

Executable business processes in BPMN 2.0

IN ACTION

Tijs Rademakers

FOREWORDS BY Tom Baeyens
AND Joram Barrez

SAMPLE CHAPTER

M A N N I N G

Activiti in Action

by Tijs Rademakers

Chapter 1

Copyright 2012 Manning Publications

brief contents

PART 1 INTRODUCING BPMN 2.0 AND ACTIVITI..............................1

1 ■ Introducing the Activiti framework 3

2 ■ BPMN 2.0: what’s in it for developers? 19

3 ■ Introducing the Activiti tool stack 32

4 ■ Working with the Activiti process engine 49

PART 2 IMPLEMENTING BPMN 2.0 PROCESSES WITH ACTIVITI..........85

5 ■ Implementing a BPMN 2.0 process 87

6 ■ Applying advanced BPMN 2.0 and extensions 112

7 ■ Dealing with error handling 146

8 ■ Deploying and configuring the Activiti Engine 169

9 ■ Exploring additional Activiti modules 193

PART 3 ENHANCING BPMN 2.0 PROCESSES223

10 ■ Implementing advanced workflow 225

11 ■ Integrating services with a BPMN 2.0 process 260

12 ■ Ruling the business rule engine 286

v

vi BRIEF CONTENTS

13 ■ Document management using Alfresco 311

14 ■ Business monitoring and Activiti 340

PART 4 MANAGING BPMN 2.0 PROCESSES367

15 ■ Managing the Activiti Engine 369

Part 1

Introducing
 BPMN 2.0 and Activiti

This first part of the book provides an introduction to the Activiti framework
and the background about the BPMN 2.0 standard. In chapter 1, we’ll cover how
to set up an Activiti environment, starting with the download of the Activiti
framework. In chapter 2, you’ll be introduced to the main elements of the BPMN
2.0 standard in order to create process definitions. Chapter 3 offers an overview
of the Activiti framework’s main components, including the Activiti Designer
and Explorer. Finally, in chapter 4, we’ll discuss the Activiti API with several short
code examples.

Introducing
 the Activiti framework

This chapter covers
■ Introduction to Activiti
■ Installing the Activiti framework
■ Implementing a BPMN 2.0 process

Every day, your actions are part of different processes. For example, when you
order a book in an online bookstore, a process is executed to get the book paid for,
packaged, and shipped to you. When you need to renew your driver’s license, the
renewal process often requires a new photograph as input. Activiti provides an
open source framework to design, implement, and run processes. Organizations
can use Activiti to implement their business processes without the need for expen­
sive software licenses.

 This chapter will get you up and running with Activiti in 30 minutes. First, we’ll
take a look at the different components of the Activiti tool stack, including a Mod­
eler, Designer, and a REST web application. Then, we’ll discuss the history of the
Activiti framework and compare its functionality with its main competitors, jBPM
and BonitaSoft.

3

4 CHAPTER 1 Introducing the Activiti framework

 Before we dive into code examples in section 1.4, we’ll first make sure the Activiti
framework is installed correctly. At the end of this chapter, you’ll have a running Activ­
iti environment and a deployable example.

 First, let’s look at Activiti’s tool stack and its different components, including the
modeling environment, the engine, and the runtime explorer application.

1.1 The Activiti tool stack
The core component of the Activiti framework is the process engine. The process
engine provides the core capabilities to execute Business Process Model and Notation
(BPMN) 2.0 processes and create new workflow tasks, among other things. You can
find the BPMN specification and lots of examples at www.bpmn.org, and we’ll go into
more detail about BPMN in chapter 2. The Activiti project contains a couple of tools
in addition to the Activiti Engine. Figure 1.1 shows an overview of the full Activiti
tool stack.

 Let’s quickly walk through the different components listed in figure 1.1. With the
Activiti Modeler, business and information analysts are capable of modeling a BPMN 2.0­
compliant business process in a web browser. This means that business processes can eas­
ily be shared—no client software is needed before you can start modeling. The Activiti
designer is an Eclipse-based plugin, which enables a developer to enhance the modeled
business process into a BPMN 2.0 process that can be executed on the Activiti process
engine. You can also run unit tests, add Java logic, and create deployment artifacts with
the Activiti Designer.

 In addition to the design tools, Activiti provides a number of supporting tools.
With Activiti Explorer, you can get an overview of deployed processes and even dive
into the database tables underneath the Activiti process engine. You can also use Activ­
iti Explorer to interact with the deployed business processes. For example, you can get
a list of tasks that are already assigned to you. You can also start a new process instance
and look at the status of that newly created process instance in a graphical diagram.

