
M A N N I N G

Jim Jackson II
Ian Gilman

Single page web apps, JavaScript, and semantic markup

FOREWORD BY
Scott Hanselman

S A M P L E C H A P T E R

HTML5 for .NET Developers

by Jim Jackson II
Ian Gilman

 Chapter 1

 Copyright 2013 Manning Publications

vii

brief contents
1 ■ HTML5 and .NET 1

2 ■ A markup primer: classic HTML, semantic HTML, and CSS 33

3 ■ Audio and video controls 66

4 ■ Canvas 90

5 ■ The History API: Changing the game for MVC sites 118

6 ■ Geolocation and web mapping 147

7 ■ Web workers and drag and drop 185

8 ■ Websockets 214

9 ■ Local storage and state management 248

10 ■ Offline web applications 273

1

HTML5 and .NET

You’re really going to love HTML5. It’s like having a box of brand new toys in front
of you when you have nothing else to do but play. Forget pushing the envelope;
using HTML5 on the client and .NET on the server gives you the ability to create
entirely new envelopes for executing applications inside browsers that just a few
years ago would have been difficult to build even as desktop applications. The abil-
ity to use the skills you already have to build robust and fault-tolerant .NET solu-
tions for any browser anywhere gives you an advantage in the market that we hope
to prove throughout this book.

 For instance, with HTML5, you can

■ Tap the new Geolocation API to locate your users anywhere on the planet

This chapter covers
■ Understanding the scope of HTML5
■ Touring the new features in HTML5
■ Assessing where HTML5 fits in

software projects
■ Learning what an HTML application is
■ Getting started with HTML applications in

Visual Studio

2 CHAPTER 1 HTML5 and .NET

■ Build photo editing or animation products with the Canvas API
■ Build high-performance user interfaces for using the History and Drag-and-

Drop APIs
■ Accomplish a tremendous amount of work with just a few lines of JavaScript

What, exactly, is HTML5? In a nutshell, it’s one part semantic organization that can
add additional meaning to content on the web and one part JavaScript programming
interfaces that allow you to do things in a simple web page that weren’t possible just a
short time ago. The opportunities are limited only by your imagination, and the tools
and environments you’re currently using to develop software will probably be the
same ones that help you build this new class of application. You can see some exam-
ples in figure 1.1.

HTML5

New forms elements allow you to

better organize, validate, and display

data on the page.

Video and audio controls allow you to

display rich media and even integrate

with other APIs like canvas.

Semantic markup allows

your page structure

to have meaning

without the need for

descriptive CSS styles.

The canvas element allows

you to create rich drawings

and animations inside

your page in real time.

Figure 1.1 From games like Canvas Rider to semantic page layout to audio/video to form
presentation, HTML5 has something for everyone in the web design and application space.
Rich HTML applications are the new normal for web development.

3New toys for developers thanks to HTML5

Fellow developers, now is the time to sit up and take note. The semantic web, which
HTML5 taps and which we’ll talk more about in the next chapter, is here. Even better,
you already have many of the skills you need to build robust applications for this mar-
ket. The same tools and technologies you use now, like Visual Studio, ASP.NET, and
web services, can be effectively integrated into HTML5 applications. You’ll need to
build on your existing knowledge and expand it into some new areas, but the
rewards—such as seamless integration with tablets and phones, ease of deployments
and upgrades, and rich client feature sets—are worthwhile.

 In this chapter, we’ll look at the new toys that HTML5 brings to .NET developers,
such as the following:

■ New HTML5 elements and microdata, which bring meaning to the markup
beyond just the contents of the tags on the page

■ New web app form factors that let you add features to your page with little or no
additional code

■ New JavaScript APIs that not only lead to better performance but also give you the
ability to build rich interactive graphics and speed performance in your web apps

We’ll also look at JavaScript and why it needs to be a first-class language in your skill
set if you intend to take advantage of HTML5, and we’ll look at the server-side pro-
cesses and options for HTML5 available from the .NET framework.

 Finally, we’ll look at HTML5 applications from end to end, and we’ll implement a
Hello World example that will give you the minimum JavaScript you need to work
through the example applications in this book and will give you a taste of the HTML5
smorgasbord to come.

 Without further ado, let’s begin with a tour of the new toys that HTML5 adds to
your toy box.

1.1 New toys for developers thanks to HTML5
HTML5 is a big topic, and figure 1.2 should give you a better understanding of the var-
ious moving parts in a web application that uses HTML5. If it feels like you’re looking
at the underside of a race car with only a vague idea of how things work, don’t worry.
We’ll provide all the details as we progress through the book. What’s important here is
the big picture and the basic interactions among the parts.

 In this section, we’ll give you a high-level but grounded tour of some of the most
exciting new features of HTML5, many of which you’ll learn how to use in this book. If
we won’t be covering a particular feature in this book, we’ll point you to other good
resources on the topic so you can take side trips whenever you need or like. Specifi-
cally, we’re going to cover the following topics in this section:

■ New HTML5 tags and microdata, which help you build search-optimized,
semantic pages

■ How HTML5 lets you develop across devices and browsers, without having to
write multiple programs

4 CHAPTER 1 HTML5 and .NET

■ Improvements to JavaScript and the plethora of libraries, extensions, and
frameworks that make your development work so much faster and easier

■ Identifying and implementing the HTML5 APIs that everyone is talking about by
creating user-friendly, graphics-rich, interactive web applications

■ Reviewing where Cascading Style Sheets 3 (CSS3) and ASP.NET MVC fit into
the picture

For our first stop, we’ll turn to HTML5 tags and microdata.

1.1.1 New HTML5 tags and microdata

Imagine that you’re a member of a band called Four Parts Water. You’re creating a
very basic web page just to test out your newly acquired HTML5 knowledge.

 You know about HTML tags, which are the little pieces of text inside brackets that you
write to render elements on a web page. Each tag starts with an opening < symbol and
ends with a closing > symbol. Content is placed next, and then the tag is closed with the
</tag> marker. Opening tags may also include attributes to give them further meaning:

<div>
 <p>My name is Neil.</p>
 <p>My band is called Four Parts Water.</p>
 <p>I am British.</p>
</div>

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

Figure 1.2 The basic organization of a web application built using HTML5. The application is consumed
by a web browser that reads an HTML text file and interprets the content, loading other resources like
JavaScript files, images, or stylesheets as necessary. The markup is rendered on the page using stylesheets
that are linked or placed directly into the markup, and JavaScript code executes at the proper time to
change the interface, communicate with the server, or interact with the HTML5 APIs available from the
current browser. These APIs can interact directly with the client system, but JavaScript, as a rule, can’t.

