
SAMPLE CHAPTER

LINQ in Action

Copyright 2008 Manning Publications

Chapter 3

Fabrice Marguerie
 Steve Eichert
 Jim Wooley

i

brief contents
PART 1 GETTING STARTED ... 1

1 ■ Introducing LINQ 3

2 ■ C# and VB.NET language enhancements 44

3 ■ LINQ building blocks 82

PART 2 QUERYING OBJECTS IN MEMORY 113

4 ■ Getting familiar with LINQ to Objects 115

5 ■ Beyond basic in-memory queries 160

PART 3 QUERYING RELATIONAL DATA................................... 203

6 ■ Getting started with LINQ to SQL 205

7 ■ Peeking under the covers of LINQ to SQL 237

8 ■ Advanced LINQ to SQL features 267

PART 4 MANIPULATING XML ... 311

9 ■ Introducing LINQ to XML 313

10 ■ Query and transform XML with LINQ to XML 350

11 ■ Common LINQ to XML Scenarios 385

ii BRIEF CONTENTS

PART 5 LINQING IT ALL TOGETHER..................................... 435

12 ■ Extending LINQ 437

13 ■ LINQ in every layer 482

82

LINQ building blocks

This chapter covers:
■ An introduction to the key elements of the

LINQ foundation
■ Sequences
■ Deferred query execution
■ Query operators
■ Query expressions
■ Expression trees
■ LINQ DLLs and namespaces

How LINQ extends .NET 83

In chapter 2, we reviewed the language additions made to C# and VB.NET: the
basic elements and language innovations that make LINQ possible.

 In this chapter, you’ll discover new concepts unique to LINQ. Each of these
concepts builds on the new language features we presented in chapter 2. You’ll
now begin to see how everything adds up when used by LINQ.

 We’ll start with a rundown of the language features we’ve already covered.
We’ll then present new features that form the key elements of the LINQ founda-
tion. In particular, we’ll detail the language extensions and key concepts. This
includes sequences, the standard query operators, query expressions, and expres-
sion trees. We’ll finish this chapter by taking a look at how LINQ extends the .NET
Framework with new assemblies and namespaces.

 At the end of this chapter, you should have a good overview of all the funda-
mental building blocks on which LINQ relies and how they fit together. With this
foundation, you’ll be ready to work on LINQ code.

3.1 How LINQ extends .NET

This section gives a refresher on the features we introduced in chapter 2 and puts
them into the big picture so you can get a clear idea of how they all work together
when used with LINQ. We’ll also enumerate the elements LINQ brings to the
party, which we’ll detail in the rest of this chapter.

3.1.1 Refresher on the language extensions

As a refresher, let’s sum up the significant additions to the languages that you dis-
covered in chapter 2:

■ Implicitly typed local variables

■ Object initializers

■ Lambda expressions

■ Extension methods

■ Anonymous types

These additions are what we call language extensions, the set of new language fea-
tures and syntactic constructs added to C# and VB.NET to support LINQ. All of
these extensions require new versions of the C# and VB.NET compilers, but no
new IL instructions or changes of the .NET runtime.

84 CHAPTER 3

LINQ building blocks

 These language extensions are full-fledged features that can be used in code
that has nothing to do with LINQ. They are however required for LINQ to work,
and you’ll use them a lot when writing language-integrated queries.

 In order to introduce LINQ concepts and understand why they are important,
we’ll dissect a code sample throughout this chapter. We’ll keep the same subject
as in chapter 2: filtering and sorting a list of running processes.

 Here is the code sample we’ll use:

static void DisplayProcesses()
{
 var processes =
 Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id,
 Name=process.ProcessName });

 ObjectDumper.Write(processes);
}

The portion of code in bold is a LINQ query. If you take a close look at it, you can
see all the language enhancements we introduced in the previous chapter, as
shown in figure 3.1.

 In the figure, you should clearly see how everything dovetails to form a com-
plete solution. You can now understand why we called the language enhance-
ments “key components” for LINQ.

Figure 3.1 The language extensions all in one picture

Introducing sequences 85

3.1.2 The key elements of the LINQ foundation

More features and concepts are required for LINQ to work than those we’ve just
listed. Several concepts specifically related to queries are also required:

■ We’ll start by explaining what sequences are and how they are used in LINQ
queries.

■ You’ll also encounter query expressions. This is the name for the
from…where…select syntax you’ve already seen.

■ We’ll explore query operators, which represent the basic operations you can
perform in a LINQ query.

■ We’ll also explain what deferred query execution means, and why it is important.

■ In order to enable deferred query execution, LINQ uses expression trees. We’ll
see what expression trees are and how LINQ uses them.

You need to understand these features in order to be able to read and write LINQ
code, as we’ll do in the next chapters.

3.2 Introducing sequences

The first LINQ concept we’ll present in this chapter is the sequence.
 In order to introduce sequences and understand why they are important, let’s

dissect listing 3.1.

var processes =
 Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id,
 Name=process.ProcessName });

Get a list of running processes

Filter the list

Sort the list

Keep only the IDs and names

Listing 3.1 Querying a list of processes using extension methods

B
C

D
E

B

C

D

E

86 CHAPTER 3

LINQ building blocks

To precisely understand what happens under the covers, let’s analyze this code
step by step, in the order the processing happens.

 We’ll start by looking at IEnumerable<T>, a key interface you’ll find every-
where when working with LINQ. We’ll also provide a small refresher on iterators
and then stress how iterators allow deferred query execution.