Design tools
Activiti Modeler

Non−technical modeling
(web−based)

Activiti Designer

Technical modeling
(Eclipse−plugin)

Import BPMN XML
file into the
Activiti Designer

Process engine
Activiti Engine

The core process
engine, which can be

embedded in your Java
(web) application or can

run standalone

Activiti REST
Web application that

starts the process
engine and provides a

REST API

Supporting tools
Activiti Explorer

Use processes and
tasks and process

engine management
(web−based)

Deploy simple
processes to the

engine

Deploy advanced
processes to the

engine

Start processes,
tasks and

manage engine

Figure 1.1 An overview of the Activiti tool stack: in the center, the Activiti process engine, and on
the right and left sides, the accompanying modeling, design, and management tools. The grayed-out
components are add-ons to the core Activiti framework.

www.bpmn.org

5 Getting to know Activiti

Finally, there’s the Activiti REST component, which provides a web application that
starts the Activiti process engine when the web application is started. In addition, it
offers a REST API that enables you to communicate remotely with the Activiti Engine.

The different components are summarized in table 1.1.

Table 1.1 An overview of the different components of the Activiti tool stack

Component name Short description

Activiti Engine The core component of the Activiti tool stack that performs the process engine func­
tions, such as executing BPMN 2.0 business processes and creating workflow tasks.

Activiti Modeler A web-based modeling environment for creating BPMN 2.0-compliant business pro­
cess diagrams. This component is donated by Signavio, which also provides a com­
mercial modeling tool, named the Signavio Process Editor.

Activiti Designer An Eclipse plugin that can be used to design BPMN 2.0-compliant business pro­
cesses with the addition of Activiti extensions, such as a Java service task and exe­
cution listeners. You can also unit test processes, import BPMN 2.0 processes,
and create deployment artifacts.

Activiti Explorer A web application that can be used for a wide range of functions in conjunction with
the Activiti Engine. You can, for example, start new process instances and get a list
of tasks assigned to you. In addition, you can perform simple process management
tasks, like deploying new processes and retrieving the process instance status.

Activiti REST A web application that provides a REST interface on top of the Activiti Engine. In the
default installation (see section 1.1.3), the Activiti REST application is the entry
point to the Activiti Engine.

You can’t start developing without a clear understanding of the Activiti framework and
the architecture that’s built around a state machine. Let’s take a closer look at the his­
tory of the Activiti framework and discuss the Activiti Engine in more detail.

1.2 Getting to know Activiti
When you start working with a new framework, it’s always good to know some project
background and have an understanding of the main components. In this section,
we’ll be looking at exactly that.

1.2.1 A little bit of history

The Activiti project was started in 2010 by Tom Baeyens and Joram Barrez, the former
founder and the core developer of jBPM (JBoss BPM), respectively. The goal of the
Activiti project is to build a rock-solid open source BPMN 2.0 process engine. In the
next chapter, we’ll talk in detail about the BPMN 2.0 specification, but in this chapter
we’ll focus on the Activiti framework itself and getting it installed and up and running
with simple examples.

 Activiti is funded by Alfresco (known for its open source document management
system of the same name; see www.alfresco.com and chapter 13 for more details), but
Activiti acts as an independent, open source project. Alfresco uses a process engine to

www.alfresco.com

6 CHAPTER 1 Introducing the Activiti framework

support features such as a review and approval process for documents, which means
that the document has to be approved by one user or a group of users. For this kind of
functionality, Activiti is integrated into the Alfresco system to provide the necessary
process and workflow engine capabilities.

NOTE jBPM was used in the past instead of Activiti to provide this process
and workflow functionality. jBPM is still included in Alfresco, but it may be
deprecated at some point in time.

Besides running the Activiti process engine in Alfresco, Activiti is built to run stand­
alone or embedded in any other system. In this book, we’ll focus on running Activiti
outside the Alfresco environment, but we’ll discuss the integration opportunities
between Activiti and Alfresco in detail in chapter 13.

 In 2010, the Activiti project started off quickly and succeeded in producing
monthly (!) releases of the framework. In December 2010, the first stable and produc­
tion-ready release (5.0) was made available. The Activiti developer community, includ­
ing companies like SpringSource, FuseSource, and Mulesoft, has since been able to
develop new functionality on a frequent basis. In this book, we’ll explore this contrib­
uted functionality, such as the Spring integration (chapter 4) and the Mule and
Apache Camel integration (chapter 11).