5New toys for developers thanks to HTML5

That’s good, but now you want to try adding some microdata. Microdata is additional
information you can add to your page using special attribute keywords. It can be set,
read, and changed via JavaScript, and the values your microdata contains can be
nearly anything you like. You can extend tags using microdata to add semantic or
other meaningful information that search engines and JavaScript libraries can use to
make even more sense of the data on the page. A holistic interpretation of your page
data and content will help optimize it for search as well as for accessibility applications
like page readers. Microdata extensions can also reduce the amount of code and
increase the expressiveness of the markup in nearly any page.

 Armed with this knowledge, you write up the code in the following listing (from
html5rocks.com), which displays the same basic page with your name and the name of
your band, but with extra information meant for web crawlers and search engines.

<div itemscope>
 <p>My name is
 Neil.</p>
 <p>My band is called
 Four Parts Water.</p>
 <p>I am
 British.</p>
</div>

As you can see, the various microdata tags help the engines and crawlers to interpret
which pieces of the text are important and what each one means.

1.1.2 HTML5 applications for devices

HTML5 has not only given us .NET developers new ways to make our code make sense
on the web; it has also brought us the ability to develop for exciting new devices that
used to exist only in the imaginations of sci-fi writers: think iPad, Kindle, and smart
phones. Mobile phones have fully featured browsers with display technologies better
than most computers available five years ago, and even laptops now have powerful
graphics processors. Gaming PCs have graphics support that allows them to seamlessly
render complex 3D graphics and animations. HTML5 lets .NET developers enter this
new world, where the challenge is to take advantage of the diversity of browser plat-
forms while maintaining functional continuity.

NOTE Currently the web community uses the terms HTML application and
HTML5 application interchangeably. This is because the new functionality
that’s available as the HTML5 specification comes to market is what is stimulat-
ing the new ideas and methods of developing rich internet applications.
Here, we’ll refer only to “HTML applications,” but our examples will be

Listing 1.1 Microdata tags describing content

Itemscope declaration defines boundaries of itemprops for object.

Itemprop here is name,
standard microdata
vocabulary term that’s
useful for search engines.

Band itemprop isn’t in standard
vocabulary but is allowed nonetheless.

Closing tag for element declared with itemscope
closes object referenced by microdata.

6 CHAPTER 1 HTML5 and .NET

focused on the parts of HTML5 and JavaScript that make the applications
deeper and more useful to users.

How do you develop a single application to work across all the screens listed in figure 1.3?
It’s certainly possible, but it takes a good understanding of the compromises and fea-
tures available across the entire range of target browsers. We’ll provide you with that
knowledge in chapters to come as we teach you how to use HTML5’s features in multi-
ple browsers.

1.1.3 Better, faster JavaScript

Another feature that makes HTML applications compelling is the incredible improve-
ment in JavaScript engine performance over the last few years, across all browsers.
Gone are the days when JavaScript was only suitable for handling click events or post-
ing forms. Just take a look at figure 1.4 to see how dramatically execution time has
improved through various versions.

 Add HTML5’s native support for JSON data transmission and the array of
performance-enhancing coding techniques available, and it gets difficult to say that
compiled binary libraries are always faster. While perhaps this is true in many
instances, there are plenty of normal operating situations where a JavaScript routine
can be just as fast as the same routine compiled in the .NET runtime. This means that
plugins like Silverlight and Flash have much less of an advantage in the application
market. In some instances, they have no advantage at all.

1.1.4 Libraries, extensions, and frameworks

JavaScript development also benefits from a wide range of open source projects and
free tools. While not new toys themselves, these pieces of the application puzzle allow
you as the developer to make better, more efficient use of the HTML5-specific toys. 1

Figure 1.3 The form factor, size, and resolution of browsers available to you is
growing all the time.

7New toys for developers thanks to HTML5

1 See the “Roadmap for Windows Store apps using JavaScript” page in the Windows Dev Center at http://msdn
.microsoft.com/en-us/library/windows/apps/hh465037.aspx.

Windows 8
The Windows 8 announcement and subsequent release is big news to all .NET devel-
opers. It brings a new set of features, better security, and an app store, and it takes
the beautiful Windows Store1 styling from Windows Phone. While this book isn’t specif-
ically about building native Windows 8 applications with HTML5, CSS, and JavaScript,
the good news is that what you learn here will be applicable on this new platform.

The Windows-specific version of JavaScript is called WinJS, and it’s JavaScript at
heart with the added ability to call native functions and libraries on the host system.
The markup and styling from your HTML5 applications should be relatively easy to
port into the new Windows 8 environment, making your skills all the more valuable.

In addition, Internet Explorer 10, shipped with Windows 8, is the most compliant, com-
patible browser ever from Microsoft, and it’s incredibly fast. This gives you the option of
building your application as an HTML5 web app to use on multiple devices and browsers
or as a native Windows 8 application, suitable for deployment to the app store.

In short, this book, while not targeted toward any specific platform, will allow you to
use everything you learn to get a major head start on native and browser-based Win-
dows 8 development.

Figure 1.4 JavaScript engine
performance improvements in
the past few years (courtesy
of webkit.org) have led to
impressive speeds all around.
In this graph, the time
required in milliseconds
to perform a large number
of very specific JavaScript
benchmark tasks
is measured.

8 CHAPTER 1 HTML5 and .NET

For instance, there are dozens of unit-testing frameworks for JavaScript including
QUnit, a free framework for JavaScript and jQuery (github.com/jquery/qunit). You
can build complete applications using pattern-based approaches with libraries like
Backbone.js (documentcloud.github.com/backbone) or Knockout.js (knockoutjs.com).
These frameworks give you a client-side MVC (Model-View-Controller) or MVVM
(Model-View-ViewModel) paradigm to build large HTML applications while keeping
them maintainable. There are thousands more; just think of any feature you might
want for a rich website and search for it. You’re almost guaranteed to find something
to get you started.

 It’s hard to say exactly where to start when considering third-party commercial
and open source JavaScript libraries. There are components for performing spe-
cific tasks, libraries that act as development frameworks, libraries for unit testing,
graphics helpers, communications tools, documentation enhancers, and plenty of
others. Just take a look at GitHub (http://www.github.com/) and see for yourself.
A search for “JavaScript” turns up over 9,000 projects. Now jump over to the jQuery
site (www.jquery.com) and take a look at the plugins page. There are almost 500 pages
of plugin projects. 2

Nearly every JavaScript library available today is open for your review and for subse-
quent inclusion in your website based on the license that accompanies it. In addition
to using these libraries outright, you can use them to learn how to do specific tasks or
for architectural guidance.

