas_Tap" DoubleTap="Canvas_DoubleTap">

In the Tap event handler you want to assign the globeBrush’s Color property to the next
color in the colors array. Don’t forget to check the index and reset it to the beginning of
the array:

private void Canvas_Tap(object sender, GestureEventArgs e)
{
 colorIndex++;
 if (colorIndex >= colors.Length)
 colorIndex = 0;
 globeBrush.Color = colors[colorIndex];
}

In the DoubleTap event handler you reset the brush color to the accent color provided by
the system theme. The accent color can be obtained from the application resources:

private void Canvas_DoubleTap(object sender, GestureEventArgs e)
{
 globeBrush.Color = (Color)App.Current.Resources["PhoneAccentColor"];
}

If your application requires gestures beyond tap and hold, you’ll need to process the
raw manipulation events raised by the Silverlight controls. The UIElement class
exposes ManipulationStarted, ManipulationDelta, and ManipulationCompleted
events when a user touches, moves, and releases their finger from the screen. Convert-
ing manipulation events into gestures is beyond the scope of this book.

 Now that you’ve learned about gestures, let’s discuss how to copy text to the system
clipboard. Your application will copy text to the clipboard when a toolbar button
is pressed.

2.3.3 Adding a toolbar button
Windows Phone provides a built-in toolbar and menu control called the application
bar. The Visual Studio project adds sample, commented out, application bar markup
when the page is created. For your Hello World application, you need to add one but-
ton to HelloPage and three buttons to GreetingPage. In HelloPage.xaml, you’ll
replace the sample ApplicationBar buttons with your own button. Start by uncom-
menting the ApplicationBar markup and removing the second button and both
example menu items:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="False">
 <shell:ApplicationBarIconButton Text="say hello"
 IconUri="/Images/appbar.next.rest.png" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Next, set text for the remaining button, named appbar_button1, to “say hello”. Finally,
you need to specify an IconUri.

44 CHAPTER 2 Creating your first Windows Phone application

 For GreetingPage, you also need to create an ApplicationBar and add buttons.
You need three buttons: one labeled “ok”, a second labeled “copy”, and one more
that’s labeled “pin”:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
 <shell:ApplicationBarIconButton Text="ok"
 IconUri="/Images/appbar.check.rest.png" />
 <shell:ApplicationBarIconButton Text="copy"
 IconUri="/Images/appbar.save.rest.png" />
 <shell:ApplicationBarIconButton Text="pin"
 IconUri="/Images/appbar.next.rest.png" />
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

In this application, you’re using a few of the icons from the Windows Phone SDK, which
are installed to c:\Program Files\Microsoft SDKs\Windows Phone\v7.1\Icons\Dark. On 64-
bit Windows, the SDK is installed in c:\Program Files (x86).

 Create a project folder named Images and add the appbar.next.rest.png, appbar
.check.rest.png, and appbar.save.rest.png files to the folder. For each of the images,
set the Build Action to Content. More information about the application bar can be
found in chapter 10.

 Like any other button, ApplicationBarIconButtons raise a Click event when
the user presses them. You’ll next register for the Click event on the copy button
and implement the event handler. Update the button’s markup to declare the
event handler:

<shell:ApplicationBarIconButton Text="copy"
 IconUri="/Images/appbar.save.rest.png" />
 Click="copyButton_Click" />

Next, add the event handler in GreetingPage.xaml.cs:

private void copyButton_Click(object sender, EventArgs e)
{
 string message = string.Format("Hello {0}!", helloMessage.Text);
 Clipboard.SetText(message);
}

The event handler constructs a message by concatenating the word Hello and the text
in the helloMessage TextBlock. The greeting message is then copied to the Clipboard
and is ready to be pasted into some other application.

 In this section you learned how to receive typed text from the user, respond to
touch gestures, and use the system application bar to display a toolbar buttons. You
implemented a click handler for one of the toolbar buttons, but the other two buttons
don’t perform any work. The unimplemented buttons will be used to navigate
between the two pages, which we cover in the next section.

