SAMPLE CHAPTER

THIRD EDITION

Dottie
Text Box
SAMPLE CHAPTER

Android in Action, Third Edition
by W. Frank Abelson
Robi Sen
Chris King
C. Enrique Ortiz

Chapter 1

Copyright 2011 Manning Publications

brief contents

PART 1 WHAT IS ANDROID? THE BIG PICTURE....ccceeeteesceescescesees 1
1 = Introducing Android 3

2 = Android’s development environment 33

PART 2 EXERCISING THE ANDROID SDKceutieieirierererereecncenens 63

= User interfaces 65

= Intents and Services 102

= Storing and retrieving data 130
Networking and web services 160
= Telephony 188

= Notifications and alarms 206

© 00 N O O &~ W
|

= Graphics and animation 226
10 = Multimedia 260

11 = Location, location, location 284

PART 3 ANDROID APPLICATIONS «eteeeereescecescescescscessescssessescscese 309

12 = Putting Android to work in a field service application 311
13 = Building Android applications in C 356

vi BRIEF CONTENTS

PART 4 THE MATURING PLATFORM .ccueeeeeeereeseescescenscescessossonses

14 = Bluetooth and sensors 385

15 = Integration 405

16 = Android web development 439

17 = AppWidgets 472

18 = Localization 509

19 = Android Native Development Kit 524
20 = Activity fragments 545

21 = Android 3.0 action bar 560

22 = Drag-and-drop 579

Introducing Androwd

This chapter covers

Exploring Android, the open source phone and
tabtet platform

Android Intents, the way things work
Sample application

You’ve heard about Android. You've read about Android. Now it’s time to begin
unlocking Android.

Android is a software platform that’s revolutionizing the global cell phone mar-
ket. It’s the first open source mobile application platform that’s moved the needle
in major mobile markets around the globe. When you’re examining Android,
there are a number of technical and marketrelated dimensions to consider. This
first section introduces the platform and provides context to help you better under-
stand Android and where it fits in the global cell phone scene. Moreover, Android
has eclipsed the cell phone market, and with the release of Android 3.X has begun
making inroads into the tablet market as well. This book focuses on using SDKs
from 2.0 to 3.X.

Android is primarily a Google effort, in collaboration with the Open Handset
Alliance. Open Handset Alliance is an alliance of dozens of organizations commit-
ted to bringing a “better” and more “open” mobile phone to market. Considered a

1.1

CHAPTER 1 Introducing Android

novelty at first by some, Android has grown to become a market-changing player in a
few short years, earning both respect and derision alike from peers in the industry.

This chapter introduces Android—what it is, and, equally important, what it’s not.
After reading this chapter, you’ll understand how Android is constructed, how it com-
pares with other offerings in the market, and what its foundational technologies are,
plus you’ll get a preview of Android application architecture. More specifically, this
chapter takes a look at the Android platform and its relationship to the popular Linux
operating system, the Java programming language, and the runtime environment
known as the Dalvik virtual machine (VM).

Java programming skills are helpful throughout the book, but this chapter is more
about setting the stage than about coding specifics. One coding element introduced
in this chapter is the Intent class. Having a good understanding of and comfort level
with the Intent class is essential for working with the Android platform.

In addition to Intent, this chapter introduces the four main application compo-
nents: Activity, Service, ContentProvider, and BroadcastReceiver. The chapter
concludes with a simple Android application to get you started quickly.

The Android platform

Android is a software environment built for mobile devices. It’s not a hardware plat-
form. Android includes a Linux kernel-based OS, a rich Ul, end-user applications,
code libraries, application frameworks, multimedia support, and much more. And,
yes, even telephone functionality is included! Whereas components of the underlying
OS are written in C or C++, user applications are built

for Android in Java. Even the built-in applications are

written in Java. With the exception of some Linux Android Software

exploratory exercises in chapter 13 and the Native Environment

Developer Kit (NDK) in chapter 19, all the code

examples in this book are written in Java, using the

Android sofi d 1 kit (SDK Custom & built-in
roid software development kit (SDK). applications
One feature of the Android platform is that written in Java

there’s no difference between the builtin applica-

Dalvik virtual
tions and applications that you create with the SDK. machine

This means that you can write powerful applications Linux Kernel

to tap into the resources available on the device. Fig-
ure 1.1 shows the relationship between Android and

the hardware it runs on. The most notable feature of
Android might be that it’s open source; missing ele-

ments can and will be provided by the global devel- . L
Figure 1.1 Android is software

oper community. Android’s Linux kernel-based OS only. By leveraging its Linux kernel
doesn’t come with a sophisticated shell environment, to interface with the hardware,
Android runs on many different
devices from multiple cell phone
manufacturers. Developers write
can be supplied by third-party developers and don’t applications in Java.

but because the platform is open, you can write and
install shells on a device. Likewise, multimedia codecs

http://www.manning.com/catalog/java
http://www.manning.com/catalog/java
http://www.manning.com/catalog/java

1.2

1.2.1

Understanding the Android market 5

need to rely on Google or anyone else to provide new functionality. That’s the power
of an open source platform brought to the mobile market.

PLATFORM VS. DEVICE Throughout this book, wherever code must be tested
or exercised on a device, a software-based emulator is typically employed. An
exception is in chapter 14 where Bluetooth and Sensors are exercised. See
chapter 2 for information on how to set up and use the Android emulator.

The term platform refers to Android itself—the software—including all the
binaries, code libraries, and tool chains. This book focuses on the Android
platform; the Android emulators available in the SDK are simply components
of the Android platform.

With all of that as a backdrop, creating a successful mobile platform is clearly a non-
trivial task involving numerous players. Android is an ambitious undertaking, even for
Google, a company of seemingly boundless resources and moxie—and they're getting
the job done. Within a span of three years, Android has seen numerous major soft-
ware releases, the release of multiple handsets across most major mobile carriers in
the global market, and most recently the introduction of Android-powered tablets.
Now that you’ve got an introduction to what Android is, let’s look at the why and
where of Android to provide some context and set the perspective for Android’s intro-
duction to the marketplace. After that, it’s on to exploring the platform itself!

Understanding the Android market

Android promises to have something for everyone. It aims to support a variety of hard-
ware devices, not just high-end ones typically associated with expensive smartphones.
Of course, Android users will enjoy improved performance on a more powerful
device, considering that it sports a comprehensive set of computing features. But how
well can Android scale up and down to a variety of markets and gain market and mind
share? How quickly can the smartphone market become the standard? Some folks are
still clinging to phone-only devices, even though smartphones are growing rapidly in
virtually every demographic. Let’s look at Android from the perspective of a few exist-
ing players in the marketplace. When you’re talking about the cellular market, the
place to start is at the top, with the carriers, or as they're sometimes referred to, the
mobile operators.

Mobile operators

Mobile operators (the cell phone companies such as AT&T and Verizon) are in the
business, first and foremost, of selling subscriptions to their services. Shareholders
want a return on their investment, and it’s hard to imagine an industry where there’s a
larger investment than in a network that spans such broad geographic territory. To
the mobile operator, cell phones are simultaneously a conduit for services, a drug to
entice subscribers, and an annoyance to support and lock down.

Some mobile operators are embracing Android as a platform to drive new data ser-
vices across the excess capacity operators have built into their networks. Data services

122

CHAPTER 1 Introducing Android

represent high-premium services and high-margin revenues for the operator. If
Android can help drive those revenues for the mobile operator, all the better.

Other mobile operators feel threatened by Google and the potential of “free wire-
less,” driven by advertising revenues and an upheaval of the market. Another challenge
for mobile operators is that they want the final say on what services are enabled across
their networks. Historically, handset manufacturers complain that their devices are
handicapped and don’t exercise all the features designed into them because mobile
operators lack the capability or willingness to support those features. An encouraging
sign is that there are mobile operators involved in the Open Handset Alliance.

Let’s move on to a comparison of Android and existing cell phones on the market
today.