 As you work through the examples in this book and become more versed in the
JavaScript language, you’ll learn to look at these libraries with a critical eye toward

Wondering where to start when it comes to libraries? Consider jQuery.
jQuery is the obvious place to start when looking at JavaScript libraries to improve
the quality of your applications and speed of your development. It’s one of the most
popular frameworks for developing HTML applications, used in nearly half of all active
websites today.2 The library, a creation of John Resig, is under constant development
and is both fast and easy to use. It also sports a plugin model that allows others to
add new features to it.

Microsoft clearly understands that jQuery is an ideal tool for building the next wave
of applications, and it has invested a lot of energy into data binding, templating plug-
ins, and pattern-based frameworks like Knockout.js. Using HTML5, a Microsoft devel-
oper can now build once and deploy practically anywhere. (Where have we heard that
before?) But more important than Microsoft’s contribution is the fact that it’s an
equal partner in the jQuery ecosystem.

2 See W3Techs “Usage statistics and market share of JQuery for websites” article at http://w3techs.com/
technologies/details/js-jquery/all/all.

9New toys for developers thanks to HTML5

instancing models, resource allocation, binding to existing elements, and how each
library can fit into the overall goals of your application.

1.1.5 New HTML5 JavaScript APIs

There are also various JavaScript objects and APIs that can help your pages interact
with the outside world and with the rest of the browser’s operating system. There are
quite a few such features, but we’ll focus our discussion on some of the most stable
and useful for building rich web applications.

CANVAS

Canvas is a raster-based drawing mechanism in HTML5. The Canvas JavaScript API has
a lot of functionality, and we’ll cover it in detail in chapter 4. If you want an early peek
though, try using the following code to draw a simple rectangle on a canvas element:

var myCanvas = document.getElementById("rectCanvas");
var canvContext = myCanvas.getContext("2d");
canvContext.fillRect(50, 25, 150, 100);

The key is to get a reference to the canvas and then grab its context object. The con-
text object is what you use to do all work inside the rendered element.

 How can you use it? As a drawing surface, for graphs and charts and for animations
ranging from very simple to extremely complex.

HISTORY

The History API in HTML5 is used to add or replace data in the current browser’s ses-
sion history. You can use it to overwrite the current page with something more generic
or with a more helpful landing page. You can also use it to add a new item to session
history so that on-page navigation events can be accessed using the browser’s forward
and backward buttons:

history.pushState();
history.replaceState();

We’ll discuss the History API in chapter 5.
 How can you use it? To enhance application navigation between views or pages

and to remove unwanted steps from the browser history for the current site.

GEOLOCATION

Our favorite API is Geolocation. Using the geolocation.getCurrentPosition() func-
tion, you can return a latitude and longitude from a device’s onboard GPS device.
Note that the geolocation object is only available to the navigator object in
JavaScript. Navigator isn’t, as you might expect, a wrapper just for geolocation. It’s a
global object that contains a number of functional pieces. Check out chapter 6 on
geolocation for more on this.

 How can you use it? As a tool to let users locate themselves in the world and as the
basis for providing meaningful data about points of interest around a user.

10 CHAPTER 1 HTML5 and .NET

WEB WORKERS

A web worker allows your HTML application to use multiple threads. For heavy process-
ing applications or long-running JavaScript tasks, the web worker object can be invalu-
able. The web worker is declared as a Worker object and is passed a JavaScript file:

var wrk = new Worker("BackgroundProcess.js");

Once instantiated, the background process script and the hosting worker object can
listen for messages sent back and forth. The worker object could do this:

wrk.postMessage("Hello to the web worker");

And inside BackgroundProcess.js, you could do this to send a message back to
the host:

self.postMessage("Hi from the background process");

This is a minimal example without any of the required plumbing code. What’s impor-
tant here is that the values passed back and forth are strings. This leaves open the pos-
sibility of sending JSON data objects as well as other more complex arrays of values.
We’ll cover Web Workers in chapter 7.

 How can you use it? To speed application performance by performing processor-
intensive calculations in the background, freeing up cycles for graphics rendering and
user interaction.

DRAG AND DROP

Drag and drop is a new feature in HTML5 that allows you to programmatically pick up
and drop elements on your page relative to the page, to each other, or to the user’s
desktop. This is done by wiring up events on elements for drag, drop, dragover, and
dragenter. While a drag operation is occurring, other features of the API can be acti-
vated to provide feedback to the user about what is happening. We’ll look at drag and
drop in chapter 7.

 How can you use it? As a means of bringing natural user interactions to web appli-
cations reliably and quickly.

WEBSOCKETS

Websockets are a means of breaking away from the request/response paradigm of web
page interaction to a bi-directional communication channel. This means that commu-
nications can be happening in both directions simultaneously during a session. This is
best described with examples, but we need to cover more JavaScript basics first. Look
for coverage of Websockets in chapter 8.

 How can you use it? For building real-time communication web applications like
chat, white boards, or collaborative drawing.

LOCAL STORAGE

The Local Storage HTML5 API provides a solution for storing local data through the
use of a key/value style storage specification that’s available for reading and writing
within a single domain. You can read, insert, update, and delete data very easily and

11New toys for developers thanks to HTML5

store much more information than would normally be possible in a web application.
We’ll cover this API in chapter 9.

 How can you use it? As the basis for building applications that store user data
locally while sending only the data necessary for server functions.

 Local Storage doesn’t provide any specification for synchronizing with a server
database, nor does it provide transactional support. If you need transactional support,
you would be better off looking to the IndexedDB HTML5 specification. This API uses
a document-database (or NoSQL) style approach, but the specification is incomplete
and unstable at this time, so we won’t cover it in this book.

OFFLINE ACCESS

The ability of a site to remain available offline is new in HTML5. It’s done by specifying
a manifest file that describes which files must be downloaded for use offline, which
files should only be accessed while online, and which files, when requested, should get
a substitute file instead. The manifest file is specified in the top-level <html> element
on a page:

<html manifest="/cache.manifest">

How can you use it? As a means of creating rich games or business applications that
function even when an internet connection isn’t available.

AUDIO/VIDEO

The Audio and Video tags allow you to play music and video without Flash or Silver-
light plugins. Browser vendors have built in their own default players, but you can eas-
ily extend or replace them as we’ll show in chapter 3. Because support formats vary
between browsers, you can create your content in multiple formats and allow the
browsers to automatically choose which version to use. This allows for forward and
backward compatibility, keeping you current with the ever-changing multimedia for-
mat landscape.