3.2.1 IEnumerable<T>

The first thing you need to understand in listing 3.1 is what the call to Pro-
cess.GetProcesses B returns and how it is used. The GetProcesses method of
the System.Diagnostics.Process class returns an array of Process objects. This
is not surprising and probably wouldn’t be interesting, except that arrays imple-
ment the generic IEnumerable<T> interface. This interface, which appeared with
.NET 2.0, is key to LINQ. In our particular case, an array of Process objects imple-
ments IEnumerable<Process>.

 The IEnumerable<T> interface is important because Where C, OrderBy-
Descending D, Select E, and other standard query operators used in LINQ
queries expect an object of this type as a parameter.

 Listing 3.2 shows how the Where method is defined, for instance.

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, Boolean> predicate)
{
 foreach (TSource element in source)
 {
 if (predicate(element))
 yield return element;
 }
}

But where does this Where method come from? Is it a method of the IEnumera-
ble<T> interface? Well, no. As you may have guessed if you remember chapter 2,
it’s an extension method. This can be detected by the presence of the this keyword
on the first parameter of the method B.

 The extension methods we see here (Where, OrderByDescending, and
Select) are provided by the System.Linq.Enumerable class. The name of this
class comes from the fact that the extension methods it contains work on IEnu-
merable<T> objects.

Listing 3.2 The Where method that is used in our sample query

B

C

Introducing sequences 87

NOTE In LINQ, the term sequence designates everything that implements IEnu-
merable<T>.

Let’s take another look at the Where method. Note that it uses the yield return C
statement added in C# 2.0. This and the IEnumerable<TSource> return type in the
signature make it an iterator.

 We’ll now take some time to review background information on iterators
before getting back to our example.

3.2.2 Refresher on iterators

An iterator is an object that allows you to traverse through a collection’s elements.
What is named an iterator in .NET is also known as a generator in other languages
such as Python, or sometimes a cursor, especially within the context of a database.

 You may not know what an iterator is, but you surely have used several of them
before! Each time you use a foreach loop (For Each in VB.NET), an iterator is
involved. (This isn’t true for arrays because the C# and VB.NET compilers opti-
mize foreach and For Each loops over arrays to replace the use of iterators by a
simple loop, as if a for loop were used.) Every .NET collection (List<T>, Dictio-
nary<T>, and ArrayList for example) has a method named GetEnumerator that
returns an object used to iterate over its contents. That’s what foreach uses
behind the scenes to iterate on the items contained in a collection.

 If you’re interested in design patterns, you can study the classical Iterator pat-
tern. This is the design iterators rely on in .NET.

 An iterator is similar, in its result, to a traditional method that returns a collec-
tion, because it generates a sequence of values. For example, we could create the
following method to return an enumeration of integers:

int[] OneTwoThree()
{
 return new [] {1, 2, 3};
}

However, the behavior of an iterator in C# 2.0 or 3.0 is very specific. Instead of
building a collection containing all the values and returning them all at once, an
iterator returns the values one at a time. This requires less memory and allows the
caller to start processing the first few values immediately, without having the com-
plete collection ready.

 Let’s look at a sample iterator to understand how it works. An iterator is easy to
create: it’s simply a method that returns an enumeration and uses yield return
to provide the values.

88 CHAPTER 3

LINQ building blocks

 Listing 3,3 shows an iterator named OneTwoThree that returns an enumeration
containing the integer values 1, 2, and 3:

using System;
using System.Collections.Generic;

static class Iterator
{
 static IEnumerable<int> OneTwoThree()
 {
 Console.WriteLine("Returning 1");
 yield return 1;
 Console.WriteLine("Returning 2");
 yield return 2;
 Console.WriteLine("Returning 3");
 yield return 3;
 }

 static void Main()
 {
 foreach (var number in OneTwoThree())
 {
 Console.WriteLine(number);
 }
 }

Here are the results of this code sample’s execution:

Returning 1
1
Returning 2
2
Returning 3
3

As you can see, the OneTwoThree method does not exit until we reach its last state-
ment. Each time we reach a yield return statement, the control is yielded back
to the caller method. In our case, the foreach loop does its work, and then con-
trol is returned to the iterator method where it left so it can provide the next item.

 It looks like two methods, or routines, are running at the same time. This is
why .NET iterators could be presented as a kind of lightweight coroutine. A tradi-
tional method starts its execution at the beginning of its body each time it is
called. This kind of method is named a subroutine. In comparison, a coroutine is a

Listing 3.3 Sample iterator
 (Iterator.csproj)

Introducing sequences 89

method that resumes its execution at the point it stopped the last time it was
called, as if nothing had happened between invocations. All C# methods are sub-
routines except methods that contain a yield return instruction, which can be
considered to be coroutines.1

 One thing you may find strange is that although we implement a method that
returns an IEnumerable<int> in listing 3.3, in appearance we don’t return an
object of that type. We use yield return. The compiler does the work for us, and
a class implementing IEnumerable<int> is created automagically for us. The yield
return keyword is a time-saver that instructs the compiler to create a state engine
in IL so you can create methods that retain their state without having to go
through the pain of maintaining state in your own code.

 We won’t go into more details on this subject in this book, because it’s not
required to understand LINQ, and anyway, this is a standard C# 2.0 feature. How-
ever, if you want to investigate this, .NET Reflector is your friend.2

NOTE VB.NET has no instruction equivalent to yield return. Without this
shortcut, VB.NET developers have to implement the IEnumerable(Of T)
interface by hand to create enumerators. We provide a sample imple-
mentation in the companion source code download. See the Itera-
tor.vbproj project.

