
Dottie
Text Box
SAMPLE CHAPTER

Windows Forms in Action
by Erik Brown

Chapter 3

Copyright 2006 Manning Publications

vii

brief contents

Part 1 Hello Windows Forms 1

1 Getting started with Windows Forms 3

2 Getting started with Visual Studio 33

Part 2 Basic Windows Forms 63

3 Menus 67

4 Context menu and status strips 92

5 Reusable libraries 116

6 Files and common dialog boxes 148

7 Dialog boxes 180

8 Text boxes 212

9 Buttons 240

10 Handling user input and encryption 268

11 List boxes 299

12 Combo boxes 327

13 Tab controls and pages 356

14 Dates, calendars, and progress bars 383

15 Bells and whistles 415

16 Tool strips 443

viii

Part 3 Advanced Windows Forms 475

17 Custom controls 477

18 Explorer interfaces and tree views 507

19 List views 541

20 Multiple document interfaces 575

21 Data binding 608

22 Two-way binding and binding sources 637

23 Odds and ends .NET 665

appendix A C# primer 701
appendix B .NET namespaces 735
appendix C Visual index 741
appendix D For more information 758

67

C H A P T E R 3

Menus
3.1 Controls and containers 68
3.2 The nature of menus 72
3.3 Menu bars 75
3.4 Menu handling 87
3.5 Recap 90

Menu bars provide a good starting point for our discussion in part 2. Menus provide a
convenient way to group similar or related commands in one place. Most users are
familiar with the menu bar concept and expect standard menus such as File, Edit, and
Help to appear in their applications. Even novice computer users quickly learn that
clicking a menu on the menu bar displays a drop-down list of commands.

Menus became popular in Windows applications in the late 1980s, following
their success on the Apple Macintosh. Prior to menus, users had to cope with a
wide array of interfaces offered by desktop applications. The function keys still
found at the top of computer keyboards were developed in part as a standard way
to access common functions in an application, and some programs even provided a
plastic template that sat on top of these function keys to help users remember the
available commands.

Perhaps because of this history, many developers take the usefulness and popular-
ity of menus for granted and do not spend sufficient time laying out a consistent,
usable interface for their application. While graphical elements such as menus, tool-
bars, and other constructs make applications much friendlier, this is not an excuse to
ignore good user design and rely on customers to become “experienced” to make
effective use of the interface.

68 CHAPTER 3 MENUS

If that little lecture doesn’t get your creative juices flowing, then nothing will.
Back in .NET-land, Visual Studio provides a rather intuitive interface for the con-
struction of menus that does away with some of the clunkiness found in earlier Win-
dows development environments from Microsoft. No more dealing with menus in
one place, the application in another place, and the processing code in a third place.

This chapter introduces some of the core classes used in Windows Forms in addi-
tion to discussing the menu interface in .NET. We cover the following aspects of
Windows Forms and menu creation:

• The base classes for Windows Forms controls

• The different types of menus

• The classes required for Windows Forms menus

• How to create and modify menus and menu items

The examples in this chapter assume you have the code for MyPhotos version 2.4
available, as developed with Visual Studio in chapter 2. You can use this code with or
without Visual Studio as a starting point for the tasks covered here. If you did not
work through chapter 2, download the project from the book’s website at http://
www.manning.com/eebrown2. Follow the links and instructions on the site to
retrieve version 2.4 of the application.

3.1 CONTROLS AND CONTAINERS

Before we plunge into menus, it is worth taking a look at the classes behind some of
the .NET classes that support menus and other controls in Windows Forms, as
shown in figure 3.1. This section walks through the class hierarchy behind Windows
Forms controls and the Form class.

3.1.1 Control classes

All Windows Forms controls inherit from the System.Windows.Forms.Control
class, or simply the Control class. The System.Web.UI namespace also contains a
Control class for use in ASP.NET web pages, but since our focus is on Windows
Forms, we use the terms control and Control class to mean the one in the Sys-
tem.Windows.Forms namespace.

So far we have seen the Button control and the PictureBox control classes.
Figure 3.1 shows the class hierarchy for these classes. A class hierarchy is the set of
classes from which a particular class is derived, and gives some indication of the pur-
pose and capabilities behind the specific class. A brief discussion of the classes in
figure 3.1 follows.

All classes in C#, even internal types such as int and char, implicitly derive from the
object class. In the .NET Framework, this class is equivalent to the Object class.
We discuss this class in more detail in chapter 5.

B

CONTROLS AND CONTAINERS 69

The MarshalByRefObject class is an object that must be marshaled by reference.
Marshaling is a method of passing an item from one context so that it can be under-
stood in another context. A typical use for marshaling is in remote procedure calls
between two different machines, where each parameter of a function call must be
converted into a common format (that is, marshaled) on the sending machine so
that it may be interpreted on the receiving machine. In the .NET world, Windows
controls are MarshalByRefObject objects since they are only valid in the process
that creates them, and can be used outside this process only by reference.1

The Component class is the base implementation of the IComponent interface for
objects that marshal by reference. A component is an object that can exist within a
container, and allows cleanup of system resources via the Dispose method. This
class supports the IDisposable interface as well the IComponent interface. We
cover interfaces in chapter 5, so don’t get caught up in the terminology here. Since
graphical controls exist within a Form window or other container control, all Win-
dows Forms controls ultimately derive from this class.