 A simple audio tag might look something like this:

<audio src="/content/music.mp3"></audio>

1.1.6 Cascading Style Sheets 3
Cascading Style Sheets (CSS) version 3 technically isn’t a part of the HTML5 specifica-
tion, but the graphics capabilities of media queries and transformations make it a cru-
cial part of any browser-based rich application. Putting your presentation rules into
styles allows you to build more manageable and pluggable user interfaces for your cli-
ents. Well-engineered cascading styles can also significantly reduce your develop-
ment time.

 We’ll cover the core CSS3 concepts necessary for implementing HTML5 applica-
tions and understand where CSS3 fits into application design in chapter 2. We’ll
touch on it again throughout the rest of the book as a means of adding smooth ani-
mations and rich styling. While we aren’t providing a definitive CSS3 reference in
this book, you’ll certainly come to realize the benefits of learning CSS more deeply.

12 CHAPTER 1 HTML5 and .NET

The book Smashing CSS: Professional Techniques for Modern Layout by Eric Meyer (Smashing
Magazine, 2010) is a great addition to any technical library.

1.1.7 MVC and Razor
While not directly part of HTML5, MVC (Model-View-Controller) is a software develop-
ment pattern that allows for the clear separation of concerns between business logic
components and user interface display. The Visual Studio templates for Microsoft’s
latest version of ASP.NET MVC are being constantly updated as free, out-of-band
releases directly to the development community. ASP.NET MVC presents a couple of
ways to operate in the context of an HTML application.

 The first and easiest way is to ensure that all your views are HTML5 compliant. This
can be done online at sites like validator.w3.org that allow you to enter a URL and
return a listing of valid and invalid markup. This includes the semantic organization
of your markup and the use of unobtrusive JavaScript (discussed shortly). You can also
build a single HTML page to contain an entire piece of your application and include it
in your MVC site. We’ll do this in chapter 4, when we cover HTML5 Canvas.

 The next method is to use Razor, the view-processing engine that was introduced as
part of ASP.NET MVC. Razor facilitates readable inline code within your views, allowing
you to write properly formatted HTML with bits of server code interspersed to perform
work based on data models that you can build. Using Razor, your markup becomes more
terse, easier to read, and faster to code. Using Razor and ASP.NET MVC, you can incorpo-
rate all the features of .NET development that you’re accustomed to and transition seam-
lessly into the world of HTML5 application development. Razor is used in our MVC views
throughout this book and it’s covered in more detail in appendix B on ASP.NET MVC.

1.2 HTML5 applications end-to-end
Now that you have a basic understanding of the toys you’ll get to learn about and play
with in this book, the next thing you need to know is how each piece interacts with the
next and where they touch each other in a normal system.

NOTE At the beginning of each chapter, we’ll clearly define which browsers
and versions are supported. You should be able to download, install, and test
with Google Chrome, Internet Explorer, Firefox, Opera, and Apple Safari. In
addition, you can use any mobile browser at your disposal to test site render-
ing and function.

Figure 1.5 shows a very simplified view of where each part can fit into the overall
scheme of an HTML5 application. This is the same diagram you saw in figure 1.2 but
with the addition of Microsoft’s server-side components. This is by no means the only
way these parts can fit together, but it will get you started.

 On the server side of an HTML application, MVC controllers will present a view
(HTML text sent to the browser), take data from a form POST operation, or send or
receive data using Ajax calls. In later chapters, we’ll cover all of these communications
and how to integrate them in an HTML application.

13HTML5 applications end-to-end

You might find all these pieces a little overwhelming, so we’ll dig a little deeper into
each area to help firm up your understanding. We’ll start with the page structure.

1.2.1 Page structure and page presentation
Figure 1.6 identifies the page structure and where it fits into the scheme of an HTML
application.

 The structure of a single application page consists of the semantic elements, such
as <header>, <footer>, <nav>, <article>, and <section>, as well as any traditional
HTML tags, like <div>, , and <a>. Semantic tags, which will be covered in more
detail in the next chapter, provide organizational cues and a means of denoting where
various parts of the content will exist. Structural elements receive styling using CSS
and can have JavaScript behaviors attached at runtime. Elements in the page structure
can be delivered from the server at runtime, built from templates on the client, or
downloaded on demand.

 Note that the styles that a page uses can also determine its structure. A common
instance of this is when an element is floated. Floated elements (denoted by the CSS

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

Local Storage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Page

structure

Figure 1.5 Basic client and server interactions between HTML5 features and JavaScript APIs within
an application

14 CHAPTER 1 HTML5 and .NET

style float:left or float:right) don’t participate in page flow but will dock them-
selves to the appropriate side of the window. We’ll discuss positioning elements on the
page when we look at the Canvas API in chapter 4 and the Geolocation API in chapter 6.

 Page presentation is the visual styling that a page structure receives, based on the
location of elements in the structure and the stylesheets included on the page. Styles
in a stylesheet are the starting point for operations that can occur at runtime. While
the page is displayed, changes to the browser layout can trigger media query changes,
and interactions by the user can trigger JavaScript functions. We’ll cover what media
queries are and how they work in chapter 2. For now, the important concept is that by
using CSS and JavaScript, you can dramatically change the presentation of the page
based on changing conditions in the browser.

1.2.2 Page content

The content of your application can be anything from a map to an editable grid. It can
be data from a content management system, pictures uploaded by a user, or news articles.
Whatever the content, it’s the most important part of your application, and it should be

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Figure 1.6 Page structure is the physical organization of an HTML page. Which tags exist inside
other tags can determine how elements can be moved or accessed using JavaScript.

15HTML5 applications end-to-end

placed in the structure in a way that makes it very obvious what it is and why it’s impor-
tant. Figure 1.7 shows the role that content plays in the HTML application scheme.

 Page content can be static, dynamic, or a mix of both depending upon the needs
of the application. It can be added by the user while the application executes or be
pulled on demand when the application detects updates from some other process.

1.2.3 Application navigation

In HTML5 applications, there are two parts related to navigation: manipulation of the
browser URL and posting of values to a server to move to another page. Figure 1.8
highlights the POST operations at the bottom of the diagram and the use of the new
HTML5 History API to manage the URL.

 Navigation can occur when a user clicks a link to another page or submits a form, or
it can be initiated via JavaScript by some other event. In traditional web pages, these
operations were abrupt and sometimes jarring, but in a rich HTML application, a user’s
actions can be considered and handled gracefully. Natural or instinctive interactions are

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Page

structure

Figure 1.7 Static content is written directly inside the HTML elements in a page. Dynamic content can
be delivered to the browser in an MVC application by means of views or via JavaScript and Ajax.