45Page navigation

2.4 Page navigation
A phone application is a modified version of a Silverlight Navigation Application. Sil-
verlight Navigation Applications are composed of a navigation frame and one or more
pages that interact with the NavigationService. The NavigationService interacts
with the operating system to maintain a journal or history of pages visited by the user.
In this section, you’re going to add navigation to the Hello World application.

2.4.1 Navigating to another page

Page navigation is the process that takes the user from one page to another. One
example is when the user presses a button to open a new page, and then after com-
pleting some work, presses another button to come back to the main page. Navigation
is managed by the NavigationService class. The NavigationService.Navigate
method is called to move to a new page. When Navigate is called, the current page is
placed on the navigation stack, and a new instance of the target page is generated.
The NavigationService.GoBack method removes the current page and restores the
previous page that’s on the navigation stack.

 You’ll now add page navigation to your Hello World application. Starting in Hello-
Page.xaml add a click event handler to the “say hello” button:

<shell:ApplicationBarIconButton Text="say hello"
 IconUri="/Images/appbar.next.rest.png"
 Click="navigateForwardButton_Click" />

You want to navigate to GreetingPage when the button is pressed, so you need to add
code to the click handler:

The Model-View-ViewModel pattern
Many, but not all, Silverlight developers use the Model-View-ViewModel pattern
(MVVM) to separate user interface markup and logic from application logic. The sep-
aration of UI and application logic promoted by MVVM is made possible with Silver-
light’s data binding, value converter, and commanding features. Input and TextBlock
controls are bound to model objects, which often implement the INotifyProperty-
Changed interface. Values are converted to strings using converter classes that
implement IValueConverter. Click event handlers are eschewed in favor of com-
mand objects implementing the ICommand interface.

Though MVVM separates UI and business logic, it introduces complexity. We’ve inten-
tionally avoided using the complexity of the MVVM pattern in the sample applications
in the book. We’ve also avoided binding trivial properties such as messages dis-
played in a TextBlock, and have placed a great deal of our application logic in the
page code behind. MVVM is a great pattern that’s well suited for XAML applications
but one criticism of MVVM is that it’s overkill for simple applications.

This isn’t a book about Silverlight, but about Windows Phone. The bits of Silverlight
we use in the sample applications are intended to highlight the features of the Win-
dows Phone SDK that aren’t available to browser-based Silverlight applications.

46 CHAPTER 2 Creating your first Windows Phone application

private void navigateForwardButton_Click(object sender, RoutedEventArgs e)
{
 this.NavigationService.Navigate(
 new Uri("/GreetingPage.xaml", UriKind.Relative));
}

You access the NavigationService via the PhoneApplicationPage’s Navigation-
Service property. The Navigate method accepts an Uri, which in this case is the
name of the file containing the page you wish to load. You construct the Uri using
UriKind.Relative, as it’s part of the same XAP file.

 Now you want to reopen GreetingPage.xaml and generate the click event handler
for the OK application bar button:

<shell:ApplicationBarIconButton Text="ok"
 IconUri="/Images/appbar.check.rest.png"
 Click="navigateBackButton_Click" />

You implement the handler by calling the GoBack method:

private void navigateBackButton_Click(object sender, EventArgs e)
{
 this.NavigationService.GoBack();
}

Now press F5, or select the Debug->Start Debugging menu option, and debug the
application. You’ve just linked your two pages using only two lines of code. Press
the hello button and see the second page appear. When you press the OK button, the
main page appears again.

 It’s worth noting that you use the GoBack method instead of the Navigate method
to return to MainPage.xaml. When you call GoBack the current page is removed from
the page stack. If you’d used Navigate, a new page would’ve been added on top of the
page stack. Depending on the scenario you want to achieve, you can choose the approach
more appropriate for your application, but you must be aware of the consequences.
Both the cases are illustrated in Figure 2.11.

 Let’s examine the two scenarios presented in figure 2.11. In the top sequence
the navigation uses GoBack to return to HelloPage, so the page stack is reduced. In the
sequence on the bottom, the navigation uses Navigate to navigate to HelloPage, and
a new page is added on top of the page stack and made visible.