1 The details of marshaling are totally hidden for most Windows Forms applications, so you do not really
need to know any of this. Hopefully, you find it somewhat interesting, if not useful.

Figure 3.1 The class hierarchy for the Button and PictureBox controls is representative

of the hierarchy for all Windows Forms controls.

C

D

70 CHAPTER 3 MENUS

The Windows Forms Control class is a component with a visual representation on
the Windows desktop. This class provides display functionality such as position and
size, keyboard and mouse input, anchor and dock support, fonts, background
images, and message routing. A summary of the members in this class is shown in
.NET Table 3.1.

The ButtonBase class is the base class for all buttons, including radio buttons and
check box buttons in addition to the regular Button class we have already seen.
Buttons are discussed in chapter 9.

The PictureBox class is summarized in .NET Table 1 in the introduction.

3.1.2 Container classes

Controls that contain other controls are called container controls. The Control class
itself provides support for containers, in members such as the Controls property or
the GetNextControl method. Some container controls, such as the GroupBox con-
trol, inherit directly from the Control class. Group boxes are discussed in chapter 8.
The Form class that we used in chapters 1 and 2 is also a container control. One of
the unique features of this class is its ability to support scrolling for a contained set of
controls. The Form class hierarchy supporting this and other functionality is shown
in figure 3.2. Let’s take a closer look at the numbered portions of this figure:

You might think that all classes with scrolling inherit from the ScrollableCon-
trol class. In fact, this class is only for objects that support automated scrolling over
a contained set of objects. Scrollable controls are discussed in chapter 13.

The ContainerControl class is a control that provides focus management, pro-
viding a logical boundary for a contained set of controls. This class tracks the active
control in a container even when the focus moves to an alternate container, and can
manage the Tab key press for moving between the controls in the container.

Almost all desktop windows in Windows Forms applications are represented by the
Form class. This class is discussed throughout the book, of course, but especially in
chapter 7.

E

F

G

Figure 3.2

The class hierarchy for the Form

class is similar to the hierarchy for

many Windows Forms containers.

B

C

D

CONTROLS AND CONTAINERS 71

.NET Table 3.1 Control class

The Control class for Windows Forms is a component with a visual representation on the
desktop. This class is part of the System.Windows.Forms namespace, and inherits from the
System.ComponentModel.Component class. This class encapsulates the standard function-
ality used by all Windows Forms controls.

Public

Properties

AllowDrop Gets or sets whether to allow drag-and-drop operations
in this control. Drag-and-drop is discussed in chapter 23.

Anchor Gets or sets the anchor setting for the control. The
Dock property gets or sets the dock setting.

BackColor Gets or sets the background color of the control.

ContextMenuStrip Gets or sets the context menu for the control.

Controls Gets or sets the controls contained by this control.

ClientRectangle Gets the client area of the control. The
DisplayRectangle property gets the display area.

Cursor Gets or sets the Cursor to display when the mouse is
over the control.

Enabled Gets or sets whether the control is enabled.

Location Gets or sets the control’s location. The Top, Bottom,
Left, and Right properties gets the control’s edges.

Parent Gets or sets the parent of this control.

TabIndex Gets or sets the tab index of the control.

TabStop Gets or sets whether the user can use the Tab key to
give the focus to the control.

Text Gets or sets the text associated with this control.

Visible Gets or sets whether control is visible. This also affects
any controls contained by this control.

Public

Methods

BringToFront Brings the control to the front of the z-order. A similar
SendToBack method also exists.

GetNextControl Returns the next or previous control in the tab order.

Invalidate Forces all or part of the control to be redrawn.

PointToClient Converts a screen location to client coordinates.

Public

Events

Click Occurs when the control is clicked.

KeyPress Occurs when a key is pressed while the control has
focus.

MouseUp Occurs when a mouse button is released within the
control.

Paint Occurs when all or part of the control should be
redrawn.

72 CHAPTER 3 MENUS

3.2 THE NATURE OF MENUS

Let’s turn our attention now to menu classes. Menus in .NET, as we see in this sec-
tion, are container controls that contain menu items. We begin by presenting the dif-
ferent kinds of menus generally, most importantly menu bars and context menus, and
then turn our attention to how menus are defined in the .NET Framework.

3.2.1 Menu terminology

The traditional menu bar, sometimes
called the main menu or an anchored menu,
is a set of menus shown horizontally across
the top of an application. The menus in a
typical menu bar display a drop-down list
of commands when they are activated with
the mouse or by a keyboard accelerator.
Figure 3.3 shows an example of a menu
bar with the File menu exposed, and a sub-
menu of the Image menu item is displayed
as well.

Another type of menu is a context
menu, also called a pop-up menu or shortcut
menu. A context menu is a menu that
appears in a particular situation, or con-
text. Typically, a context menu contains a
set of commands or menus related to a specific graphical element of the application.
Such menus appear throughout the Windows environment at the right-click of the
mouse. For example, right-click the Windows desktop, any program icon on your

screen, or even the Windows Start menu,
and a context menu appears with a set of
commands related to the desktop display,
the program, or the Start menu, respec-
tively. Newer keyboards contain an accel-
erator key designed to simulate this
behavior at the cursor’s current location.

Context menus in .NET are typically
associated with a specific control, the con-
tents of which may change to reflect the
condition of the control or type of item
selected within the control. Figure 3.4
shows an example of a context menu asso-
ciated with the main window of the
application.

Figure 3.3 A traditional menu bar pro-

vides a set of menus across the top of an

application.