Android vs. the feature phones

The majority of cell phones on the market continue to be consumer flip phones and
feature phones—phones that aren’t smartphones.! These phones are the ones consum-
ers get when they walk into the retailer and ask what can be had for free. These con-
sumers are the “I just want a phone” customers. Their primary interest is a phone for
voice communications, an address book, and increasingly, texting. They might even
want a camera. Many of these phones have addi-
tional capabilities such as mobile web browsing,

but because of relatively poor user experience,
@ ol = 123940

these features aren’t employed heavily. The one
exception is text messaging, which is a dominant
application no matter the classification of device.
Another increasingly in-demand category is loca-
tion-based services, which typically use the Globai
Positioning System (GPS).

Android’s challenge is to scale down to this
market. Some of the bells and whistles in
Android can be left out to fit into lower-end
hardware. One of the big functionality gaps on
these lower-end phones is the web experience
the user gets. Part of the problem is screen size,
but equally challenging is the browser technol-
ogy itself, which often struggles to match the rich
web experience of desktop computers. Android
features the marketleading WebKit browser
engine, which brings desktop-compatible brows-

android - Google Search

Web Images Maps News Shopping Gmail m

G 0 L)gle androld

Web Video Images Results 1 10 of about 10,800.9

Android Platform Sponsored Link
code google.com/androld Learn about the platform and
et an early look at the Androld SDK

Android
Official website. Provides a project documentation and links b
downlcad the Android SDK.

code. |
What Is Android? - Android

an operating m, I
arly ook at the Android
el <

Figure 1.2 Android’s built-in browser
technology is based on WebKit’s browser
engine.

ing to the mobile arena. Figure 1.2 shows WebKit
in action on Android. If a rich web experience

I About 25% of phones sold in the second quarter of 2011 were smartphones: http://www.gartner.com/it/
page.jsp?id=1764714.

http://www.gartner.com/it/page.jsp?id=1764714
http://www.gartner.com/it/page.jsp?id=1764714

1.23

Understanding the Android market 7

can be effectively scaled down to feature phone class hardware, it would go a long way
toward penetrating this end of the market. Chapter 16 takes a close look at using web
development skills for creating Android applications.

WEBKIT The WebKit (www.webkit.org) browser engine is an open source
project that powers the browser found in Macs (Safari) and is the engine
behind Mobile Safari, which is the browser on the iPhone. It’s not a stretch to
say that the browser experience is one of a few features that made the iPhone
popular out of the gate, so its inclusion in Android is a strong plus for
Android’s architecture.

Software at the lower end of the market generally falls into one of two camps:

= Qualcomm’s BREW environment—BREW stands for Binary Runtime Environment
for Wireless. For a high-volume example of BREW technology, consider Veri-
zon’s Get It Now-capable devices, which run on this platform. The challenge for
software developers who want to gain access to this market is that the bar to get
an application on this platform is high, because everything is managed by the
mobile operator, with expensive testing and revenue-sharing fee structures. The
upside to this platform is that the mobile operator collects the money and dis-
burses it to the developer after the sale, and often these sales recur monthly.
Just about everything else is a challenge to the software developer. Android’s
open application environment is more accessible than BREW.

= Java ME, or Java Platform, Micro Edition—A popular platform for this class of
device. The barrier to entry is much lower for software developers. Java ME
developers will find a same-but-different environment in Android. Android isn’t
strictly a Java ME-compatible platform, but the Java programming environment
found in Android is a plus for Java ME developers. There are some projects
underway to create a bridge environment, with the aim of enabling Java ME
applications to be compiled and run for Android. Gaming, a better browser,
and anything to do with texting or social applications present fertile territory
for Android at this end of the market.

Although the majority of cell phones sold worldwide are not considered smartphones,
the popularity of Android (and other capable platforms) has increased demand for
higher-function devices. That’s what we’re going to discuss next.

Android vs. the smartphones

Let’s start by naming the major smartphone players: Symbian (big outside North
America), BlackBerry from Research in Motion, iPhone from Apple, Windows
(Mobile, SmartPhone, and now Phone 7), and of course, the increasingly popular
Android platform.

One of the major concerns of the smartphone market is whether a platform can
synchronize data and access Enterprise Information Systems for corporate users.
Device-management tools are also an important factor in the enterprise market. The

www.webkit.org

1.24

CHAPTER 1 Introducing Android

browser experience is better than with the lower-end phones, mainly because of larger
displays and more intuitive input methods, such as a touch screen, touch pad, slide-
out keyboard, or jog dial.

Android’s opportunity in this market is to provide a device and software that peo-
ple want. For all the applications available for the iPhone, working with Apple can be
a challenge; if the core device doesn’t suit your needs, there’s little room to maneuver
because of the limited models available and historical carrier exclusivity. Now that
email, calendaring, and contacts can sync with Microsoft Exchange, the corporate
environment is more accessible, but Android will continue to fight the battle of scal-
ing the Enterprise walls. Later Android releases have added improved support for the
Microsoft Exchange platform, though third-party solutions still out-perform the built-
in offerings. BlackBerry is dominant because of its intuitive email capabilities, and the
Microsoft platforms are compelling because of tight integration to the desktop experi-
ence and overall familiarity for Windows users. iPhone has surprisingly good integra-
tion with Microsoft Exchange—for Android to compete in this arena, it must
maintain parity with iPhone on Enterprise support.

You’ve seen how Android stacks up next to feature phones and smartphones. Next,
we’ll see whether Android, the open source mobile platform, can succeed as an open
source project.

Android vs. itself

Android will likely always be an open source project, but to succeed in the mobile mar-
ket, it must sell millions of units and stay fresh. Even though Google briefly entered the
device fray with its Nexus One and Nexus S phones, it’s not a hardware company. His-
torically, Android-powered devices have been brought to market by others such as
HTC, Samsung, and Motorola, to name the larger players. Starting in mid-2011, Google
began to further flex its muscles with the acquisition of Motorola’s mobile business
division. Speculation has it that Google’s primary interest is in Motorola’s patent port-
folio, because the intellectual property scene has heated up considerably. A secondary
reason may be to acquire the Motorola Xoom platform as Android continues to reach
beyond cell phones into tablets and beyond.

When a manufacturer creates an Android-powered device, they start with the
Android Open Source Platform (AOSP) and then extend it to meet their need to dif-
ferentiate their offerings. Android isn’t the first open source phone, but it’s the first
from a player with the market-moving weight of Google leading the charge. This mar-
ket leadership position has translated to impressive unit sales across multiple manu-
facturers and markets around the globe. With a multitude of devices on the market,
can Android keep the long-anticipated fragmentation from eroding consumer and
investor confidence?

Open source is a double-edged sword. On one hand, the power of many talented
people and companies working around the globe and around the clock to deliver
desirable features is a force to be reckoned with, particularly in comparison with a tra-
ditional, commercial approach to software development. This topic has become trite

1.2.5

Understanding the Android market 9

because the benefits of open source development are well documented. On the other
hand, how far will the competing manufacturers extend and potentially split Android?
Depending on your perspective, the variety of Android offerings is a welcome alterna-
tive to a more monolithic iPhone device platform where consumers have few choices
available.

Another challenge for Android is that the licensing model of open source code
used in commercial offerings can be sticky. Some software licenses are more restrictive
than others, and some of those restrictions pose a challenge to the open source label.
At the same time, Android licensees need to protect their investment, so licensing is
an important topic for the commercialization of Android.

Licensing Android

Android is released under two different open source licenses. The Linux kernel is
released under the GNU General Public License (GPL) as is required for anyone licensing
the open source OS kernel. The Android platform, excluding the kernel, is licensed
under the Apache Software License (ASL). Although both licensing models are open
source—oriented, the major difference is that the Apache license is considered friend-
lier toward commercial use. Some open source purists might find fault with anything
but complete openness, source-code sharing, and noncommercialization; the ASL
attempts to balance the goals of open source with commercial market forces. So far
there has been only one notable licensing hiccup impacting the Android mod com-
munity, and that had more to do with the gray area of full system images than with a
manufacturer’s use of Android on a mainstream product release. Currently, Android
is facing intellectual property challenges; both Microsoft and Apple are bringing liti-
gation against Motorola and HTC for the manufacturer’s Android-based handsets.
The high-level, market-oriented portion of the book has now concluded! The
remainder of this book is focused on Android application development. Any technical
discussion of a software environment must include a review of the layers that compose
the environment, sometimes referred to as a stack because of the layer-upon-layer con-
struction. Next up is a high-level breakdown of the components of the Android stack.

