SAMPLE CHAPTER

LUy

l)“u "‘% -

. C.'
\ ,s‘ :
r
¥
|’
1 -
-] &
s B
o y
4 oy
{ 4%
v

lN ACTION

1 Behavior-Driven Development for
| the whole software lifecycle

John Ferquson Smart
Foreworn BY Dan North

/III MANNING

BDD in Action

by John Ferguson Smart

Chapter 1

Copyright 2014 Manning Publications

10

brief contents

Building software that makes a difference 3
BDD—the whirlwind tour 32

Understanding the business goals: Feature Injection
and related techniques 61

Defining and illustrating features 87
From examples to executable specifications 114

Automating the scenarios 140

From executable specifications to rock-solid
automated acceptance tests 181

Automating acceptance criteria for the Ul layer 201

Automating acceptance criteria for
non-Ul requirements 236

BDD and unit testing 260

BRIEF CONTENTS

11 w Living Documentation: reporting and
project management 301

12 w BDD in the build process 321

Bwilding software that
makes a differenice

This chapter covers

m The problems that Behavior-Driven Development
addresses

m General principles and origins of Behavior-Driven
Development

m Activities and outcomes seen in a Behavior-Driven
Development project

m The pros and cons of Behavior-Driven Development

This book is about building and delivering better software. It’s about building soft-
ware that works well and is easy to change and maintain, but more importantly, it’s
about building software that provides real value to its users. We want to build soft-
ware well, but we also need to build software that’s worth building.

In 2012, the U.S. Air Force decided to ditch a major software project that had
already cost over $1 billion USD. The Expeditionary Combat Support System was
designed to modernize and streamline supply chain management in order to save
billions of dollars and meet new legislative requirements. But after seven years of
development, the system had still “not yielded any significant military capability.”!

! Chris Kanaracus, “Air Force scraps massive ERP project after racking up $1 billion in costs,” CIO, Novem-
ber 14, 2012, http://www.cio.com/article/2390341.

4 CHAPTER 1 Building software that makes a difference

The Air Force estimated that an additional $1.1 billion USD would be required to
deliver just a quarter of the original scope, and that the solution could not be rolled
out until 2020, three years after the legislative deadline of 2017.

This happens a lot in the software industry. According to a number of studies,
around half of all software projects fail to deliver in some significant way. The 2011
edition of the Standish Group’s annual CHAOS Report found that 42% of projects were
delivered late, ran over budget, or failed to deliver all of the requested features,? and
21% of projects were cancelled entirely. Scott Ambler’s annual survey on IT project
success rates uses a more flexible definition of success, but still found a 30-50% failure
rate, depending on the methodologies used.” This corresponds to billions of dollars
in wasted effort, writing software that ultimately won’t be used or that doesn’t solve
the business problem it was intended to solve.

What if it didn’t have to be this way? What if we could write software in a way that
would let us discover and focus our efforts on what really matters? What if we could
objectively learn what features will really benefit the organization and the most cost-
effective way to implement them? What if we could see beyond what the user asks for
and build what the user actually needs?

There are organizations discovering how to do just that. Many teams are success-
fully collaborating to build and deliver more valuable, more effective, and more reli-
able software. And they’re learning to do this faster and more efficiently. In this book,
you’ll see how—we’ll explore a number of methods and techniques, grouped under
the general heading of Behavior-Driven Development (BDD).

BDD helps teams focus their efforts on identifying, understanding, and building
valuable features that matter to businesses, and it makes sure that these features are
well designed and well implemented.

BDD practitioners use conversations around concrete examples of system behavior
to help understand how features will provide value to the business. BDD encourages
business analysts, software developers, and testers to collaborate more closely by
enabling them to express requirements in a more testable way, in a form that both the
development team and business stakeholders can easily understand. BDD tools can
help turn these requirements into automated tests that help guide the developer, ver-
ify the feature, and document what the application does.

BDD isn’t a software development methodology in its own right. It’s not a replace-
ment for Scrum, XP, Kanban, RUP, or whatever methodology you’re currently using.
As you’ll see, BDD incorporates, builds on, and enhances ideas from many of these
methodologies. And no matter what methodology you’re using, there are ways that
BDD can help make your life easier.

2 Whether these figures reflect more on our ability to build and deliver software or on our ability to plan and
estimate is a subject of some debate in the Agile development community—see Jim Highsmith’s book Agile
Project Management: Creating Innovative Products, second edition (Addison-Wesley Professional, 2009).

% Scott Ambler, Surveys Exploring the Current State of Information Technology Practices, http://www.amby-
soft.com/surveys/.

11

BDD from 50,000 feet 5

BDD from 50,000 feet

So what does BDD bring to the table? Here’s a (slightly oversimplified) perspective.
Let’s say Chris’s company needs a new module for its accounting software. When
Chris wants to add a new feature, the process goes something like this (see figure 1.1):

1 Chris tells a business analyst how he would like the feature to work.

The business analyst translates Chris’s requests into a set of requirements for
the developers, describing what the software should do. These requirements
are written in English and stored in a Microsoft Word document.

3 The developer translates the requirements into code and unit tests—written in
Java, C#, or some other programming language—in order to implement the
new feature.

4 The tester translates the requirements in the Word document into test cases,
and uses them to verify that the new feature meets the requirements.

5 Documentation engineers then translate the working software and code back
into plain English technical and functional documentation.

There are many opportunities for information to get lost in translation, be misunder-
stood, or just be ignored. Chances are that the new module itself may not do exactly
what was required and that the documentation won’t reflect the initial requirements
that Chris gave the analyst.

The business owner tells The business analyst

the business analyst writes a requirements '\F\
what he wants. document. (\ o
w -

N

The tester translates
the requirements
into test cases.

The developer translates
the requirements
into software.

The technical

writer translates the
software into functional
and technical
documentation.

Figure 1.1 The traditional development process provides many opportunities for misunderstandings
and miscommunication.

CHAPTER 1 Building software that makes a difference

The scenarios guide

The business analyst, the the developer and act
developer, and the tester as automated tests.
elaborate the requirements

together.

fScenario: Transferring money to

G:S::enarla: Transferring money to)

) N
The business owner
and the business analyst
have a conversation about

what the business needs.

cenario: Transferring money to)
iven my Current account has a |
nd my Savings account has a bal
hen I transfer 500.00 from my |
hen T should hav: .

They define i
requirements as
structured,
English-language
format “scenarios.”

o=

The automated tests provide The tester uses these
feedback on progress and help scenarios as the basis
document the application. for the tests.

Figure 1.2 BDD uses conversations around examples, expressed In a form that can be easily
automated, to reduce lost information and misunderstandings.

Chris’s friend Sarah runs another company that just introduced BDD. In a team prac-
ticing BDD, the business analysts, developers, and testers collaborate to understand
and define the requirements together (see figure 1.2). They use a common language
that allows for an easy, less ambiguous path from end-user requirements to usable,
automatable tests. These tests specify how the software should behave, and they guide
the developers in building working software that focuses on features that really matter
to the business.

@ Like Chris, Sarah talks to a business analyst about what she wants. To reduce the
risk of misunderstandings and hidden assumptions, they talk through concrete
examples of what the feature should do.

@ Before work starts on the feature, the business analyst gets together with the
developer and tester who will be working on it, and they have a conversation
about the feature. In this conversation, they discuss and translate key examples
of how the feature should work into a set of requirements written in a struc-
tured, English-language format often referred to as Gherkin.