 But first things first. What can you do with a process engine? Why should you use
the Activiti framework? Let’s discuss the core component, the Activiti Engine.

1.2.2 The basics of the Activiti Engine

Activiti is a BPMN 2.0 process-engine framework that implements the BPMN 2.0 specifi­
cation. It’s able to deploy process definitions, start new process instances, execute user
tasks, and perform other BPMN 2.0 functions, which we’ll discuss throughout this book.

 But at its core, the Activiti Engine is a state machine. A BPMN 2.0 process definition
consists of elements like events, tasks, and gateways that are wired together via
sequence flows (think of arrows). When such a process definition is deployed on the
process engine and a new process instance is started, the BPMN 2.0 elements are exe­
cuted one by one. This process execution is similar to a state machine, where there’s
an active state and, based on conditions, the state execution progresses to another
state via transitions (think again of arrows). Let’s look at an abstract figure of a state
machine and see how it’s implemented in the Activiti Engine (figure 1.2).

 In the Activiti Engine, most BPMN 2.0 elements are implemented as a state.
They’re connected with leaving and arriving transitions, which are called sequence
flows in BPMN 2.0. Every state or corresponding BPMN 2.0 element can have attached
a piece of logic that will be executed when the process instance enters the state. In
figure 1.2, you can also look up the interface and implementing class that are used in
the Activiti Engine. As you can see, the logic interface ActivityBehavior is imple­
mented by a lot of classes. That’s because the logic of a BPMN 2.0 element is imple­
mented there.

7 Getting to know Activiti

Parent

State
Interface: PvmActivity
Class: ActivityImpl

Transition
Interface: PvmTransition
Class: TransitionImpl

Logic
Interface: ActivityBehavior
Class: Lots of classes

Leaving transitions *

1
Behavior

Arriving transitions *
Nested states

1

*

Figure 1.2 An abstract overview of a state machine
and how it’s implemented in the Activiti Engine. States
have leaving and arriving transitions and can be nest­
ed. In addition, they contain logic implemented with
the ActivityBehavior interface.

When you see a complex BPMN 2.0 example later on in the book, remember that, in
essence, it’s a rather simple state machine. Now let’s look at a couple other open
source process engines that offer functionality similar to Activiti, and also consider
the differences.

1.2.3 Knowing the competitors

When you’re interested in an open source process engine like Activiti, it’s always good
to know a little bit more about the competing open source frameworks. Because the
main developers of Activiti were previously involved with the JBoss BPM or jBPM frame­
work, there’s also some controversy surrounding this discussion. It’s obvious that jBPM
and Activiti share a lot of the same architectural principles, but there are also many
differences. We’ll only discuss the two main open source competitors of Activiti:

■	 JBoss BPM or jBPM—An open source process engine that first supported the cus­
tom jPDL process language, but, because version 5.0 supports BPMN 2.0, the
jBPM project has merged with the JBoss Drools project (an open source busi­
ness-rule management framework) and replaced Drools Flow as the rule flow
language for the Drools framework.

■	 BonitaSoft—An open source process engine that provides support for the
BPMN 2.0 process language. The main differentiators of BonitaSoft are the
large set of supported elements and the integrated development environment.

Let’s discuss the similarities and differences between Activiti and its two competitors
in a bit more detail.

ACTIVITI AND JBPM

Activiti and jBPM have a lot in common: they’re both developer-oriented process
engine frameworks built around the concept of a state machine (see section 1.2.2).

8 CHAPTER 1 Introducing the Activiti framework

Because jBPM 5 also implements the BPMN 2.0 specification, a lot of similar function­
ality can be found. But there are a number of differences that are important to men­
tion; see table 1.2.

Table 1.2 Main differences between Activiti and jBPM

Description Activiti jBPM

Community
members

Spring support

Business rules
support

Additional
tools

Project

Activiti has a base team consisting of
Alfresco employees. In addition, companies
like SpringSource, FuseSource, and Mule-
Soft provide resources on specific compo­
nents. There are also individual open source
developers committing to the Activiti project.

Activiti has native Spring support, which
makes it easy to use Spring beans in your
processes and to use Spring for JPA and
transaction management.

Activiti provides a basic integration with the
Drools rule engine to support the BPMN 2.0
business rule task.

Activiti provides modeler (Oryx) and designer
(Eclipse) tools to model new process defini­
tions. The main differentiator is the Activiti
Explorer, which provides an easy-to-use web
interface to start new processes, work with
tasks and forms, and manage running pro­
cesses. In addition, it provides ad hoc task
support and collaboration functionality.