Figure 2.11 The
navigation page stack
resulting from GoBack
(top) and Navigate
(bottom) method calls.
The white boxes
represent the visible
page, whereas the
shaded boxes are the
pages in the background.

47Page navigation

Your Hello World application now moves from one page to another, and the greeting
page starts up as expected. How do you get the user-entered name from the hello
page to the greeting page? The Silverlight Navigation Framework provides features to
enable passing data into a newly launched page.

2.4.2 Passing parameters between pages

In the previous example you concentrated on navigation between pages, but didn’t
pass any information to the greeting page. In theory, pages should be as self-contained
as possible in order to maintain isolation between the pages, but it can be useful to
pass parameters when navigating. You could choose to use some form of global data
or data cached in the App class instead of passing data, but you should consider pass-
ing parameters in the Uri much as you would pass data to a constructor. As you’ll
learn later in the chapter, the operating system can call your page directly without
ever constructing an instance of your main page.

 In your sample main page, the user enters a name into a text box control named
nameInput whose Text property will be used as a parameter passed to GreetingPage.
GreetingPage will set the text block having name helloMessage with the parameter
passed by HelloPage. Two changes are required in your code to pass a parameter—
HelloPage must pass the parameter value to GreetingPage via the navigation Uri and
GreetingPage must extract the parameter value from the query string.

 Earlier you just created a URI with the hard-coded name of the greeting page in
the navigateForwardButton_Click method. You could choose to hard-code the
parameters as well, but now you have more magic strings in your code. What if you
change the name of the greeting page, or change the name of the parameters passed
in the query string? You’ll next move Uri construction code into a static method of
the GreetingPage class. Modify the Uri to pass a parameter in the same manner that
you would if you were adding fields to a standard HTTP query string:

public static Uri BuildNavigationUri(string name)
{
 return new Uri("/GreetingPage.xaml?name=" + name, UriKind.Relative);
}

Update the navigateForwardButton_Click method in HelloPage.xaml.cs to call the
new factory method, passing along the name entered by the user. The parameter
value is obtained from the nameInput control:

NavigationService.Navigate(
 GreetingPage.BuildNavigationUri(nameInput.Text));

The data passed via the navigation Uri can be retrieved from the target page’s
NavigationContext property. The NavigationContext class has a single property named
QueryString, which is an IDictionary<string, string> mapping parameter names
to values.

 You’ll use the NavigationContext in the code behind for GreetingPage.xaml. The
appropriate time to access the query string is after the page navigation has completed.

48 CHAPTER 2 Creating your first Windows Phone application

The navigation framework calls the PhoneApplicationPage.OnNavigatedTo virtual
method when navigation is complete. In the sample application, you override
OnNavigatedTo and obtain the parameter value by using the string "name" as a key
into the QueryString. You set the returned value into Text property of helloMessage:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 helloMessage.Text =
 this.NavigationContext.QueryString["name"];
}

OnNavigatedTo is one of the virtual methods defined by PhoneApplicationPage that
are called when navigation events occurs. OnNavigatedFrom and OnNavigatingFrom
are two other methods you can use to determine when the current page is changing.

 In this section we’ve shown how you can navigate between pages from your soft-
ware. Other activities, such as the user pressing the hardware Back key, can cause nav-
igation changes in your application. Every Windows Phone is equipped with a hardware
Back key. Its effect in an application is equivalent to calling the Navigation-
Service.GoBack method.