The simple example provided in listing 3.3 shows that iterators are based on lazy
evaluation. We’d like to stress that this big characteristic of iterators is essential for
LINQ, as you’ll see next.

3.2.3 Deferred query execution

LINQ queries rely heavily on lazy evaluation. In LINQ vocabulary, we’ll refer to
this as deferred query execution, also called deferred query evaluation. This is one of
the most important concepts in LINQ. Without this facility, LINQ would perform
very poorly.

 Let’s take a simple example to demonstrate how a query execution behaves.

1 See Patrick Smacchia’s book Practical .NET2 and C#2 (Paradoxal Press) if you want to learn more about
iterators.

2 If you want to look into the low-level machinery of how state engines are built to make iterators work in
.NET, you can download .NET Reflector at http://aisto.com/roeder/dotnet.

90 CHAPTER 3

LINQ building blocks

Demonstrating deferred query execution
In listing 3.4, we’ll query an array of integers and perform an operation on all the
items it contains.

using System;
using System.Linq;

static class DeferredQueryExecution
{
 static double Square(double n)
 {
 Console.WriteLine("Computing Square("+n+")...");
 return Math.Pow(n, 2);
 }

 public static void Main()
 {
 int[] numbers = {1, 2, 3};

 var query =
 from n in numbers
 select Square(n);

 foreach (var n in query)
 Console.WriteLine(n);
 }
}

The results of this program clearly show that the query does not execute at once.
Instead, the query evaluates as we iterate on it:

Computing Square(1)...
1
Computing Square(2)...
4
Computing Square(3)...
9

As you’ll see soon in section 3.4, queries such as the following one are translated
into method calls at compile-time:

var query =
 from n in numbers
 select Square(n);

Listing 3.4 Deferred query execution demonstration
 (DeferredQueryExecution.csproj)

Introducing sequences 91

Once compiled, this query becomes

IEnumerable<double> query =
 Enumerable.Select<int, double>(numbers, n => Square(n));

The fact that the Enumerable.Select method is an iterator explains why we get
delayed execution.

 It is important to realize that our query variable represents not the result of a
query, but merely the potential to execute a query. The query is not executed when
it is assigned to a variable. It executes afterward, step by step.

 One advantage of deferred query evaluation is that it conserves resources. The
gist of lazy evaluation is that the data source on which a query operates is not iter-
ated until you iterate over the query’s results. Let’s suppose a query returns thou-
sands of elements. If we decide after looking at the first element that we don’t
want to further process the results, these results won’t be loaded in memory. This
is because the results are provided as a sequence. If the results were contained in
an array or list as is often the case in classical programming, they would all be
loaded in memory, even if we didn’t consume them.

 Deferred query evaluation is also important because it allows us to define a
query at one point and use it later, exactly when we want to, several times if
needed.

Reusing a query to get different results
An important thing to understand is that if you iterate on the same query a sec-
ond time, it can produce different results. An example of this behavior can be
seen in listing 3.5. New code is shown in bold.

using System;
using System.Linq;

static class QueryReuse
{
 static double Square(double n)
 {
 Console.WriteLine("Computing Square("+n+")...");
 return Math.Pow(n, 2);
 }

 public static void Main()
 {
 int[] numbers = {1, 2, 3};

Listing 3.5 Same query producing different results between two executions

92 CHAPTER 3

LINQ building blocks

 var query =
 from n in numbers
 select Square(n);

 foreach (var n in query)
 Console.WriteLine(n);

 for (int i = 0; i < numbers.Length; i++)
 numbers[i] = numbers[i]+10;

 Console.WriteLine("- Collection updated -");

 foreach (var n in query)
 Console.WriteLine(n);
 }
}

Here we reuse the query object after changing the underlying collection. We
add 10 to each number in the array before iterating again on the query.

 As expected, the results are not the same for the second iteration:

Computing Square(1)...
1
Computing Square(2)...
4
Computing Square(3)...
9
- Collection updated -
Computing Square(11)...
121
Computing Square(12)...
144
Computing Square(13)...
169

The second iteration executes the query again, producing new results.

Forcing immediate query execution
As you’ve seen, deferred execution is the default behavior. Queries are executed
only when we request data from them. If you want immediate execution, you have
to request it explicitly.

 Let’s say that we want the query to be executed completely, before we begin to
process its results. This would imply that all the calls to the Square method hap-
pen before the results are used.

 Here is how the output should look without deferred execution:

Introducing query operators 93

Computing Square(1)...
Computing Square(2)...
Computing Square(3)...
1
4
9

We can achieve this by adding a call to ToList—another extension method from
the System.Linq.Enumerable class—to our code sample:

foreach (var n in query.ToList())
 Console.WriteLine(n);

With this simple modification, our code’s behavior changes radically.
 ToList iterates on the query and creates an instance of List<double> initial-

ized with all the results of the query. The foreach loop now iterates on a prefilled
collection, and the Square method is not invoked during the iteration.

 Let’s go back to our DisplayProcesses example and continue analyzing the
query.

 The Where, OrderByDescending, and Select methods used in listing 3.1 are
iterators. This means for example that the enumeration of the source sequence
provided as the first parameter of a call to the Where method won’t happen before
we start enumerating the results. This is what allows delayed execution.

 You’ll now learn more about the extension methods provided by the Sys-
tem.Linq.Enumerable class.

3.3 Introducing query operators

We’ve used extension methods from the System.Linq.Enumerable class several
times in our code samples. We’ll now spend some time describing them more pre-
cisely. You’ll learn how such methods, called query operators, are at the heart of
the LINQ foundation. You should pay close attention to query operators, because
you’ll use them the most when writing LINQ queries.