Figure 3.4 A context menu often provides

quick access to items that also appear on

the menu bar.

THE NATURE OF MENUS 73

3.2.2 Menus in .NET

The menu classes provided by .NET received a complete rewrite for .NET 2.0. In
.NET 1.x, the menu classes were based on the Win32 menu classes, and supported
via the Menu class hierarchy. The MainMenu, ContextMenu, and MenuItem classes
all derived from this Menu class, supporting Win32 menus and context menus
within Windows Forms applications. These classes are still supported in .NET 2.0
for compatibility and use, but are no longer the preferred mechanism for menus in
most applications.

The new and improved classes for menus are based on the ToolStrip and Tool-
StripItem classes, which are the base classes for all manner of toolbar objects and
the items within them. A MenuStrip class derives from ToolStrip and represents a
menu, while a ToolStripMenuItem class derives from ToolStripItem to repre-
sent an item within a menu. The ToolStrip class and associated derived classes are
shown in figure 3.5. We look at the ToolStripItem classes later in the chapter.

Between this and our prior class hierarchies, there is a lot to take in. As we did in
part 1 of the book, we lay some groundwork here for future discussion, and revisit

Figure 3.5 The ToolStrip classes replace the various bar classes available in prior versions

of the .NET Framework, including the Menu, StatusBar, and ToolBar classes. These classes

are still available to support Win32-style controls and for backward compatibility with

existing applications.

74 CHAPTER 3 MENUS

the classes mentioned in passing here later in the book. Let’s take a closer look at the
classes in this hierarchy.

The ToolStrip class is a scrollable control that contains a set of ToolStripItem
objects. While tool strips do not scroll in the traditional sense, they allow controls to
overflow into and out of the visible portion of the strip in a manner similar to scroll-
ing. We discuss the details of tool strips in chapter 16.

Menus are supported by the MenuStrip class. Menu strips behave like traditional
menus and additionally support XP and Microsoft Office styles of appearance. The
members of this class are shown in .NET Table 3.2.

The StatusStrip control is a tool strip that acts as a traditional status bar, except
that it additionally supports the functionality provided by tool strip objects. We dis-
cuss status strips in chapter 4.

Tool strip objects that do not appear directly within a control are supported by the
ToolStripDropDown class. This class is the generic base class for any drop-down
strip, and is also discussed in chapter 4.

The ContextMenuStrip class is specially designed to display menu item objects,
or instances of the ToolStripMenuItem class, in a pop-up menu. This is the
default drop-down created for drop-down items, instances of the ToolStripDrop-
DownItem class. A context menu strip can be added to any Windows Forms control
via the Control.ContextMenuStrip property. The ToolStripDropDownMenu
class can be used to provide context-like functionality in a custom class, but it pri-
marily serves as the base class for ContextMenuStrip objects.

The final control in the figure, the ToolStripOverflow class, supports the over-
flow behavior of tool strip objects. This behavior is discussed in chapter 16.

As you can see in .NET Table 3.2, most of the functionality for menu strips is con-
tained in the ToolStrip class. In order to behave more like a traditional menu, the
MenuStrip class also turns off various features of its parent class. By default, tool
strips support item overflow functionality, a positioning grip, tooltips, and the ability

B

C

D

E

F

G

.NET Table 3.2 MenuStrip class

New in 2.0 The MenuStrip class is a tool strip control that represents a menu bar on a form.
Menu strips contain one or more menu items, as ToolStripMenuItem objects, that repre-
sent clickable menus within the menu bar. This class is part of the System.Windows.Forms
namespace, and inherits from the ToolStrip class.

Public

Properties

MdiWindowListItem Gets or sets the menu item contained by this
menu strip that displays a list of MDI child
forms for the associated form object

Public

Events

MenuActivate Occurs whenever the menu is accessed via the
keyboard or mouse

MENU BARS 75

to fit multiple strips in a single row on a form. Menu strips define these properties
more appropriately for menus, so the CanOverflow property defaults to false,
rather than true as in the ToolStrip class. Similarly, the GripStyle property
defaults to Hidden; ShowToolTips to false; and Stretch to true. These and
other properties in the ToolStrip class are discussed in chapter 16.

3.3 MENU BARS

So, let’s do it. Looking at our MyPhotos
application, it would be nice to replace the
Load button with a menu option. This allows
more space in our window for the displayed
image, and permits additional commands to
be added in the future related to loading
images. As an added benefit, it provides a nice
example for this book, which is, of course, our
ultimate goal.

Our new application is shown in
figure 3.6. Load and Exit menu items have
been added to a File menu on the main menu
bar. The Load menu item replaces our Load
button from the previous chapter. The line
separating these items is called a menu separa-
tor. A View menu is also shown, which is dis-
cussed later in this section.

As you may expect, the menu bar appears in our code as a MenuStrip object.
Menus such as the File menu are represented as ToolStripMenuItem objects con-
tained within the menu strip. The Load and Exit menu items underneath the File
menu are also ToolStripMenuItem objects. The menu separator is a special Tool-
StripSeparator object.

3.3.1 Adding a menu strip

In this section, we show the steps for adding our main menu. As already mentioned,
this book uses Visual Studio for all example programs. If you are writing the code by
hand and using the C# compiler on the command line, read through the steps and
use the code inside or follow the task description as a model for your own program.
Note that the downloadable code from the book’s website alters the version number
for the program at the beginning of each section. This tracks our progress throughout
the book. If you recall, the version number is modified in the AssemblyInfo.cs file of
the project.