Selling applications

A mobile platform is ultimately valuable only if there are applications to use and enjoy
on that platform. To that end, the topic of buying and selling applications for Android
is important and gives us an opportunity to highlight a key difference between Android
and the iPhone. The Apple App Store contains software titles for the iPhone—Ilots of
them. But Apple’s somewhat draconian grip on the iPhone software market requires
that all applications be sold through its venue. Although Apple’s digital rights man-
agement (DRM) is the envy of the market, this approach can pose a challenging envi-
ronment for software developers who might prefer to make their application available
through multiple distribution channels.

10

1.3

CHAPTER 1 Introducing Android

(continued)

Contrast Apple’s approach to application distribution with the freedom Android
developers enjoy to ship applications via traditional venues such as freeware and
shareware, and commercially through various marketplaces, including their own
website! For software publishers who want the focus of an on-device shopping expe-
rience, Google has launched and continues to mature the Android Market. For soft-
ware developers who already have titles for other platforms such as Windows
Mobile, Palm, and BlackBerry, traditional software markets such as Handango
(www.Handango.com) also support selling Android applications. Handango and its
ilk are important outlets; consumers new to Android will likely visit sites such as
Handango because that might be where they first purchased one of their favorite
applications for their prior device.

The layers of Android

The Android stack includes an impressive array of features for mobile applications. In
fact, looking at the architecture alone, without the context of Android being a plat-
form designed for mobile environments, it would be easy to confuse Android with a
general computing environment. All the major components of a computing platform
are there. Here’s a quick rundown of prominent components of the Android stack:

= A Linux kernel that provides a foundational hardware abstraction layer, as well as
core services such as process, memory, and filesystem management. The kernel
is where hardware-specific drivers are implemented—capabilities such as Wi-Fi
and Bluetooth are here. The Android stack is designed to be flexible, with
many optional components that largely rely on the availability of specific hard-
ware on a given device. These components include features such as touch
screens, cameras, GPS receivers, and accelerometers.
= Prominent code libraries, including the following:
® Browser technology from WebKit, the same open source engine powering
Mac’s Safari and the iPhone’s Mobile Safari browser. WebKit has become the
de facto standard for most mobile platforms.
¢ Database support via SQLite, an easy-to-use SQL database.
¢ Advanced graphics support, including 2D, 3D, animation from Scalable
Games Language (SGL), and OpenGL ES.
¢ Audio and video media support from PacketVideo’s OpenCORE, and
Google’s own Stagefright media framework.
¢ Secure Sockets Layer (SSL) capabilities from the Apache project.
= An array of managers that provide services for
e Activities and views
¢ Windows
® Location-based services
¢ Telephony
¢ Resources

http://www.Handango.com

13.1

The layers of Android 11

= The Android runtime, which provides
* Core Java packages for a nearly fullfeatured Java programming environ-
ment. Note that this isn’t a Java ME environment.
¢ The Dalvik VM, which employs services of the Linux-based kernel to provide an
environment to host Android applications.

Both core applications and third-party applications (such as the ones you’ll build in
this book) run in the Dalvik VM, atop the com-
ponents we just listed. You can see the relation-
ship among these layers in figure 1.3.

User applications: Contacts, phone, browser, etc.

TIP Without question, Android devel- Application managers: Windows, content, activities,
. . telephony, location, notifications, etc.

opment requires Java programming

skills. To get the most out of this book,

be sure to brush up on your Java pro-

gramming knowledge. There are many

Android runtime: Java via Dalvik VM

Libraries: Graphics, media, database,

]ava references on the internet, and no communications, browser engine, etc.
shortage of Java books on the market.

An excellent source of Java titles can | Linux kernel, including device drivers I
be found at www.manning.com/

catalog/java. Hardware device with specific capabilities such

as GPS, camera, Bluetooth, etc.

Now that we’ve shown you the obligatory stack
diagram al}d introduced all t.he layers, let’s Figure 1.3 The Android stack offers an
look more in depth at the runtime technology impressive array of technologies and

that underpins Android. capabilities.

Building on the Linux kernel

Android is built on a Linux kernel and on an advanced, optimized VM for its Java appli-
cations. Both technologies are crucial to Android. The Linux kernel component of the
Android stack promises agility and portability to take advantage of numerous hardware
options for future Android-equipped phones. Android’s Java environment is key: it
makes Android accessible to programmers because of both the number of Java soft-
ware developers and the rich environment that Java programming has to offer.

Why use Linux for a phone? Using a full-featured platform such as the Linux ker-
nel provides tremendous power and capabilities for Android. Using an open source
foundation unleashes the capabilities of talented individuals and companies to move
the platform forward. Such an arrangement is particularly important in the world of
mobile devices, where products change so rapidly. The rate of change in the mobile
market makes the general computer market look slow and plodding. And, of course,
the Linux kernel is a proven core platform. Reliability is more important than perfor-
mance when it comes to a mobile phone, because voice communication is the primary
use of a phone. All mobile phone users, whether buying for personal use or for a busi-
ness, demand voice reliability, but they still want cool data features and will purchase a
device based on those features. Linux can help meet this requirement.

http://www.manning.com/catalog/java
http://www.manning.com/catalog/java

12

132

CHAPTER 1 Introducing Android

Speaking to the rapid rate of phone turnover and accessories hitting the market,
another advantage of using Linux as the foundation of the Android platform stack is
that it provides a hardware abstraction layer; the upper levels remain unchanged
despite changes in the underlying hardware. Of course, good coding practices
demand that user applications fail gracefully in the event a resource isn’t available,
such as a camera not being present in a particular handset model. As new accessories
appear on the market, drivers can be written at the Linux level to provide support, just
as on other Linux platforms. This architecture is already demonstrating its value;
Android devices are already available on distinct hardware platforms. HTC, Motorola,
and others have released Android-based devices built on their respective hardware
platforms. User applications, as well as core Android applications, are written in Java
and are compiled into byte codes. Byte codes are interpreted at runtime by an inter-
preter known as a virtual machine (VM).

Running in the Dalvik VM

The Dalvik VM is an example of the need for efficiency, the desire for a rich program-
ming environment, and even some intellectual property constraints, colliding, with
innovation as the result. Android’s Java environment provides a rich application plat-
form and is accessible because of the popularity of Java itself. Also, application perfor-
mance, particularly in a low-memory setting such as you find in a mobile phone, is
paramount for the mobile market. But this isn’t the only issue at hand.

Android isn’ta Java ME platform. Without commenting on whether this is ultimately
good or bad for Android, there are other forces at play here. There’s the matter of Java
VM licensing from Oracle. From a high level, Android’s code environment is Java.
Applications are written in Java, which is compiled to Java byte codes and subsequently
translated to a similar but different representation called dex files. These files are logi-
cally equivalent to Java byte codes, but they permit Android to run its applications in its
own VM that’s both (arguably) free from Oracle’s licensing clutches and an open plat-
form upon which Google, and potentially the open source community, can improve as
necessary. Android is facing litigation challenges from Oracle about the use of Java.

NOTE From the mobile application developer’s perspective, Android is a Java
environment, but the runtime isn’t strictly a Java VM. This accounts for the
incompatibilities between Android and proper Java environments and librar-
ies. If you have a code library that you want to reuse, your best bet is to assume
that your code is nearly source compatible, attempt to compile it into an Android
project, and then determine how close you are to having usable code.

The important things to know about the Dalvik VM are that Android applications run
inside it and that it relies on the Linux kernel for services such as process, memory,
and filesystem management.

Now that we’ve discussed the foundational technologies in Android, it’s time to
focus on Android application development. The remainder of this chapter discusses
high-level Android application architecture and introduces a simple Android

1.4

14.1

The Intent of Android development 13

application. If you’re not comfortable or ready to begin coding, you might want to
jump to chapter 2, where we introduce the development environment step-by-step.