 We’ll first define what a query operator is, before introducing the standard
query operators.

3.3.1 What makes a query operator?

Query operators are not a language extension per se, but an extension to the
.NET Framework Class Library. Query operators are a set of extension methods
that perform operations in the context of LINQ queries. They are the real ele-
ments that make LINQ possible.

94 CHAPTER 3

LINQ building blocks

 Before spending some time on iterators, we were looking at the Where method
that is used in the following code sample:

var processes =
 Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id,
 Name=process.ProcessName });

Let’s take a deeper look at the Where method and analyze how it works. This
method is provided by the System.Linq.Enumerable class. Here again is how it’s
implemented, as we showed in listing 3.2:

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, Boolean> predicate)
{
 foreach (TSource element in source)
 {
 if (predicate(element))
 yield return element;
 }
}

Note that the Where method takes an IEnumerable<T> as an argument. This is not
surprising, because it’s an extension method that gets applied to the result of the
call to Process.GetProcesses, which returns an IEnumerable<Process> as we’ve
seen before. What is particularly interesting at this point is that the Where method
also returns an IEnumerable<T>, or more precisely an IEnumerable<Process> in
this context.

 Here is how the Where method works:

It is called with the list of processes returned by Process.GetProcesses.

It loops on the list of processes it receives.

It filters this list of processes.

It returns the filtered list element by element.

Although we present the processing as four steps, you already know that the pro-
cesses are handled one by one thanks to the use of yield return and iterators.

 If we tell you that OrderByDescending and Select also take IEnumerable<T>
and return IEnumerable<T>, you should start to see a pattern. Where, OrderBy-
Descending, and Select are used in turn to refine the processing on the original
enumeration. These methods operate on enumerations and generate enumera-
tions. This looks like a Pipeline pattern, don’t you think?

Call to
WhereB

foreach
loop

C

Filter sourceD
Return
elementsE

B

C

D

E

Introducing query operators 95

 Do you remember how we said in chapter 2 that extension methods are basi-
cally static methods that can facilitate a chaining or pipelining pattern? If we
remove the dot notation from this code snippet

var processes =
 Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id,
 Name=process.ProcessName });

and transform it to use standard static method calls, it becomes listing 3.6.

var processes =
 Enumerable.Select(
 Enumerable.OrderByDescending(
 Enumerable.Where(
 Process.GetProcesses(),
 process => process.WorkingSet64 > 20*1024*1024),
 process => process.WorkingSet64),
 process => new { process.Id, Name=process.ProcessName });

Again, you can see how extension methods make this kind of code much easier to
read! If you look at the code sample that doesn’t use extension methods, you can
see how difficult it is to understand that we start the processing with a list of pro-
cesses. It’s also hard to follow how the method calls are chained to refine the
results. It is in cases like this one that extension methods show all their power.

 Until now in this chapter, we’ve stressed several characteristics of extension
methods such as Where, OrderByDescending, and Select:

■ They work on enumerations.

■ They allow pipelined data processing.

■ They rely on delayed execution.

All these features make these methods useful to write queries. This explains why
these methods are called query operators.

 Here is an interesting analogy. If we consider a query to be a factory, the query
operators would be machines or engines, and sequences would be the material
the query operators work on (see figure 3.2):

1 A sequence is provided at the start of the processing.

Listing 3.6 A query expressed as static method calls

96 CHAPTER 3

LINQ building blocks

2 Several operators are applied on the sequence to refine it.

3 The final sequence is the product of the query.

NOTE Don’t be misled by figure 3.2. Each element in the sequence is processed
only when it is requested. This is how delayed execution works. The ele-
ments in sequences are not processed in batch, and maybe even not all
processed if not requested.

As we’ll highlight in chapter 5, some intermediate operations (such as
sorting and grouping) require the entire source be iterated over. Our
OrderByDescending call is an example of this.

If we look at listing 3.6, we could say that queries are just made of a combination
of query operators. Query operators are the key to LINQ, even more than lan-
guage constructs like query expressions.

3.3.2 The standard query operators

Query operators can be combined to perform complex operations and queries on
enumerations. Several query operators are predefined and cover a wide range of
operations. These operators are called the standard query operators.

 Table 3.1 classifies the standard query operators according to the type of oper-
ation they perform.

Table 3.1 The standard query operators grouped in families

Family Query operators

Filtering OfType, Where

Projection Select, SelectMany

Partitioning Skip, SkipWhile, Take, TakeWhile

Join GroupJoin, Join

Figure 3.2 A LINQ query represented as a factory where query operators are machines and sequences
are the material.

Introducing query expressions 97

As you can see, many operators are predefined. For reference, you can find this
list augmented with a description of each operator in the appendix. You’ll also
learn more about the standard query operators in chapter 4, where we’ll provide
several examples using them. We’ll then demonstrate how they can be used to do
projections, aggregation, sorting, or grouping.

 Thanks to the fact that query operators are mainly extension methods working
with IEnumerable<T> objects, you can easily create your own query operators.
We’ll see how to create and use domain-specific query operators in chapter 12,
which covers extensibility.

3.4 Introducing query expressions

Another key concept of LINQ is a new language extension. C# and VB.NET pro-
pose syntactic sugar for writing simpler query code in most cases.

 Until now, in this chapter, we’ve used a syntax based on method calls for our
code samples. This is one way to express queries. But most of the time when you
look at code based on LINQ, you’ll notice a different syntax: query expressions.