Activiti has a strong developer and user com­
munity with a solid release schedule of two
months. Its main components are the Engine,
Designer, Explorer, and REST application.

jBPM has a base team of JBoss
employees. In addition, there are indi­
vidual committers.

jBPM has no native Spring support, but
you can use Spring with additional
development effort.

jBPM and Drools are integrated on a
project level, so there’s native integra­
tion with Drools on various levels.

jBPM also provides a modeler based on
the Oryx project and a Eclipse designer.
With a web application, you can start
new process instances and work with
tasks. The form support is limited.

jBPM has a strong developer and user
community. The release schedule isn’t
crystal clear, and some releases have
been postponed a couple of times. The
Designer application is (at the moment
of writing) still based on Drools Flow,
and the promised new Eclipse plugin
keeps getting postponed.

It’s always difficult to compare two open source frameworks objectively, and this book
is about Activiti. This book by no means presents the only perspective on the differ­
ences between the frameworks, but it identifies a number of differences that you can
consider when making a choice between them.

Next up is the comparison between Activiti and BonitaSoft.

ACTIVITI AND BONITASOFT

BonitaSoft is the company behind Bonita Open Solution, an open source BPM prod­
uct. There are a number of differences between Activiti and BonitaSoft:

9 Installing the Activiti framework

■	 Activiti is developer-focused and provides an easy-to-use Java API to communi­
cate with the Activiti Engine. BonitaSoft provides a tool-based solution where
you can click and drag your process definition and forms.

■	 With Activiti, you’re in control of every bit of the code you write. With Bonita-
Soft, the code is often generated from the developer tool.

■	 BonitaSoft provides a large set of connectivity options to a wide range of third-
party products. This means it’s easy to configure a task in the developer tool to
connect to SAP or query a particular database table. With Activiti, the connectiv­
ity options are also very broad (due to the integration with Mule and Camel),
but they’re more developer focused.

Although both frameworks focus on supporting the BPMN 2.0 specification and offer­
ing a process engine, they take different implementation angles. BonitaSoft provides a
development tool where you can draw your processes and configure and deploy them
without needing to write one line of code. This means that you aren’t in control of the
process solution you’re developing. Activiti provides an easy-to-use Java API that will
need some coding, but, in the end, you can easily embed it into an application or run
it on every platform you’d like.

 As you can see, Activiti is not the only open source process engine capable of run­
ning BPMN 2.0 process models, but it’s definitely a flexible and powerful option, and
one that we’ll discuss in detail in this book. Now that you know the different compo­
nents of Activiti, let’s get the framework installed on your development machine.

1.3 Installing the Activiti framework
The first thing you have to do is point your web browser to the Activiti website at
www.activiti.org. You’ll be guided to the latest release of Activiti via the download but­
ton. Download the latest version and unpack the distribution to a logical folder, such as

C:\activiti (Windows)

/usr/local/activiti (Linux or Mac OS)

This isn’t the beginning of a long and complex

installation procedure—with Activiti, there’s a

setup directory that contains an Ant build file

that installs the Activiti framework. The direc­
tory structure of the distribution is shown in

figure 1.3.

 Before you go further with the installation

procedure, make sure that you’ve installed a

Java 5 SDK or higher, pointed the JAVA_HOME

environment variable to the Java installation

directory, and installed a current version (1.8.x

or higher) of Ant (http://ant.apache.org).

Shortcuts to the Java SDK and the Ant framework

are also provided on the Activiti download page.

Figure 1.3 The directory structure of the
Activiti distribution with the setup directo­
ry and the Ant build.xml file as the main
parts for the installation procedure.

http://ant.apache.org
www.activiti.org

10	 CHAPTER 1 Introducing the Activiti framework

 The last thing to confirm is that you have an internet connection available without
a proxy, because the Ant build file will download additional packages. If you’re behind
a proxy, make sure you’ve configured the Ant build to use that proxy (more info can
be found at http://ant.apache.org/manual/proxy.html).