The Intent of Android development

Let’s jump into the fray of Android development, focus on an important component
of the Android platform, and expand to take a broader view of how Android applica-
tions are constructed.

An important and recurring theme of Android development is the Intent. An
Intent in Android describes what you want to do. An Intent might look like “I want
to look up a contact record” or “Please launch this website” or “Show the order confir-
mation screen.” Intents are important because they not only facilitate navigation in
an innovative way, as we’ll discuss next, but also represent the most important aspect
of Android coding. Understand the Intent and you’ll understand Android.

NOTE Instructions for setting up the Eclipse development environment are in
appendix A. This environment is used for all Java examples in this book. Chap-
ter 2 goes into more detail on setting up and using the development tools.

The code examples in this chapter are primarily for illustrative purposes.
We reference and introduce classes without necessarily naming specific Java
packages. Subsequent chapters take a more rigorous approach to introducing
Android-specific packages and classes.

Next, we’ll look at the foundational information about why Intents are important,
and then we’ll describe how Intents work. Beyond the introduction of the Intent,
the remainder of this chapter describes the major elements of Android application
development, leading up to and including the first complete Android application that
you’ll develop.

Empowering intuitive Uls

The power of Android’s application framework lies in the way it brings a web mindset
to mobile applications. This doesn’t mean the platform has only a powerful browser
and is limited to clever JavaScript and server-side resources, but rather it goes to the
core of how the Android platform works and how users interact with the mobile
device. The power of the internet is that everything is just a click away. Those clicks are
known as Uniform Resource Locators (URLs), or alternatively, Uniform Resource Identifiers
(URIs). Using effective URIs permits easy and quick access to the information users
need and want every day. “Send me the link” says it all.

Beyond being an effective way to get access to data, why is this URI topic important,
and what does it have to do with Intents? The answer is nontechnical but crucial: the
way a mobile user navigates on the platform is crucial to its commercial success. Plat-
forms that replicate the desktop experience on a mobile device are acceptable to only
a small percentage of hardcore power users. Deep menus and multiple taps and clicks
are generally not well received in the mobile market. The mobile application, more
than in any other market, demands intuitive ease of use. A consumer might buy a

14

14.2

CHAPTER 1 Introducing Android

device based on cool features that were enumerated in the marketing materials, but
that same consumer is unlikely to even touch the instruction manual. A UI’s usability
is highly correlated with its market penetration. Uls are also a reflection of the plat-
form’s data access model, so if the navigation and data models are clean and intuitive,
the UI will follow suit.

Now we’re going to introduce Intents and IntentFilters, Android’s innovative
navigation and triggering mechanisms.

Intents and how they work

Intents and IntentFilters bring the “click it” paradigm to the core of mobile appli-
cation use (and development) for the Android platform:

= An Intent is a declaration of need. It’s made up of a number of pieces of infor-
mation that describe the desired action or service. We’re going to examine the
requested action and, generically, the data that accompanies the requested
action.

= An IntentFilter is a declaration of capability and interest in offering assis-
tance to those in need. It can be generic or specific with respect to which
Intents it offers to service.

The action attribute of an Intent is typically a verb: for example VIEW, PICK, or EDIT. A
number of builtin Intent actions are defined as members of the Intent class, but
application developers can create new actions as well. To view a piece of information,
an application employs the following Intent action:

android.content.Intent.ACTION_VIEW

The data component of an Intent is expressed in the form of a URI and can be virtu-
ally any piece of information, such as a contact record, a website location, or a refer-
ence to a media clip. Table 1.1 lists some Android URI examples.

The IntentFilter defines the relationship between the Intent and the applica-
tion. IntentFilters can be specific to the data portion of the Intent, the action por-
tion, or both. IntentFilters also contain a field known as a category. The category
helps classify the action. For example, the category named CATEGORY_LAUNCHER
instructs Android that the Activity containing this IntentFilter should be visible in
the main application launcher or home screen.

When an Intent is dispatched, the system evaluates the available Activitys,
Services, and registered BroadcastReceivers (more on these in section 1.5) and

Table 1.1 Commonly employed URIs in Android

Type of information URI data
Contact lookup content://contacts/people
Map lookup/search Ge0:0,0?g=23+Route+206+Stanhope+NJ

Browser launch to a specific website | http://www.google.com/

http://www.google.com/

The Intent of Android development 15

For hire: Take a ride on For hire: Find anything on
the Internet (IntentFilter) the map (IntentFilter)

Android application #2 (BroadcastReceiver)

startActivity(Intent);

For hire: View, edit, browse any contacts (IntentFilter)

or
> Android application #3 (BroadcastReceiver)

startActivity(Intent,identifier);

or

startService(Intent); .] .
For hire: Custom action on custom data (IntentFilter)

«—>
Android application #4 (BroadcastReceiver)
Help me: Find a Person Help me: Find an address Figure 1.4 Intents are distributed to Android
(Intent) on the map (Intent) applications, which register themselves by way of
Android application #1 the IntentFilter, typically in the

AndroidManifest.xml file.

dispatches the Intent to the most appropriate recipient. Figure 1.4 depicts this rela-
tionship among Intents, IntentFilters, and BroadcastReceivers.

IntentFilters are often defined in an application’s AndroidManifest.xml file with
the <intent-filter> tag. The AndroidManifest.xml file is essentially an application
descriptor file, which we’ll discuss later in this chapter.

A common task on a mobile device is looking up a specific contact record for the
purpose of initiating a call, sending a text message, or looking up a snail-mail address
when you’re standing in line at the neighborhood pack-and-ship store. Or a user
might want to view a specific piece of information, say a contact record for user 1234.
In these cases, the action is ACTION_VIEW and the data is a specific contact record
identifier. To carry out these kinds of tasks, you create an Intent with the action set to
ACTION_VIEW and a URI that represents the specific person of interest.

Here are some examples:

= The URI that you would use to contact the record for user 1234: content://
contacts/people/1234
= The URI for obtaining a list of all contacts: content://contacts/people

The following code snippet shows how to PICK a contact record:

Intent pickIntent = new Intent (Intent.ACTION_PICK,Uri.parse("content://
contacts/people")) ;

startActivity (pickIntent) ;

An Intent is evaluated and passed to the most appropriate handler. In the case of pick-
ing a contact record, the recipient would likely be a built-in Activity named
com.google.android.phone.Dialer. But the best recipient of this Intent might be an
Activity contained in the same custom Android application (the one you build), a
built-in application (as in this case), or a third-party application on the device. Appli-
cations can leverage existing functionality in other applications by creating and

16

CHAPTER 1 Introducing Android

dispatching an Intent that requests existing code to handle the Intent rather than
writing code from scratch. One of the great benefits of employing Intents in this man-
ner is that the same Uls get used frequently, creating familiarity for the user. This is par-
ticularly important for mobile platforms where the user is often neither tech-savvy nor interested in
learning multiple ways to accomplish the same task, such as looking wp a contact on the phone.
The Intents we’ve discussed thus far are known as implicit Intents, which rely on
the IntentFilter and the Android environment to dispatch the Intent to the
appropriate recipient. Another kind of Intent is the explicit Intent, where you can
specify the exact class that you want to handle the Intent. Specifying the exact class is
helpful when you know exactly which Activity you want to handle the Intent and
you don’t want to leave anything to chance in terms of what code is executed. To cre-
ate an explicit Intent, use the overloaded Intent constructor, which takes a class as

an argument:

public void onClick(View v) {
try {

startActivityForResult (new Intent (v.getContext (),Refreshdobs.class),0);

} catch (Exception e) {

}

}

These examples show how an Android
developer creates an Intent and asks for
it to be handled. Similarly, an Android
application can be deployed with an
IntentFilter,
responds to Intents that were already

indicating that it

defined on the system, thereby publish-
ing new functionality for the platform.
This facet alone should bring joy to
independent software vendors (ISVs)
who’ve made a living by offering better
contact managers and to-do list manage-
ment software titles for other mobile
platforms.