 We’ll explain what query expressions are and then describe the relationship
between query expressions and query operators.

Concatenation Concat

Ordering OrderBy, OrderByDescending, Reverse, ThenBy, ThenByDescending

Grouping GroupBy, ToLookup

Set Distinct, Except, Intersect, Union

Conversion AsEnumerable, AsQueryable, Cast, ToArray, ToDictionary, ToList

Equality SequenceEqual

Element ElementAt, ElementAtOrDefault, First, FirstOrDefault, Last,
LastOrDefault, Single, SingleOrDefault

Generation DefaultIfEmpty, Empty, Range, Repeat

Quantifiers All, Any, Contains

Aggregation Aggregate, Average, Count, LongCount, Max, Min, Sum

Table 3.1 The standard query operators grouped in families (continued)

Family Query operators

98 CHAPTER 3

LINQ building blocks

3.4.1 What is a query expression?

Query operators are static methods that allow the expression of queries. But
instead of using the following syntax

var processes =
 Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id,
 Name=process.ProcessName });

you can use another syntax that makes LINQ queries resemble SQL queries (see
QueryExpression.csproj):

var processes =
 from process in Process.GetProcesses()
 where process.WorkingSet64 > 20*1024*1024
 orderby process.WorkingSet64 descending
 select new { process.Id, Name=process.ProcessName };

This is called a query expression or query syntax.
 The two code pieces are semantically identical. A query expression is conve-

nient declarative shorthand for code you could write manually. Query expressions
allow us to use the power of query operators, but with a query-oriented syntax.

 Query expressions provide a language-integrated syntax for queries that is sim-
ilar to relational and hierarchical query languages such as SQL and XQuery. A
query expression operates on one or more information sources by applying one
or more query operators from either the standard query operators or domain-spe-
cific operators. In our code sample, the query expression uses three of the stan-
dard query operators: Where, OrderByDescending, and Select.

 When you use a query expression, the compiler automagically translates it into
calls to standard query operators.

 Because query expressions compile down to method calls, they are not neces-
sary: We could work directly with the query operators. The big advantage of query
expressions is that they allow for greater readability and simplicity.

3.4.2 Writing query expressions

Let’s detail what query expressions look like in C# and in VB.NET.

C# syntax
Figure 3.3 shows the exhaustive syntax for a query expression.

Introducing query expressions 99

Let’s review how this syntax is presented in the C# 3.0 language specification. A
query expression begins with a from clause and ends with either a select or
group clause. The initial from clause can be followed by zero or more from, let,
where, join, or orderby clauses.

 Each from clause is a generator introducing a variable that ranges over the ele-
ments of a sequence. Each let clause introduces a range variable representing a
value computed by means of previous range variables. Each where clause is a filter
that excludes items from the result.

 Each join clause compares specified keys of the source sequence with keys of
another sequence, yielding matching pairs. Each orderby clause reorders items
according to specified criteria. The final select or group clause specifies the
shape of the result in terms of the range variables.

 Finally, an into clause can be used to splice queries by treating the results of
one query as a generator in a subsequent query.

 This syntax should not be unfamiliar if you know SQL.

VB.NET syntax
Figure 3.4 depicts the syntax of a query expression in VB.NET.

 Notice how the VB.NET query expression syntax is richer compared to C#.
More of the standard query operators are supported in VB, such as Distinct,
Skip, Take, and the aggregation operators.

 We’ll use query expressions extensively in the rest of the book. We believe it’s
easier to discover the syntax through code samples instead of analyzing and
exposing the exact syntax at this point. You’ll see query expressions in action in
chapter 4, for instance, where we’ll use all kinds of queries. This will help you to

Figure 3.3 C# query expression syntax

100 CHAPTER 3

LINQ building blocks

learn everything you need to use query expressions. In addition, Visual Studio’s
IntelliSense will help you to write query expressions and discover their syntax as
you type them.

3.4.3 How the standard query operators relate to query expressions

You’ve seen that a translation happens when a query expression is compiled into
calls to standard query operators.

 For instance, consider our query expression:

from process in Process.GetProcesses()
where process.WorkingSet64 > 20*1024*1024
orderby process.WorkingSet64 descending
select new { process.Id, Name=process.ProcessName };

Here is the same query formulated with query operators:

Figure 3.4 VB.NET query expression syntax

Introducing query expressions 101

Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id, Name=process.ProcessName });

Table 3.2 shows how the major standard query operators are mapped to the new
C# and VB.NET query expression keywords.

Table 3.2 Mapping of standard query operators to query expression keywords by language

Query operator C# syntax VB.NET syntax

All N/A Aggregate … In … Into All(…)

Any N/A Aggregate … In … Into Any()

Average N/A Aggregate … In … Into Average()

Cast Use an explicitly typed range
variable, for example:
from int i in numbers

From … As …

Count N/A Aggregate … In … Into Count()

Distinct N/A Distinct

GroupBy group … by
or
group … by … into …

Group … By … Into …

GroupJoin join … in … on …
equals … into…

Group Join … In … On …

Join join … in … on …
equals …

From x In …, y In … Where x.a = b.a
or
Join … [As …] In … On …

LongCount N/A Aggregate … In … Into LongCount()

Max N/A Aggregate … In … Into Max()

Min N/A Aggregate … In … Into Min()

OrderBy orderby Order By

OrderByDescending orderby … descending Order By … Descending

Select select Select

SelectMany Multiple from clauses Multiple From clauses

Skip N/A Skip

SkipWhile N/A Skip While

102 CHAPTER 3

LINQ building blocks

As you can see, not all operators have equivalent keywords in C# and VB.NET. In
your simplest queries, you’ll be able to use the keywords proposed by your pro-
gramming language; but for advanced queries, you’ll have to call the query opera-
tors directly, as you’ll see in chapter 4.