 When you open a terminal or command prompt and go to the setup directory
shown in figure 1.3, you only have to run the ant command (or ant demo.start). This
will kick off the Activiti installation process, which will look for a build.xml file in the
setup directory. The installation performs the following steps:

1	 An H2 database is installed to /apps/h2, and the H2 database is started on
port 9092.

2 The Activiti database is created in the running H2 database.
3 Apache Tomcat 6.0.x is downloaded and installed to /apps/apache-tomcat-6.0.x,

where x stands for the latest version.
4 Demo data, including users, groups, and business processes, are installed to the

H2 database.
5 The Activiti REST and Activiti Explorer WARs are copied to the webapps direc­

tory of Tomcat.
6 Tomcat is started, which means that the Activiti Explorer and REST applications

are running.
7	 Depending on on your OS, a web browser is started by the installation script with

the Activiti Explorer URL. On Windows 7, no web browser is started; in other ver­
sions of Windows, the web browser is only started if you have Firefox installed.

When the Ant script has finished, you have the Activiti tool stack installed and run­
ning. That’s not bad for about a minute of installation time. The Ant build file isn’t
only handy for installing Activiti but also for doing common tasks, like stopping and
starting the H2 database (ant h2.stop, ant h2.start) and the Tomcat server (ant
tomcat.stop, ant tomcat.start) and for re-creating a vanilla database schema
(ant internal.db.drop, ant internal.db.create). It’s worth the time to look at the
Ant targets in the Ant build file.

 The installation of Activiti consists foremost of two web applications being
deployed to a Tomcat server and a ready-to-use H2 database being created with exam­
ple processes, groups, and users already loaded. Figure 1.4 shows the installation
result in a schematic overview.

 Notice that we haven’t yet installed the Activiti Modeler and Designer applications.
These components aren’t part of the installation script and have to be installed sepa­
rately. We’ll discuss how to do this in chapter 3.

 To verify whether the installation has succeeded, the Activiti Explorer, listed in
table 1.3, should be available via your favorite web browser. You can use the user
kermit with password kermit to log in. To work with the Activiti REST application, you
can use a REST client, such as the REST client Firefox plugin. You can read more about
the Activiti REST API in chapter 8.

http://ant.apache.org/manual/proxy.html

11 Implementing your first process in Activiti

Apache Tomcat

activiti−rest activiti−explorer

H2
database

Figure 1.4 An overview of the installation
Example processes, result of the Activiti tool stack, including a

groups + users running Tomcat server and H2 database
with the two Activiti web applications al­
ready deployed.

Table 1.3	 The URI of the Activiti Explorer and REST web applications available for you after the
installation of Activiti

Application name URI Short description

Activiti Explorer

Activiti REST

http://localhost:8080/activiti-explorer

http://localhost:8080/activiti-rest/service

The Explorer application can be used
to work with the deployed processes.
This is a good starting point from
which to try the example processes.

The REST application can be used to
gain remote access to the Activiti
Engine via a REST interface. For all
available REST services, you can
look in the Activiti user guide that
can be found on the Activiti website.

By trying the Activiti Explorer application, you can verify whether the installation was
successful. After logging in and clicking on the Process tab, you should get a list of the
examples processes that are deployed on the Activiti Engine.

 Working with demo processes is fun, but it’s even better to try out your own devel­
oped business process.

1.4 Implementing your first process in Activiti
Let’s try to implement a simplified version of a book order process. We could use the
Activiti Modeler to first model the process, and the Activiti Designer to implement
and deploy the process, but it’s better to start off with a BPMN 2.0 XML document for
learning purposes. There won’t be any drag-and-drop development, but get ready for
some XML hacking.

12 CHAPTER 1 Introducing the Activiti framework

1.4.1 Say hello to Activiti

We’ll keep things simple for now; if you don’t understand every construct already,
don’t be worried—we’ll discuss the BPMN 2.0 elements in more detail in chapter 2.

In the following listing, a starter for the BPMN 2.0 XML definition of the book
order process is shown with only a start event, an end event, and a sequence flow to
connect the two.

Listing 1.1 bookorder.simple.bpmn20.xml document with only a start and end event

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

 targetNamespace="http://www.bpmnwithactiviti.org">

<process id="simplebookorder" name="Order book">

 <startEvent id="startevent1" name="Start"/>

 <sequenceFlow id="sequenceflow1"

sourceRef="startevent1" targetRef="endevent1"/>

 <endEvent id="endevent1" name="End"/>

 </process>

</definitions>

A BPMN 2.0 XML definition always starts with a definitions element that is identified
with a namespace from the OMG BPMN specification. Each process definition must
also define a namespace; here, you define a targetNamespace with the book’s website
as its attribute value. Activiti also provides a namespace, which enables you to use
Activiti extensions to the BPMN 2.0 specification, as you’ll see in chapter 4. You can
now run this simple process to test if you’ve correctly defined the process definition
and the environment setup in the right manner.