16 CHAPTER 1 HTML5 and .NET

an area gaining a lot of traction in the mobile market today because what may seem
like small parts of the usability story can have a large effect on user satisfaction. Keep-
ing operations subtle and instinctive is an art form where the ability to draw the eye,
the mouse, or the hand to a specific place to perform an operation is critical.

1.2.4 Business logic

The business logic in an HTML application will nearly always be JavaScript on the cli-
ent; the corresponding server-side implementations can be .NET or any other server
technology. As shown in figure 1.9, the custom libraries and frameworks you include
in your application will be responsible for changing the user interface, communicat-
ing with the server, and integrating HTML5 APIs.

 On the communication side, we’ll use ASP.NET MVC in this book but you aren’t
limited to this technology. Any server solution capable of receiving HTTP calls and
returning data will work. The decisions you’ll have to make will revolve around how,
when, and where to validate your business data and which external libraries to use.

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Figure 1.8 Application navigation can happen when a user POSTs a message to the server, when a
JavaScript event occurs, or when browser URL changes are intercepted with the HTML5 History API.

17HTML5 applications end-to-end

1.2.5 Server communications

Communication with the server is accomplished via the initial load of a page, by the post-
ing of a form, or via Ajax calls to web services. A good communication model will keep
the traffic frequency low and the content volume to the barest minimum. Figure 1.10
highlights a limitation in ASP.NET MVC whereby all communications will be transmit-
ted through controllers and can be initiated by either a JavaScript Ajax call or through
a form POST.

 When security is necessary, SSL is available using MVC to keep your data transmis-
sions private, and when security isn’t required, it sometimes makes sense to make
communications with the server somewhat transparent. Doing this will enable your
system to operate in a software-as-a-service (SAAS) model and allow other applications
to consume or manipulate your application’s data.

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Figure 1.9 The business logic in an HTML application resides almost exclusively in JavaScript on the
client and on the server in .NET libraries.

18 CHAPTER 1 HTML5 and .NET

1.2.6 The data layer

The data layer is interesting in an HTML application because it can involve both client
and server data storage. On the server, you’ll store all the normal business data, security,
and transactional information. The client is more complex, because you’ll often need to
store durable state information as well as client data for use offline. Figure 1.11 shows
the intersection of JavaScript with the Local Storage API.

 Local Storage, as mentioned earlier, isn’t the only means of maintaining data on
the client, but it currently has the best mix of supported browsers and simplicity in
usage. Local Storage has far more support and stability than IndexedDB and is far eas-
ier to use than browser cookies, though these other solutions have their place.

 Whether or not a page set up to be accessed offline could also be considered part of
the data layer is an interesting topic that we’ll give some consideration to in chapter 10,
but, for now, understand that certain directives placed in your page will allow it to be
seamlessly accessed when the browser isn’t connected to the internet.

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Figure 1.10 Communication with servers is vital to most business applications and can be performed
by contacting controller actions using Ajax or by POSTing forms to the server.

19Hello World in HTML5

Now that we’ve looked at many of the facets of developing applications using HTML5,
JavaScript, and .NET, it’s time to put it all together by building a Hello World application.

1.3 Hello World in HTML5
Your Hello World application will, in just a few lines of code, display a web page, cre-
ate a JavaScript object, and get JSON data from an MVC controller to present to the
user. Figure 1.12 shows that this application will work in all major browsers. It will also
work on iPhone, iPad, Windows Phone, and Android devices with no modifications!

 When a user enters a name and a date, the server will add a “verified” tag to the
name and validate the date passed in. It will assign a server date to the returned object
that will then be displayed in the interface. No additional navigation will be required
by the user to perform any of these steps.

 This application won’t only let you get your hands dirty right away; it will also intro-
duce you to the following features that will be useful immediately and throughout the
rest of the book:

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Figure 1.11 Storage of local data inside an HTML application is best accomplished using the Local
Storage API and JavaScript methods to maintain it.

20 CHAPTER 1 HTML5 and .NET

■ Updating or removing Visual Studio NuGet project packages as appropriate
■ ASP.NET MVC model binding
■ Posting data to a server using Ajax and jQuery
■ Using JavaScript to add content to and remove it from the page
■ Building and using JavaScript objects
■ JavaScript closure and scoping
■ The jQuery ready handler

In the following sections, you’ll create a new template, customize the application,
build your JavaScript library, and then build what you need for the server side. Time
to get started!

1.3.1 Creating the template

To get started, open Visual Studio normally and start a new project called HelloWorld:

1 Select the Web tab and find the project template called ASP.NET MVC Web
Application. The version of the MVC project template will depend on the latest
version you have installed in your copy of Visual Studio, but for your purposes

Figure 1.12 Hello World executing with no modifications in all the popular browsers

21Hello World in HTML5

you need at least MVC 3. This can be downloaded for free from the Microsoft
site or installed via the Web Platform Installer (http://www.microsoft.com/
web/downloads/platform.aspx).

2 Set the project name to HelloWorld, as in figure 1.13, and click OK.
3 Select Internet Application using HTML5 Semantic Markup and the Razor

View Engine.
4 Leave the Create Unit Test Project item unchecked.

The template will create a baseline MVC website that you can fire up immediately. You
should have folders containing a list of controllers, folders for views, models and
scripts, and the web.config file, which is probably familiar to you. In the Scripts folder
you’ll notice that there are quite a few files that appear to contain version numbers in
the filenames. This is a common practice in JavaScript libraries. If you have some
familiarity with jQuery, you’ll probably also notice, as shown in figure 1.14, that the
files are out of date.

 The inclusion of NuGet, an open source project started by Phil Haack, in Visual
Studio can make updating these files quick and painless. In the Visual Studio menu
bar, select Tools > Library Package Manager > Manage NuGet Packages for Solution.
In the Manage NuGet Packages window, you can select the Updates tab on the left
and see a screen similar to figure 1.15.

Figure 1.13 Create a new ASP.NET MVC project in Visual Studio using at least MVC 3.

22 CHAPTER 1 HTML5 and .NET

All you need to do is click the Update button
next to each package (some are linked, so
updates can cascade) until everything is fin-
ished. You should now have all the latest
JavaScript libraries and project references to
continue with the HelloWorld application.
These files aren’t necessarily linked in the
appropriate places, but you’ll update those links
as you encounter them. In later chapters, we’ll
only include and update the packages you’ll
actually be using, but for this exercise we’ll keep
things a little more simple.