 Also, writing a query using a query expression is only for comfort and readabil-
ity; in the end, once compiled, it gets converted into calls to standard query oper-
ators. You could decide to write all your queries only with query operators and
avoid the query expression syntax if you prefer.

3.4.4 Limitations

Throughout this book, we’ll write queries either using the query operators
directly or using query expressions. Even when using query expressions, we may
have to explicitly use some of the query operators. Only a subset of the standard
query operators is supported by the query expression syntax and keywords. It’s
often necessary to work with some of the query operators right in the context of a
query expression.

 The C# compiler translates query expressions into invocations of the following
operators: Where, Select, SelectMany, Join, GroupJoin, OrderBy, OrderByDe-
scending, ThenBy, ThenByDescending, GroupBy, and Cast, as shown in table 3.2. If
you need to use other operators, you can do so in the context of a query expression.

 For example, in listing 3.7, we use the Take and Distinct operators.

Sum N/A Aggregate … In … Into Sum()

Take N/A Take

TakeWhile N/A Take While

ThenBy orderby …, … Order By …, …

ThenByDescending orderby …, …
descending

Order By …, … Descending

Where where Where

Table 3.2 Mapping of standard query operators to query expression keywords by language (continued)

Query operator C# syntax VB.NET syntax

Introducing query expressions 103

var authors =
 from distinctAuthor in (
 from book in SampleData.Books
 where book.Title.Contains("LINQ")
 from author in book.Authors.Take(1)
 select author)
 .Distinct()
 select new {distinctAuthor.FirstName, distinctAuthor.LastName};

NOTE SampleData is a class we’ll define when we introduce our running exam-
ple in chapter 4. It provides some sample data on books, authors, and
publishers.

We use Take and Distinct explicitly. Other operators are used implicitly in this
query, namely Where, Select, and SelectMany, which correspond to the where,
select, and from keywords.

 In listing 3.7, the query selects a list of the names of the first author of each
book that contains “LINQ” in its title, a given author being listed only once.

 Listing 3.8 shows how the same query can be written with query operators only.

var authors =
 SampleData.Books
 .Where(book => book.Title.Contains("LINQ"))
 .SelectMany(book => book.Authors.Take(1))
 .Distinct()
 .Select(author => new {author.FirstName, author.LastName});

It’s up to you to decide what’s more readable. In some cases, you’ll prefer to use
a combination of query operators because a query expression wouldn’t make
things clearer. Sometimes, query expressions can even make code more difficult
to understand.

 In listing 3.7, you can see that parentheses are required to use the Distinct
operator. This gets in the middle of the query expression and makes it more diffi-
cult to read. In listing 3.8, where only query operators are used, it’s easier to fol-
low the pipelined processing. The query operators allow us to organize the
operations sequentially. Note that in VB, the question is less important because

Listing 3.7 C# query expression that uses query operators
 (QueryExpressionWithOperators.csproj)

Listing 3.8 C# query that uses query operators only
 (QueryExpressionWithOperators.csproj)

104 CHAPTER 3

LINQ building blocks

the language offers more keywords mapped to query operators. This includes
Take and Distinct. Consequently, the query we’ve just written in C# can be writ-
ten completely in VB as a query expression without resorting to query operators.

 If you’re used to working with SQL, you may also like query expressions
because they offer a similar syntax. Another reason for preferring query expres-
sion is that they offer a more compact syntax than query operators.

 Let’s take the following queries for example. First, here is a query with query
operators:

SampleData.Books
 .Where(book => book.Title == "Funny Stories")
 .OrderBy(book => book.Title)
 .Select(book => new {book.Title, book.Price});

Here is the same query with a query expression:

from book in SampleData.Books
where book.Title == "Funny Stories"
orderby book.Title
select new {book.Title, book.Price};

The two queries are equivalent. But you might notice that the query formulated
with query operators makes extensive use of lambda expressions. Lambda expres-
sions are useful, but too many in a small block of code can be unattractive. Also, in
the same query, notice how the book identifier is declared several times. In com-
parison, in the query expression, you can see that the book identifier only needs
to be declared once.

 Again, it’s mainly a question of personal preference, so we do not intend to tell
you that one way is better than the other.

 After query expressions, we have one last LINQ concept to introduce.

3.5 Introducing expression trees

You might not use expression trees as often as the other concepts we’ve reviewed
so far, but they are an important part of LINQ. They allow advanced extensibility
and make LINQ to SQL possible, for instance.

 We’ll spend some time again with lambda expressions because they allow us to
create expression trees. We’ll then detail what an expression tree is, before stress-
ing how expression trees offer another way to enable deferred query execution.

Introducing expression trees 105

3.5.1 Return of the lambda expressions

When we introduced lambda expressions in chapter 2, we presented them mainly
as a new way to express anonymous delegates. We then demonstrated how they
could be assigned to delegate types. Here is one more example:

Func<int, bool> isOdd = i => (i & 1) == 1;

Here we use the Func<T, TResult> generic delegate type defined in the System
namespace. This type is declared as follows in the System.Core.dll assembly that
comes with .NET 3.5:

delegate TResult Func<T, TResult>(T arg);

Our isOdd delegate object represents a method that takes an integer as a param-
eter and returns a Boolean. This delegate variable can be used like any other
delegate:

for (int i = 0; i < 10; i++)
{
 if (isOdd(i))
 Console.WriteLine(i + " is odd");
 else
 Console.WriteLine(i + " is even");
}

One thing we’d like to stress at this point is that a lambda expression can also be
used as data instead of code. This is what expression trees are about.

