
M A N N I N G

Claus Ibsen
Jonathan Anstey
FOREWORDS BY James Strachan
 AND Dr. Mark Little

SECOND EDITION

Sample Chapter

Camel In Action
Second Edition

by Claus Ibsen
Jonathan Anstey

Chapter 1

 Copyright 2018 Manning Publications

vii

brief contents

Part 1 First steps... 1
1 ■	 Meeting Camel 3
2 ■	 Routing with Camel 27

Part 2 Core Camel... 73
3 ■	 Transforming data with Camel 75
4 ■	 Using beans with Camel 106
5 ■	 Enterprise integration patterns 146
6 ■	 Using components 194

Part 3 Developing and testing .. 239
7 ■	 Microservices 241
8 ■	 Developing Camel projects 306
9 ■	 Testing 343

10 ■	 RESTful web services 408

Part 4 Going further with Camel 467
11 ■	 Error handling 469
12 ■	 Transactions and idempotency 514
13 ■	 Parallel processing 562
14 ■	 Securing Camel 595

viiiviii brief contents

Part 5 Running and managing Camel 623
15 ■	 Running and deploying Camel 625
16 ■	 Management and monitoring 671

Part 6 Out in the wild .. 715
17 ■	 Clustering 717
18 ■	 Microservices with Docker and Kubernetes 752
19 ■	 Camel tooling 803

Bonus chapters
Available at https://www.manning.com/books/camel-in-action-second-edition
and in electronic versions of this book

20 ■	 Reactive Camel
21 ■	 Camel and the IoT by Henryk Konsek

https://www.manning.com/books/camel-in-action-second-edition

3

1Meeting Camel

This chapter covers
¡	An introduction to Camel

¡	Camel’s main features

¡	Your first Camel ride

¡	Camel’s architecture and concepts

Building complex systems from scratch is a costly endeavor, and one that’s almost
never successful. An effective and less risky alternative is to assemble a system like a
jigsaw puzzle from existing, proven components. We depend daily on a multitude of
such integrated systems, making possible everything from phone communications,
financial transactions, and health care to travel planning and entertainment.

You can’t finalize a jigsaw puzzle until you have a complete set of pieces that plug
into each other simply, seamlessly, and robustly. That holds true for system integra-
tion projects as well. But whereas jigsaw puzzle pieces are made to plug into each
other, the systems we integrate rarely are. Integration frameworks aim to fill this gap.
As a developer, you’re less concerned about how the system you integrate works and
more focused on how to interoperate with it from the outside. A good integration
framework provides simple, manageable abstractions for the complex systems you’re
integrating and the “glue” for plugging them together seamlessly.

4 chapter 1 Meeting Camel

Apache Camel is such an integration framework. In this book, we’ll help you under-
stand what Camel is, how to use it, and why we think it’s one of the best integration
frameworks out there. This chapter starts off by introducing Camel and highlighting
some of its core features. We’ll then present the Camel distribution and explain how
to run the Camel examples in the book. We’ll round off the chapter by bringing core
Camel concepts to the table so you can understand Camel’s architecture.

Are you ready? Let’s meet Camel.

1.1 Introducing Camel
Camel is an integration framework that aims to make your integration projects pro-
ductive and fun. The Camel project was started in early 2007 and now is a mature open
source project, available under the liberal Apache 2 license, with a strong community.

Camel’s focus is on simplifying integration. We’re confident that by the time you
finish reading these pages, you’ll appreciate Camel and add it to your must-have list
of tools.

This Apache project was named Camel because the name is short and easy to remem-
ber. Rumor has it the name may be inspired by the Camel cigarettes once smoked by
one of the founders. At the Camel website, a FAQ entry (http://camel.apache.org/why-
the-name-camel.html) lists other lighthearted reasons for the name.

1.1.1 What is Camel?

At the core of the Camel framework is a routing engine—or more precisely, a rout-
ing-engine builder. It allows you to define your own routing rules, decide from which
sources to accept messages, and determine how to process and send those messages to
other destinations. Camel uses an integration language that allows you to define com-
plex routing rules, akin to business processes. As shown in Figure 1.1, Camel forms the
glue between disparate systems.

One of the fundamental principles of Camel is that it makes no assumptions about
the type of data you need to process. This is an important point, because it gives you, the
developer, an opportunity to integrate any kind of system, without the need to convert
your data to a canonical format.

System A
Transport A

System B
Transport B

Figure 1.1 Camel is the glue between disparate systems.