Intent resolution, or dispatching,
takes place at runtime, as opposed to
when the application is compiled. You
can add specific Intent-handling fea-
tures to a device, which might provide
an upgraded or more desirable set of
functionality than the original shipping
software. This runtime dispatching is
also referred to as late binding.

The power and the

complexity of Intents

It’s not hard to imagine that an abso-
lutely unique user experience is possi-
ble with Android because of the variety
of Activitys with specific Intent-
Filters that are installed on any given
device. It’s architecturally feasible to
upgrade various aspects of an Android
installation to provide sophisticated
functionality and customization.
Though this might be a desirable char-
acteristic for the user, it can be trou-
blesome for someone providing tech
support who has to navigate a number
of components and applications to
troubleshoot a problem.

Because of the potential for added
complexity, this approach of ad hoc
system patching to upgrade specific
functionality should be entertained
cautiously and with your eyes wide
open to the potential pitfalls associ-
ated with this approach.

15

1.5.1

Four kinds of Android components 17

Thus far, this discussion of Intents has focused on the variety of Intents that cause
UI elements to be displayed. Other Intents are more event-driven than task-oriented,
as our earlier contact record example described. For example, you also use the Intent
class to notify applications that a text message has arrived. Intents are a central ele-
ment to Android; we’ll revisit them on more than one occasion.

Now that we’ve explained Intents as the catalyst for navigation and event flow on
Android, let’s jump to a broader view and discuss the Android application lifecycle
and the key components that make Android tick. The Intent will come into better
focus as we further explore Android throughout this book.

Four kinds of Android components

Let’s build on your knowledge of the Intent and IntentFilter classes and explore
the four primary components of Android applications, as well as their relation to the
Android process model. We’ll include code snippets to provide a taste of Android
application development. We're going to leave more in-depth examples and discus-
sion for later chapters.

NOTE A particular Android application might not contain all of these ele-
ments but will have at least one of these elements, and could have all of them.

Activity
An application might have a UI, but it doesn’t have to have one. If it has a UL, it’ll have
at least one Activity.

The easiest way to think of an Android Activity is to relate it to a visible screen,
because more often than not there’s a one-to-one relationship between an Activity
and a Ul screen. This relationship is similar to that of a controller in the MVC paradigm.

Android applications often contain more than one Activity. Each Activity dis-
plays a UI and responds to system- and user-initiated events. The Activity employs
one or more Views to present the actual UI elements to the user. The Activity class is
extended by user classes, as shown in the following listing.

Listing 1.1 A basic Activity in an Android application

package com.msi.manning.chapterl;
import android.app.Activity;
import android.os.Bundle;
public class Activityl extends Activity {
@QOverride
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

}

The Activity class is part of the android.app Java package, found in the Android
runtime. The Android runtime is deployed in the android.jar file. The class

18

1.5.2

CHAPTER 1 Introducing Android

You say Intent; | say Intent
The Intent class is used in similar sounding but very different scenarios.

Some Intents are used to assist in navigating from one Activity to the next,
such as the example given earlier of viewing a contact record. Activities are the tar-
gets of these kinds of Intents, which are used with the startActivity and
startActivityForResult methods.

Also, a Service can be started by passing an Intent to the startService method.

BroadcastReceivers receive Intents when responding to system-wide events,
such as a ringing phone or an incoming text message.

Activityl extends the class Activity, which we’ll examine in detail in chapter 3.
One of the primary tasks an Activity performs is displaying UI elements, which are
implemented as Views and are typically defined in XML layout files. Chapter 3 goes
into more detail on Views and Resources.

Moving from one Activity to another is accomplished with the startActivity ()
method or the startActivityForResult () method when you want a synchronous
call/result paradigm. The argument to these methods is an instance of an Intent.

The Activity represents a visible application component within Android. With
assistance from the View class, which we’ll cover in chapter 3, the Activity is the most
commonly employed Android application component. Android 3.0 introduced a new
kind of application component, the Fragment. Fragments, which are related to Activ-
itys and have their own life cycle, provide more granular application control than
Activitys. Fragments are covered in Chapter 20. The next topic of interest is the Ser-
vice, which runs in the background and doesn’t generally present a direct UL

Service

If an application is to have a long lifecycle, it’s often best to put it into a Service. For
example, a background data-synchronization utility should be implemented as a
Service. A best practice is to launch Services on a periodic or as-needed basis, trig-
gered by a system alarm, and then have the Service terminate when its task is complete.

Like the Activity, a Service is a class in the Android runtime that you should
extend, as shown in the following listing. This example extends a Service and period-
ically publishes an informative message to the Android log.

Listing 1.2 A simple example of an Android Service

package com.msi.manning.chapterl;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.util.Log;

public class Servicel extends Service implements Runnable { < Extend

public static final String tag = "servicel"; Service
private int counter = 0; class

1.5.3

Four kinds of Android components 19

@QOverride
protected void onCreate() { < 0 Initialization
super.onCreate() ;
Thread aThread = new Thread (this);
aThread.start () ;
}

public void run() {
while (true) {
try {
Log.1(tag, "servicel firing : # " + counter++);

Thread.sleep(10000) ;

} catch(Exception ee) {
Log.e(tag,ee.getMessage()) ;
}

}

@override Handle
public IBinder onBind(Intent intent) { ; binding request
return null;

}
}

This example requires that the package android.app.Service be imported. This
package contains the Service class. This example also demonstrates Android’s log-
ging mechanism android.util.Log, which is useful for debugging purposes. (Many
examples in this book include using the logging facility. We’ll discuss logging in more
depth in chapter 2.) The Servicel class @ extends the Service class. This class
implements the Runnable interface to perform its main task on a separate thread. The
onCreate method @ of the Service class permits the application to perform initial-
ization-type tasks. We're going to talk about the onBind () method @ in further detail
in chapter 4, when we’ll explore the topic of interprocess communication in general.

Services are started with the startService(Intent) method of the abstract
Context class. Note that, again, the Intent is used to initiate a desired result on the
platform.

Now that the application has a UI in an Activity and a means to have a back-
ground task via an instance of a Service, it’s time to explore the BroadcastReceiver,
another form of Android application that’s dedicated to processing Intents.

BroadcastReceiver

If an application wants to receive and respond to a global event, such as a ringing
phone or an incoming text message, it must register as a BroadcastReceiver. An
application registers to receive Intents in one of the following ways:

= The application can implement a <receiver> element in the Android-
Manfest.xml file, which describes the BroadcastReceiver’s class name and
enumerates its IntentFilters. Remember, the IntentFilter is a descriptor of
the Intent an application wants to process. If the receiver is registered in the
AndroidManifest.xml file, the application doesn’t need to be running in order

20

CHAPTER 1 Introducing Android

to be triggered. When the event occurs, the application is started automatically

upon notification of the triggering event. Thankfully, all this housekeeping is

managed by the Android OS itself.

= An application can register at runtime via the Context class’s register-

Receiver method.
Like Services, BroadcastReceivers don’t have a UL Even more important, the code
running in the onReceive method of a BroadcastReceiver should make no assump-
tions about persistence or long-running operations. If the BroadcastReceiver
requires more than a trivial amount of code execution, it’s recommended that the
code initiate a request to a Service to complete the requested functionality because
the Service application component is designed for longerrunning operations
whereas the BroadcastReceiver is meant for responding to various triggers.

NOTE The familiar Intent class is used in triggering BroadcastReceivers.
The parameters will differ, depending on whether you’re starting an
Activity, a Service, or a BroadcastReceiver, but it’s the same Intent class
that’s used throughout the Android platform.

A BroadcastReceiver implements the abstract method onReceive to process incom-
ing Intents. The arguments to the method are a Context and an Intent. The method
returns void, but a handful of methods are useful for passing back results, including
setResult, which passes back to the invoker an integer return code, a String return
value, and a Bundle value, which can contain any number of objects.

The following listing is an example of a BroadcastReceiver triggering upon
receipt of an incoming text message.

