
M A N N I N G

Christopher K. Fairbairn
Johannes Fahrenkrug

Collin Ruffenach

S A M P L E C H A P T E R

Objective-C Fundamentals

by Christopher K. Fairbairn
Johannes Fahrenkrug

Collin Ruffenach

 Chapter 1

 Copyright 2011 Manning Publications

v

brief contents
PART 1 GETTING STARTED WITH OBJECTIVE-C...........................1

1 ■ Building your first iOS application 3
2 ■ Data types, variables, and constants 28
3 ■ An introduction to objects 55
4 ■ Storing data in collections 74

PART 2 BUILDING YOUR OWN OBJECTS95
5 ■ Creating classes 97
6 ■ Extending classes 124
7 ■ Protocols 144
8 ■ Dynamic typing and runtime type information 163
9 ■ Memory management 177

PART 3 MAKING MAXIMUM USE OF FRAMEWORK
FUNCTIONALITY ..201

10 ■ Error and exception handling 203
11 ■ Key-Value Coding and NSPredicate 212
12 ■ Reading and writing application data 228
13 ■ Blocks and Grand Central Dispatch 257
14 ■ Debugging techniques 276

3

Building your first iOS
application

As a developer starting out on the iOS platform, you’re faced with learning a lot
of new technologies and concepts in a short period of time. At the forefront of
this information overload is a set of development tools you may not be familiar
with and a programming language shaped by a unique set of companies and his-
torical events.

 iOS applications are typically developed in a programming language called Objec-
tive-C and supported by a support library called Cocoa Touch. If you’ve already devel-
oped Mac OS X applications, you’re probably familiar with the desktop cousins of
these technologies. But it’s important to note that the iOS versions of these tools
don’t provide exactly the same capabilities, and it’s important to learn the restric-
tions, limitations, and enhancements provided by the mobile device. In some cases,
you may even need to unlearn some of your desktop development practices.

This chapter covers
■ Understanding the iOS development

environment
■ Learning how to use Xcode and Interface

Builder
■ Building your first application

4 CHAPTER 1 Building your first iOS application

 While developing iOS applications, most of your work will be done in an applica-
tion called Xcode. Xcode 4, the latest version of the IDE, has Interface Builder (for cre-
ating the user interface) built directly into it. Xcode 4 enables you to create, manage,
deploy, and debug your applications throughout the entire software development life-
cycle. When creating an application that supports more than one type of device pow-
ered by the iOS, you may wish to present slightly different user interfaces for specific
device types while powering all variants via the same core application logic under-
neath. Doing so is easier if the concept of model-view-controller separation is used,
something that Xcode 4 can help you with.

 This chapter covers the steps required to use these tools to build a small game for
the iPhone, but before we dive into the technical steps, let’s discuss the background of
the iOS development tools and some of the ways mobile development differs from
desktop and web-based application development.

1.1 Introducing the iOS development tools
Objective-C is a strict superset of the procedural-based C programming language. This
fact means that any valid C program is also a valid Objective-C program (albeit one
that doesn’t make use of any Objective-C enhancements).

 Objective-C extends C by providing object-oriented features. The object-oriented
programming model is based on sending messages to objects, which is different
from the model used by C++ and Java, which call methods directly on an object. This
difference is subtle but is also one of the defining features that enables many of
Objective-C’s features that are typically more at home in a dynamic language such as
Ruby or Python.

 A programming language, however, is only as good as the features exposed by its
support libraries. Objective-C provides syntax for performing conditional logic and
looping constructs, but it doesn’t provide any inherent support for interacting with
the user, accessing network resources, or reading files. To facilitate this type of func-
tionality without requiring it to be written from scratch for each application, Apple
includes in the SDK a set of support libraries collectively called Cocoa Touch. If
you’re an existing Java or .NET developer, you can view the Cocoa Touch library as
performing a purpose similar to the Java Class Library or .NET’s Base Class Librar-
ies (BCL).

1.1.1 Adapting the Cocoa frameworks for mobile devices
Cocoa Touch consists of a number of frameworks (commonly called kits). A frame-
work is a collection of classes that are grouped together by a common purpose or task.
The two main frameworks you use in iPhone applications are Foundation Kit and
UIKit. Foundation Kit is a collection of nongraphical system classes consisting of data
structures, networking, file IO, date, time, and string-handling functions, and UIKit is
a framework designed to help develop GUIs with rich animations.

 Cocoa Touch is based on the existing Cocoa frameworks used for developing desk-
top applications on Mac OS X. But rather than making Cocoa Touch a direct line-by-line

5Adjusting your expectations

port to the iPhone, Apple optimized the frameworks for use in iPhone and iPod Touch
applications. Some Cocoa frameworks were even replaced entirely if Apple thought
improvements in functionality, performance, or user experience could be achieved in
the process. UIKit, for example, replaced the desktop-based AppKit framework.

 The software runtime environment for native iOS applications is shown in figure 1.1.
It’s essentially the same software stack for desktop applications if you replace iOS with
Mac OS X at the lowest level and substitute some of the frameworks in the Cocoa layer.

 Although the Cocoa Touch frameworks are Objective-C–based APIs, the iOS devel-
opment platform also enables you to access standard C-based APIs. The ability to
reuse C (or C++) libraries in your Objective-C applications is quite powerful. It
enables you to reuse existing source code you may have originally developed for
other mobile platforms and to tap many powerful open source libraries (license per-
mitting), meaning you don’t need to reinvent the wheel. As an example, a quick
search on Google will find existing C-based source code for augmented reality, image
analysis, and barcode detection, to name a few possibilities, all of which are directly
usable by your Objective-C application.