Before we add our menu, we need to remove the existing Load button from the
form.

Figure 3.6 Notice in this File menu

how the Load item displays Ctrl+L as

its keyboard shortcut.

76 CHAPTER 3 MENUS

With the Load button gone, our way is clear to move the Load functionality into a
menu. To do this, we need to add a MenuStrip to our form, to act as a container for
the menu items to display. The following table continues the above steps.

 REMOVE THE LOAD BUTTON

Action Result

1 Remove the Load button from the
form.

How-to

a. Right-click the Load button in the
MainForm.cs [Design] window.

b. Select the Delete option.

Alternately

Simply select the button and press the
Delete key.

Visual Studio automatically removes all generated
code related to the button from the
InitializeComponent method of the
MainForm.cs file.

Note: When a control is deleted, any assignments
of event handlers to the control are removed as
well. The actual event handling code, in this case
our btnLoad_Click method, is still in the source
file and must be removed manually.

We leave this code in the MainForm.cs file for now,
and deal with it later in the chapter.

2 Set the Dock property for the
PictureBox control to Fill.

How-to

a. Click the control.

b. Click the small arrow at the top
right of the control.

c. Click the “Dock in parent
container” link.

The PictureBox control is docked within the form
in the designer.

Note: You can, of course, assign the Dock
property as described at the end of chapter 2. The
designer provides the small arrow, called a smart
tag, for most controls to give quick access to
common settings and tasks. We do not discuss
the smart tags for every control, but you can look
for them as we progress through the book.

CREATE THE MENU BAR

3 Drag a MenuStrip object from
the Toolbox onto your form. This
object appears in the Menus and
Toolbars group within the toolbox.

A MenuStrip object called menuStrip1 is added to
your form. This object is shown within the form and in
the component tray, located below the form as in the
graphic. The component tray displays objects that may
not have a physical presence in the window, such as
timers, database connections, menu strips, and context
menu strips.

MENU BARS 77

Let’s take a look at the source code generated by these actions in the Main-
Form.Designer.cs window. As you can see in listing 3.1, the Windows Forms
Designer has replaced the button control with our menu strip. The overall structure
of this code follows what we saw in chapter 2: controls are created, layout is sus-
pended, controls are initialized, controls are added to the form, layout is resumed,
and finally the control definitions appear at the end. The annotated points highlight
the menu strip portion of this code.

 #region Windows Form Designer generated code
 . . .
 private void InitializeComponent()
 {
 this.pbxPhoto = new System.Windows.Forms.PictureBox();
 this.menuStrip1 = new System.Windows.Forms.MenuStrip();
 ((System.ComponentModel.ISupportInitialize)
 (this.pbxPhoto)).BeginInit();
 this.SuspendLayout();

 //
 // pbxPhoto
 //
 this.pbxPhoto.BorderStyle
 = System.Windows.Forms.BorderStyle.Fixed3D;
 this.pbxPhoto.Dock = System.Windows.Forms.DockStyle.Fill;
 this.pbxPhoto.Location = new System.Drawing.Point(0, 24);
 this.pbxPhoto.Name = "pbxPhoto";
 this.pbxPhoto.Size = new System.Drawing.Size(292, 242);
 this.pbxPhoto.SizeMode
 = System.Windows.Forms.PictureBoxSizeMode.Zoom;
 this.pbxPhoto.TabIndex = 1;
 this.pbxPhoto.TabStop = false;
 //
 // menuStrip1
 //
 this.menuStrip1.Location = new System.Drawing.Point(0, 0);
 this.menuStrip1.Name = "menuStrip1";
 this.menuStrip1.Size = new System.Drawing.Size(292, 24);
 this.menuStrip1.TabIndex = 2;
 this.menuStrip1.Text = "menuStrip1";
 //
 // MainForm
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(292, 266);
 this.Controls.Add(this.menuStrip1);
 this.Controls.Add(this.pbxPhoto);
 this.MainMenuStrip = this.menuStrip1;
 this.Name = "MainForm";

Listing 3.1 The designer region after adding a MenuStrip

B Initializes menu strip

Adds menu
strip to form

C

78 CHAPTER 3 MENUS

 this.Text = "MyPhotos";
 ((System.ComponentModel.ISupportInitialize)
 (this.pbxPhoto)).EndInit();
 this.ResumeLayout(false);
 this.PerformLayout();
 }
 #endregion

 private System.Windows.Forms.PictureBox pbxPhoto;
 private System.Windows.Forms.MenuStrip menuStrip1;

The MenuStrip control is initialized much like the Button and PictureBox con-
trols in chapter 2. The Dock property for a menu strip control is set to Dock-
Style.Top by default, which is why this setting does not appear here.

The strip is added to the control just like any other control, even though it really does
not have much visual presence except through its contained menu items. As we see
shortly, menu items are added to the menu strip control, rather than to the form itself.

3.3.2 Adding a menu item

With a MenuStrip on our form, we can now add menu items. You may have noticed
that the menu strip represents the container rather than the actual menu items. Each
menu item is created using the ToolStripMenuItem class. In this section we create
a top-level File menu. In the next section we create the drop-down menu that appears
when the user clicks on this menu.

B

C

CREATE THE FILE MENU

Action Result

1 Edit the menu strip in the
MainMenu.cs [Design] window.

How-to

Click on the menuStrip1 item that
appears below the form.