Camel offers higher-level abstractions that allow you to interact with various systems
by using the same API regardless of the protocol or data type the systems are using.
Components in Camel provide specific implementations of the API that target differ-
ent protocols and data types. Out of the box, Camel comes with support for more than
280 protocols and data types. Its extensible and modular architecture allows you to

http://camel.apache.org/why-the-name-camel.html
http://camel.apache.org/why-the-name-camel.html

 5Introducing Camel

implement and seamlessly plug in support for your own protocols, proprietary or not.
These architectural choices eliminate the need for unnecessary conversions and make
Camel not only faster but also lean. As a result, it’s suitable for embedding into other
projects that require Camel’s rich processing capabilities. Other open source projects,
such as Apache ServiceMix, Karaf, and ActiveMQ, already use Camel as a way to carry
out integration.

We should also mention what Camel isn’t. Camel isn’t an enterprise service bus
(ESB), although some call Camel a lightweight ESB because of its support for routing,
transformation, orchestration, monitoring, and so forth. Camel doesn’t have a con-
tainer or a reliable message bus, but it can be deployed in one, such as the previously
mentioned Apache ServiceMix. For that reason, we prefer to call Camel an integration
framework rather than an ESB.

If the mere mention of ESBs brings back memories of huge, complex deployments,
don’t fear. Camel is equally at home in tiny deployments such as microservices or inter-
net-of-things (IoT) gateways.

To understand what Camel is, let’s take a look at its main features.

1.1.2 Why use Camel?

Camel introduces a few novel ideas into the integration space, which is why its authors
decided to create Camel in the first place. We’ll explore the rich set of Camel features
throughout the book, but these are the main ideas behind Camel:

¡	Routing and mediation engine
¡	Extensive component library
¡	Enterprise integration patterns (EIPs)
¡	Domain-specific language (DSL)
¡	Payload-agnostic router
¡	Modular and pluggable architecture
¡	Plain Old Java Object (POJO) model
¡	Easy configuration
¡	Automatic type converters
¡	Lightweight core ideal for microservices
¡	Cloud ready
¡	Test kit
¡	Vibrant community

Let’s dive into the details of each of these features.

routing and mediation engine

The core feature of Camel is its routing and mediation engine. A routing engine selec-
tively moves a message around, based on the route’s configuration. In Camel’s case,

6 chapter 1 Meeting Camel

routes are configured with a combination of enterprise integration patterns and a
domain-specific language, both of which we’ll describe next.

extensive component library

Camel provides an extensive library of more than 280 components. These components
enable Camel to connect over transports, use APIs, and understand data formats. Try
to spot a few technologies that you’ve used in the past or want to use in the future in
figure 1.2. Of course, it isn’t possible to discuss all of these components in the book,
but we do cover about 20 of the most widely used. Check out the index if you’re inter-
ested in a particular one.

Figure 1.2 Connect to just about anything! Camel supports more than 280 transports, APIs,
and data formats.

 7Introducing Camel

enterprise integration patterns

Although integration problems are diverse, Gregor Hohpe and Bobby Woolf noticed
that many problems, and their solutions are quite similar. They cataloged them in their
book Enterprise Integration Patterns (Addison-Wesley, 2003), a must-read for any integra-
tion professional (www.enterpriseintegrationpatterns.com). If you haven’t read it, we
encourage you to do so. At the very least, it’ll help you understand Camel concepts
faster and easier.

The enterprise integration patterns, or EIPs, are helpful not only because they
provide a proven solution for a given problem, but also because they help define and
communicate the problem itself. Patterns have known semantics, which makes commu-
nicating problems much easier. Camel is heavily based on EIPs. Although EIPs describe
integration problems and solutions and provide a common vocabulary, the vocabulary
isn’t formalized. Camel tries to close this gap by providing a language to describe the
integration solutions. There’s almost a one-to-one relationship between the patterns
described in Enterprise Integration Patterns and the Camel DSL.

domain-specific language

At its inception, Camel’s domain-specific language (DSL) was a major contribution to
the integration space. Since then, several other integration frameworks have followed
suit and now feature DSLs in Java, XML, or custom languages. The purpose of the
DSL is to allow the developer to focus on the integration problem rather than on the
tool—the programming language. Here are some examples of the DSL using different
formats and staying functionally equivalent:

¡	Java DSL

from("file:data/inbox").to("jms:queue:order");

¡	XML DSL

<route>
 <from uri="file:data/inbox"/>
 <to uri="jms:queue:order"/>
</route>

These examples are real code, and they show how easily you can route files from a
folder to a Java Message Service (JMS) queue. Because there’s a real programming lan-
guage underneath, you can use the existing tooling support, such as code completion
and compiler error detection, as illustrated in figure 1.3.

8 chapter 1 Meeting Camel

Figure 1.3 Camel DSLs use real programming languages such as Java, so you can use existing
tooling support.