1.2 Adjusting your expectations
With a development environment that will already be familiar to existing Mac OS X
developers, you may mistakenly think that the iPhone is just another miniature com-
puting device, similar to any old laptop, tablet, or netbook. That idea couldn’t be any
further from the truth. An iPhone is more capable than a simple cell phone but less so
than a standard desktop PC. As a computing device, it fits within a market space simi-
lar to that of netbooks, designed more for casual and occasional use throughout the
day in a variety of situations and environments than for sustained periods of use in a
single session.

Figure 1.1 The software runtime
environment for iOS applications,
showing the operating system,
Objective-C runtime, and Cocoa
Touch framework layers

6 CHAPTER 1 Building your first iOS application

1.2.1 A survey of hardware specifications, circa mid-2011

On taking an initial look at an iPhone 4, you’ll undoubtedly notice the 3.5-inch
screen, 960 x 640 pixels, that virtually dominates the entire front of the device. Its gen-
eral size and the fact that the built-in touch screen is the only way for users to interact
with the device can have important ramifications on application design. Although 960
x 640 is larger than many cell phones, it probably isn’t the screen on which to view a
300-column-by-900-row spreadsheet.

 As an example of the kind of hardware specifications you can expect to see, table 1.1
outlines the specifications of common iPhone, iPod Touch, and iPad models available
in mid-2010. In general, the hardware specifications lag behind those of desktop PCs by
a couple of years, but the number of integrated hardware accessories that your applica-
tions can take advantage of, such as camera, Bluetooth, and GPS, is substantially higher.

Although it’s nice to know the hardware capabilities and specifications of each device,
application developers generally need not concern themselves with the details. New
models will come and go as the iOS platform matures and evolves until it becomes dif-
ficult to keep track of all the possible variants.

 Instead, you should strive to create an application that will adapt at runtime to the
particular device it finds itself running on. Whenever you need to use a feature that’s
present only on a subset of devices, you should explicitly test for its presence and pro-
grammatically deal with it when it isn’t available. For example, instead of checking if
your application is running on an iPhone to determine if a camera is present, you
would be better off checking whether a camera is present, because some models of
iPad now come with cameras.

Table 1.1 Comparison of hardware specifications of various iPhone and iPod Touch devices

Feature iPhone 3G iPhone 3GS iPhone 4 iPad iPad2

RAM 128 MB 256 MB 512 MB 256 MB 512 MB

Flash 8–16 GB 16–32 GB 16–32 GB 16–64 GB 16–64 GB

Processor 412 MHz
ARM11

600 MHz ARM
Cortex

1 GHz Apple A4 1 GHz Apple A4 1 GHz dual-core
Apple A5

Cellular 3.6 Mbps 7.2 Mbps 7.2 Mbps 7.2 Mbps
(optional)

7.2 Mbps
(optional)

Wi-Fi Yes Yes Yes Yes Yes

Camera 2 MP 3 MP AF 5 MP AF (back)
0.3 MP (front)

— 0.92 MP (back)
0.3 MP (front)

Bluetooth Yes Yes — Yes Yes

GPS Yes
(no compass)

Yes — Yes
(3G models only)

Yes
(3G models only)

7Using Xcode to develop a simple Coin Toss game

1.2.2 Expecting an unreliable internet connection

In this age of cloud computing, a number of iOS applications need connectivity to the
internet. The iOS platform provides two main forms of wireless connectivity: local area
in the form of 802.11 Wi-Fi and wide area in the form of various cellular data stan-
dards. These connection choices provide a wide variability in speed, ranging from 300
kilobits to 54 megabits per second. It’s also possible for the connection to disappear
altogether, such as when the user puts the device into flight mode, disables cellular
roaming while overseas, or enters an elevator or tunnel.

 Unlike on a desktop, where most developers assume a network connection is
always present, good iOS applications must be designed to cope with network connec-
tivity being unavailable for long periods of time or unexpectedly disconnecting. The
worst user experience your customers can have is a “sorry, cannot connect to server”
error message while running late to a meeting and needing to access important infor-
mation that shouldn’t require a working internet connection to obtain.

 In general, it’s important to constantly be aware of the environment in which your
iOS application is running. Your development techniques may be shaped not only by
the memory and processing constraints of the device but also by the way in which the
user interacts with your application.

 That’s enough of the background information. Let’s dive right in and create an
iOS application!

1.3 Using Xcode to develop a simple Coin Toss game
Although you might have grand ideas for the next
iTunes App Store smash, let’s start with a relatively sim-
ple application that’s easy to follow without getting
stuck in too many technical details, allowing the unique
features of the development tools to shine through. As
the book progresses, we dig deeper into the finer points
of everything demonstrated. For now the emphasis is on
understanding the general process rather than the spe-
cifics of each technique.

 The application you develop here is a simple game
that simulates a coin toss, such as is often used to settle
an argument or decide who gets to go first in a competi-
tion. The user interface is shown in figure 1.2 and con-
sists of two buttons labeled Heads and Tails. Using these
buttons, the user can request that a new coin toss be
made and call the desired result. The iPhone simulates
the coin toss and updates the screen to indicate if the
user’s choice is correct.

 In developing this game, the first tool we need to
investigate is Xcode.