3.5.2 What are expression trees?

Consider the following line of code that uses the Expression<TDelegate> type
defined in the System.Linq.Expressions namespace:

Expression<Func<int, bool>> isOdd = i => (i & 1) == 1;

Here is the equivalent line of code in VB.NET:

Dim isOdd As Expression(Of Func(Of Integer, Boolean)) = _
 Function(i) (i And 1) = 1

This time, we can’t use isOdd as a delegate. This is because it’s not a delegate, but
an expression tree.

 It turns out that the compiler knows about this Expression<TDelegate> type
and behaves differently than with delegate types such as Func<T, TResult>. Rather
than compiling the lambda expression into IL code that evaluates the expression,
it generates IL that constructs a tree of objects representing the expression.

106 CHAPTER 3

LINQ building blocks

 Note that only lambda expressions with an expression body can be used as
expression trees. Lambda expressions with a statement body are not convertible
to expression trees. In the following example, the first lambda expression can be
used to declare an expression tree because it has an expression body, whereas the
second can’t be used to declare an expression tree because it has a statement body
(see chapter 2 for more details on the two kinds of lambda expressions):

Expression<Func<Object, Object>> identity = o => o;
Expression<Func<Object, Object>> identity = o => { return o; };

When the compiler sees a lambda expression being assigned to a variable of an
Expression<> type, it will compile the lambda into a series of factory method calls
that will build the expression tree at runtime. Here is the code that is generated
behind the scenes by the compiler for our expression:

ParameterExpression i = Expression.Parameter(typeof(int), "i");
Expression<Func<int, bool>> isOdd =
 Expression.Lambda<Func<int, bool>>(
 Expression.Equal(
 Expression.And(
 i,
 Expression.Constant(1, typeof(int))),
 Expression.Constant(1, typeof(int))),
 new ParameterExpression[] { i });

Here is the VB syntax:

Dim i As ParameterExpression = _
 Expression.Parameter(GetType(Integer), "i")
Dim isOdd As Expression(Of Func(Of Integer, Boolean)) = _
 Expression.Lambda(Of Func(Of Integer, Boolean))(_
 Expression.Equal(_
 Expression.And(_
 i, _
 Expression.Constant(1, GetType(Integer))), _
 Expression.Constant(1, GetType(Integer))), _
 New ParameterExpression() {i})

NOTE Expression trees are constructed at runtime when code like this executes,
but once constructed they cannot be modified.

Note that you could write this code by yourself. It would be uninteresting for our
example, but it could be useful for advanced scenarios. We’ll keep that for chap-
ter 5, where we use expression trees to create dynamic queries.

 Apart from being grateful to the compiler for generating this for us, you can
start to see why this is called an expression tree. Figure 3.5 is a graphical represen-
tation of this tree.

Introducing expression trees 107

At this stage, you’ve learned that lambda expressions can be represented as code
(delegates) or as data (expression trees). Assigned to a delegate, a lambda expres-
sion emits IL code; assigned to Expression<TDelegate>, it emits an expression
tree, which is an in-memory data structure that represents the parsed lambda.

 The best way to prove that an expression completely describes a lambda
expression is to show how expression trees can be compiled down to delegates:

Func<int, bool> isOddDelegate = i => (i & 1) == 1;
Expression<Func<int, bool>> isOddExpression = i => (i & 1) == 1;
Func<int, bool> isOddCompiledExpression =
 isOddExpression.Compile();

In this code, isOddDelegate and isOddCompiledExpression are equivalent.
Their IL code is the same.

 The burning question at this point should be, “Why would we need expression
trees?” Well, an expression is a kind of an abstract syntax tree (AST). In computer sci-
ence, an AST is a data structure that represents source code that has been parsed.
An AST is often used as a compiler or interpreter’s internal representation of a
computer program while it is being optimized, from which code generation is

Figure 3.5
Graphical view of an expression tree

108 CHAPTER 3

LINQ building blocks

performed. In our case, an expression tree is the result of the parsing operation
the C# compiler does on a lambda expression. The goal here is that some code
will analyze the expression tree to perform various operations.

 Expression trees can be given to tools at runtime, which use them to guide
their execution or translate them into something else, such as SQL in the case of
LINQ to SQL. As you’ll see in more detail in parts 4 and 5 of this book, LINQ to
SQL uses information contained in expression trees to generate SQL and perform
queries against a database.

 For the moment, we’d like to point out that expression trees are another way
to achieve deferred query execution.

3.5.3 IQueryable, deferred query execution redux

You’ve seen that one way to achieve deferred query execution is to rely on IEnu-
merable<T> and iterators. Expression trees are the basis for another way to out-of-
process querying.

 This is what is used in the case of LINQ to SQL. When we write code as follows,
as we did in chapter 1, no SQL is executed before the foreach loop starts iterating
on contacts:

string path =
 System.IO.Path.GetFullPath(@"..\..\..\..\Data\northwnd.mdf");
DataContext db = new DataContext(path);

var contacts =
 from contact in db.GetTable<Contact>()
 where contact.City == "Paris"
 select contact;

foreach (var contact in contacts)
 Console.WriteLine("Bonjour "+contact.Name);

This behavior is similar to what happens with IEnumerable<T>, but this time, the
type of contacts is not IEnumerable<Contact>, like you could expect, but IQue-
ryable<Contact>. What happens with IQueryable<T> is different than with
sequences. An instance of IQueryable<T> receives an expression tree it can
inspect to decide what processing it should perform.