2.4.3 Changing the Back key behavior

When the Back key is pressed, the navigation framework automatically performs a
GoBack operation. The Back key behavior can be interrupted, for instance, to avoid
moving off a page that has unsaved changes. To interrupt the automatic GoBack, the
PhoneApplicationPage class provides an event named BackKeyPress. You’ll see this
event in action by wiring it to an event handler in your GreetingPage class. You first
need to edit GreetingPage.xaml by adding an attribute to the PhoneApplication-
Page tag:

BackKeyPress="Page_BackKeyPress"

Next, you add the event handler to GreetingPage.xaml.cs. This example prompts the
user with a confirmation message:

private void Page_BackKeyPress(object sender, CancelEventArgs e)
{
 MessageBoxResult result = MessageBox.Show(
 "Press OK to return to the previous page.",
 "WP7 in Action", MessageBoxButton.OKCancel);
 if (result == MessageBoxResult.Cancel)
 e.Cancel = true;
}

If the user presses the Cancel button in the message box, you set the CancelEvent-
Args.Cancel property to true. This cancels the default behavior of the Back key. Fail-
ing to add this statement or setting e.Cancel to false would have maintained the
default behavior, which is to move to the previous page or to terminate the applica-
tion if no other pages are in the page stack.

49Page navigation

NOTE The Application Certification Requirements for Windows Phone details
appropriate application behavior when working with the back key. Specifi-
cally, when the Back button is pressed while the main page is visible, the
application must exit.

Navigation relies on URI and query strings to navigate to specific locations within an
application. Navigation strings can also be used to allow a user to launch to a specific
location within your application with application tiles

2.4.4 Navigating with tiles

Windows Phone users can pin an application’s tile
to the start screen. Tiles are large icons that display
a background image and a title. We show you how
to customize the main application tile in the next
section. Starting with Windows Phone SDK 7.5,
applications can also create secondary tiles that will
navigate directly to a specific location in an applica-
tion. Figure 2.12 shows the application and second-
ary tiles for your Hello World application.

 When the user clicks the application tile for
Hello World, the application is launched and
the NavigationService is called with the URL
/HelloPage.xaml. When the user clicks the sec-
ondary tile, the application is launched and the appli-
cation host passes the URL associated with the secondary tile to the NavigationService.
When you built the GreetingPage, you added a pin button to the application bar. Add
a click handler to the pin button and implement code to create a secondary tile:

private void pinButton_Click(object sender, EventArgs e)
{
 StandardTileData tileData = new StandardTileData
 {
 BackgroundImage = new Uri("Background.png", UriKind.Relative),
 Title = string.Format("Hello {0}!", helloMessage.Text),
 };
 ShellTile.Create(BuildNavigationUri(helloMessage.Text), tileData);
}

The StandardTileData class has several properties that describe the tile. In your
application you only use the BackgroundImage and the Title properties. You set the
BackgroundImage property to use Background.png, the image specified in the project
properties for your main tile. You set the Title property to be the greeting message.
The Create method of the ShellTile class is used to create the new tile. You specify
the Url to the greeting page, passing the same parameters that are specified by Hello-
Page. When ShellTile.Create is called, the application exits and the start screen is
launched, showing the new secondary tile to the user.

Figure 2.12 Application and
secondary tiles for Hello World

50 CHAPTER 2 Creating your first Windows Phone application

 Tiles have several other features that include flip side background images, content,
and counters. Tiles can be dynamically updated or deleted by application code. These
tile features are covered in chapter 9.

 In this section you implemented the final requirement for your Hello World appli-
cation—navigating to a second page and displaying a greeting to the user. You learned
about the NavigationService and how to use query string parameters to pass data
between pages. Finally, you learned how to use tiles to navigate directly to the greeting
page from the start screen. Now you’ll add some polish and customize the start-up
experience with your own splash screen and other artwork.

2.5 Application artwork
The Windows Phone operating system expects your Silverlight application to provide
a few different artwork files which it uses to represent your application to the user.
Depending on how your application is built and configured, your application artwork
can be displayed in the Start Screen, the Application List, the Games Hub, and the
Music + Videos Hub. The Silverlight Framework also looks for a splash screen image
when launching your application. In this section we discuss how to update or replace
the artwork created by the project templates. We also discuss the image formats and
sizes that are expected by Windows Phone. Let’s begin with the splash screen.

2.5.1 Customizing the splash screen

When a Silverlight application is loaded, the application framework briefly displays a
splash screen while constructing and navigating to the first page. If the page’s con-
structor or the OnNavigatedTo methods perform lengthy operations, the splash
screen will remain visible until the work is completed.