TIP This section covers a number of
topics that are specific to the
JavaScript language. If you aren’t
already familiar with the constructs
and features of JavaScript, we recom-
mend you read through appendix A
on JavaScript at the end of this book.

1.3.2 Customizing the application

The first step to customizing your application
is to modify the user interface. Open the Views
> Home > Index.cshtml file and add the
markup from the next listing.

@{ ViewBag.Title = "Home Page"; }
<title>@ViewBag.Message</title>
<article id="inputSection">
 <section class="submission">
 <label for="userName">Name</label>
 <input type="text" id="userName" />
 </section>
 <section class="submission">
 <label for="reqDate">Request Date</label>
 <input type="date" id="reqDate" />
 </section>
 <section>
 <button id="makeRequest" type="button">
 Try Me!</button>

Listing 1.2 The Index.cshtml markup

<article> will be container
for area where you’ll work.

Various <section> elements
will divide up working area.

<button> will be
bound to click
event handler in
JavaScript using
its id value.

Figure 1.14 The starting MVC project
usually contains files that are somewhat out
of date. Using NuGet, you can refresh these
files very quickly to the latest versions.

23Hello World in HTML5

 </section>
 <section id="outputSection">
 </section>
</article>
<script src="/Scripts/HelloWorld.js" type="text/javascript">
</script>

The markup will automatically be placed inside the master page of your application by
MVC. If you’re using version 3 of MVC, the master page file will still contain references
to the old files. This is the file you need to open next:

1 Navigate in the Solution Explorer to Views > Shared > _Layout.cshtml. Notice at
the top of the page that you have references to various script files. Compare
those references to what is in the Scripts folder of the application and update
them accordingly.

<script src="@Url.Content("~/Scripts/jquery-1.7.2.min.js")" ...
<script src="@Url.Content("~/Scripts/modernizr-2.5.3.js")" ...

2 While you’re here, find the <h1> tag and change its contents to "Hello World".
Run your application now, and you should see something similar to figure 1.16.

3 This is fine but it could use some improvement. Find the Content > Site.css
stylesheet and open it up. Scroll to the bottom and add the following styles:

Figure 1.15 Use NuGet to update all the packages that are included by default in the standard
MVC solution.

Final <section> will be filled with data
returned by server after successful callback.

24 CHAPTER 1 HTML5 and .NET

.submission label {
 display: inline-block;
 width: 100px;
}
.submission input {
 width: 200px;
}
.result label {
 display: inline-block;
 margin-right: 10px;
 width: 115px;
 text-align: right;
 font-weight: bold;
}
.result span {
 font-style: italic;
}

These styles will keep things lined up and pretty later on, when you’re moving data
back and forth between the client and server and dynamically adding and removing
HTML elements. The styles all take the same basic selector (the heading for each style
that determines which elements will be selected). There are plenty of ways to write
styles to get the work done, but we’re being very specific with these styles so as not to
inadvertently edit other styles in other parts of the page.

1.3.3 Building the JavaScript library

You may have noticed in listing 1.2 that we referenced a script file named HelloWorld.js.
It’s time to create that file. To do this, we’ll walk through the following steps:

1 Create the JavaScript file and wire up the jQuery ready function.
2 Create the myApp object.

Figure 1.16 The content of the
home page has the controls you
need for the application, but it
still needs additional styling.

25Hello World in HTML5

3 Create the Ajax request to call the MVC controller.
4 Create the JavaScript function to handle the results from the MVC controller.
5 Create the function that displays results on the page.

Let’s get started.
 Expand the Scripts folder and add a new JScript file. At the top of this file, add the

following bit of JavaScript:

$(document).ready(function () {
 myApp.helloWorldWireup();
});

This is known as the ready handler. It’s an event thrown automatically by jQuery when
any page that contains the jQuery library reference completes all of its loading and
page layout tasks. This isn’t necessarily an easy thing to know, so the jQuery team went
to great lengths to check multiple sources of information to infer this state of readi-
ness. All you need to do as a developer is wire up the event and you’re good to go!

 The call to myApp.helloWorldWireup doesn’t do anything yet, so you’ll need to
look at that next. The following listing has the declaration for the object, along with a
bit of logic to get you started. You’ll fill in the stubbed out functions shortly.

var myApp = {

 helloWorldWireup: function () {

 $("#makeRequest").click(function (event) {

 var nm = $("#userName").val();

 var dt = $("#reqDate").val();

 var myData = {
 UserName: nm,
 RequestedDate: dt
 };
 // Ajax request will go here
 });
 },

 processResult: function (returnedData) {
 },

 displayResult: function (label, value) {
 }
}

Your JavaScript object (myApp) will be created as soon as the JavaScript file is loaded
and before the ready event fires, so you can be sure it exists when you call it. This is
the normal flow in an HTML application, regardless of how many JavaScript libraries
you’re loading.

Listing 1.3 The myApp object and its functions

Declare myApp object using var keyword. Object
is immediately attached to window object.

First function declaration is
one you called from ready.

Using jQuery
selector, find
makeRequest

button and
bind click

event handler
to it.

Inside click event handler find userName and reqDate
input boxes and extract values using jQuery.

Create a new temporary object called myData that
contains the properties you’ll send to the server.

Once you call server
processResult function
will be called. Stub will be
filled in shortly.

displayResult function allows you
to segregate code that changes
user interface in your object.

26 CHAPTER 1 HTML5 and .NET

The next step is to fill in the Ajax request. jQuery has a built-in function to do this. It
can take a number of different optional properties when executed, but for the pur-
poses of this example, you need only the kind of request to execute (the type), the
url to call, the content type, the data to pass, and the function that will be executed
when the call succeeds (success). Each of these is a property that’s assigned in the
same manner as the myApp object from listing 1.3. Place the code from the next listing
in the commented section of the makeRequest click event handler.

JavaScript object creation
There are various ways to create an object using JavaScript code. You’ll be using a
number of them throughout this book, but the simplest is as follows:

var myObject = {
 prop: "prop 1",
 prop2: "property 2",
 func1: function() {
 alert('hi there!');
 }
};

This tells the JavaScript engine to add a reference in memory to the window object
and call it myObject. This object will have two properties (prop and prop2) that are
prepopulated with values and a function (func1) that, when called, will pop up a mes-
sage box in the browser. The significant rules for this kind of object are

■ Use var to declare the object
■ Separate the property or function name from the value with a colon
■ Separate properties and functions with a comma

Another way to create the same object is as follows:

var myObject = {};
myObject.prop = 'prop 1';
myObject["prop2"] = 'property 2’;
myObject.func1 = function() {
 alert('hi there!');
};

The functionality of this second object is exactly the same as the previous one. The
only difference is in the way it’s instantiated. The advantage of this method is that
each addition of a property or function is independent of the others. This means
you can add new properties and functions to your JavaScript objects whenever you
like using either the dot notation (object.property) or the string notation
(object['property']).