 In this case, as soon as we start enumerating the content of contacts, the
expression tree it contains gets analyzed, SQL is generated and executed, and the
results of the database query are returned as Contact objects.

 We won’t go into detail about how things work here, but IQueryable is more
powerful than sequences based on IEnumerable because intelligent processing

LINQ DLLs and namespaces 109

based on the analysis of expression trees can happen. By examining a complete
query through its expression tree representation, a tool can take smart decisions
and make powerful optimizations. IQueryable and expression trees are suitable
for cases where IEnumerable and its pipelining pattern are not flexible enough.

 Deferred query execution with expression trees allow LINQ to SQL to optimize
a query containing multiple nested or complex queries into the fewest number of
efficient SQL statements possible. If LINQ to SQL were to use a pipelining pattern
like the one supported by IEnumerable<T>, it would only be able to execute sev-
eral small queries in cascade against databases instead of a reduced number of
optimized queries.

 As you’ll see later, expression trees and IQueryable can be used to extend
LINQ and are not limited to LINQ to SQL. We’ll demonstrate how we can take
advantage of LINQ’s extensibility in chapter 12.

 Now that we’ve explored all the main elements of LINQ, let’s see where to find
the nuts and bolts you need to build your applications.

3.6 LINQ DLLs and namespaces

The classes and interfaces that you need to use LINQ in your applications come
distributed in a set of assemblies (DLLs) provided with .NET 3.5. You need to know
what assemblies to reference and what namespaces to import.

 The main assembly you’ll use is System.Core.dll. In order to write LINQ to
Objects queries, you’ll need to import the System.Linq namespace it contains.
This is how the standard query operators provided by the System.Linq.Enumera-
ble class become available to your code. Note that the System.Core.dll assembly
is referenced by default when you create a new project with Visual Studio 2008.

 If you need to work with expression trees or create your own IQueryable
implementation, you’ll also need to import the System.Linq.Expressions
namespace, which is also provided by the System.Core.dll assembly.

 In order to work with LINQ to SQL or LINQ to XML, you have to use dedicated
assemblies: respectively System.Data.Linq.dll or System.Xml.Linq.dll. LINQ’s
features for the DataSet class are provided by the System.Data.DataSetExten-
sions.dll assembly.

 The System.Xml.Linq.dll and System.Data.DataSetExtensions.dll

assemblies are referenced by default when you create projects with Visual Stu-
dio 2008. System.Data.Linq.dll is not referenced by default. You need to refer-
ence it manually.

110 CHAPTER 3

LINQ building blocks

 Table 3.3 is an overview of the LINQ assemblies and namespaces, and their
content.

Table 3.3 Content of the assemblies provided by .NET 3.5 that are useful for LINQ

File name Namespaces Description and content

System.Core.dll

System Action and Func delegate types

System.Linq Enumerable class (extension methods for
IEnumerable<T>)
IQueryable and IQueryable<T> interfaces
Queryable class (extension methods for
IQueryable<T>)
IQueryProvider interface
QueryExpression class
Companion interfaces and classes for query oper-
ators:
Grouping<TKey, TElement>
ILookup<TKey, TElement>
IOrderedEnumerable<TElement>
IOrderedQueryable
IOrderedQueryable<T>
Lookup<TKey, TElement>

System.Linq.Expressions Expression<TDelegate> class and other
classes that enable expression trees

System.Data.DataSetExtensions.dll

System.Data Classes for LINQ to DataSet, such as
TypedTableBase<T>, DataRowComparer,
DataTableExtensions, and
DataRowExtensions

System.Data.Linq.dll

System.Data.Linq Classes for LINQ to SQL, such as
DataContext, Table<TEntity>, and
EntitySet<TEntity>

System.Data.Linq.Mapping Classes and attributes for LINQ to SQL, such as
ColumnAttribute, FunctionAttribute,
and TableAttribute

System.Data.Linq.SqlClient The SqlMethods and SqlHelpers classes

Summary 111

3.7 Summary

In this chapter, we’ve explained how LINQ extends C# and VB.NET, as well as the
.NET Framework. You should now have a better idea of what LINQ is.

 We’ve walked through some important foundational LINQ material. You’ve
learned some new terminology and concepts.

 Here is a summary of what we’ve introduced in this chapter:

■ Sequences, which are enumerations and iterators applied to LINQ

■ Deferred query execution

■ Query operators, extension methods that allow operations in the context of
LINQ queries

■ Query expressions, which allow the SQL-like from…where…select syntax

■ Expression trees, which represent queries as data and allow advanced
extensibility

You’re now prepared to read and write LINQ code. We’ll now get to action and start
using LINQ for useful things. In part 2, we’ll use LINQ to Objects to query objects
in memory. In part 3, we’ll address persistence to relational databases with LINQ to
SQL. In part 4, we’ll detail how to work on XML documents with LINQ to XML.

System.Xml.Linq.dll

System.Xml.Linq Classes for LINQ to XML, such as XObject,
XNode, XElement, XAttribute, XText,
XDocument, and XStreamingElement

System.Xml.Schema Extensions class that provides extension
methods to deal with XML schemas

System.Xml.XPath Extensions class that provides extension meth-
ods to deal with XPath expressions and to create
XPathNavigator objects from XNode instances

Table 3.3 Content of the assemblies provided by .NET 3.5 that are useful for LINQ (continued)

File name Namespaces Description and content