Figure 1.2 Coin Toss sample
game

8 CHAPTER 1 Building your first iOS application

1.3.1 Introducing Xcode—Apple’s IDE

As mentioned earlier in this chapter, Xcode is an IDE that provides a comprehensive
set of features to enable you to manage the entire lifecycle of your software develop-
ment project. Creating the initial project, defining your class or data model, editing
your source code, building your application, and finally debugging and performance-
tuning the resultant application are all tasks performed in Xcode.

 Xcode is built on the foundation of several open source tools: LLVM (the open
source Low-Level Virtual Machine), GCC (the GNU compiler), GDB (the GNU debug-
ger), and DTrace (instrumentation and profiling by Sun Microsystems).

1.3.2 Launching Xcode easily

Once you install the iOS software development kit (SDK), the first challenge to using
Xcode is locating the application. Unlike most applications that install in the/Appli-
cations folder, Apple separates developer-focused tools into the/Developer/Applica-
tions folder.

 The easiest way to find Xcode is to use the Finder to open the root Macintosh HD
folder (as shown in figure 1.3). From there, you can drill down into the Developer
folder and finally the Applications subfolder. As a developer, you’ll practically live
within Xcode, so you may wish to put the Xcode icon onto your Dock or place the
folder in the Finder sidebar for easy access.

 Once you locate the/Developer/Applications folder, you should be able to easily
locate and launch Xcode.

 It’s important to note that Xcode isn’t your only option. Xcode provides all the fea-
tures you require to develop applications out of the box, but that doesn’t mean you
can’t complement it with your own tools. For example, if you have a favorite text edi-
tor in which you feel more productive, it’s possible to configure Xcode to use your
external text editor in favor of the built-in functionality. The truly masochistic among
you could even revert to using makefiles and the command line.

Figure 1.3 A Finder window showing the location of the Developer folder, which
contains all iPhone developer–related tools and documentation

9Using Xcode to develop a simple Coin Toss game

1.3.3 Creating the project

To create your first project, select the New Project option in the File menu (Shift-
Cmd-N). Xcode displays a New Project dialog similar to the one displayed in figure 1.4.

 Your first decision is to choose the type of project you want to create. This is done
by selecting a template that determines the type of source code and settings Xcode
will automatically add to get your project started.

 For the Coin Toss game, you want the View-based Application template. You first
select Application under the iOS header in the left pane, and then select View-based
Application. Then click Next in the lower-right corner, which prompts you to name
the project and allows you to specify the company identifier required to associate the
application with your iOS Developer account. For this project, use the name CoinToss
and enter a suitable company identifier.

 Xcode uses the product name and company identifier values to produce what is
called a bundle identifier. iOS uniquely identifies each application by this string. In

Help! I don’t see the Xcode application
If you don’t have a/Developer folder or you can’t see any references to iPhone or iPad
project templates when Xcode is launched, refer to appendix A for help on how to
download and install the required software.

Figure 1.4 The New Project dialog in Xcode showing the View-based Application template

10 CHAPTER 1 Building your first iOS application

order for the operating system to allow the CoinToss game to run, its bundle identifier
must match up with one included in a provisioning profile that’s been installed on the
device. If the device can’t find a suitable profile, it refuses to run the application. This
is how Apple controls with an iron fist which applications are allowed in its ecosystem.
If you don’t have a suitable company identifier or are unsure what to enter here, fol-
low the instructions in appendix A before proceeding with the rest of this chapter.

 Once all the details are entered, deselect the Include Unit Tests check box and
click Next, which prompts you to select where you want the project and generated
source code files to be saved.

You may wonder what other kinds of projects you can create. Table 1.2 lists the most
common iOS project templates. Which template you choose depends on the type of
user interface you want your application to have. But don’t get too hung up on template
selection: the decision isn’t as critical as you may think. Once your project is created,

Help! I don’t see any iOS-related options
If you see no iOS-based templates in the New Project dialog, it’s possible you haven’t
correctly installed the iOS SDK. The copy of Xcode you’re running is probably from a
Mac OS X Install DVD or perhaps was downloaded directly from the Apple Developer
Connection (ADC) website and is suitable only for development of desktop applications.

Installing the iOS SDK as outlined in appendix A should replace your copy of Xcode
with an updated version that includes support for iPhone and iPad development.

Table 1.2 Project templates available in Xcode for creating a new iOS project

Project type Description

Navigation-based Application Creates an application similar in style to the built-in Contacts appli-
cation with a navigation bar across the top.

OpenGL ES Application Creates an OpenGL ES–based graphics application suitable for
games and so on.

Split View–based Application Creates an application similar in style to the built-in Mail application
on the iPad. Designed to display master/detail-style information in a
single screen.

Tab Bar Application Creates an application similar in style to the built-in Clock applica-
tion with a tab bar across the bottom.

Utility Application Creates an application similar in style to the built-in Stocks and
Weather applications, which flip over to reveal a second side.

View-based Application Creates an application that consists of a single view. You can draw
and respond to touch events from the custom view.

Window-based Application Creates an application that consists of a single window onto which
you can drag and drop controls.

11Using Xcode to develop a simple Coin Toss game

you can alter the style of your application—it just won’t be as easy because you won’t
have the project template automatically inserting all of the required source code for
you; you’ll need to write it yourself.

 Now that you’ve completed the New Project dialog, a project window similar to the
one in figure 1.5 is displayed. This is Xcode’s main window and consists of a Project
Navigator pane on the left and a large, context-sensitive editor pane on the right.