 To test this process, you have to create a Java project in your favorite editor. In this
book, we’ll use Eclipse for the example description, because the Eclipse Designer is
only available as an Eclipse plugin. But it’s easier to download the source code from
the book’s website at Manning (or you can go directly to the Google code repository
at http://code.google.com/p/activitiinaction) and import the examples from there.

When you import the bpmn-examples project (used in this chapter), the Activiti
libraries have to be added to the Java build path. The book’s source code uses Maven
to retrieve all the necessary dependencies. The sample project’s code structure is
explained in detail in chapter 4 and appendix A. But, starting from Eclipse Indigo
(version 3.7.x), there’s good built-in Maven support, so it’s easy to get it working. Acti­
vate the Maven project capabilities by choosing the Configure–Convert to Maven Proj­
ect option in the project menu when you right-click on the bpmn-examples project in
Eclipse. Eclipse will download all the necessary dependencies and configure the class-
path for you.

With the dependencies in place, you can look for the SimpleProcessTest unit test
in the org.bpmnwithactiviti.chapter1 package of the bpmn-examples project. The
SimpleProcessTest class contains one test method, shown in the following listing.

http://code.google.com/p/activitiinaction
http:targetNamespace="http://www.bpmnwithactiviti.org

13 Implementing your first process in Activiti

Listing 1.2 First example of a JUnit test for a Activiti process deployment

public class SimpleProcessTest {

 @Test

 public void startBookOrder() {

 ProcessEngine processEngine = ProcessEngineConfiguration
 CreatesB
Activiti.createStandaloneInMemProcessEngineConfiguration()

engine.buildProcessEngine();

RuntimeService runtimeService =

processEngine.getRuntimeService();

RepositoryService repositoryService =

processEngine.getRepositoryService();

repositoryService.createDeployment()

Deploys

.addClasspathResource(
 simplebookorder
"bookorder.simple.bpmn20.xml")
 process definition

.deploy();

ProcessInstance processInstance =
 Starts bookorder
runtimeService.startProcessInstanceByKey(
 process instance

"simplebookorder");

assertNotNull(processInstance.getId());

 System.out.println("id " + processInstance.getId() + " " +

processInstance.getProcessDefinitionId());

 }

}

In just a few lines of code, you’re able to start up the Activiti process engine, deploy
the book order process XML file from listing 1.1 to it, and start a process instance for
the deployed process definition.

 The process engine can be created with the ProcessEngineConfiguration B,
which can be used to start the Activiti engine and the H2 database. In this case, the
process engine is started with an in-memory H2 database. There are different ways to
start up an Activiti engine, and we’ll look at the options in detail in chapter 4.

NOTE Activiti can also run on database platforms other than H2, such as
Oracle or PostgreSQL.

The next important step in listing 1.2 is the deployment of the bookorder.sim­
ple.bpmn20.xml file from listing 1.1. To deploy a process from Java code, you need to
access the RepositoryService from the ProcessEngine instance. Via the Repository-
Service instance, you can add the book order XML file to the list of classpath resources
to deploy it to the process engine C. The process engine will validate the book order
process file and create a new process definition in the H2 database.

 It’s easy to start a process instance based on the newly deployed process definition
by invoking the startProcessInstanceByKey method D on the RuntimeService
instance, which is also retrieved from the ProcessEngine instance. The key
bookorder, which is passed as the process key parameter, should be equal to the pro­
cess id attribute from the book order process of listing 1.1. A process instance is

C

D

14 CHAPTER 1 Introducing the Activiti framework

stored to the H2 database, and a process instance ID that can be used as a reference to
this specific process instance is created. This identifier is very important.

 You can now run the unit test and the result should be green. In the console, you
should see a message like this:

id 4 simplebookorder:1:3

This message means that the process instance ID is 4 and the process definition that
was used to create the instance was the simplebookorder definition with version 1 and
the process definition database ID is 3.

 Now that we’ve covered the basics, let’s implement a bit more of the book order
process; then you can use the Activiti Explorer to claim and finish a user task for your
process.

1.4.2 Implementing a simple book order process

It would be a shame to finish chapter 1 with an example that only contains a start and
an end event. Let’s enhance your simple book order process with a script task and a
user task so you can see a bit of action on the Activiti engine. First, the script task will
print an ISBN number that will be provided as input to the book order process when
it’s started in a unit test (like this example) or in the Activiti Explorer. Then, a user
task will be used to manually handle the book ordering.