© The developer uses a BDD tool to turn these requirements into a set of auto-
mated tests that run against the application code and help objectively deter-
mine when a feature is finished.

1.2

121

What problems are you trying to solve? 7

O The tester uses the results of these tests as the starting point for manual and
exploratory tests.

@ The automated tests act as low-level technical documentation, and provide
up-to-date examples of how the system works. Sarah can review the test reports to
see what features have been delivered, and whether they work the way she expected.

Compared to Chris’s scenario, Sarah’s team makes heavy use of conversations and
examples to reduce the amount of information lost in translation. Every stage beyond
step 2 starts with the specifications written in Gherkin, which are based on concrete
examples provided by Sarah. In this way, a great deal of the ambiguity in translating
the client’s initial requirements into code, reports, and documentation is removed.
We’ll discuss all of these points in detail throughout the rest of the book. You’ll
learn ways to help ensure that your code is of high quality, solid, well tested, and well
documented. You’ll learn how to write more effective unit tests and more meaningful
automated acceptance criteria. You’ll also learn how to ensure that the features you
deliver solve the right problems and provide real benefit to the users and the business.

What problems are you trying to solve?

Software projects fail for many reasons, but the most significant causes fall into two
broad categories:

= Not building the software right
= Not building the right software

Figure 1.3 illustrates this in the form of a graph. The vertical axis represents what
you’re building, and the horizontal axis represents how you build it. If you perform
poorly on the how axis, not writing well-crafted and well-designed software, you’ll end
up with a buggy, unreliable product that’s hard to change and maintain. If you don’t
do well on the what axis, failing to understand what features the business really needs,
you’ll end up with a product that nobody needs.

Building the software right

Many projects suffer or fail because of software quality issues. Although internal soft-
ware quality is mostly invisible to nontechnical stakeholders, the consequences of
poor-quality software can be painfully visible. In my experience, applications that are
poorly designed, badly written, or lack well-written, automated tests tend to be buggy,
hard to maintain, hard to change, and hard to scale.

I’'ve seen too many applications where simple change requests and new features
take too long to deliver. Developers spend more and more time fixing bugs rather
than working on new features, which makes it harder to deliver new features quickly.
It takes longer for new developers to get up to speed and become productive, simply
because the code is hard to understand. It also becomes harder and harder to add
new features without breaking existing code. The existing technical documentation
(if there is any) is inevitably out of date, and teams find themselves incapable of

8 CHAPTER 1 Building software that makes a difference

Building the
right thing
Features aligned Right product,
to business needs built right
Wasted effort

Doesn't do what
the user wants

What
Project late
Hard to
Over change
budget
Expensive 5
to maintain ugs
Unstable
Misaligned
requirements -
Building the
Poor How Quality gl
craftsmanship craftsmanship

Figure 1.3 Successful projects must both build features well and build the right features.

delivering new features quickly because each release requires a lengthy period of
manual testing and bug fixes.

Organizations that embrace high-quality technical practices have a different story
to tell. I've seen many teams that adopt practices such as Test-Driven Development,
Clean Coding, Living Documentation, and Continuous Integration regularly report-
ing low to near-zero defect rates, as well as code that’s much easier to adapt and
extend as new requirements emerge and new features are requested. These teams can
also add features at a more consistent pace, because the automated tests ensure that
existing features won’t be broken unknowingly. They implement the features faster
and more precisely than other teams because they don’t have to struggle with long
bug-fixing sessions and unpredictable side effects when they make changes. And the
resulting application is easier and cheaper to maintain.

Note that there is no magic formula for building high-quality, easily maintainable
software. Software development is a complex field, human factors abound, and tech-
niques such as Test-Driven Development, Clean Coding, and Automated Testing don’t
automatically guarantee good results. But studies do suggest a strong correlation
between lean and Agile practices and project success rates* when compared to more

* See, for example, Ambysoft, “2013 IT Project Success Rates Survey Results,” http: //www.ambysoft.com/surveys/
success2013.html.

What problems are you trying to solve? 9

traditional approaches. Other studies have found a correlation between Test-Driven
Development practices, reduced bug counts,’ and improved code quality.6 Although
it’s certainly possible to write high-quality code without practicing techniques such as
Test-Driven Development and Clean Coding, teams that value good development
practices do seem to succeed in delivering high-quality code more often.

But building high-quality software isn’t in itself enough to guarantee a successful
project. The software must also benefit its users and business stakeholders.

1.2.2 Building the right software

Software is never developed in a vacuum. Software projects are part of a broader busi-
ness strategy, and they need to be aligned with business goals if they’re to be beneficial
to the organization. At the end of the day, the software solution you deliver needs to
help users achieve their goals more effectively. Any effort that doesn’t contribute to this
end is waste.

In practice, there’s often a lot of waste. In many projects, time and money are
spent building features that are never used or that provide only marginal value to the
business. According to the Standish Group’s CHAOS studies,” on average some 45% of
the features delivered into production are never used. Even apparently predictable
projects, such as migrating software from a mainframe system onto a more modern
platform, have their share of features that need updating or that are no longer neces-
sary. When you don’t fully understand the goals that your client is trying to achieve,
it’s very easy to deliver perfectly functional, well-written features that are of little use to
the end user.

On the other hand, many software projects end up delivering little or no real busi-
ness value. Not only do they deliver features that are of little use to the business, but
they fail to even deliver the minimum capabilities that would make the projects viable.

The consequences of not building it right, and not building the right thing
The impact of poorly understood requirements and poor code realization isn’t just a
theoretical concept or a “nice to have;” on the contrary, it’s often painfully concrete.
In December 2007, the Queensland Health Department kicked off work on a new pay-
roll system for its 85,000 employees. The initial budget for the project was around
$6 million, with a delivery date of August 2008.

5 See, for example, Nachiappan Nagappan, E. Michael Maximilien, Thirumalesh Bhat, and Laurie Williams,
“Realizing quality improvement through test driven development: results and experiences of four industrial
teams,” http://research.microsoft.com/en-us/groups/ese/nagappan_tdd.pdf.

Rod Hilton, “Quantitatively Evaluating Test-Driven Development by Applying Object-Oriented Quality Metrics
to Open Source Projects” (PhD thesis, Regis University, 2009), http://www.rodhilton.com/files/tdd_thesis.pdf.
The Standish Group’s CHAOS Report 2002 reported a value of 45% and I've seen more recent internal studies
where the figure is around 50%.

10 CHAPTER 1 Building software that makes a difference

(continued)

When the solution was rolled out in 2010, some 18 months late, it was a disaster.®
Tens of thousands of public servants were underpaid, overpaid, or not paid at all.
Since the go-live date, over 1,000 payroll staff have been required to carry out some
200,000 manual processes each fortnight to ensure that staff salaries are paid.

In 2012, an independent review found that the project had cost the state over $416
million since going into production and would cost an additional $837 million to fix.
This colossal sum included $220 million just to fix the immediate software issues
that were preventing the system from delivering its core capability of paying Queens-
land Health staff what they were owed each month.

Building the right software is made even trickier by one commonly overlooked fact:
early on in a project, you usually don’t know what the right features are.

1.2.3 The knowledge constraint—dealing with uncertainty

One fact of life in software development is that there will be things you don’t know.
Changing requirements are a normal part of every software project. Knowledge and
understanding about the problem at hand and about how best to solve it increases
progressively throughout the project.