 The pane on the left lists all the files that make up your application. The group
labeled CoinToss represents the entire game, and if you expand this node, you can
drill down into smaller subgroups until you eventually reach the files that make up the
project. You’re free to create your own groupings to aid in organizing the files in any
manner that suits you.

Figure 1.5 Main Xcode window with the CoinToss group fully expanded to show the project’s various source
code files

12 CHAPTER 1 Building your first iOS application

 When you click a file in the left pane, the right pane updates to provide an editor
suitable for the selected file. For *.h and *.m source code files, a traditional source
code text editor is presented, but other file types (such as *.xib resource files) have
more complex graphical editors associated with them.

 Some groups in the left pane have special behaviors associated with them or don’t
represent files at all. For example, the items listed under the Frameworks group indi-
cate pre-compiled code libraries that the current project makes use of.

 As you become more comfortable with developing applications in Xcode, you’ll
become adept at exploring the various sections presented in the Project Navigator
pane. To begin your discovery, let’s write the source code for your first class.

1.3.4 Writing the source code

The View-based Application template provides enough source code to get a basic
game displayed on the iPhone—so basic, in fact, that if you ran the game right now,
you would simply see a gray rectangle on the screen.

 Let’s start implementing the game by opening the CoinTossViewController.h file
in the Xcode window and using the text editor to replace the contents with the fol-
lowing listing.

#import <UIKit/UIKit.h>

@interface CoinTossViewController : UIViewController {
 UILabel *status;
 UILabel *result;
}

@property (nonatomic, retain) IBOutlet UILabel *status;
@property (nonatomic, retain) IBOutlet UILabel *result;

- (IBAction)callHeads;
- (IBAction)callTails;

@end

Don’t worry if the contents of listing 1.1 don’t make much sense to you. At this stage,
it’s not important to understand the full meaning of this code. Learning these sorts of
details is what the rest of the book is designed for—all will be revealed in time!

 For now, let’s focus on understanding the general structure of an Objective-C–
based project. Objective-C is an object-oriented language, meaning that a large por-
tion of your coding efforts will be spent defining new classes (types of objects).
Listing 1.1 defines a new class called CoinTossViewController. By convention, the
definition of a class is kept in a header file that uses a *.h file extension.

 In the CoinTossViewController header file, the first two lines declare that the
class stores the details of two UILabel controls located somewhere in the user inter-
face. A UILabel can display a single line of text, and you use these labels to display the
results of the coin toss.

Listing 1.1 CoinTossViewController.h

13Using Xcode to develop a simple Coin Toss game

 The second set of statements allows code external to this class to tell you which spe-
cific UILabels you should be using. Finally, you specify that your class responds to two
messages called callHeads and callTails. These messages inform you when the user
has called heads or tails and a new coin toss should be initiated.

 A header (*.h) file specifies what you can expect a class to contain and how other
code should interact with it. Now that you’ve updated the header file, you must provide
the actual implementation of the features you’ve specified. Open the matching Coin-
TossViewController.m file, and replace its contents with that of the following listing.

#import "CoinTossViewController.h"
#import <QuartzCore/QuartzCore.h>

@implementation CoinTossViewController

@synthesize status, result;

- (void) simulateCoinToss:(BOOL)userCalledHeads {
 BOOL coinLandedOnHeads = (arc4random() % 2) == 0;

 result.text = coinLandedOnHeads ? @"Heads" : @"Tails";

 if (coinLandedOnHeads == userCalledHeads)
 status.text = @"Correct!";
 else
 status.text = @"Wrong!";

 CABasicAnimation *rotation = [CABasicAnimation
 animationWithKeyPath:@"transform.rotation"];
 rotation.timingFunction = [CAMediaTimingFunction
 functionWithName:kCAMediaTimingFunctionEaseInEaseOut];
 rotation.fromValue = [NSNumber numberWithFloat:0.0f];
 rotation.toValue = [NSNumber numberWithFloat:720 * M_PI / 180.0f];
 rotation.duration = 2.0f;
 [status.layer addAnimation:rotation forKey:@"rotate"];

 CABasicAnimation *fade = [CABasicAnimation
 animationWithKeyPath:@"opacity"];
 fade.timingFunction = [CAMediaTimingFunction
 functionWithName:kCAMediaTimingFunctionEaseInEaseOut];
 fade.fromValue = [NSNumber numberWithFloat:0.0f];
 fade.toValue = [NSNumber numberWithFloat:1.0f];
 fade.duration = 3.5f;
 [status.layer addAnimation:fade forKey:@"fade"];
}

- (IBAction) callHeads {
 [self simulateCoinToss:YES];
}

- (IBAction) callTails {
 [self simulateCoinToss:NO];
}

- (void) viewDidUnload {
 self.status = nil;

Listing 1.2 CoinTossViewController.m

Match with
@property

 B

Set up two
objects

 c

Affect
the label

 d

14 CHAPTER 1 Building your first iOS application

 self.result = nil;
}

- (void) dealloc {
 [status release];
 [result release];
 [super dealloc];
}

@end

Listing 1.2 at first appears long and scary looking, but when broken down into individ-
ual steps, it’s relatively straightforward to understand.

 The first statement B matches up with the @property declarations in CoinToss-
ViewController.h. The concept of properties and the advantage of synthesized ones in
particular are explored in depth in chapter 5.

 Most of the logic in the CoinTossViewController.m file is contained in the simu-
lateCoinToss: method, which is called whenever the user wants the result of a new
coin toss. The first line simulates a coin toss by generating a random number between
0 and 1 to represent heads and tails respectively. The result is stored in a variable
called coinLandedOnHeads.