NOTE The Application Certification Requirements for Windows Phone recom-
mends that you only provide a splash screen image when your application
takes longer than 1 second to display the first page. The certification require-
ments also require that the first page be shown in less than five seconds.

The splash screen displayed by the framework is a static image, and can’t be updated
or replaced during runtime. The image used by the framework comes from the file
named SplashScreenImage.jpg. The default 480 x 800 pixel image created by project
templates is a dark gray background with a clock face. A custom splash screen image
can be used by simply overwriting SplashScreenImage.jpg with another file of the
same name.

 There are two other image files that are created by the project template: the tile
image and the application icon.

2.5.2 Customizing tile images and application icons

The tile image is used by the operating system when an application or game is pinned to
the start screen. Application icons are used by the operating system when an application

51Application artwork

appears in the application list. Figure 2.13 shows the start screen and application list
custom globe images.

 The Visual Studio project templates create default tile background images named
Background.png for Silverlight applications. Silverlight projects are created with an
application icon named ApplicationIcon.png. You can replace the default tile back-
ground image following these steps:

■ Create a new 173 x 173 pixel PNG file.
■ The image should have a 12-pixel margin on all edges.
■ The image should reserve a 37 x 37 pixel area inside the top-right margin for

tile notifications. (Tile notifications are covered in chapter 9.)
■ Add the new image to the root of the project and specify the Content build action.
■ In the Application tab of the project properties, select the new image in the

Background image field.

The tile image is displayed in the Start Experience with the tile title. You can set a cus-
tom tile title with the Tile Title field in the Application tab of the project properties.
An application can dynamically update its tile background image, which is covered in
more depth in chapter 9. Applications implementing notifications commonly update
the tile background image.

 The tile images for the native phone application use the system theme’s accent
color as a background color. When the user changes the accent color, the tile back-
ground is updated to match. You can also design your tile images to use the theme’s
accent color by using transparency in your PNG file. Transparent pixels in the tile
image will allow the accent color to show through.

 You can replace the default application icon following these steps:

■ Create a new 62 x 62 pixel PNG file for an application. If your application will be
displayed in the Games Hub, the image should be 173 x 173 pixels.

■ Add the new image to the root of the project and specify the Content build action.
■ Open the Application tab of the project properties and select the new image in

the Deployment Icon field.

Figure 2.13 Custom images used in the start experience and the
application list

52 CHAPTER 2 Creating your first Windows Phone application

The Games Hub expects the application icon/game thumbnail to be 173 x 173 pix-
els. The Application List expects the icon to be 62 x 62 pixels. ApplicationIcon.png is
created by the project template as 62 x 62 pixel files. You should replace these files
with larger images if your Silverlight application will appear in the Games Hub. Cus-
tomizing the tile and application images improves an application’s integration into
the overall Windows Phone experience.

2.6 Try before you buy
Before committing hard-earned money to a purchase, many users like to use a demonstra-
tion or trial version of an application, and the Windows Application Marketplace provides
support for limited trials. Applications use the IsTrial method of the License-
Information class to determine if the application is running under a trial license:

LicenseInformation licenseInfo = new LicenseInformation();
if (licenseInfo.IsTrial())
{
 // implement trial mode logic here...
}

The manner in which the trial mode is implemented is up to the discretion of the
developer. Trial mode applications can be restricted to a certain number of days, a
certain number of launches, have a restricted feature set, or some other limitation.

 Applications running in trial mode should provide a “buy me” link to purchase the
application from the Application Marketplace. The marketplace link can be imple-
mented using the MarketplaceDetailTask, which is covered in section 4.2.4. Applica-
tions should re-check the trial when first launched, or when reactivated from a
dormant or tombstoned state, as the user may have purchased the application while it
was inactive. Checking the trial status can be time consuming and shouldn’t be per-
formed in a tight loop.