In software development, each project is different. There are always new business
requirements to cater to, new technological problems to solve, and new opportunities
to seize. As a project progresses, market conditions, business strategies, technological
constraints, or simply your understanding of the requirements will evolve, and you’ll
need to change your tack and adjust your course. Each project is a journey of discov-
ery where the real constraint isn’t time, the budget, or even programmer hours, but
your lack of knowledge about what you need to build and how you should build it.
When reality doesn’t go according to plan, you need to adapt to reality, rather than
trying to force reality to fit into your plan. “When the terrain disagrees with the map,
trust the terrain” (Swiss Army proverb).

Users and stakeholders will usually know what high-level goals they want to achieve
and can be coaxed into revealing these goals if you take the time to ask. They’ll be
able to tell you that they need an online ticketing system or a payroll solution that
caters to 85,000 different employees. And you can get a feel for the scope of the appli-
cation you might need to build early on in the project.

But the details are another matter entirely. Although users are quick to ask for spe-
cific technical solutions to their problems, they’re not usually the best-placed to know
what solution would serve them best, or even, for that matter, what solutions exist.
Your team’s collective understanding of the best way to deliver these capabilities, as

8 See KPMG, “Review of the Queensland Health Payroll System” (2012), http://delimiter.com.au/wp-content/
uploads/2012/06/KPMG_audit.pdf.

11

What problems are you trying to solve?

of what needs

Understanding
tobe delivered | s

X Analysis

g phase done
~<—— Your ignorance does not decrease

at a linear rate, either.

X Requirements
phase done <— Infact, your ignorance of what you need to
build decreases gradually over time.

In a traditional approach, your understanding is assumed to increase
like this. At the same time, your level of ignorance decreases.

At the start of a project, you know little about what you

/’/' need to do. Your level of ignorance is high.
Time

Figure 1.4 At the start of a project, there are many unknowns. You reduce these unknowns as the

[
1
|
|
'
1
!
'
1
'
1
'
1
i
'
1
1
'
1
'
'
|
|
|

project progresses, but not in a linear or very predictable way.

well as the optimal feature set for achieving the underlying business goals, will grow as

the project progresses.
As illustrated in figure 1.4, the more prescriptive, plan-based requirements-analysis
techniques suppose that you can learn almost all there is to know about a project’s
requirements, as well as the optimal solution design, very quickly in the early phases of

the project. By the end of the analysis phase, the specifications are signed-off on and

locked down, and all that remains to do is code.

Of course, reality doesn’t always work this way. At the start of the project, a develop-
ment team will often have only a superficial understanding of the business domain
and the goals the users need to achieve. In fact, the job of a software engineering team
isn’t to know how to build a solution; it’s to know how to discover the best way to build

the solution.
the project. You become less ignorant over time. Toward the end of the project, a

good team will have built up a deep, intimate knowledge of the user’s needs and will
be able to proactively propose features and implementations that will be better suited
to the particular user base. But this learning path is neither linear nor predictable. It’s
hard to know what you don’t know, so it’s hard to predict what you’ll learn as the proj-

The team’s collective understanding will naturally increase over the duration of

ect progresses.
managing scope isn’t to eliminate uncertainty by defining and locking down require-

For the majority of modern software development projects, the main challenge in
ments as early as possible. The main challenge is to manage this uncertainty in a way

12 CHAPTER 1 Building software that makes a difference

that will help you progressively discover and deliver an effective solution that matches
up with the underlying business goals behind a project. As you'll see, one important
benefit of BDD is that it provides techniques that can help you manage this uncer-
tainty and reduce the risk that comes with it.

1.3 Introducing Behavior-Driven Development

Behavior-Driven Development (BDD) is a set of software engineering practices
designed to help teams build and deliver more valuable, higher quality software faster.
It draws on Agile and lean practices including, in particular, Test-Driven Development
(TDD) and Domain-Driven Design (DDD). But most importantly, BDD provides a com-
mon language based on simple, structured sentences expressed in English (or in the
native language of the stakeholders) that facilitate communication between project
team members and business stakeholders.

To better understand the motivations and philosophy that drive BDD practices, it’s
useful to understand where BDD comes from.

1.3.1 BDD was originally designed as an improved version of TDD

BDD was originally invented by Dan North? in the early to mid-2000s as an easier way
to teach and practice Test-Driven Development (TDD). TDD, invented by Kent Beck in
the early days of Agile,' is a remarkably effective technique that uses unit tests to spec-
ify, design, and verify application code.

When TDD practitioners need to implement a feature, they first write a failing test
that describes, or specifies, that feature. Next, they write just enough code to make the
test pass. Finally, they refactor the code to help ensure that it will be easy to maintain
(see figure 1.5). This simple but powerful technique encourages developers to write
cleaner, better-designed, easier-to-maintain code!! and results in substantially lower
defect counts.'?

Despite its advantages, many teams still have difficulty adopting and using TDD
effectively. Developers often have trouble knowing where to start or what tests they
should write next. Sometimes TDD can lead developers to become too detail-focused,
losing the broader picture of the business goals they’re supposed to implement. Some
teams also find that the large numbers of unit tests can become hard to maintain as
the project grows in size.

In fact, many traditional unit tests, written with or without TDD, are tightly coupled
to a particular implementation of the code. They focus on the method or function
they’re testing, rather than on what the code should do in business terms.

9 Dan North, “Introducing BDD,” http://dannorth.net/introducing-bdd/.

19 Kent Beck, Test-Driven Development: By Example (Addison-Wesley Professional, 2002).

! Rod Hilton, “Quantitatively Evaluating Test-Driven Development by Applying Object-Oriented Quality Metrics
to Open Source Projects” (PhD thesis, Regis University, 2009), http://www.rodhilton.com/files/tdd_thesis.pdf.

12 Nachiappan Nagappan et al., “Realizing Quality Improvement through Test Driven Development” (2008),
http://research.microsoft.com/en-us/groups/ese/nagappan_tdd.pdf.

Introducing Behavior-Driven Development 13

0 Write a failing test

First, you write an example
of what the code should
do, in the form of a

failing test.

Finally, review what you have
done to see if you can tidy
up the code or improve
the design.

Next, write just enough code e
to make the test work. Make the test pass

Figure 1.5 Test-Driven Development relies on a simple, three-phase cycle.

For example, suppose Paul is a Java developer working on a new financial trading
application in a large bank. He has been asked to implement a new feature to transfer
money from one account to another. He creates an Account class with a transfer ()
method, a deposit () method, and so on. The corresponding unit tests are focused on
testing these methods:

public class BankAccountTest {
@Test
public void testTransfer() {...}

@Test
public void testDeposit() {...}

}

Tests like this are better than nothing, but they can limit your options. For example,
they don’t describe what you expect the transfer () and deposit () functions to do,
which makes them harder to understand and to fix if they break. They’re tightly cou-
pled to the method they test, which means that if you refactor the implementation,
you need to rename your test as well. And because they don’t say much about what
they’re actually testing, it’s hard to know what other tests (if any) you need to write
before you’re done.

North observed that a few simple practices, such as naming unit tests as full sen-
tences and using the word “should,” can help developers write more meaningful tests,
which in turn helps them write higher quality code more efficiently. When you think in
terms of what the class should do, instead of what method or function is being tested, it’s
easier to keep your efforts focused on the underlying business requirements.