An empty menu bar appears at the top of the form. The
space for the first top-level menu contains the words
“Type Here.”

2 Type in a top-level File menu as
“&File.”

A File menu appears on the form.

Note: The ampersand (&) specifies the character, in
this case F, to use as the mnemonic for this menu.
Such mnemonics are used with the Alt key. In our
application the File menu is displayed whenever the
users clicks on it or when they enter Alt+F via the
keyboard.

MENU BARS 79

Your application now contains a File menu on the menu bar. The designer file has
been updated to define and initialize the menu item. The relevant portions of this
code are shown in listing 3.2. The InitializeComponent method now contains
additional lines to initialize this menu item and add it to our MenuStrip object.

 #region Windows Form Designer generated code
 . . .
 private void InitializeComponent()
 {
 this.pbxPhoto = new System.Windows.Forms.PictureBox();
 this.menuStrip1 = new System.Windows.Forms.MenuStrip();
 this.menuFile = new System.Windows.Forms.ToolStripMenuItem();
 . . .
 this.menuStrip1.SuspendLayout();
 . . .
 //
 // menuStrip1
 //
 this.menuStrip1.Items.AddRange(new
 System.Windows.Forms.ToolStripItem[] {
 this.menuFile});
 this.menuStrip1.Location = new System.Drawing.Point(0, 0);
 this.menuStrip1.Name = "menuStrip1";
 this.menuStrip1.Size = new System.Drawing.Size(292, 24);
 this.menuStrip1.TabIndex = 2;
 this.menuStrip1.Text = "menuStrip1";
 //
 // menuFile
 //
 this.menuFile.Name = "menuFile";
 this.menuFile.Size = new System.Drawing.Size(35, 20);

3 Modify the (Name) property for
this menu to be “menuFile.”

How-to

Use the Properties window for the
new File menu item, and modify
the (Name) entry.

The variable name for the control is renamed to
menuFile in the source code files.

Note: The string “&File” we entered for the menu
appears in the Text property for the item.

CREATE THE FILE MENU (CONTINUED)

Action Result

Listing 3.2 Designer code after portion of File menu is created

80 CHAPTER 3 MENUS

 this.menuFile.Text = "&File";
 . . .
 }
 #endregion

 private System.Windows.Forms.PictureBox pbxPhoto;
 private System.Windows.Forms.MenuStrip menuStrip1;
 private System.Windows.Forms.ToolStripMenuItem menuFile;

.NET Table 3.3 ToolStripMenuItem class

New in 2.0 The ToolStripMenuItem class represents a menu within a MenuStrip or Con-
textMenuStrip object, or a submenu of another ToolStripMenuItem object. ToolStrip-
MenuItem objects are displayed to the user, while MenuStrip and ContextMenuStrip
objects simply establish a container in which such menu items can appear. The ToolStrip-
MenuItem class is part of the System.Windows.Forms namespace, and inherits from the
ToolStripDropDownItem class. See .NET Table 4.2 for a list of members inherited from this
base class.

Public

Properties

Checked Gets or sets whether a checkmark appears
next to the text of the menu item.

CheckState Gets or sets a three-state value for the menu
item, based on the CheckState enumeration.
This is similar to Checked, but allows an
indeterminate setting when the checked or
unchecked state cannot be determined.

Enabled (overridden from
ToolStripItem)

Gets or sets whether the menu item is
enabled. A disabled menu is displayed in a
grayed-out color, cannot be selected, and does
not display any child menu items.

Overflow (overridden from
ToolStripItem)

Gets or sets how the menu item interacts with
an overflow button, based on the
ToolStripItemOverflow enumeration.

ShortcutKeyDisplayString Gets or sets the string to display as the
shortcut for the menu. If this is blank, the
actual shortcut key setting is shown.

ShortcutKeys Gets or sets the shortcut keys for this menu
item, using the Keys enumeration values.

ShowShortcutKeys Gets or sets whether to display the
ShortcutKeys setting when displaying the
menu.

Public

Events

CheckedChanged Occurs when the Checked property value
changes.

CheckStateChanged Occurs when the CheckState property value
changes.

MENU BARS 81

This code follows the now familiar pattern of creating the control, initializing the
control in its own section, and adding the control to a parent container. One differ-
ence here is that the File menu item is contained within the menu strip, rather than
the Form itself. Note how the menu item is added to the menuStrip1 control by
creating an array of ToolStripItem objects with menuFile as the only entry.
Arrays of objects in C# are created just like any other class, with the addition of
square brackets, [], to indicate that an array of objects should be created rather than
a single object.

The File menu is listing 3.2 is defined as a ToolStripMenuItem object. An
overview of this class appears in .NET Table 3.3. We discuss the class hierarchy for
this class in a moment.

3.3.3 Adding drop-down menu items

So far, we have created a main menu with a single File menu item. Our next step is to
create the drop-down menu, or submenu, that appears when this menu is clicked.

CREATE THE FILE DROP-DOWN MENU

Action Result

1 Create a Load menu item within the
File menu. Use the text “&Load.”

How-to

a. In the designer window, click
the File menu.

b. Press the down arrow key to
highlight the “Type Here”
entry below the File menu.

c. Enter the text “&Load.”

d. Press the Enter key.

The item appears as the first item in the drop-down
list for the File menu.

2 Display the Properties window for
the Load menu item and set the
following property values.

The modified properties are displayed in the
Properties window.