 Once the coin toss result is determined, the two UILabel controls in the user inter-
face are updated to match. The first conditional statement updates the result label to
indicate if the simulated coin toss landed on heads or tails; the second statement indi-
cates if the user correctly called the coin toss.

 The rest of the code in the simulateCoinToss: method sets up two CABasic-
Animation objects c, d to cause the label displaying the status of the coin toss to
spin into place and fade in over time rather than abruptly updating. It does this by
requesting that the transform.rotation property of the UILabel control smoothly
rotate from 0 degrees to 720 degrees over 2.0 seconds, while the opacity property
fades in from 0% (0.0) to 100% (1.0) over 3.5 seconds. It’s important to note that
these animations are performed in a declarative manner. You specify the change or
effect you desire and leave it up to the framework to worry about any timing- and
redrawing-related logic required to implement those effects.

 The simulateCoinToss: method expects a single parameter called userCalled-
Heads, which indicates if the user expects the coin toss to result in heads or tails. Two
additional methods, callHeads and callTails, are simple convenience methods that
call simulateCoinToss: with the userCalledHeads parameter set as expected.

 The final method, called dealloc e, deals with memory management–related
issues. We discuss memory management in far greater depth in chapter 9. The impor-
tant thing to note is that Objective-C doesn’t automatically garbage collect unused
memory (at least as far as the current iPhone is concerned). This means if you allocate
memory or system resources, you’re also responsible for releasing (or deallocating) it.
Not doing so will cause your application to artificially consume more resources than it
needs, and in the worst case, you’ll exhaust the device’s limited resources and cause
the application to crash.

Memory
management

 E

15Hooking up the user interface

 Now that you have the basic logic of the game developed, you must create the
user interface in Xcode and connect it back to the code in the CoinTossView-
Controller class.

1.4 Hooking up the user interface
At this stage, you can determine from the CoinTossViewController class definition
that the user interface should have at least two UILabel controls and that it should
invoke the callHeads or callTails messages whenever the user wants to call the
result of a new coin toss. You haven’t yet specified where on the screen the labels
should be positioned or how the user requests that a coin toss be made.

 There are two ways to specify this kind of detail. The first is to write source code
that creates the user interface controls, configures their properties such as font size
and color, and positions them onscreen. This code can be time consuming to write,
and you can spend a lot of your time trying to visualize how things look onscreen.

 A better alternative is to use Xcode, which allows you to visually lay out and config-
ure your user interface controls and connect them to your source code. Most iOS proj-
ect templates use this technique and typically include one or more *.xib files designed
to visually describe the user interface. This project is no exception, so click the Coin-
TossViewController.xib file in the Project Navigator pane and notice that the editor
pane displays the contents of the file (figure 1.6).

 Along the left edge of the editor pane are some icons. Each icon represents an
object that’s created when the game runs, and each has a tooltip that displays it name.
The wireframe box labeled File’s Owner represents an instance of the CoinTossView-
Controller class; the white rectangle represents the main view (or screen) of the
application. Using Xcode, you can graphically configure the properties of these
objects and create connections between them.

1.4.1 Adding controls to a view

The first step in defining the user interface for your game is to position the required
user interface controls onto the view.

 To add controls, find them in the Library window, which contains a catalog of avail-
able user interface controls, and drag and drop them onto the view. If the Library win-
dow isn’t visible, you can open it via the View > Utilities > Object Library menu option
(Control-Option-Cmd-3). For the Coin Toss game, you require two Labels and two
Rounded Rect Buttons, so drag two of each control onto the view. The process of
dragging and dropping a control onto the view is shown in figure 1.7.

 After you drag and drop the controls onto the view, you can resize and adjust their
positions to suit your aesthetics. The easiest way to change the text displayed on a but-
ton or label control is to double-click the control and begin typing. To alter other
properties, such as font size and color, you can use the Attributes Inspector pane,
which can be displayed via the View > Utilities > Attributes Inspector menu option
(Alt-Cmd-4). While styling your view, you can refer back to figure 1.2 for guidance.

16 CHAPTER 1 Building your first iOS application

With the controls positioned on the user interface, the only task left is to connect
them to the code you previously wrote. Remember that the class defined in the Coin-
TossViewController.h header file requires three things from the user interface:

■ Something to send the callHeads or callTails messages whenever the user
wishes to initiate a new coin toss

■ A UILabel to display the results of the latest coin toss (heads or tails)
■ A UILabel to display the status of the latest coin toss (correct or incorrect)

Figure 1.6 The main Xcode window demonstrating the editing of a *.xib file. Along the left edge of the editor you
can see three icons, each representing a different object or GUI component stored in the .xib file.

17Hooking up the user interface

1.4.2 Connecting controls to source code

The user interface you just created meets these requirements, but the code can’t
determine which button should indicate that the user calls heads or tails (even if the
text on the buttons makes it inherently obvious to a human). Instead, you must explic-
itly establish these connections. Xcode allows you to do so graphically.

 Hold down the Control key and drag the button labeled Heads toward the icon
representing the CoinTossViewController instance (File’s Owner) located on the left
edge of the editor. As you drag, a blue line should appear between the two elements.

 When you let go of the mouse, a pop-up menu appears that allows you to select
which message should be sent to the CoinTossViewController object whenever the

Figure 1.7 Dragging and dropping new controls onto the view. Notice the snap lines, which help ensure your user
interface conforms to the iOS Human Interface Guidelines (HIG).