Listing 1.3 A sample BroadcastReceiver

package com.msi.manning.unlockingandroid;
import android.content.Context;

import android.content.Intent;

import android.util.Log;
import.android.content.BroadcastReceiver

public class MySMSMailBox extends BroadcastReceiver { ‘) Thgused
public static final String tag = "MySMSMailBox"; - | in logging
@Override

public void onReceive (Context context, Intent intent) {
Log.1i(tag, "onReceive") ;
if (intent.getAction() .equals @ Check
("android.provider.Telephony.SMS_RECEIVED")) { - | Intent’s action
Log.1i(tag, "Found our Event!");

}

We need to discuss a few items in this listing. The class MySMSMailBox extends the
BroadcastReceiver class. This subclass approach is the most straightforward way to
employ a BroadcastReceiver. (Note the class name MySMSMailBox; it'll be used in the
AndroidManifest.xml file, shown in listing 1.4.) The tag variable @ is used in

Four kinds of Android components 21

conjunction with the logging mechanism to assist in labeling messages sent to the con-
sole log on the emulator. Using a tag in the log enables you to filter and organize log
messages in the console. (We discuss the log mechanism in more detail in chapter 2.)
The onReceive method is where all the work takes place in a BroadcastReceiver; you
must implement this method. A given BroadcastReceiver can register multiple
IntentFilters. A BroadcastReceiver can be instantiated for an arbitrary number of
Intents.

It’s important to make sure that the application handles the appropriate Intent by
checking the action of the incoming Intent @. When the application receives the
desired Intent, it should carry out the specific functionality that’s required. A com-
mon task in an SMS-receiving application is to parse the message and display it to the
user via the capabilities found in the NotificationManager. (We’ll discuss notifica-
tions in chapter 8.) In listing 1.3, you simply record the action to the log.

In order for this BroadcastReceiver to fire and receive this Intent, the Broadcast-
Receiver is listed in the AndroidManifest.xml file, along with an appropriate intent-
filter tag, as shown in the following listing. This listing contains the elements
required for the application to respond to an incoming text message.

Listing 1.4 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?> Required permission
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid">
<uses-permission android:name="android.permission.RECEIVE_SMS" /> <
<application android:icon="@drawable/icon">
<activity android:name=".Activityl" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity> @ Receiver tag;
<receiver android:name=".MySMSMailBox" > - | note dot prefix
<intent-filter>
<action android:name="android.provider.Telephony.SMS_RECEIVED" />
</intent-filter>
</receiver>
</application>
</manifest>

Certain tasks within the Android platform require the application to have a designated
privilege. To give an application the required permissions, use the <uses-
permission> tag ©. (We’ll discuss this tag in detail in section 1.6.) The <receiver>
tag contains the class name of the class implementing the BroadcastReceiver. In this
example, the class name is MySMSMailBox, from the package com.msi.manning
.unlockingandroid. Be sure to note the dot that precedes the name ®. This dot is
required. If your application isn’t behaving as expected, one of the first places to
check is your Android.xml file, and look for the dot before the class name! The
IntentFilter is defined in the <intent-filter> tag. The desired action in this

22

1.54

CHAPTER 1 Introducing Android

Testing SMS

The emulator has a built-in set of tools for manipulating certain telephony behavior
to simulate a variety of conditions, such as in-network and out-of-network coverage
and placing phone calls.

To send an SMS message to the emulator, telnet to port 5554 (the port number
might vary on your system), which will connect to the emulator, and issue the follow-
ing command at the prompt:

sms send <sender's phone number> <body of text message>

To learn more about available commands, type help at the prompt.

We’ll discuss these tools in more detail in chapter 2.

example is android.provider.Telephony.SMS_RECEIVED. The Android SDK contains
the available actions for the standard Intents. Also, remember that user applications
can define their own Intents, as well as listen for them.

Now that we’ve introduced Intents and the Android classes that process or handle
Intents, it’s time to explore the next major Android application topic: the Content-
Provider, Android’s preferred data-publishing mechanism.

ContentProvider

If an application manages data and needs to expose that data to other applications
running in the Android environment, you should consider a ContentProvider. If an
application component (Activity, Service, or BroadcastReceiver) needs to access
data from another application, the component accesses the other application’s
ContentProvider. The ContentProvider implements a standard set of methods to
permit an application to access a data store. The access might be for read or write
operations, or for both. A ContentProvider can provide data to an Activity or
Service in the same containing application, as well as to an Activity or Service con-
tained in other applications.

A ContentProvider can use any form of data-storage mechanism available on the
Android platform, including files, SQLite databases, or even a memory-based hash
map if data persistence isn’t required. The ContentProvider is a data layer that pro-
vides data abstraction for its clients and centralizing storage and retrieval routines in a
single place.

Sharing files or databases directly is discouraged on the Android platform, and is
enforced by the underlying Linux security system, which prevents ad hoc file access
from one application space to another without explicitly granted permissions.

Data stored in a ContentProvider can be traditional data types, such as integers and
strings. Content providers can also manage binary data, such as image data. When
binary data is retrieved, the suggested best practice is to return a string representing
the filename that contains the binary data. If a filename is returned as part of a
ContentProvider query, the application shouldn’t access the file directly; you should

Four kinds of Android components 23

Android Application #3

Activity 3.1
Android Application #1
Activity 1.1 Android Application #2
ctivity
\
ContentProvider A ~ Activity 2.1

/ / \\

Figure 1.5 The content
provider is the data tier for
Android applications and is
Data file Virtual connection the prescribed manner in
to remote store which data is accessed and
shared on the device.

use the helper class, ContentResolver’s openInputStream method, to access the

binary data. This approach navigates the Linux process and security hurdles, as well as
keeps all data access normalized through the ContentProvider. Figure 1.5 outlines
the relationship among ContentProviders, data stores, and their clients.

A ContentProvider’s data is accessed by an Android application through a Con-
tent URIL A ContentProvider defines this URI as a public static final String. For
example, an application might have a data store managing material safety data sheets.
The Content URI for this ContentProvider might look like this:

public static final Uri CONTENT_URI =
Uri.parse("content://com.msi.manning.provider.unlockingandroid/datasheets") ;
From this point, accessing a ContentProvider is similar to using Structured Query
Language (SQL) in other platforms, though a complete SQL statement isn’t
employed. A query is submitted to the ContentProvider, including the columns
desired and optional Where and Order By clauses. Similar to parameterized queries in
traditional SQL, parameter substitution is also supported when working with the
ContentProvider class. Where do the results from the query go? In a Cursor class,
naturally. We’ll provide a detailed ContentProvider example in chapter 5.

NOTE In many ways, a ContentProvider acts like a database server.
Although an application could contain only a ContentProvider and in
essence be a database server, a ContentProvider is typically a component of
a larger Android application that hosts at least one Activity, Service, or
BroadcastReceiver.

24

1.6

CHAPTER 1 Introducing Android

This concludes our brief introduction to the major Android application classes. Gain-
ing an understanding of these classes and how they work together is an important
aspect of Android development. Getting application components to work together
can be a daunting task. For example, have you ever had a piece of software that just
didn’t work properly on your computer? Perhaps you copied it from another devel-
oper or downloaded it from the internet and didn’t install it properly. Every software
project can encounter environment-related concerns, though they vary by platform.
For example, when you’re connecting to a remote resource such as a database server
or FTP server, which username and password should you use? What about the libraries
you need to run your application? All these topics are related to software deployment.

Before we discuss anything else related to deployment or getting an Android
application to run, we need to discuss the Android file named AndroidManifest.xml,
which ties together the necessary pieces to run an Android application on a device. A
one-to-one relationship exists between an Android application and its Android-
Manifest.xml file.

Understanding the AndroidManifest.xml file

In the preceding sections, we introduced the common elements of an Android appli-
cation. A fundamental fact of Android development is that an Android application
contains at least one Activity, Service, BroadcastReceiver, or ContentProvider.
Some of these elements advertise the Intents they’re interested in processing via the
IntentFilter mechanism. All these pieces of information need to be tied together
for an Android application to execute. The glue mechanism for this task of defining
relationships is the AndroidManifest.xml file.