For example, Paul could write more descriptive tests along the following lines:

public class WhenTransferringInternationalFunds {
@Test
public void should transfer funds to a local account() {...}

14

132

CHAPTER 1 Building software that makes a difference

@Test

public void should transfer funds to a different bank() {...}
@Test

public void should deduct fees as a separate transaction() {...}

}

Tests that are written this way read more like specifications than unit tests. They focus
on the behavior of the application, using tests simply as a means to express and verify
that behavior. North also noted that tests written this way are much easier to maintain
because their intent is so clear. The impact of this approach was so significant that he
started referring to what he was doing no longer as Test-Driven Development, but as
BehaviorDriven Development.

BDD also works well for requirements analysis

But describing a system’s behavior turns out to be what business analysts do every day.
Working with business analyst colleague Chris Matts, North set out to apply what he
had learned to the requirements-analysis space. Around this time, Eric Evans intro-
duced the idea of Domain-Driven Design,"? which promotes the use of a ubiquitous
language that business people can understand to describe and model a system. North
and Matts’s vision was to create a ubiquitous language that business analysts could use
to define requirements unambiguously, and that could also be easily transformed into
automated acceptance tests. To implement this vision, they started expressing the
acceptance criteria for user stories in the form of loosely structured examples, known
as “scenarios,” like this one:

Given a customer has a current account

When the customer transfers funds from this account to an overseas account
Then the funds should be deposited in the overseas account

And the transaction fee should be deducted from the current account

A business owner can easily understand a scenario written like this. It gives clear and
objective goals for each story in terms of what needs to be developed and of what
needs to be tested.

This notation eventually evolved into a commonly used form often referred to as
Gherkin. With appropriate tools, scenarios written in this form can be turned into
automated acceptance criteria that can be executed automatically whenever required.
Dan North wrote the first dedicated BDD test automation library, JBehave, in the mid-
2000s, and since then many others have emerged for different languages, both at the
unit-testing and acceptance-testing levels.

13 Eric Evans, Domain Driven Design (Addison-Wesley Professional, 2003).

133

Introducing Behavior-Driven Development 15

BDD by any other name

Many of the ideas around BDD are not new and have been practiced for many years
under a number of different names. Some of the more common terms used for these
practices include Acceptance-Test-Driven Development, Acceptance Test-Driven Plan-
ning, and Specification by Example. To avoid confusion, let’s clarify a few of these
terms in relation to BDD.

Specification by Example describes the set of practices that have emerged around
using examples and conversation to discover and describe requirements. In his sem-
inal book of the same name,** Gojko Adzic chose this term as the most representa-
tive name to refer to these practices. Using conversation and examples to specify
how you expect a system to behave is a core part of BDD, and we’ll discuss it at
length in the first half of this book.

Acceptance-Test-Driven Development (ATDD) is now a widely used synonym for Spec-
ification by Example, but the practice has existed in various forms since at least the
late 1990s. Kent Beck and Martin Fowler mentioned the concept in 2000,° though
they observed that it was difficult to implement acceptance criteria in the form of
conventional unit tests at the start of a project. But unit tests aren’t the only way
to write automated acceptance tests, and since at least the early 2000s, innova-
tive teams have asked users to contribute to executable acceptance tests and have
reaped the benefits.*®

Acceptance-Test-Driven Planning is the idea that defining acceptance criteria for a fea-
ture leads to better estimates than doing a task breakdown.

BDD principles and practices

Today BDD is successfully practiced in a large number of organizations of all sizes
around the world, in a variety of different ways. In Specification by Example, Gojko Adzic
provides case studies for over 50 such organizations. In this section, we’ll look at a
number of general principles or guidelines that BDD practitioners have found useful
over the years.

Figure 1.6 gives a high-level overview of the way BDD sees the world. BDD practitio-
ners like to start by identifying business goals and looking for features that will help
deliver these goals. Collaborating with the user, they use concrete examples to illus-
trate these features. Wherever possible, these examples are automated in the form of
executable specifications, which both validate the software and provide automatically
updated technical and functional documentation. BDD principles are also used at the
coding level, where they help developers write code that’s of higher quality, better
tested, better documented, and easier to use and maintain.

" Gojko Adzik, Specification by Example (Manning, 2011).
15 Kent Beck and Martin Fowler, Planning Extreme Programming (Addison-Wesley Professional, 2000).
16 Johan Andersson et al., “XP with Acceptance-Test Driven Development: A Rewrite Project for a Resource Opti-

mization System,” Lecture Notes in Computer Science Volume 2675 (2003). Available at http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.108.6097&rep=rep1&type=pdf.

16

CHAPTER 1 Building software that makes a difference

Features are Executable specifications
A illustrated with guide development

¢ %)

oed $44 concrete examples. and testing.
4:’\ 4000 P 9
208485 409 /44

) {

1 1 1 1 1
1 1 1 1 1
Business Executable Low-level
— Features — Examples — e — ; .
goal specifications specifications

! l

You only want to build
features that contribute to
the business goals. '

Helps testers, business analysts, and Living
users know what has been built. ~ | documentation
How much you have done, Real-time
and how much remains. progress reports
Makes the code easier to Technical
update and maintain. documentation
Automated regression and Automatic
functional testing comes for free. validation
This is where the Working
business value lies. features

Figure 1.6 The principal activities and outcomes of BDD. Note that these activities occur repeatedly
and continuously throughout the process; this isn’t a single linear Waterfall-style process, but a
sequence of activities that you practice for each feature you implement.

In the following sections, we’ll look at how these principles work in more detail.

FoCUS ON FEATURES THAT DELIVER BUSINESS VALUE

As you’ve seen, uncertainty about requirements is a major challenge in many software
projects, and heavy upfront specifications don’t work particularly well when con-
fronted with a shifting understanding of what features need to be delivered.

A feature is a tangible, deliverable piece of functionality that helps the business to
achieve its business goals. For example, suppose you work in a bank that’s implement-
ing an online banking solution. One of the business goals for this project might be “to
attract more clients by providing a simple and convenient way for clients to manage
their accounts.” Some features that might help achieve this goal could be “Transfer
funds between a client’s accounts,” “Transfer funds to another national account,” or
“Transfer funds to an overseas account.”

Rather than attempting to nail down all of the requirements once and for all,
teams practicing BDD engage in ongoing conversations with the end users and
other stakeholders to progressively build a common understanding of what features
they should create. Rather than working upfront to design a complete solution for

Introducing Behavior-Driven Development 17

the developers to implement, users explain what they need to get out of the system
and how it might help them achieve their objectives. And rather than accepting a
list of feature requests from the users with no questions asked, teams try to under-
stand the core business goals underlying the project, proposing only features that
can be demonstrated to support these business goals. This constant focus on deliv-
ering business value means that teams can deliver more useful features earlier and
with less wasted effort.

WORK TOGETHER TO SPECIFY FEATURES
A complex problem, like discovering ways to delight clients, is best solved
by a cognitively diverse group of people that is given responsibility for
solving the problem, self-organizes, and works together to solve it.

Stephen Denning, The Leader’s Guide to Radical Management
(Jossey-Bass, 2010)

BDD is a highly collaborative practice, both between users and the development team,
and within the team itself. Business analysts, developers, and testers work together
with the end users to define and specify features, and team members draw ideas from
their individual experience and know-how. This approach is highly efficient.

In a more traditional approach, when business analysts simply relay their under-
standing of the users’ requirements to the rest of the team, there is a high risk of mis-
interpretation and lost information.