18 CHAPTER 1 Building your first iOS application

button is tapped, as shown in figure 1.8. In this case, you select callHeads because this
is the message that matches the intent of the button.

 You can repeat this process to connect the button labeled Tails to the callTails
method. Making these two connections means that tapping either of the buttons in
the user interface will cause the execution of logic in the CoinTossViewController
class. Having these connections specified graphically rather than programmatically is
a flexible approach because it enables you to quickly and easily try out different user
interface concepts by swapping controls around and reconnecting them to the class.

 If Xcode refuses to make a connection between a user interface control and an
object, the most probable cause is a source code error, such as a simple typo or incor-
rect data type. In this case, make sure the application still compiles, and correct any
errors that appear before retrying the connection.

Figure 1.8 Visually forming a connection between the button control and the CoinTossViewController class
by dragging and dropping between items

19Hooking up the user interface

 With the buttons taken care of, you’re left with connecting the label controls to the
CoinTossViewController class to allow the code to update the user interface with the
results of the latest coin toss.

 To connect the label controls, you can use a similar drag-and-drop operation.
This time, while holding down the Control key, click the icon representing the
CoinTossViewController instance and drag it toward the label in the view. When
you release the mouse, a pop-up menu appears that allows you to select which prop-
erty of the CoinTossViewController class you want to connect the label control to.
This process is demonstrated in figure 1.9. Using this process, connect the label
titled Coin Toss to the status property and the label titled Select Heads or Tails to
the result property.

 When deciding which way you should form connections between objects, consider
the flow of information. In the case of the button, tapping the button causes a method

Figure 1.9 Visually forming a connection between the status instance variable and the label control in the user
interface by dragging and dropping between the items (with the Control key held down)

20 CHAPTER 1 Building your first iOS application

in the application to be executed, whereas in the case of connecting the label, chang-
ing the value of the instance variable in the class should update the user interface.

 You may wonder how Xcode determines which items to display in the pop-up
menu. If you refer back to listing 1.1, the answer can be seen by way of the special
IBOutlet and IBAction keywords. Xcode parses your source code and allows you to
connect the user interface to anything marked with one of these special attributes.

 At this stage, you may like to verify that you’ve correctly made the required connec-
tions. If you hold down the Control key and click the icon representing the CoinToss-
ViewController instance, a pop-up menu appears allowing you to review how all the
outlets and actions associated with an object are connected. If you hover the mouse
over one of the connections, Xcode even highlights the associated object. This feature
is shown in figure 1.10.

 At this stage you’re done with the user interface. You’re now ready to kick the tires,
check if you’ve made mistakes, and see how well your game runs.

Figure 1.10 Reviewing connections made to and from the CoinTossViewController object

21Taking Coin Toss for a test run

1.5 Compiling the Coin Toss game
Now that you’ve finished coding your application, you need to convert the source
code into a form useable by the iPhone. This process is called compilation, or building
the project. To build the game, select Build from the Product menu (or press Cmd-B).

 While the project is building, you can keep track of the compiler’s progress by
looking at the progress indicator in the middle of the toolbar. It should read “Build
CoinToss: Succeeded.” If you’ve made mistakes, you’ll see a message similar to “Build
CoinToss: Failed.” In this case, clicking the red exclamation icon underneath the text
(or pressing Cmd-4) displays a list of errors and warnings for you to resolve.

 Clicking an error in this list displays the matching source code file with the lines con-
taining errors highlighted, as illustrated in figure 1.11. After correcting the problem,
you can build the application again, repeating this process until all issues are resolved.

 When you compile the Coin Toss game, you should notice errors mentioning
kCAMediaTimingFunctionEaseInEaseOut, CAMediaTimingFunction, and CABasic-

Animation. To correct these errors, select the CoinToss project in the Project Navigator
(topmost item in the tree view). In the editor that appears for this item, switch to the
Build Phases tab and expand the Link Binary with Libraries section. The expanded
region displays a list of additional frameworks that your application requires. For the
user interface animations to work, you need to click the + button at the bottom of
the window and select QuartzCore.framework from the list that appears.

 To keep things tidy, once you add the QuartzCore framework reference, you may pre-
fer to move it within the project navigator tree view so that it’s located under the Frame-
works section, alongside the other frameworks on which your application depends.

1.6 Taking Coin Toss for a test run
Now that you’ve compiled the game and corrected any obvious compilation errors,
you’re ready to verify that it operates correctly. You could run the game and wait for it
to behave incorrectly or crash, but that would be rather slow going, and you would
have to guess at what was happening internally. To improve this situation, Xcode provides

NIBs vs. XIBs
The user interface for an iOS application is stored in a .xib file. But in the documen-
tation and Cocoa Touch frameworks, these files are commonly called nibs.

These terms are used pretty interchangeably: a .xib file uses a newer XML-based file
format, which makes the file easier to store in revision control systems and so on.

A .nib, on the other hand, is an older binary format, which leads to more efficient file
sizes, parsing speed, and so on.

The documentation commonly refers to NIB files instead of XIB files because, as
Xcode builds your project, it automatically converts your *.xib files into the
*.nib format.

22 CHAPTER 1 Building your first iOS application

an integrated debugger that hooks into the execution of your application and allows
you to temporarily pause it to observe the value of variables and step through source
code line by line. But before you learn how to use it, we must take a slight detour.