Two other ways of creating objects are to parse JSON text into objects and to copy
one object and/or its properties to another object.

27Hello World in HTML5

$.ajax({
 type: "GET",
 url: "/Home/GetMessage",
 data: myData,
 contentType: "application/json",
 success: myApp.processResult
});

When the server is called with the data payload you created earlier, your MVC control-
ler code will update the name, verify that the date passed in is indeed a valid date, and
add a new server date property.

 With that data in hand from the successful execution of the Ajax call, you can fill
in the processResult function. The following listing shows that code.

processResult: function (returnedData) {
 $("#outputSection section").remove();
 myApp.displayResult(
 "User Name",
 returnedData.UserName);
 myApp.displayResult(
 "Request Updated",
 returnedData.RequestedDate);
 myApp.displayResult(
 "Server Time",
 returnedData.ServerDate);
},

Your client-side code is nearly finished. All you need to do is fill in the displayResult
function. This function takes a label and a value, concatenates them into a series of
HTML elements, and then places them inside the recently cleared out outputSection
element. The next listing shows how it works.

displayResult: function (label, value) {
 var start = "<section class='result'><label>";
 var mid = "</label>";
 var end = "</section>";
 $("#outputSection")
 .append(start + label + mid + value + end);
}

Listing 1.4 The Ajax request that will call the MVC controller

Listing 1.5 processResult is called automatically when the Ajax call returns successfully

Listing 1.6 Adding elements to the page using jQuery and string-based HTML

Home/GetMessage URL will be filled in shortly and
takes data object created earlier in click handler.

Ensure that request headers pass
“json” as correct data type.

When Ajax call returns successfully
myApp.processResult will automatically be
called with data returned from the server.

Use jQuery to find element
with ID of outputSection
and clear all contents.

Call displayResult function for
each property in data object
returned from Ajax call.

Creating elements using string
concatenation is simple and objects created
will be styled and laid out automatically.

Using jQuery’s append
function find outputSection
object and insert string
contents as HTML elements.

28 CHAPTER 1 HTML5 and .NET

You can run your application now, and all your code will execute. The only problem
will be that calls to Home/GetMessage will fail because you haven’t implemented that
endpoint yet. Next stop, the server!

TIP During normal operations, most modern web browsers won’t report
JavaScript errors unless this feature is turned on specifically. An easy way for a
developer to see these errors is to open the console, which is a kind of debug
engine that most JavaScript engines provide with the browser. The simplest
version to use currently is the one found in Google Chrome. When you’re in
the browser, right-click anywhere on the screen and select Inspect Element. A
new window will appear docked to the bottom of the browser or possibly as a
completely separate window. Across the top, you’ll find the Console button—
click it. You should see all the exceptions thrown during the current session.

1.3.4 Building the server side

Now that your client side is complete and you have at least a basic understanding of
how various pieces of JavaScript are initialized and executed, it’s time to build your
server implementation. The HTML application you’re building in this chapter
requires both a client and a server implementation.

 Many web applications use the server only as file storage. In these applications,
once the resources such as stylesheets, HTML files, and scripts are loaded, the server is
never contacted again. Games are a normal example of this kind of application. Your
application, however, needs to talk to a server to send information and receive
updates. To do that, you need something more than a normal HTML page or MVC
controller that returns a view. You need something that takes only data and returns
only data. You need JSON.

 Your steps here will include

1 Building the model object to contain data on the server.
2 Building the MVC controller method to handle the Ajax request.

JavaScript Object Notation (JSON)
JSON is used for transferring text-based data from one point to another over HTTP
and for serialization of JavaScript objects. It can also be used for many other pur-
poses, but its roots are in the web. It’s fast, human readable, and broadly supported.

Syntax in JSON is extremely simple. Specific characters are used to wrap text into
serialized fields with very little effort and overhead. Data types of field values are
implied, not specified, and objects need not conform to a specific schema. Arrays in
JSON can contain any kind of object.

Here are the basic rules:

■ Curly braces, {}, wrap each object instance, and square brackets, [], wrap each
array instance.

29Hello World in HTML5

Before you can build an endpoint on your server to take a JSON object and turn it into
a .NET object, you first need to define the properties for that object. In your solution,
add a new class to the Models folder called UserData.cs. This object should contain
three properties, so add the code shown here:

■ Each property in an object has a name and value separated by a colon.
■ Each property in an object and each object in an array must be separated from

the next by a comma.
■ Property names that correspond to keywords must be wrapped in quotes.
■ Property values that are strings are always wrapped in quotes.
■ Object properties can be other objects or arrays.

Here is a simple JSON object:

{"fname":"George", "lname": "Washington"}

This code will result in the direct creation of a JavaScript object with two properties,
each with a value.

Some projects will require sending large amounts of data to the client, and JSON is
perfectly capable of doing this as well. The following JSON code contains an array of
two objects, each containing a timeline that can be immediately parsed and used
in JavaScript:

[{
 "Timeline":"1800s", "StartYear":1800, "EndYear":1899,
 "Events": [
 {"Date":1803, "Event":"Louisiana Purchase"},
 {"Date":1808, "Event":"Napoleon Occupies Spain"},
]
},
{
 "Timeline":"1900s", "StartYear":1900, "EndYear":1999,
 "Events": [
 {"Date":1917, "Event":"US Declares War"},
 {"Date":1991, "Event":"Desert Storm"}
]
}]

JavaScript is used to parse an object from a string using the JSON parser that’s either
built into most modern browsers or available with the free json2.js library found at
http://www.JSON.org/js.html. If your browser doesn’t support JSON, just include this
script and all the JSON parsing logic will be automatically added. Using this method,
you can create an object from a JSON string by calling

JSON.parse('string variable');

An object can also be turned into a string using the stringify method of the same
library:

var x = JSON.stringify(myObject);

30 CHAPTER 1 HTML5 and .NET

namespace HelloWorld.Models
{
 public class UserData
 {
 public string UserName { get; set; }
 public string RequestedDate { get; set; }
 public string ServerDate { get; set; }
 }
}

This object will hold the user’s name, the string version of a request date, and the
string version of the current date on the server.