 Activiti allows you to use the scripting language you want, but Groovy is supported
by default. We’ll use a line of Groovy to print the ISBN process variable. The following
listing shows a revised version of the book order process.

Listing 1.3 A book order process with a script and user task

<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

targetNamespace="http://www.bpmnwithactiviti.org">

 <process id="bookorder" name="Order book">

 <startEvent id="startevent1" name="Start"/>

 <sequenceFlow id="sequenceflow1" name="Validate order"

sourceRef="startevent1" targetRef="scripttask1"/>

 <scriptTask id="scripttask1"

name="Validate order"

 scriptFormat="groovy">

 <script>

 out:println "validating order for isbn " + isbn;

</script>

 </scriptTask>

 <sequenceFlow id="sequenceflow2" name="Sending to sales"

 sourceRef="scripttask1" targetRef="usertask1"/>

 <userTask id="usertask1" name="Work on order">

<documentation>book order user task</documentation>

 <potentialOwner>

 <resourceAssignmentExpression>

 <formalExpression>sales</formalExpression>

</resourceAssignmentExpression>

 </potentialOwner>

Defines
script task

Prints B
ISBN

DefinesC
user task

Assigns task to
sales group

http:targetNamespace="http://www.bpmnwithactiviti.org

15 Implementing your first process in Activiti

 </userTask>

 <sequenceFlow id="sequenceflow3" name="Ending process"

 sourceRef="usertask1" targetRef="endevent1"/>

 <endEvent id="endevent1" name="End"/>

 </process>

</definitions>

With the two additional tasks added to the process definition, the number of lines in
the XML file grows quite a bit. In chapter 3, we’ll look at the Activiti Designer, which
does the BPMN 2.0 XML generation for you and provides a drag-and-drop type of pro­
cess development.

 The script task contains a out:println variable B, which is a Groovy reserved
word within the Activiti script task for printing text to the system console. Also
notice that the isbn variable can be used directly in the script code without any addi­
tional programming.

 The user task C contains a potential owner definition, which means that the task
can be claimed and completed by users that are part of the group sales. When you run
this process in a minute, you’ll see in the Activiti Explorer that this user task is avail­
able in the task list for the user kermit, who is part of the sales group.

 Now that you’ve added more logic to the process, you also need to change your
unit test. One thing you need to add is an isbn process variable when starting the pro­
cess. To test whether the user task is created, you also need to query the Activiti engine
database for user tasks that can be claimed by the user kermit.

 Take a look at the changed unit test in the next code listing. You can again find this
unit test class in the bpmn-examples project in the org.bpmnwithactiviti.chapter1
package.

Listing 1.4 A unit test with a process variable and user task query

public class BookOrderTest {

 @Test

 public void startBookOrder() {

 ProcessEngine processEngine = ProcessEngineConfiguration

 .createStandaloneProcessEngineConfiguration()

 .buildProcessEngine();

RepositoryService repositoryService =

processEngine.getRepositoryService();

 RuntimeService runtimeService =

processEngine.getRuntimeService();

 IdentityService identityService =

 processEngine.getIdentityService();

 TaskService taskService = B
 Gets TaskService
instanceprocessEngine.getTaskService();

repositoryService.createDeployment()

 .addClasspathResource("bookorder.bpmn20.xml")

 .deploy();

 Map<String, Object> variableMap =

new HashMap<String, Object>();

16 CHAPTER 1 Introducing the Activiti framework

 variableMap.put("isbn", "123456");

 identityService.setAuthenticatedUserId("kermit");

 ProcessInstance processInstance =

runtimeService.startProcessInstanceByKey(

"bookorder", variableMap);

assertNotNull(processInstance.getId());

 List<Task> taskList = taskService.createTaskQuery()

.taskCandidateUser("kermit")

.list()

assertEquals(1, taskList.size());

 System.out.println("found task " +

taskList.get(0).getName());

 taskService.complete(taskList.get(0).getId());

 }

}

Starts process
with variable

SetsC
authenticated
user to kermit

Finds tasks
available for
kermit

The BookOrderTest unit test starts a process instance with a Map of variables C that
contains one variable with a name of isbn and a value of 123456. In addition, when
the process instance has been started, a TaskService instance B is used to retrieve
the tasks available to be claimed by the user kermit. Because there’s only one process
instance running with one user task, you test that the number of tasks retrieved is 1.