1.6.1 Selecting a destination

Before testing your application, you must decide where you want to run it. During ini-
tial development, you’ll commonly test your application via the iOS Simulator. The
simulator is a pretend iPhone or iPad device that runs in a window on your desktop
Mac OS X machine. Using the simulator can speed up application development
because it’s a lot quicker for Xcode to transfer and debug your application in the sim-
ulator than it is to work with a real iPhone.

 Developers with experience in other mobile platforms may be familiar with the use
of device emulators. The terms simulator and emulator aren’t synonymous. Unlike an

Figure 1.11 Xcode’s text editor visually highlights lines of source code with compilation errors. After correcting
any errors, building the project will indicate if you have successfully corrected the problem.

23Taking Coin Toss for a test run

emulator that attempts to emulate the device at the hardware level (and hence can
run virtually identical firmware to a real device), a simulator only attempts to provide
an environment that has a compatible set of APIs.

 The iOS Simulator runs your application on the copy of Mac OS X used by your
desktop, which means that differences between the simulator and a real iPhone occa-
sionally creep in. A simple example of where the simulation “leaks” is filenames. In
the iOS Simulator, filenames are typically case insensitive, whereas on a real iPhone,
they’re case sensitive.

 By default, most project templates are configured to deploy your application to the
iOS Simulator. To deploy your application to a real iPhone, you must change the desti-
nation from iPhone Simulator to iOS Device. The easiest way to achieve this is to select
the desired target in the drop-down menu found toward the left of the toolbar in the
main Xcode window, as shown in figure 1.12.

 Changing the destination to iOS Device ensures that Xcode attempts to deploy
the application to your real iPhone, but an additional change is needed before this
will succeed.

1.6.2 Using breakpoints to inspect the state of a running application

While testing an application, it’s common to want to investigate the behavior of a spe-
cific section of source code. Before you launch the application, it can be handy to con-
figure the debugger to automatically pause execution whenever these points are
reached. You can achieve this through the use of a feature called breakpoints.

 A breakpoint indicates to the debugger a point in the source code where the user
would like to automatically “break into” the debugger to explore the current value of
variables, and so on.

Always test on a real iPhone, iPod Touch, or iPad device
The code samples in this book are designed to run in the iOS Simulator. This is a quick
and easy way to iteratively develop your application without worrying about device con-
nectivity or the delay involved in transferring the application to a real device.

Because the iOS Simulator isn’t a perfect replica of an iPhone, it’s possible for an appli-
cation to work in the simulator but fail on an actual device. Never publish an application
to the iTunes App Store that hasn’t been tested on a real device, or better yet, try to
test your application out on a few variants, such as the iPhone and iPod Touch.

Figure 1.12 The top-left corner of the main Xcode window. Selecting the
CoinToss | iPhone 4.3 Simulator drop-down menu allows you to switch
between iPhone Simulator and iOS Device.

24 CHAPTER 1 Building your first iOS application

For the Coin Toss game, let’s add a breakpoint to the start of the simulateCoinToss:
method. Open the CoinTossViewController.m file and scroll down to the source code
implementing the simulateCoinToss: method. If you then click the left margin
beside the first line, you should see a little blue arrow appear, as shown in figure 1.13.

 The blue arrow indicates that this line has an enabled breakpoint. If you click the
breakpoint, it becomes a lighter shade of blue, indicating a disabled breakpoint, which
causes the debugger to ignore it until it’s clicked again to re-enable it. To permanently
remove a breakpoint, click and drag the breakpoint away from the margin. Releasing
the mouse will show a little “poof” animation, and the breakpoint will be removed.

1.6.3 Running the CoinToss game in the iPhone simulator

With the breakpoint in place, you’re finally ready to run the application and see it in
action. Select Run from the Product menu (Cmd-R). After a few seconds, the application

Figure 1.13 Setting a breakpoint to break into the debugger whenever the first line of the simulateCoinToss:
method is called. Notice the arrow in the margin indicating an active breakpoint.

25Taking Coin Toss for a test run

will appear on your iPhone. All that hard work has finally paid off. Congratulations—
you’re now officially an iPhone developer!

 If you want to run the game but don’t want any of your breakpoints to be enabled,
you can click each one to disable them individually, but this would take a while, and
you would need to manually re-enable all the breakpoints if you wanted to use them
again. As a handy alternative, you can temporarily disable all breakpoints by selecting
Product > Debug > Deactivate Breakpoints (Cmd-Y).

1.6.4 Controlling the debugger

Now that you’ve seen your first iPhone application running, you’ll have undoubtedly
felt the urge and tapped one of the buttons labeled Heads or Tails. When you tap a
button, notice that the Xcode window jumps to the foreground. This is because the
debugger has detected that execution of the application has reached the point where
you inserted a breakpoint.

 The Xcode window that appears should look similar to the one in figure 1.14.
Notice that the main pane of the Xcode window displays the source code of the cur-
rently executing method. Hovering the mouse over a variable in the source code dis-
plays a data tip showing the variable’s current value. The line of source code that’s
about to be executed is highlighted, and a green arrow in the right margin points at it.

 While the debugger is running, you’ll notice the left pane of the Xcode window
switches to display the call stack of each thread in the application. The call stack lists
the order in which currently executing methods have been called, with the current
method listed at the top. Many of the methods listed will be gray, indicating that
source code isn’t available for them, in this case because most are internal details of
the Cocoa Touch framework.

 A new pane at the bottom of the screen is also displayed; it shows the current val-
ues of any variables and arguments relevant to the current position of the debugger as
well as any textual output from the debugger (see figure 1.14).