If you ask users to write up what they want, they’ll typically give you a set of detailed
requirements that matches how they envisage the solution. In other words, users will
not tell you what they need; rather, they’ll design a solution for you. I've seen many business
analysts fall into the same trap, simply because they’ve been trained to write specifica-
tions that way. The problem with this approach is twofold: not only will they fail to
benefit from the development team’s expertise in software design, but they’re effectively
binding the development team to a particular solution, which may not be the optimal
one in business or technical terms. In addition, developers can’t use their technical
know-how to help deliver a technically superior design, and testers don’t get the oppor-
tunity to comment on the testability of the specifications until the end of the project.

For example, the “Transfer funds to an overseas account” feature involves many
user-experience and technical considerations. How can you display the constantly
changing exchange rates to the client? When and how are the fees calculated and
shown to the client? For how long can you guarantee a proposed exchange rate? How
can you verify that the right exchange rate is being used? All of these considerations
will have an impact on the design, implementation, and cost of the feature and can
change the way the business analysts and business stakeholders originally imagined
the solution.

When teams practice BDD, on the other hand, team members build up a shared
appreciation of the users’ needs, as well as a sense of common ownership and engage-
ment in the solution.

18

CHAPTER 1 Building software that makes a difference

EMBRACE UNCERTAINTY

A BDD team knows that they won’t know everything upfront, no matter how long they
spend writing specifications. As we discussed earlier, the biggest thing slowing devel-
opers down in a software project is understanding what they need to build.

Rather than attempting to lock down the specifications at the start of the project,
BDD practitioners assume that the requirements, or more precisely, their understand-
ing of the requirements, will evolve and change throughout the life of a project. They
try to get early feedback from the users and stakeholders to ensure that they’re on
track, and change tack accordingly, instead of waiting until the end of the project to
see if their assumptions about the business requirements were correct.

Very often, the most effective way to see if users like a feature is to build it and
show it to them as early as possible. With this in mind, experienced BDD teams priori-
tize the features that will deliver value, will improve their understanding of what fea-
tures the users really need, and will help them understand how best to build and
deliver these features.

ILLUSTRATE FEATURES WITH CONCRETE EXAMPLES
When a team practicing BDD decides to implement a feature, they work together with
users and other stakeholders to define stories and scenarios of what users expect this
feature to deliver. In particular, the users help define a set of concrete examples that
illustrate key outcomes of the feature (see figure 1.7).
These examples use a common vocabulary and can be readily understood by both end

users and members of the development team. They’re usually expressed using the Given

. When ... Then notation you saw in section 1.3.2. For instance, a simple example that
illustrates the “Transfer funds between a client’s accounts” feature might look like this:

You only want to build Features are Executable specifications
features that help contribute illustrated with guide development
Yo 3 to your business goals. concrete examples. and testing.
14 L
o ts T 00644
’\?‘sy Leogd! \
’ \
1 1 1 1
| 1 1 1
Business Executable
— Features — Examples .
goal specifications
User
story

|

In an Agile project, you
might break a feature down
into smaller user stories.

Figure 1.7 Examples play a primary role in BDD, helping everyone understand the
requirements more clearly.

Introducing Behavior-Driven Development 19

Scenario: Transferring money to a savings account
Given I have a current account with 1000.00
And I have a savings account with 2000.00
When I transfer 500.00 from my current account to my savings account
Then I should have 500.00 in my current account
And I should have 2500.00 in my savings account

Examples play a primary role in BDD, simply because they’re an extremely effective way of
communicating clear, precise, and unambiguous requirements. Specifications written in
natural language are, as it turns out, a terribly poor way of communicating requirements,
because there’s so much space for ambiguity, assumptions, and misunderstandings. Exam-
ples are a great way to overcome these limitations and clarify the requirements.

Examples are also a great way to explore and expand your knowledge. When a user
proposes an example of how a feature should behave, project team members often
ask for extra examples to illustrate corner cases, explore edge cases, or clarify assump-
tions. Testers are particularly good at this, which is why it’s so valuable for them to be
involved at this stage of the project.

A Gherkin primer

Most BDD tools that we’ll look at in this book use a format generally known as Gherkin,
or a very close variation on this format used by JBehave.*” This format is designed to
be both easily understandable for business stakeholders and easy to automate using
dedicated BDD tools such as Cucumber and JBehave. This way, it both documents
your requirements and runs your automated tests.

In Gherkin, the requirements related to a particular feature are grouped into a single
text file called a feature file. A feature file contains a short description of the feature,
followed by a number of scenarios, or formalized examples of how a feature works.

Feature: Transferring money between accounts
In order to manage my money more efficiently
As a bank client
I want to transfer funds between my accounts whenever I need to

Scenario: Transferring money to a savings account
Given my Current account has a balance of 1000.00
And my Savings account has a balance of 2000.00
When I transfer 500.00 from my Current account to my Savings account
Then I should have 500.00 in my Current account
And I should have 2500.00 in my Savings account
Scenario: Transferring with insufficient funds
Given my Current account has a balance of 1000.00
And my Savings account has a balance of 2000.00
When I transfer 1500.00 from my Current account to my Savings account
Then I should receive an 'insufficient funds' error
Then I should have 1000.00 in my Current account
And I should have 2000.00 in my Savings account

17 Strictly speaking, Gherkin refers to the format recognized by the Cucumber family of BDD automation tools
(see http://cukes.info). For simplicity, we’ll use the term Gherkin to refer to both variations, and I’ll indicate
any differences as we come across them.

20

CHAPTER 1 Building software that makes a difference

(continued)

As can be seen here, Gherkin requirements are expressed in plain English, but with
a specific structure. Each scenario is made up of a number of steps, where each step
starts with one of a small number of keywords (Given, When, Then, And, and But).

The natural order of a scenario is Given ... When ... Then:

= Given describes the preconditions for the scenario and prepares the test
environment.

m When describes the action under test.
m Then describes the expected outcomes.

The And and But keywords can be used to join several Given, When, or Then steps
together in a more readable way:

Given I have a current account with $1000
And I have a savings account with $2000

Several related scenarios can often be grouped into a single scenario using a table
of examples. For example, the following scenario illustrates how interest is calculated
on different types of accounts:

Scenario Outline: Earning interest
Given I have an account of type <account-type> with a balance of
<initial-balance>
When the monthly interest is calculated
Then I should have earned at an annual interest rate of <interest-rate>
And I should have a new balance of <new-balance>

Examples:

| initial-balance | account-type | interest-rate | new-balance
| 10000 | current | 1 | 10008.33

| 10000 | savings | 3 | 10025

| 10000 | supersaver | 5 | 10041.67

This scenario would be run three times in all, once for each row in the Examples table.
The values in each row are inserted into the placeholder variables, which are indi-
cated by the <. . .> notation (<account-type>, <initial-balance>, and so forth).
This not only saves typing, but also makes it easier to understand the whole require-
ment at a glance.

You can also use the following tabular notation within the steps themselves in order
to display test data more concisely. For example, the previous money-transfer sce-
nario could have been written like this:

Scenario: Transferring money between accounts within the bank
Given I have the following accounts:
account	balance
current	1000
savings	2000
When I transfer 500.00 from current to savings	
Then my accounts should look like this:	
account	balance
current	500
savings	2500

We'll look at this notation in much more detail in chapter 5.

Introducing Behavior-Driven Development 21

DON’T WRITE AUTOMATED TESTS, WRITE EXECUTABLE SPECIFICATIONS

These stories and examples form the basis of the specifications that developers use to
build the system. They act as both acceptance criteria, determining when a feature is
done, and as guidelines for developers, giving them a clear picture of what needs to
be built.