Note: The ShortcutKeys property defines a
keyboard shortcut, in this case Ctrl+L, that
immediately invokes the menu as if it were clicked,
without actually displaying the menu. In the
Properties window, the ShortcutKeys property
sports a special interface, as shown here.

Settings

Property Value

(Name) menuFileLoad
ShortcutKeys Ctrl+L

Text &Load

82 CHAPTER 3 MENUS

As you might expect, the code generated for the MainForm.cs file uses ToolStrip-
MenuItem objects to construct the drop-down list for the File menu, with the objects
initialized in the InitializeComponent method. The relevant code from the
designer generated region is extracted in listing 3.3.

 private void InitializeComponent()
 {
 this.pbxPhoto = new System.Windows.Forms.PictureBox();
 this.menuStrip1 = new System.Windows.Forms.MenuStrip();
 this.menuFile = new System.Windows.Forms.ToolStripMenuItem();
 this.menuFileLoad
 = new System.Windows.Forms.ToolStripMenuItem();
 this.toolStripMenuItem1
 = new System.Windows.Forms.ToolStripSeparator();

3 Add a menu separator after the
Load menu.

How-to

Enter a dash (-) character as the text
for the menu.

Alternately

Select Separator from the drop-
down menu associated with the
item, as shown here.

A menu separator is added to the menu. This item is
implemented as a ToolStripSeparator object.
We retain the default (Name) and other settings for
this item.

4 Finally, add the Exit menu item,
assigning the properties as follows.

This completes the File menu, at least for now.

Note: Of course, the Windows keyboard shortcut
Alt-F4 can be used to close the application. There is
no need to add this keystroke to our menu as it is
imposed by the operating system.

CREATE THE FILE DROP-DOWN MENU (CONTINUED)

Action Result

Settings

Property Value

(Name) menuFileExit
Text E&xit

Listing 3.3 Designer code after complete File menu is created

MENU BARS 83

 this.menuFileExit = new . . .;
 . . .
 this.menuStrip1.Items.AddRange(
 new System.Windows.Forms.ToolStripItem[] {
 this.menuFile});
 . . .
 //
 // menuFile
 //
 this.menuFile.DropDownItems.AddRange(
 new System.Windows.Forms.ToolStripItem[] {
 this.menuFileLoad,|#1
 this. toolStripMenuItem1,|#1
 this.menuFileExit});|#1
 . . .
 //
 // menuFileLoad
 //
 this.menuFileLoad.Name = "menuFileLoad";
 this.menuFileLoad.ShortcutKeys = ((System.Windows.Forms.Keys)
 ((System.Windows.Forms.Keys.Control
 | System.Windows.Forms.Keys.L)));
 this.menuFileLoad.Size = new System.Drawing.Size(152, 22);
 this.menuFileLoad.Text = "&Load";
 //
 // toolStripMenuItem1
 //
 this.toolStripMenuItem1.Name = "toolStripSeparator1";
 this.toolStripMenuItem1.Size = new System.Drawing.Size(149, 6);
 //
 // menuFileExit
 //
 this.menuFileExit.Name = "menuFileExit";
 this.menuFileExit.Size = new System.Drawing.Size(152, 22);
 this.menuFileExit.Text = "E&xit";
 . . .
 }
 . . .
 private System.Windows.Forms.MenuStrip menuStrip1;
 private System.Windows.Forms.ToolStripMenuItem menuFile;
 private System.Windows.Forms.ToolStripMenuItem menuFileLoad;
 private System.Windows.Forms.ToolStripSeparator
 toolStripMenuItem1;
 private System.Windows.Forms.ToolStripMenuItem menuFileExit;

While much of this code is similar to what we have seen for other controls, a couple
aspects are worth highlighting:

The items to appear under the File menu are added by constructing an array of the
desired objects and assigning them to the menuFile.DropDownItems property.
The ToolStripMenuItem class derives from the ToolStripDropDownItem class.

B Creates File
drop-down menu

C
Defines keyboard

shortcut

B

84 CHAPTER 3 MENUS

This base class defines the DropDownItems property used here, which contains the
collection of items to associate with the menu. The AddRange method on this collec-
tion adds a set of items to the menu. The order of objects in the array establishes the
order in which these items appear within the File menu.

The Ctrl+L shortcut for the Load menu item is defined through the use of the Sys-
tem.Windows.Forms.Keys enumeration. Note how the Keys.Control and
Keys.L values are or’d together using the vertical bar (|) operator.

If you wish to see the application so far, compile and run the code to view the File
menu. You may notice that our menus still do not actually do anything. To fix this, we
need to handle the Click event on our menus, which is the subject of our final section.

The ToolStripMenuItem class used to define the Load and Exit menu items, as
well as the File menu, is part of the ToolStripItem class hierarchy. This class is a
component, and serves as the base class for the various tool strip items available in
Windows Forms. Since this class is not a control, it defines a number of members
similar to the Control class discussed earlier in the chapter to maintain consistency
between control and tool strip item objects. We discuss the StatusStrip and Con-
textMenuStrip classes in the next chapter; and ToolStrip classes in general in
chapter 16. Here, let’s take a quick look at the rather large ToolStripItem class
hierarchy, as shown in figure 3.7. Let’s discuss the annotated areas:

The ToolStripItem class is the basis for the hierarchy in the figure. Details on this
class appear in .NET Table 3.4.