NOTE You could have made these DateTime properties, but that would dis-
tract from our goal of showing you how to receive, manipulate, and send
data from the server. If you want a more detailed investigation of date han-
dling in JavaScript, take a look at appendix A on JavaScript toward the end
of this book.

The next step is to build a controller call that can respond to data posted from the cli-
ent using Ajax. You could create an entirely new controller, but that’s unnecessary
because you already have the Home controller available. Open that controller by nav-
igating in Solution Explorer to Controllers > HomeController. Note that the MVC
convention is to refer to controllers by their name with the suffix of “Controller,” so
the AccountController will be referred to by the URL /Account in your browser.

NOTE There is a bit more to controller naming than just the standard nam-
ing convention, but that conversation will involve setting up ASP.NET MVC
routes. You can find more information about routes as they relate to MVC appli-
cations in chapter 5. You can also check out the great books by authors K.
Scott Allen, Steven Sanderson, Phil Haack, and Adam Freeman. All contain a
wealth of knowledge in this area.

Back in the HomeController, you need to add a new method. It will receive a JSON
object from the client and automatically transform it into your UserData object. It will
make some changes to that object and return it, transforming it back into JSON. This
action is shown in the following listing.

public JsonResult GetMessage(UserData myData)
{
 myData.UserName += " (verified)";
 var dt = DateTime.Now.AddYears(-1);
 DateTime.TryParse(myData.RequestedDate, out dt);
 myData.RequestedDate = dt.ToLongDateString();
 myData.ServerDate = DateTime.Now.ToShortDateString();
 return Json(myData, JsonRequestBehavior.AllowGet);
}

Listing 1.7 GetMessage receives and sends data using client Ajax calls

Model binding in MVC will automatically
convert inbound JSON to UserData object.

Attempt to parse data to date and leave
it as arbitrary value if conversion fails.

Method returns JsonResult
object so you can generate
JSON using MVC serializer.

31Hello World in HTML5

Note that in the controller call in listing 1.7 you’re taking a UserData object as a
parameter, but in the client, the object you’re passing looks like this:

var myData = {
 UserName: nm,
 RequestedDate: dt
};

This works because ASP.NET MVC will attempt to transform the input parameters into
the appropriate object type using its model-binding mechanism. If you wanted to, you
could also have written the controller function signature as follows:

public JsonResult GetMessage(string UserName, string RequestedDate) {

This would have resulted in the same data being received on the server. The advan-
tages of model binding are that your method signatures are smaller and easier to
understand, and your objects are created with constructor methods that perform logic
that will be automatically executed when the function is called. These features make
MVC controllers and model binding the ideal way to implement Ajax endpoints for an
HTML application.

 You may be surprised to learn that your first HTML application is complete! Run
the solution now and try it out in various browsers. You should see a nearly identical
implementation in each. Input a name and a date, and watch the results return from
the server after being “verified,” as shown in figure 1.17.

 As you test your freshly minted application, it’s worth taking a look at how various
desktop browsers implement the <input type='date' /> tag (figure 1.18). Opera, for
instance, gives you a built-in date picker, whereas Safari has a small up/down imple-
mentation that changes the date value one day at a time.

Figure 1.17 After completing
the controller call, you should see
data from the server displayed
and updated automatically.

32 CHAPTER 1 HTML5 and .NET

This date field difference highlights both the necessity of testing your HTML applica-
tions across a range of expected browsers and the need for feature testing. Feature
testing is usually done with a JavaScript library like Modernizr (http://www.modernizr
.com/) that will return a Boolean value for a specific feature. If you decide that you
absolutely require a feature, and it isn’t present in the current browser, you can alert
users that they must use a different browser.

 Modernizr is the natural choice for this kind of feature detection because it’s
widely used, well-maintained, and is included by default in all recent versions of
ASP.NET MVC. The code is as simple as this:

if (Modernizr.touch){
 // .. bind touch events here
}
else {
 alert('touch is not supported');
}

1.4 Summary
With the level of knowledge you now have about the moving parts and interactions of
an HTML5 application built on an MVC foundation, you should be ready to dive into
your own applications and start tinkering to see what you can make happen on your
own! The architecture is straightforward and the possibilities are endless.

 But this chapter is far from the end of the story. In order to build richer, more
functional applications that can interact with all the new HTML5 APIs, style properties,
and semantic markup we talked about in this chapter, you need to dig deeper, starting
with the new semantic elements and CSS features available in HTML5 and CSS3. That’s
what we’ll look at next.

 If you’re already familiar with the new elements and CSS features, you may want to
skip chapter 2 and move straight to the later chapters, where we dive into each of the
HTML5 JavaScript APIs to show you how you can use your current .NET skills to build
the next generation of applications in the browser.

Figure 1.18 The date picker
implementations in various browsers
highlight the wide range of
interpretations in the
browser market.

Jackson ● Gilman

A
shift is underway for Microsoft developers—to build web
applications you’ll need to integrate HTML5 features like
Canvas-based graphics and the new JavaScript-driven APIs

with familiar technologies like ASP.NET MVC and WCF. Th is
book is designed for you.

HTML5 for .NET Developers teaches you how to blend HTML5
with your current .NET tools and practices. You’ll start with a
quick overview of the new HTML5 features and the semantic
markup model. Th en, you’ll systematically work through the
JavaScript APIs as you learn to build single page web apps that
look and work like desktop apps. Along the way, you’ll get tips
and learn techniques that will prepare you to build “metro-style”
applications for Windows 8 and WP 8.

What’s Inside
● HTML5 from a .NET perspective
● Local storage, threading, and WebSockets
● Using JSON-enabled web services
● WCF services for HTML5
● How to build single page web apps

Th is book assumes you’re familiar with HTML, and concentrates
on the intersection between new HTML5 features and Microsoft -
specifi c technologies.

Jim Jackson is a soft ware consultant and project lead specializing
in HTML5-driven media. Ian Gilman is a professional developer
passionate about open technologies and lively user interfaces.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/HTML5for.NETDevelopers

$44.99 / Can $47.99 [INCLUDING eBOOK]

HTML5 for .NET Developers

WEB DEVELOPMENT/.NET

M A N N I N G

“Speaks directly to the
interests and concerns of the

.NET developer.”
—From the Foreword by

 Scott Hanselman, Microsoft

“Looks under the hood of
HTML5 to teach more than

just pretty pages.”—Joseph M. Morgan, Amerigroup

“A comprehensive jumpstart
for the .NET developer looking
to make a leap into HTML5.”—Peter O’Hanlon

Lifestyle Computing Ltd

“A great HTML5 and API
 learning resource!”—Stan Bice

Applied Information Sciences

SEE INSERT