Acceptance criteria give the team a way to objectively judge whether a feature has
been implemented correctly. But checking this manually for each code change would be
time-consuming and inefficient. It would also slow down feedback, which would in turn
slow down the development process. Wherever feasible, teams turn these acceptance cri-
teria into automated acceptance tests or, more precisely, into executable specifications.

An executable specification is an automated test that illustrates and verifies how
the application delivers a specific business requirement. These automated tests run as
part of the build process and run whenever a change is made to the application. In
this way, they serve both as acceptance tests, determining which new features are com-
plete, and as regression tests, ensuring that new changes haven’t broken any existing
features (see figure 1.8).

You can automate an executable specification by writing test code corresponding
to each step. BDD tools like Cucumber and JBehave will match the text in each step of
your scenario to the appropriate test code.

For example, this is the first step of the scenario in figure 1.8:

Given my Current account has a balance of 1000.00

You might automate this step in Java using JBehave with code like this:

The step that
this code

@Given ("my SaccountType account has a balance of $Samount") .
i implements

public void setupInitialAccount (AccountType type, double amount)
Account account = Account.ofType (type) .withInitialBalance (amount) ;
accountService.create (account) ;

1 Call the application code that
corresponds to this step

When JBehave runs the scenario, it’'ll execute each step of the scenario, using basic
pattern matching to find the method associated with this step @. Once it knows what
method to call, it'll extract variables like type and amount and execute the corre-
sponding application code @.

Unlike conventional unit or integration tests, or the automated functional tests
many QA teams are used to, executable specifications are expressed in something
close to natural language. They use precisely the examples that the users and develop-
ment team members proposed and refined earlier on, using exactly the same terms
and vocabulary. Executable specifications are about communication as much as they
are about validation, and the test reports they generate are easily understandable by
everyone involved with the project.

These executable specifications also become a single source of truth, providing
reference documentation for how features should be implemented. This makes

22

CHAPTER 1 Building software that makes a difference

Features
You want
to deliver

this feature.

Feature:
Transferring Examples
money between

accounts

Executable

specifications

Scenario: Transferring money to a savings account
Given my Current account has a balance of 10e?
And my Savings account has a balance of 27
When I transfer 500.00 from my Current account to my account
Then I should have 500.00 in my account
And I should have 2500.0R in my account
The acceptance @Given("my $accountType account has a balance of $amount")
criteria for the public void setupInitialAccount(AccountType accountType, double amount) {
feature take the Account account = Account.ofType(accountType).withInitialBalance(amount);
form of concret accountService.create(account);

examples. myAccounts.put(accountType, account.getAccountNumber());

+

@when("I transfer $amount from my $source account to my $destination account")
public void transferAmountBetweenAccounts(double amount,
AccountType source,

You turn the AccountType destination) {
examples into Account sourceAccount = accountService.findByNumber(myAccounts.get(source)).q
“executable Account destinationAccount = accountService.findByNumber(myAccounts.get(dest]
specifications.” accountService.transfer(amount).from(sourceAccount).to(destinationAccount);
+
@ Transferring money to a savings account 0.17s
Story: Transferring Between Accounts
In order to manage my money more efficiently
As a bank client
I want to transfer funds between my accounts whenever I need to
Transfers (capability) Transferring between accounts (story)
Steps Outcome Duration
When you execute @ Given my {Current} account has a balance of {1000.00} SUCCESS 0.04s
these executable @ And my {Savings} account has a balance of {2000.00} SUCCESS 0s
speuflcatlon.s., they @ When I transfer {500.00} from my {Current} account to my {Savings} account SUCCESS 0.05s
produce living
documentation @ Then I should have {500.00} in my {Current} account SUCCESS 0.01s
@ And I should have {2500.00} in my {Savings} account SUCCESS 0s

Figure 1.8 Executable specifications are expressed using a common business vocabulary that the
whole team can understand. They guide development and testing activities and produce readable
reports available to all.

maintaining the requirements much easier. If specifications are stored in the form of
a Word document or on a Wiki page, as is done for many traditional projects, any
changes to the requirements need to be reflected both in the requirements docu-
ment and in the acceptance tests and test scripts, which introduces a high risk of

Introducing Behavior-Driven Development 23

inconsistency. For teams practicing BDD, the requirements and executable specifica-
tions are the same thing; when the requirements change, the executable specifications
are updated directly in a single place. We’ll look at this in detail in chapter 9.

DON’T WRITE UNIT TESTS, WRITE LOW-LEVEL SPECIFICATIONS
BDD doesn’t stop at the acceptance tests. BDD also helps developers write higher qual-
ity code that’s more reliable, more maintainable, and better documented.

Developers practicing BDD typically use an outside-in approach. When they imple-
ment a feature, they start from the acceptance criteria and work down, building what-
ever is needed to make those acceptance criteria pass. The acceptance criteria define
the expected outcomes, and the developer’s job is to write the code that produces
those outcomes. This is a very efficient, focused way of working. Just as no feature is
implemented unless it contributes to an identified business goal, no code is written
unless it contributes to making an acceptance test pass, and therefore to implement-
ing a feature.

But it doesn’t stop there. Before writing any code, a BDD developer will reason
about what this code should actually do and express this in the form of a low-level exe-
cutable specification. The developer won’t think in terms of writing unit tests for a par-
ticular class, but of writing technical specifications describing how the application
should behave, such as how it should respond to certain inputs or what it should do
in a given situation. These low-level specifications flow naturally from the high-level
acceptance criteria, and help developers design and document the application code
in the context of delivering high-level features (see figure 1.9).

For example, the step definition code in figure 1.9 involves creating a new account:

@Given ("my SaccountType account has a balance of $Samount")
public void setupInitialAccount (AccountType type, double amount) {
Account account = Account.ofType (type)

.withInitialBalance (amount) ; Create a new

account of given
type and with given
J initial balance.

This leads the developer to write a low-level specification to design the Account class.
This example uses Spock, a BDD unit testing library for Java and Groovy. The corre-
sponding specification takes the following form:

class WhenCreatingANewAccount extends Specification {

def "account should have a type and an initial balance" () {
when:
Account account = Account.ofType (Savings)
.withInitialBalance (100)
then:
account.accountType == Savings
account .balance == 100

24

CHAPTER 1 Building software that makes a difference

High-level acceptance criteria in the form of executable specifications.

When I transfer 500 00 from my Current account to my Savings account
Then I should have 500.00 in my Current account
And I should have 2500.00 in my Savings account

@leen("my $accountType account has a balance of $amount")/

u ccount (AccountType accountType,
Account account = Account ofType(accountType) .withInitialBalance(amount);
ac account);

myAccounts.put(accountType, account.getAccountNumber());

~

Step definitions
call application

@when("I transfer $amount from my $source account to my $destination account")

. code to public void transferAmountBetweenAccounts(double amount,
|mplen1ent steps AccountType source,
in the AccountType destination) {
acceptance Account sourceAccount = accountService.findByNumber(myAccounts.get(source)).d

criteria. Account destinationAccount = accountService.find
accountService. transfer(amount).fr

Low-level executable specifications (unit tests) help design the detailed implementation.

class WhenCreatingANewAccount extends Specification {

def "account should have a number, a type and an initial balance"() {
when:
Account account = Account.ofType(Savings)
.withInitialBalance(100)
then:
account.accountType == Savings

account.balance == 100

Figure 1.9 Low-level specifications, written as unit tests, flow naturally from the high-level
specifications.