A common use of tool strips is to display a button that responds to a click of the
mouse, much like a normal button on a form. The ToolStripButton class encap-
sulates this functionality.

One of the more interesting features of tool strips is their ability to host almost any
Windows Forms control as an item within the strip. The ToolStripControlHost
class encapsulates this functionality, with predefined classes for the ComboBox, Pro-
gressBar, and TextBox controls. The base class can be used to host other controls
as well, as we see in chapter 16.

Some tool strip items support the ability to display additional items in an associated
drop-down list, such as a menu item that displays a submenu. The ToolStrip-
DropDownItem class is the base class for such items, and uses a ToolStripDrop-
Down instance as a container for the set of drop-down items. We have already used
the ToolStripMenuItem class for our menu items. The ToolStripDropDown-
Button item is a button that displays a drop-down list when clicked. The Tool-
StripSplitButton item is a normal button next to a drop-down button, such as
a graphic with an associated drop-down arrow used in many applications. We discuss
these and other tool strip items, including the overflow functionality supported by
the ToolStripOverflowButton class, in chapter 16.

C

B

C

D

E

MENU BARS 85

The ToolStripLabel class displays nonselectable text and graphics, or can link to
other information by acting as a hyperlink. A special type of label is the text that
appears in a status bar, represented by the ToolStripStatusLabel class discussed
in the next chapter.

When a large number of items appear in a single strip, whether buttons in a toolbar
or menu items in a menu, there is a need to partition the strip into logical areas to
make it easier for users to locate and understand the desired functionality. The
ToolStripSeparator class encapsulates this functionality, as we saw for the sepa-
rator between our Load and Exit menu items.

Figure 3.7 The classes derived from ToolStripItem are all components, and cannot

exist on a form outside of a ToolStrip object.

F

G

86 CHAPTER 3 MENUS

.NET Table 3.4 ToolStripItem class

New in 2.0 The ToolStripItem class is a component that represents an item on a Tool-
Strip object, and encapsulates the standard functionality used by all tool strip items. This
class is part of the System.Windows.Forms namespace, and inherits from the System.Com-
ponentModel.Component class.

Public

Properties

AllowDrop Gets or sets whether item reordering and drag-and-drop
operations use the default (false) or custom behavior
(true).

Alignment Gets or sets whether the item aligns toward the
beginning or end of the containing tool strip.

Anchor Gets or sets how the item attaches to the edges of its
container. A Dock property also exists.

BackColor Gets or sets the background color of the item.

ClientRectangle Gets the area where content can be drawn within the
item without overwriting background borders.

DisplayStyle Gets or sets the ToolStripItemDisplayStyle
enumeration value that defines whether text and
images are displayed for the item.

Enabled Gets or sets whether this item can respond to user
interaction.

Image Gets or sets the image displayed on the item.

MergeAction Gets or sets how the item merges into a target tool
strip.

Parent Gets or sets the parent of this item.

Text Gets or sets the text associated with this item.

ToolTipText Gets or sets the tooltip text. If not set and
AutoToolTip is true, the Text property is used as
the tooltip.

Visible Gets or sets whether item and any subitems are visible.

Public

Methods

Invalidate Indicates that all or part of the item should be redrawn.

PerformClick Invokes the Click event behavior for this item.

Public

Events

Click Occurs when the item is clicked.

DragDrop Occurs when a drag-and-drop operation on the item is
completed.

MouseUp Occurs when a mouse button is released within the
bounds for the item.

Paint Occurs when all or part of the item should be repainted.

MENU HANDLING 87

3.4 MENU HANDLING

A menu, of course, is not very useful if you can’t make it do something. In this section
we define some event handlers for our File menu items, and examine how event han-
dlers work in more detail than we covered in prior chapters.

In part 1 we saw how an event was defined using the += syntax in C#, and how
Visual Studio generates this code whenever an event is defined for a Windows Forms
control. Events can be added from the Windows Forms Designer window directly, or
via the Properties window. We discuss and demonstrate each method separately in
the context of our File menu items.

3.4.1 Adding handlers via the designer window

As you may expect, Visual Studio adds a Click event handler whenever you double-
click a menu item control in the Windows Forms Designer window. We saw this
behavior for buttons in chapter 2, so let’s use this feature to add a handler to the Load
menu item here.

Since this code matches the handler we discussed in chapter 2 for the Load but-
ton, we will not discuss it again.

Compile the application to verify that the Load menu item works just like the
Load button in chapter 2. You should be able to load a new image using the menu
bar via the mouse, using the access keys Alt+F and then Alt+L to invoke the menu
item from the keyboard, or using the keyboard shortcut Ctrl+L.

ADD CLICK HANDLER FOR THE LOAD MENU

Action Result

1 In the MainForm.cs
[Design] window, add
a Click handler for
the Load menu item.

How-to

Double-click the Load
menu item.

A new event handler for the item is added and the cursor is placed
in the code window within the newly added handler.

 private void menuFileLoad_Click(
 object sender, EventArgs e)
 {
 }
The new handler is also registered as a Click handler for the item
in the InitializeComponent method of the
MainForm.Designer.cs file.

 menuFileLoad.Click += new System.EventHandler
 (this.menuFileLoad_Click);

88 CHAPTER 3 MENUS

3.4.2 Adding handlers via the properties window

Most controls in Windows Forms define a default
event. Visual Studio adds an event handler for this
event whenever a control is double-clicked in the
designer window. As we have seen, the default event
for button and menu controls is the Click event. We
discuss default events for other controls throughout
the book.