 Developers should always test their applications in both trial and unlimited modes.
Testing can be problematic as the IsTrial method always returns false when running in
the emulator. Conditional compilation techniques can be used to test trial licensing:

 LicenseInformation licenseInfo = new LicenseInformation();
#if TRIAL_LICENSE
 bool isInTrialMode = true;
#else
 bool isInTrialMode = licenseInfo.IsTrial();
#endif
 if (isInTrialMode)
 {
 // implement trial mode logic here...
 }

To turn on trial licensing, all you need to do is add a conditional compilation symbol
as shown in figure 2.14.

 The application marketplace’s trial licensing makes it easy to provide potential
customers a preview of your application or game, without the need to build multiple

53Summary

versions of your project. Trial licensing eliminates the need to maintain and publish a
separate free or light version of your product.

2.7 Summary
The Windows Phone Developer Tools help you build many different kinds of Silver-
light applications. Project templates are provided for simple projects and class librar-
ies as well as list, pivot, panorama, and Silverlight with XNA style projects. Chapter 10
covers panorama and pivot applications, whereas Silverlight with XNA applications are
covered in chapter 14.

 The Silverlight framework makes it easy to align your application with the system
theme and style. The framework injects resources into applications so they can match
the system theme (light versus dark, accent color) and the look and feel (fonts, colors,
sizes). The visual designers and property editors in Expression Blend and Visual Stu-
dio expose theme resources.

 Silverlight has been extended for Windows Phone with components built specifi-
cally for the platform. New navigation frame, page control, and application bar com-
ponents are just a few of the additions. Other existing Silverlight controls have been
modified to work on the phone. The chapters in part 3 of this book look at these new
and modified components.

 Finally you learned some of the procedures for integrating with the phone operat-
ing system. Live tiles and application icons can be customized to make your applica-
tion stand out in the quick start, application list, and Game Hub. System capabilities
must be declared in order to use many of the core phone APIs. The phone APIs pro-
vide access to the native applications, services, sensors, and media features of the
phone. In part 2 of this book you read about how to use the phone APIs. In the next
chapter you learn how Windows Phone implements application multitasking and how
to design application-to-lifecycle events. We also look at how to create and run back-
ground agents to perform work while other applications run in the foreground.

Figure 2.14 Setting a conditional compilation symbol

Binkley-Jones ● Perga ● Sync

W
indows Phone 7 is a powerful mobile platform sporting
the same Metro interface as Windows 8. It off ers a rich
environment for apps, browsing, and media. Developers

code the OS and hardware using familiar .NET tools like C# and
XAML. And the new Windows Store off ers an app marketplace
reaching millions of users.

Windows Phone 7 in Action is a hands-on guide to programming
the WP7 platform. It zips through standard phone, text, and
email controls and dives head-fi rst into how to build great mo-
bile apps. You’ll master the hardware APIs, access web services,
and learn to build location and push applications. Along the
way, you’ll see how to create the stunning visual eff ects that can
separate your apps from the pack.

What’s Inside
● Full introduction to WP7 and Metro
● HTML5 hooks for media, animation, and more
● XNA for stunning 3D graphics
● Selling apps in the Windows Store

Written for developers familiar with .NET and Visual Studio. No
WP7 or mobile experience is required.

Timothy Binkley-Jones is a soft ware engineer with extensive
experience developing commercial IT, web, and mobile
applications. Massimo Perga is a soft ware engineer at Microsoft
and Michael Sync is a solution architect for Silverlight and WP7.

To download their free eBook in PDF, ePub and Kindle formats, owners
of this book should visit manning.com/WindowsPhone7inAction

$39.99 / Can $41.99 [INCLUDING eBOOK]

Windows Phone 7 IN ACTION

MOBILE TECHNOLOGY/WINDOWS

M A N N I N G

“Defi nitely recommended!”
—Vipul Patel, Amazon.com

“Top resource for Windows
Phone developers.”—Loïc Simon, Solent SAS

“A great handbook for
climbing the WP7 ladder.”—Francesco Goggi

Magneti Marelli

“Gives you a kickstart in
Windows Phone
 development.”—Mark Monster
Monster Consultancy

SEE INSERT