You could also write this specification using conventional unit-testing tools, such as
JUnit or NUnit, or more specialized BDD tools such as RSpec (see figure 1.10).

Executable specifications like this are similar to conventional unit tests, but they’re
written in a way that both communicates the intent of the code and provides a worked
example of how the code should be used. Writing low-level executable specifications
this way is a little like writing detailed design documentation, with lots of examples,
but using a tool that’s easy and even fun for developers.

Unit testing the space shuttle

Good developers have known the importance of unit testing for a very long time. The IBM
Federal Systems Division team was fully aware of their importance when they wrote the
central avionics software for NASA’s space shuttle in the late seventies. The approach
they took to unit testing, where the unit tests were designed using the requirements and
with examples provided by the business, has a surprisingly modern feel to it:

Introducing Behavior-Driven Development 25

(continued)

“During the development activity, specific testing was done to ensure that the
mathematical equations and logic paths provided the results expected. These
algorithms and logic paths were checked for accuracy and, where possible,
compared against results from external sources and against the system design
specification (SDS).”*8

Ata more technical level, this approach encourages a clean, modular design with well-
defined interactions (or APIs, if you prefer a more technical term) between the mod-
ules. It also results in code that’s reliable, accurate, and extremely well tested.

Examples clarify
assumptions and prepare

D i the acceptance criteria.
,(;\\‘ ‘//'2.

\A" e '4/

1 1 1
1 1 1
Business
Features [— Examples
goal

You can automate the Cucumb%r
examples using BDD tools o=
like Cucumber, JBehave, or jb)é:bajqe/‘/
SpecFlow. S ®
u specflow

Executable /—\

specifications These express business
requirements and can be read
by the whole team.

Low-level m

specifications These are a bit like very
readable unit tests and are aimed

mostly at other developers.

You can use
conventional unit-testing
tools or dedicated
BDD tools.

Figure 1.10 High-level and low-level executable specifications are typically implemented using
different tool sets.

18 William A. Madden and Kyle Y. Rone, “Design, Development, Integration: Space Shuttle Primary Flight Soft-
ware System,” Communications of the ACM (September 1984).

26

CHAPTER 1 Building software that makes a difference

DELIVER LIVING DOCUMENTATION

The reports produced by executable specifications aren’t simply technical reports for
developers but effectively become a form of product documentation for the whole
team, expressed in a vocabulary familiar to users (see figure 1.11). This documenta-
tion is always up to date and requires little or no manual maintenance. It’s automati-
cally produced from the latest version of the application. Each application feature is
described in readable terms and is illustrated by a few key examples. For web applica-
tions, this sort of living documentation often also includes screenshots of the applica-
tion for each feature.

Experienced teams organize this documentation so that it’s easy to read and easy
for everyone involved in the project to use (see figure 1.12). Developers can consult it
to see how existing features work. Testers and business analysts can see how the fea-
tures they specified have been implemented. Product owners and project managers
can use summary views to judge the current state of the project, view progress, and
decide what features can be released into production. Users can even use it to see
what the application can do and how it works.

Just as automated acceptance criteria provide great documentation for the whole
team, low-level executable specifications also provide excellent technical documenta-
tion for other developers. This documentation is always up to date, is cheap to maintain,
contains working code samples, and expresses the intent behind each specification.

You can automate the

Examples clarify examples using BDD tools
P A assumptions and prepare like Cucumber, JBehave or These are
(\:'w 0'\;}/‘ the acceptance criteria. SpecFlow. executable too.
2430 Leope w j l
o 44
1 1 1 1 1
1 1 1 1 1
Business Executable Low-level
— Features — Examples L — : .
goal specifications specifications
You only want to build They are a bit like
features that contribute to very readable
the business goals. ’ unit tests.
Helps testers, business analysts, and Living
users know what has been built. documentation
How much you have done, Real-time
3 —_—
and how much remains. progress reports
Makes the code easier to I Technical
update and maintain. documentation
Automated regression and Automatic
functional testing comes for free. validation

Figure 1.11 High-level and low-level executable specifications generate different sorts of living
documentation for the system.

Introducing Behavior-Driven Development

An overview of a

high-level capability. \

27

Capability: Transfers /

between banks.

Give online clients the ability to transfer/funds between their own accounts and to other accounts both within the bank and

/ Requirements Overview

Total 11 4 36% 0 0% 7 64%

M Passing |Pending
M Failing M Errors

Features (5)

Show EHE) entries

Stories | Auto. Manual
| Tests ¢ Tests ©

0

9 External transfers
9 Internal transfers
International transfers
9 Scheduled transfers

9 Transferring money between
accounts

Showing 1 to 5 of 5 entries

il
il g
il g
0 0
0

Q © oo

Requirement Type Total Pass @ Fail Pending @ Untested ?
73% Features 4 0 0 4 1
Stories 4 0 0 4 0
Test Result Summary
Test Type Total Pass® % Pass Fail @ % Fail Pending @ % Pending
Automated 11 4 36% 0 0% 64%
Manual 0 0 0% 0 0% 0 0%

0
0 o% o]

1
What features have J L

Figure 1.12 Well-organized living documentation can give an overview of the state of a project, as

well as describe features in detail.

USE LIVING DOCUMENTATION TO SUPPORT ONGOING MAINTENANCE WORK

How much work has been
been planned? done on each feature?

The benefits of living documentation and executable specifications don’t stop at the
end of the project. A project developed using these practices is also significantly easier

and less expensive to maintain.

According to Robert L. Glass (quoting other sources), maintenance represents
between 40% and 80% of software costs. Although many teams find that the number
of defects drops dramatically when they adopt techniques like BDD, defects can still
happen. Ongoing enhancements are also a natural part of any software application.'

In many organizations, when a project goes into production, it’s handed over to a
different team for maintenance work. The developers involved in this maintenance
work have often not been involved in the project’s development and need to learn the

19 Robert L. Glass, Facts and Fallacies of Software Engineering (Addison-Wesley Professional, 2002).

28

1.4

14.1

CHAPTER 1 Building software that makes a difference

code base from scratch. Useful, relevant, and up-to-date functional and technical doc-
umentation makes this task a great deal easier.

The automated documentation that comes out of a BDD development process can
go a long way toward providing the sort of documentation maintenance teams need in
order to be effective. The high-level executable specifications help new developers
understand the business goals and flow of the application. Executable specifications at
the unit-testing level provide detailed worked examples of how particular features
have been implemented.

Maintenance developers working on a BDD project find it easier to know where to
start when they need to make a change. Good executable specifications provide a
wealth of examples of how to test the application correctly, and maintenance changes
will generally involve writing a new executable specification along similar lines or
modifying an existing one.

The impact of maintenance changes on existing code is also easier to assess. When
a developer makes a change, it may cause existing executable specifications to break,
and when this happens, there are usually two possible causes:

= The broken executable specification may no longer reflect the new business
requirements. In this case, the executable specification can be updated or (if
it’s no longer relevant) deleted.

» The code change has broken an existing requirement. This is a bug in the new
code that needs to be fixed.

Executable specifications are not a magical solution to the traditional problems of
technical documentation. They aren’t guaranteed to always be meaningful or rele-
vant—this requires practice and discipline. Other technical, architectural, and func-
tional documentation is often required to complete the picture. But when they’re
written and organized well, executable specifications provide significant advantages
over conventional approaches.