The AndroidManifest.xml file exists in the root of an application directory and
contains all the design-time relationships of a specific application and Intents.
AndroidManfest.xml files act as deployment descriptors for Android applications. The
following listing is an example of a simple AndroidManifest.xml file.

Listing 1.5 AndroidManifest.xml file for a basic Android application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid">
<application android:icon="@drawable/icon">
<activity android:name=".Activityl" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Looking at this simple AndroidManifest.xml file, you see that the manifest element
contains the obligatory namespace, as well as the Java package name containing this
application. This application contains a single Activity, with the class name

Understanding the AndroidManifest.xml file 25

Activityl. Note also the @string syntax. Any
time an @ symbol is used in an AndroidMani-
fest.xml file, it references information stored in
one of the resource files. In this case, the label
attribute is obtained from the string resource
identified as app_name. (We discuss resources
in further detail later in chapter 3.) This appli-
cation’s lone Activity contains a single
IntentFilter definition. The IntentFilter
used here is the most common IntentFilter
seen in Android applications. The action
android.intent.action.MAIN indicates that
this is an entry point to the application. The
category android.intent.category.LAUNCHER
places this Activity in the launcher window, as
shown in figure 1.6. It’s possible to have multi-
ple Activity elements in a manifest file (and
thereby an application), with zero or more of
them visible in the launcher window.

In addition to the elements used in the sam-
ple manifest file shown in listing 1.5, other
common tags are as follows:

= The <service> tag represents a Service.
The attributes of the <service> tag
include its class and label. A Service
might also include the <intent-filter>
tag.

= The <receiver> tag represents a
BroadcastReceiver, which might have
an explicit <intent-filter> tag.

@ il 3 %20am

Applications

o B

Browser Contacts

MENU

Figure 1.6 Applications are listed in the

launcher based on their IntentFilter.In
this example, the application Where Do You
Live is available in the LAUNCHER category.

= The <uses-permission> tag tells Android that this application requires certain
security privileges. For example, if an application requires access to the contacts
on a device, it requires the following tag in its AndroidManifest.xml file:

<uses-permission android:name=
"android.permission.READ_CONTACTS" />

We’ll revisit the AndroidManifest.xml file a number of times throughout the book
because we need to add more details about certain elements and specific coding

scenarios.

Now that you have a basic understanding of the Android application and the

AndroidManifest.xml file, which describes its components, it’s time to discuss how

and where an Android application executes. To do that, we need to talk about the

relationship between an Android application and its Linux and Dalvik VM runtime.

26

1.7

1.8

CHAPTER 1 Introducing Android

Mapping applications to processes

Android applications each run in a single Linux process. Android relies on Linux for
process management, and the application itself runs in an instance of the Dalvik VM.
The OS might need to unload, or even kill, an application from time to time to accom-
modate resource allocation demands. The system uses a hierarchy or sequence to
select the victim during a resource shortage. In general, the system follows these rules:

= Visible, running activities have top priority.

= Visible, nonrunning activities are important, because they’re recently paused
and are likely to be resumed shortly.

= Running services are next in priority.

= The most likely candidates for termination are processes that are empty
(loaded perhaps for performance-caching purposes) or processes that have
dormant Activitys.

ps -a

The Linux environment is complete, including process management. You can launch
and Kill applications directly from the shell on the Android platform, but this is a
developer's debugging task, not something the average Android handset user is
likely to carry out. It’s nice to have this option for troubleshooting application issues.
It’s a relatively recent phenomenon to be able to touch the metal of a mobile phone
in this way. For more in-depth exploration of the Linux foundations of Android, see
chapter 13.

Let’s apply some of what you’ve learned by building your first Android application.

Creating an Android application

Let’s look at a simple Android application consisting of a single Activity, with one
View. The Activity collects data (a street address) and creates an Intent to find this
address. The Intent is ultimately dispatched to Google Maps. Figure 1.7 is a screen
shot of the application running on the emulator. The name of the application is
Where Do You Live.

As we previously stated, the AndroidManifest.xml file contains the descriptors for
the application components of the application. This application contains a single
Activity named AWhereDoYouLive. The application’s AndroidManifest.xml file is
shown in the following listing.

Listing 1.6 AndroidManifest.xml for the Where Do You Live application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid">
<application android:icon="@drawable/icon">
<activity android:name=".AWhereDoYouLive"

Creating an Android application 27

android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission android:name="android.permission.INTERNET" />
</manifest>

e
Where Do You Live White House, Washingto
ot St e] B

Please enter your home address. See on the map

[White House 5 rections to here
show Map 1 rections from here

Unlocking Android, Chapter 1. Save to Address Book

MENU

Figure 1.7 This Android application demonstrates a simple Activity and an Intent.

The sole Activity is implemented in the file AWhereDoYoulLive.java, shown in the
following listing.

Listing 1.7 Implementing the Android Activity in AWhereDoYoulive.java

package com.msi.manning.unlockingandroid;

// imports omitted for brevity

public class AWhereDoYoulLive extends Activity {
@Override
public void onCreate (Bundle icicle) {

28

CHAPTER 1 Introducing Android

super.onCreate (icicle) ;
setContentView(R.layout.main) ;
final EditText addressfield =
(EditText) findviewById(R.id.address);
final Button button = (Button)
findviewById(R.id.launchmap) ;
button.setOnClickListener (new Button.OnClickListener () {
public void onClick(View view) {

try { O Get
String address = addressfield.getText().toString(); < address
address = address.replace(' ', '+');
Intent geoIntent = new Intent
(android.content.Intent .ACTION_VIEW, @ Prepare
Uri.parse("geo:0,0?g=" + address)) ; < Intent
startActivity (geoIntent) ;
} catch (Exception e) {

In this example application, the setContentView method creates the primary Ul,
which is a layout defined in main.xml in the /res/layout directory. The EditText view
collects information, which in this case is an address. The EditText view is a text box
or edit box in generic programming parlance. The findviewById method connects
the resource identified by R.1d.address to an instance of the EditText class.

A Button object is connected to the launchmap UI element, again using the find-
ViewById method. When this button is clicked, the application obtains the entered
address by invoking the getText method of the associated EditText @.

When the address has been retrieved from the U, you need to create an Intent to
find the entered address. The Intent has a VIEW action, and the data portion repre-
sents a geographic search query @.

Finally, the application asks Android to perform the Intent, which ultimately
results in the mapping application displaying the chosen address. The startActivity
method is invoked, passing in the prepared Intent.

Resources are precompiled into a special class known as the R class, as shown in
listing 1.8. The final members of this class represent UI elements. You should never
modify the Rjava file manually; it’s automatically built every time the underlying
resources change. (We’ll cover Android resources in greater depth in chapter 3.)

Listing 1.8 R.java containing the R class, which has Ul element identifiers

/* AUTO-GENERATED FILE. DO NOT MODIFY.

This class was automatically generated by the
aapt tool from the resource data it found. It
* should not be modified by hand.
*/
package com.msi.manning.unlockingandroid;

Creating an Android application 29

public final class R {
public static final class attr {
}
public static final class drawable {
public static final int icon=0x7£020000;
}
public static final class id {
public static final int address=0x7£050000;
public static final int launchmap=0x7£050001;
}
public static final class layout {
public static final int main=0x7£030000;
}

public static final class string {
public static final int app_name=0x7£040000;

}

Figure 1.7 shows the sample application in action. Someone looked up the address of
the White House; the result shows the White House pinpointed on the map.

The primary screen of this application is defined as a LinearLayout view, as shown
in the following listing. It’s a single layout containing one label, one text-entry ele-
ment, and one button control.

Listing 1.9 Main.xml defining the Ul elements for the sample application

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Please enter your home address."

/>
<EditText ID assignment
android:id="@+id/address" for EditText

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:autoText="true"

/>

<Button ID assignment
android:id="@+id/launchmap" for Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Show Map"
/>

<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Unlocking Android, Chapter 1."
/>

</LinearLayout>

30

1.9

1.9.1

CHAPTER 1 Introducing Android

Note the use of the @ symbol in this resource’s id attribute O and ©. This symbol
causes the appropriate entries to be made in the R class via the automatically gener-
ated Rjava file. These R class members are used in the calls to findviewById(), as
shown in listing 1.7, to tie the UI elements to an instance of the appropriate class.