 Along the top of the bottom debug pane, you may notice a series of small toolbar
buttons similar to those shown in figure 1.15.

 These toolbar options enable you to control the debugger and become important
when the debugger pauses the application or stops at a breakpoint. These toolbar but-
tons (which may not all be present at all points in time) allow you to perform the fol-
lowing actions:

■ Hide—Hide the debugger’s console window and variables pane to maximize the
screen real estate offered to the text editor.

■ Pause—Immediately pause the iPhone application and enter the debugger.
■ Continue—Run the application until another breakpoint is hit.
■ Step Over—Execute the next line of code and return to the debugger.
■ Step Into—Execute the next line of code and return to the debugger. If the line

calls any methods, step through their code as well.
■ Step Out—Continue executing code until the current method returns.

26 CHAPTER 1 Building your first iOS application

Your breakpoint caused the debugger to pause
execution at the beginning of a simulated coin
toss. If you view the variables pane or hover the
mouse over the userCalledHeads argument, you
can determine if the user has called heads (YES)
or tails (NO).

 The first line of the simulateCoinToss:
method simulates flipping a coin (by selecting a random number, 0 or 1). Currently,
the debugger is sitting on this line (indicated by the red arrow in the margin), and the
statements on this line haven’t been executed.

 To request that the debugger execute a single line of source code and then return
to the debugger, you can click the Step Over button to “step over” the next line of
source code. This causes the coin toss to be simulated, and the red arrow should jump
down to the next line that contains source code. At this stage, you can determine the

Figure 1.14 The Xcode debugger window after execution has reached a breakpoint

Figure 1.15 The toolbar options in Xcode
for controlling the debugger

27Summary

result of the coin toss by hovering the mouse over the coinLandedOnHeads variable
name; once again, YES means heads and NO means tails.

 Using the step-over feature a couple more times, you can step over the two if state-
ments, which update the result and status UILabels in the user interface. Unlike what
you may expect, however, if you check the iPhone device at this stage, the labels won’t
have updated! This is because of how the internals of Cocoa Touch operate: the
screen will only update once you release the debugger and allow this method to
return to the operating system.

 To allow the iPhone to update the user interface and to see the fancy animations
that herald in a new coin toss result, you can click Continue (or press Cmd-Option-P)
to allow the application to continue execution until it hits another breakpoint or you
explicitly pause it again. Taking a look at the iPhone, you should see that the results of
the coin toss are finally displayed onscreen.

1.7 Summary
Congratulations, you’ve developed your first iPhone application! Show your friends
and family. It may not be the next iTunes App Store blockbuster release, but while put-
ting together this application, you’ve mastered many of the important features of the
Xcode IDE, so you’re well on your way to achieving success.

 Although Objective-C is a powerful language with many capabilities, you’ll find using
visual tools such as Xcode can lead to a productivity boost, especially during initial proto-
typing of your application. The decoupling of application logic from how it’s presented
to the user is a powerful mechanism that shouldn’t be underestimated. It’s doubtful the
first user interface you design for your application will be perfect, and being able to alter
it without having to modify a single line of code is a powerful advantage.

 By the same token, you were able to rely on the Cocoa Touch framework to handle
the minutiae of how to implement many of the features of your game. For example,
the animations were implemented in a fairly declarative manner: you specified start-
ing and stopping points for the rotations and fading operations and left the Quartz
Core framework to worry about the specifics of redrawing the screen, transitioning
the animation, and speeding up or slowing down as the effect completed.

 As you’ll continue to see, there’s great power in the Cocoa Touch frameworks. If
you find yourself writing a vast amount of code for a particular feature, chances are
you aren’t taking maximum advantage of what Cocoa has to offer.

 In chapter 2, we dive into data types, variables, and constants and are introduced
to the Rental Manager application that you’ll build throughout this book.

Fairbairn Fahrenkrug Ruffenach

Objective-C Fundamentals guides you gradually from your
fi rst line of Objective-C code through the process of
building native apps for the iPhone. Starting with chapter

one, you’ll dive into iPhone development by building a simple
game that you can run immediately. You’ll use tools like Xcode
4 and the debugger that will help you become a more effi cient
programmer. By working through numerous easy-to-follow
examples, you’ll learn practical techniques and patterns you can
use to create solid and stable apps. And you’ll fi nd out how to
avoid the most common pitfalls.

What’s Inside
Objective-C from the ground up
Developing with Xcode 4
Examples work unmodifi ed on iPhone

No iOS or mobile experience is required to benefi t from this
book but familiarity with programming in general is helpful.

Christopher Fairbairn, Johannes Fahrenkrug, and Collin Ruffenach
are professional mobile app developers, each with over a decade
of experience using diff erent systems including iOS, Palm, Win-
dows Mobile, and Java.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/Objective-CFundamentals

$44.99 / Can $47.99 [INCLUDING eBOOK]

Objective-C Fundamentals

iPHONE/iPAD DEVELOPMENT

M A N N I N G

SEE INSERT

“A handy and complete
 reference.” —Glenn Stokol
 Oracle Corporation.

“Th e essential iOS program-
 ming how-to guide.”
 —Dave Bales, Whitescape

“A tour-de-force of
 Objective-C...I want
 to grok this stuff !”
 —Dave Mateer, Mateer IT

“A superb introduction to
 essential iPhone application
 development tools.”
 —Carl Douglas, NZX

“Become a hot commodity
 on the market... with
 this book.”
 —Ted Neward, Principal,
 Neward & Associates