Benefits of BDD

In the previous sections, we examined what BDD looks like and discussed what it
brings to the table. Now let’s run through some of the key business benefits that an
organization adopting BDD can expect in more detail.

Reduced waste

BDD is all about focusing the development effort on discovering and delivering the
features that will provide business value, and avoiding those that don’t. When a team
builds a feature that’s not aligned with the business goals underlying the project, the
effort is wasted for the business. Similarly, when a team writes a feature that the busi-
ness needs, but in a way that’s not useful to the business, the team will need to rework
the feature to fit the bill, resulting in more waste. BDD helps avoid this sort of wasted
effort by helping teams focus on features that are aligned with business goals.

14.2

143

1.4.4

1.5

151

Disadvantages and potential challenges of BDD 29

BDD also reduces wasted effort by enabling faster, more useful feedback to users.
This helps teams make changes sooner rather than later.

Reduced costs

The direct consequence of this reduced waste is to reduce costs. By focusing on
building features with demonstrable business value (building the right software),
and not wasting effort on features of little value, you can reduce the cost of deliver-
ing a viable product to your users. And by improving the quality of the application
code (building the software right), you reduce the number of bugs, and therefore
the cost of fixing these bugs, as well as the cost associated with the delays these bugs
would cause.

Easier and safer changes

BDD makes it considerably easier to change and extend your applications. Living doc-
umentation is generated from the executable specifications using terms that stake-
holders are familiar with. This makes it much easier for stakeholders to understand
what the application actually does. The low-level executable specifications also act as
technical documentation for developers, making it easier for them to understand the
existing code base and to make their own changes.

Last, but certainly not least, BDD practices produce a comprehensive set of auto-
mated acceptance and unit tests, which reduces the risk of regressions caused by any
new changes to the application.

Faster releases

These comprehensive automated tests also speed up the release cycle considerably.
Testers are no longer required to carry out long manual testing sessions before each
new release. Instead, they can use the automated acceptance tests as a starting point,
and spend their time more productively and efficiently on exploratory tests and other
nontrivial manual tests.

Disadvantages and potential challenges of BDD

While its benefits are significant, introducing BDD into an organization isn’t always
without its difficulties. In this section, we’ll look at a few situations where introducing
BDD can be more of a challenge.

BDD requires high business engagement and collaboration

BDD practices are based on conversation and feedback. Indeed, these conversations
drive and build the team’s understanding of the requirements and of how they can
deliver business value based on these requirements. If stakeholders are unwilling or
unable to engage in conversations and collaboration, or they wait until the end of the
project before giving any feedback, it will be hard to draw the full benefits of BDD.

30

1.5.2

1.5.3

1.54

1.6

CHAPTER 1 Building software that makes a difference

BDD works best in an Agile or iterative context

BDD requirements-analysis practices assume that it’s difficult, if not impossible, to
define the requirements completely upfront, and that these will evolve as the team
(and the stakeholders) learn more about the project. This approach is naturally more
in line with an Agile or iterative project methodology.

BDD doesn’t work well in a silo

In many larger organizations, a siloed development approach is still the norm.
Detailed specifications are written by business analysts and then handed off to devel-
opment teams that are often offsite or offshore. Similarly, testing is delegated to
another, totally separate, QA team. In organizations like this, it’s still possible to prac-
tice BDD at a coding level, and development teams will still be able to expect signifi-
cant increases in code quality, better design, more maintainable code, and fewer
defects. But the lack of interaction between the business analyst teams and the devel-
opers will make it harder to use BDD practices to progressively clarify and understand
the real requirements.

Similarly, siloed testing teams can be a challenge. If the QA team waits until the
end of the project to intervene, or does so in isolation, they’ll miss their chance to
contribute to requirements earlier on, which results in wasted effort spent fixing
issues that could have been found earlier and fixed more easily. Automating the
acceptance criteria is also much more beneficial if the QA team participates in defin-
ing, and possibly automating, the scenarios.

Poorly written tests can lead to higher test-maintenance costs

Creating automated acceptance tests, particularly for complex web applications,
requires a certain skill, and many teams starting to use BDD find this a significant chal-
lenge. Indeed, if the tests aren’t carefully designed, with the right levels of abstraction
and expressiveness, they run the risk of being fragile. And if there are a large number
of poorly written tests, they’ll certainly be hard to maintain. Plenty of organizations
have successfully implemented automated acceptance tests for complex web applica-
tions, but it takes know-how and experience to get it right. We’ll look at techniques for
doing this later on in the book.

Summary

In this chapter you were introduced to Behavior-Driven Development. Among other
things, you learned the following:

» Successful projects need to build software that’s reliable and bug-free and to
build features that deliver real value to the business.

= BDD practitioners use conversations about concrete examples to build up a com-
mon understanding of what features will deliver real value to the organization.

= These examples form the basis of the acceptance criteria that developers use to
determine when a feature is done.

Summary 31

= Acceptance criteria can be automated using tools like Cucumber, JBehave, or
SpecFlow to produce both automated regression tests and reports that accu-
rately describe the application features and their implementation.

= BDD practitioners implement features with a top-down approach, using the
acceptance criteria as goals, and describing the behavior of each component
with unit tests written in the form of executable specifications.

= The main benefits of BDD include focusing efforts on delivering valuable fea-
tures, reducing wasted effort and costs, making it easier and safer to make
changes, and accelerating the release process.

In the next chapter, we’ll take a flying tour of what BDD looks like in the flesh, all the
way from requirements analysis to automated unit and acceptance tests and functional
test coverage reports. So without further ado, let’s get started!

AGILE DEVELOPMENT/TESTING

BDD N AcTiON

John Ferquson Smart

ou can’t write good software if you don’t understand

what it’s supposed to do. Behavior Driven Development

(BDD) encourages teams to use conversation and concrete
examples to build up a shared understanding of how an ap-
plication should work and which features really matter. With
an emerging body of best practices and sophisticated new tools
that assist in requirement analysis and test automation, BDD
has become a hot, mainstream practice.

BDD in Action teaches you BDD principles and practices and
shows you how to integrate them into your existing develop-
ment process, no matter what language you use. First, you’ll
apply BDD to requirements analysis so you can focus your
development efforts on underlying business goals. Then, you'll
discover how to automate acceptance criteria and use tests to
guide and report on the development process. Along the way,
you'll apply BDD principles at the coding level to write more
maintainable and better documented code.

What's Inside

* BDD theory and practice

» How BDD will affect your team

* BDD for acceptance, integration, and unit testing
 Examples in Java, .NET, JavaScript, and more

* Reporting and living documentation
No prior experience with BDD is required.

John Ferquson Smart is a specialist in BDD, automated testing,
and software lifecycle development optimization.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/BDDinAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

¢ Delivers a thorough
treatment of the current
state of BDD tools.”?

—From the Foreword by
Dan North, Creator of BDD

¢¢Learn BDD from
top to bottom.??
—Dror Helper, CodeValue

¢CThe first complete step-
by-step guide to BDD.??

—Marc Bluemner

liquidlabs GmbH

¢¢Many useful techniques,
tools, and concepts to make
you more productive.?

—Karl Métivier
Facilité Informatique

ISBN 13: 978-1-b617291-b5-4
ISBN 10: 1-b61729L-k5-X

“ ‘H 5‘4 | 9“9
IM781617'"291654