The .NET classes provide a rich set of events for
everything from key presses and mouse clicks to
redrawing or resizing a control. To support these and
other events, Visual Studio provides a generic way to
add event handlers using the Properties window.

We have seen how the Properties window provides
the list of properties associated with a specific control.
It also provides the list of events and allows new event
handlers to be added, as illustrated in figure 3.8. Note
the small toolbar buttons between the object drop-
down and the list of object members. Clicking the
Properties button displays a list of properties for the

2 Copy the code from
the now defunct
btnLoad_Click
handler into our new
method and delete the
old method.

Note: Unless you
removed it, the code
for btnLoad_Click
should still be
present in your
MainForm.cs file.

This code is identical to the code used with our Load button in
chapter 2; it is just invoked via a menu item rather than a button.

 private void menuFileLoad_Click
 (object sender, System.EventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Title = "Load Photo";
 dlg.Filter = "jpg files (*.jpg)"
 + "|*.jpg|All files (*.*)|*.*";

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 try
 {
 pbxPhoto.Image = new Bitmap(dlg.OpenFile());
 }
 catch (ArgumentException ex)
 {
 MessageBox.Show("Unable to load file: "
 + ex.Message);
 }
 }
 dlg.Dispose();
 }

ADD CLICK HANDLER FOR THE LOAD MENU (CONTINUED)

Action Result

Figure 3.8 This Properties

window shows the events for

the Load menu item in our ap-

plication, including the menu-

FileLoad _Click event handler.

MENU HANDLING 89

current object. If you click the Events button, the lightning bolt icon, this window
displays a list of events. The events for our menuFileLoad menu item are shown in
the figure.

We can use this window to add an event handler for the Exit menu item. The fol-
lowing steps add a Click event handler for this menu that closes the application.

The Form.Close method is used to exit the application. This method closes the asso-
ciated Form, or the entire application if the form was the startup window for the
application.

As you may have noticed in chapter 1, the Application class provides an Exit
method that we could use instead here. This call forces all message loops started by
Application.Run methods to exit, and closes any forms associated with them as well.

In our existing code, either method would close the application. As we discuss in
chapter 7, however, the Close method ensures that all resources associated with a
form are disposed, and invokes various closing events to permit additional processing
as required. As a result, use of the Close method is normally preferred to exit a Form
rather than the Application.Exit method.

ADD A CLICK HANDLER FOR THE EXIT MENU ITEM

Action Result

1 Display the Events for the
Exit menu item in the
Properties toolbar.

How-to

Display the Properties
window for the item and
click the Events button.

2 Double-click the Click item
listed in the window.

A Click event handler is added to the menuFileExit
object.

 private void menuFileExit_Click(
 object sender, EventArgs e)
 {

3 Call the Form.Close
method within this handler.

 Close();
 }

Note: The code for this event handler is split across steps 2
and 3. We do this throughout the book as a convenient way
to discuss different portions of code for a single member of a
class.

90 CHAPTER 3 MENUS

TRY IT! Compile and run the code to verify that the Load and Exit menu items
now work. If you feel like experimenting, here are a couple areas worth
exploring:

• Set the ShowShortcutKeys property for the Load menu item to
false in order to prevent the Ctrl+L shortcut from appearing on
the menu. Note that the keyboard shortcut still works, even though it
is not displayed.

• Modify the Enabled and Visible properties for the Exit menu
item to see how they change the behavior of this menu when the
application runs.

• Create a new Clear item between the Load item and the subsequent
separator that clears the picture box control by assigning null to the
Image property.

Our handling of the File menu is now complete, and we have seen the two main ways
to add event handlers in Visual Studio.

Sit back for a moment and think about what we have done here. If you have used
Visual C++ with MFC, realize that the secret macros and magic interface files
required by this environment are gone. In their place are well-designed objects that
can quickly and easily be used to create arbitrarily complex menu structures. Also
realize that we created these menus with very little explicit code. The designer inter-
face handled much of the work required to define and arrange these menus within
the application.

3.5 RECAP

In this chapter we modified our application to use a Load menu item, rather than a
Load button to open and display an image in the PictureBox control. We looked at
various kinds of menus, and examined the classes required to build and manipulate
menus in Windows applications with the .NET Framework.

Along the way we took a quick tour through many of the foundational classes in
the Windows Forms namespace. We discussed how the Component class is the basis
for objects that can exist within a container, and the Control class is the basis for all
Windows Forms controls. We also saw the class hierarchy for the Form class, includ-
ing the ScrollableControl and ContainerControl classes.

We discussed the different types of menus, and the MenuStrip and ToolStrip-
MenuItem classes used to create menus in Windows Forms. The MenuStrip class is
part of the ToolStrip classes that are used to define menu bars, status bars, and all
manner of tool bars in .NET. These classes display the ToolStripItem classes
within their borders to represent various types of items. The ToolStripMenuItem
class is one such item, and represents a menu item within a menu. We also saw the
ToolStripSeparator class, used to create a separator line within a menu.

RECAP 91

The Visual Studio interface for creating menus was also discussed, and we created
some top-level menus for our sample MyPhotos application. We looked at the code
generated for these menus, and how collections of menus are defined as arrays within
the designer file.

In chapter 4 we discuss additional aspects of tool strips in Windows Forms by
examining the classes for creating context menus and status bars.