 Also note that you’re not using the in-memory database anymore but have
switched (createStandaloneProcessEngineConfiguration) to the default stand­
alone H2 database that’s installed as part of the Activiti installation procedure. This
means that, before running the unit test, the H2 database should be running (ant
h2.start or ant demo.start). Now you can run the unit test to see if your changes
work. In the console, you should see a similar output to

validating order for isbn 123456

found task Work on order

The first line is printed by the Groovy script task in the running process instance. The
last line confirms that one user task is available for claim for the user kermit. Because
a user task is created, you should be able to see this task in the Activiti Explorer. Con­
firm that Tomcat has been started (ant tomcat.start or ant demo.start).

 Now, point your browser to http://localhost:8080/activiti-explorer and log in with
the user kermit and the same password. When you click on the link Queued, you
should see one task in the group Sales. When you click on this Sales group, you
should see a screen with one user task with the name of Work on Order like the
screenshot shown in figure 1.5.

 For the sake of completeness, you can claim the user task and see that it becomes
available in the Inbox page. There you can complete the task, which triggers the pro­
cess instance to complete to the end state. But, before you do that, you can click on
the process link, Part of process: ‘Order Book’, to see details about the running pro­
cess instance, as shown in figure 1.6.

 In the process instance overview, you can get the details about the user tasks that
aren’t yet completed and the process variables of the running instance. The Activiti

http://localhost:8080/activiti-explorer

17 Implementing your first process in Activiti

Figure 1.5 A screenshot of the Activiti Explorer showing the user task of the book order process.

Figure 1.6 A screenshot of the Activiti Explorer application showing the details of a running process
instance with open user tasks and the process instance variables.

Explorer contains a lot more functionality, which we’ll discuss throughout the book,
starting in chapter 3.

 This completes our first journey in the Activiti framework. In the coming chapters,
we’ll take a more detailed look at the Activiti tool stack and explore how to use Activiti’s
Java API to, for example, create processes or retrieve management information. But,
first, we’ll look more closely at BPMN 2.0.

18 CHAPTER 1 Introducing the Activiti framework

1.5 Summary
In this chapter, we started with an introduction into Activiti, including its history and
its competitors. We also got acquainted with the Activiti tool stack and you were able
to implement a simple book order process using a script and user task. You also
started the Activiti process engine, deployed a book order process, started a process
instance, and did some unit testing on it with a couple lines of Java code.

 It’s obvious that Activiti provides you with a powerful API and tool stack to run your
processes. But how can you model and implement these processes? The BPMN 2.0
specification is the foundation for the Activiti Engine, and, to prepare for the exam­
ples in the rest of the book, we’ll discuss the details of BPMN 2.0 in the next chapter.

METHODOLOGY/JAVA

Activiti IN ACTION
Tijs Rademakers

A
ctiviti streamlines the implemention of your business
processes: with Activiti Designer you draw your business
process using BPMN. Its XML output goes to the Activiti

Engine which then creates the web forms and performs the com­
munications that implement your process. It’s as simple as that.
Activiti is lightweight, integrates seamlessly with standard frame­
works, and includes easy-to-use design and management tools.

Activiti in Action introduces developers to business process
modeling with Activiti. You’ll start by exploring BPMN 2.0 from
a developer’s perspective. Then, you’ll quickly move to examples
that show you how to implement processes with Activiti. You’ll
dive into key areas of process modeling, including workfl ow, ESB
usage, process monitoring, event handling, business rule engines,
and document management integration.

What’s Inside
● Activiti from the ground up
● Dozens of real-world examples
● Integrate with standard Java tooling

Written for business application developers. Familiarity with
Java and BPMN is helpful but not required.

Tijs Rademakers is a senior software engineer specializing in open
source BPM, lead developer of Activiti Designer, and member
of the core Activiti development team. He’s the coauthor of
Manning’s Open Source ESBs in Action.

To download their free eBook in PDF, ePub and Kindle formats, owners
of this book should visit manning.com/ActivitiinAction

SEE INSERT

“A comprehensive overview

of the Activiti framework, the

Activiti Engine, and

—From the Foreword by Tom
BPMN.”

Baeyens, Founder of jBPM

“A superb book. Best source

of knowledge on Activiti and

BPMN 2.0. Period.”
 —From the Foreword by Joram

Barrez, Cofounder of Activiti

“The very first book on

Actviti ... immediately

sets the bar high.”
 —Roy Prins, CIBER Netherlands

“Just enough theory
to let you get

 right down to coding.” —Gil Goldman
Dalet Digital Media Systems

M A N N I N G $49.99 / Can $52.99 [INCLUDING eBOOK]