A strings file and icon round out the resources in this simple application. The
strings.xml file for this application is shown in the following listing. This file is used to
localize string content.

Listing 1.10 strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">Where Do You Live</string>
</resources>
As you’ve seen, an Android application has a few moving pieces—though the compo-
nents themselves are rather straightforward and easy to stitch together. As we progress
through the book, we’ll introduce additional sample applications step-by-step as we
cover each of the major elements of Android development activities.

Android 3.0 for tablets and smartphones

Android 3.0 was originally introduced for tablets. But what makes the tablet different?
It’s the richer and more interactive application user experience that tablets provide. This
user experience is driven by the tablet’s form factor (larger screen), ease of handling,
media-rich and graphical capabilities, content and application distribution support,
computing power, and, as in the case of smartphones, connectivity, including offline
support.

This new form factor opens the door to new application verticals such as eHealth,
where ease of use and privacy issues are of primary importance, and content media
distribution where content protection via DRM will play an important role.

The tablet form factor also introduces new challenges to Android developers—
challenges related to UI design and development considerations not found when
developing for smartphones. The larger form factor encourages touch interaction
and navigation using one or both hands, and layout design that takes full advantage of
landscape versus portrait. And because tablets are now part of the mobile platform
family, application compatibility and portability across smartphones and tablets is an
important consideration for mobile developers.

Android 3.0 isn’t limited to tablets and applies to smartphones as well, but on a
smaller scale. Everything in this chapter also applies to smartphones, once Android
3.0 is ported across the different platforms.

Why develop for Android tablets?

Mobile developers already have to deal with many different kinds of mobile platforms:
iOS, mobile web, Android (and its different versions), BlackBerry, Windows Phone,

1.9.2

Android 3.0 for tablets and smartphones 31

Web OS, and so on. This can be overwhelming, so it’s important to focus on the
platforms that matter to you and your customers—in other words, the platforms with
greater return on investment.

The tablet space is not only growing, but is expected to be massive. Driven by iOS
and Android tablets, a recent 2011 Yankee Report puts total tablet device sales in the
USA alone at $7 billion.? Tablets will play a major role in both the consumer and enter-
prise spaces. The opportunities for tablet application development seem endless.

According to Gartner, 17.6 million tablets were sold in 2010, and it anticipates a
significant increase with sales jumping to 69.5 million tablets in 2011. The firm’s ana-
lysts anticipate in 2015 nearly 300 million devices could be sold.?

Tablets will be a predominate mobile platform that must be considered by any
developer who is serious about developing for mobile.

What’s new in the Android 3.0 Honeycomb platform?

The new Android 3.0 platform provides all the elements for tablet application devel-
opment. Android 3.0 introduces a number of UI enhancements that improve overall
application usage experience on tablets. These include a new holographic theme, a
new global notification bar, an application-specific action bar, a redesigned keyboard,
and text selection with cut/paste capabilities. New connectivity features for Bluetooth
and USB are provided, as well as updates to a number of the standard applications
such as the browser, camera, and email. Because tablets are expected to play a major
role in the Enterprise and businesses, new policy-management support has been intro-
duced as well.

From the developer perspective, the changes introduced by Android 3.0 are exten-
sive with additions and changes to many existing Java packages and three new Java
packages:

= Animation (android.animation)

= Digital Rights Management (DRM, android.drm)
= High-performance 3D graphics (android.renderscript)

The changes to the other existing Java packages touch many aspects of the Android
API layer, including the following:

® Activitys and Fragments

= The Action bar

= Drag and drop

= Custom notifications

= Loaders

= Bluetooth

2

www.yankeegroup.com/ResearchDocument.do?id=55390

3 http://mng.bz/680r

www.yankeegroup.com/ResearchDocument.do?id=55390
http://mng.bz/680r

32

1.10

CHAPTER 1 Introducing Android

This book will cover the major aspects of tablet development using Android 3.0, start-
ing with Activitys and Fragments. Although we’ll focus on tablets, note that Google
TV is Android 3.1-based, meaning that most of the content covered here is also appli-
cable to Google TV.

Summary

This chapter introduced the Android platform and briefly touched on market posi-
tioning, including what Android is up against in the rapidly changing and highly com-
petitive mobile marketplace. In a few years, the Android SDK has been announced,
released, and updated numerous times. And that’s just the software. Major device
manufacturers have now signed on to the Android platform and have brought capa-
ble devices to market, including a privately labeled device from Google itself. Add to
that the patent wars unfolding between the major mobile players, and the stakes con-
tinue to rise—and Android’s future continues to brighten.

In this chapter, we examined the Android stack and discussed its relationship with
Linux and Java. With Linux at its core, Android is a formidable platform, especially
for the mobile space where it’s initially targeted. Although Android development is
done in the Java programming language, the runtime is executed in the Dalvik VM, as
an alternative to the Java VM from Oracle. Regardless of the VM, Java coding skills are
an important aspect of Android development.

We also examined the Android SDK’s Intent class. The Intent is what makes
Android tick. It’s responsible for how events flow and which code handles them. It
provides a mechanism for delivering specific functionality to the platform, enabling
third-party developers to deliver innovative solutions and products for Android. We
introduced all the main application classes of Activity, Service, ContentProvider,
and BroadcastReceiver, with a simple code snippet example for each. Each of these
application classes use Intents in a slightly different manner, but the core facility of
using Intents to control application behavior enables the innovative and flexible
Android environment. Intents and their relationship with these application classes
will be unpacked and unlocked as we progress through this book.

The AndroidManifest.xml descriptor file ties all the details together for an
Android application. It includes all the information necessary for the application to
run, what Intents it can handle, and what permissions the application requires.
Throughout this book, the AndroidManifest.xml file will be a familiar companion as
we add and explain new elements.

Finally, this chapter provided a taste of Android application development with a
simple example tying a simple UI, an Intent, and Google Maps into one seamless and
useful experience. This example is, of course, just scratching the surface of what
Android can do. The next chapter takes a deeper look into the Android SDK so that
you can learn more about the toolbox we’ll use to unlock Android.

MOBILE TECHNOLOGY

Aﬂdl’Oid INACTION THIRD EDITION
Ableson « Sen « King « Ortiz

hen it comes to mobile apps, Android can do almost

anything—and with this book, so can you! Android,

Google’s popular mobile operating system and SDK
for tablets and smart phones, is the broadest mobile platform
available. It is Java-based, HTML5S-aware, and loaded with the
features today’s mobile users demand.

takes you far beyond “Hello
Android” You'll master the SDK, build WebKit apps using
HTML 5, and even learn to extend or replace Android’s built-in
features. You'll find interesting examples on every page as you
explore cross-platform graphics with RenderScript, the updated
notification system, and the Native Development Kit. This book
also introduces important tablet concepts like drag and drop,
fragments, and the Action Bar, all new in Android 3.

e Covers Android 3.x
* SDK and WebKit development from the ground up
* Driving a robot with Bluetooth and sensors

* Image processing with Native C code

This book is written for hobbyists and developers. A back-
ground in Java is helpful—no prior experience with Android is
assumed.

and are entrepreneurs focused on mobile
and web products, and on novel wireless technologies, respec-
tively. is a senior mobile engineer and
a mobile technologist, developer, and author.

For access to the book’s forum and a free ebook for owners of this
k, go to manning.com/AndroidinActionThirdEdition

$49.99 / Can $52.99 [INCLUDING eBOOK]

¢ Gold standard of Android
training books.”

— Gabor Paller, Ericsson

¢¢Still the best single book
for both beginners and

experts.”?
—Matthew Johnson
Sabaki Engineering

¢¢Fully covers most Android

tablet functionalities.??
—Loic Simon, SII

ISBN 13: 978-1-b1729-050-3
ISBN 10: 1-bL729-050-5

“ ‘H “‘ 5‘4 | 9“9
IMN781617"290503