Here you can see how the Eclipse IDE’s autocomplete feature can give you a list of DSL
terms that are valid to use.

payload-agnostic router

Camel can route any kind of payload; you aren’t restricted to carrying a normalized
format such as XML payloads. This freedom means you don’t have to transform your
payload into a canonical format to facilitate routing.

modular and pluggable architecture

Camel has a modular architecture, which allows any component to be loaded into
Camel, regardless of whether the component ships with Camel, is from a third party, or
is your own custom creation. You can also configure almost anything in Camel. Many
of its features are pluggable and configurable—anything from ID generation, thread
management, shutdown sequencer, stream caching, and whatnot.

poJo model

Java beans (or Plain Old Java Objects, POJOs) are considered first-class citizens in
Camel, and Camel strives to let you use beans anywhere and anytime in your integra-
tion projects. In many places, you can extend Camel’s built-in functionality with your
own custom code. Chapter 4 has a complete discussion of using beans within Camel.

easy configuration

The convention over configuration paradigm is followed whenever possible, which mini-
mizes configuration requirements. In order to configure endpoints directly in routes,
Camel uses an easy and intuitive URI configuration.

For example, you could configure a Camel route starting from a file endpoint to scan
recursively in a subfolder and include only .txt files, as follows:

from("file:data/inbox?recursive=true&include=.*txt$")...

 9Introducing Camel

automatic type converters

Camel has a built-in type-converter mechanism that ships with more than 350 con-
verters. You no longer need to configure type-converter rules to go from byte arrays to
strings, for example. And if you need to convert to types that Camel doesn’t support,
you can create your own type converter. The best part is that it works under the hood,
so you don’t have to worry about it.

The Camel components also use this feature; they can accept data in most types and
convert the data to a type they’re capable of using. This feature is one of the top favor-
ites in the Camel community. You may even start wondering why it wasn’t provided in
Java itself! Chapter 3 covers more about type converters.

lightweight core ideal for microservices

Camel’s core can be considered lightweight, with the total library coming in at about
4.9 MB and having only 1.3 MB of runtime dependencies. This makes Camel easy to
embed or deploy anywhere you like, such as in a standalone application, microservice,
web application, Spring application, Java EE application, OSGi, Spring Boot, Wild-
Fly, and in cloud platforms such as AWS, Kubernetes, and Cloud Foundry. Camel was
designed not to be a server or ESB but instead to be embedded in whatever runtime
you choose. You just need Java.

cloud ready

In addition to Camel being cloud-native (covered in chapter 18), Camel also provides
many components for connecting with SaaS providers. For example, with Camel you
can hook into the following:

¡	Amazon DynamoDB, EC2, Kinesis, SimpleDB, SES, SNS, SQS, SWF, and S3
¡	Braintree (PayPal, Apple, Android Pay, and so on)
¡	Dropbox
¡	Facebook
¡	GitHub
¡	Google Big Query, Calendar, Drive, Mail, and Pub Sub
¡	HipChat
¡	LinkedIn
¡	Salesforce
¡	Twitter
¡	And more...

test kit

Camel provides a test kit that makes it easier for you to test your own Camel applica-
tions. The same test kit is used extensively to test Camel itself, and it includes more
than 18,000 unit tests. The test kit contains test-specific components that, for example,
can help you mock real endpoints. It also allows you to set up expectations that
Camel can use to determine whether an application satisfied the requirements or
failed. Chapter 9 covers testing with Camel.

10 chapter 1 Meeting Camel

vibrant community

Camel has an active community. It’s a long-lived one too. It has been active (and grow-
ing) for more than 10 years at the time of writing. Having a strong community is essen-
tial if you intend to use any open source project in your application. Inactive projects
have little community support, so if you run into issues, you’re on your own. With
Camel, if you’re having any trouble, users and developers alike will come to your aid.
For more information on Camel’s community, see appendix B.

Now that you’ve seen the main features that make up Camel, you’ll get more
hands-on by looking at the Camel distribution and trying an example.

1.2 Getting started
This section shows you how to get your hands on a Camel distribution and explains
what’s inside. Then you’ll run an example using Apache Maven. After this, you’ll know
how to run any of the examples from the book’s source code.

Let’s first get the Camel distribution.

1.2.1 Getting Camel

Camel is available from the official Apache Camel website at http://camel.apache.org/
download.html. On that page, you’ll see a list of all the Camel releases and the down-
loads for the latest release.

For the purposes of this book, we’ll be using Camel 2.20.1. To get this version, click
the Camel 2.20.1 Release link. Near the bottom of the page, you’ll find two binary dis-
tributions: the zip distribution is for Windows users, and the tar.gz distribution is for
macOS/Linux users. After you’ve downloaded one of the distributions, extract it to a
location on your hard drive.

Open a command prompt and go to the location where you extracted the Camel dis-
tribution. Issuing a directory listing here will give you something like this:

[janstey@ghost apache-camel-2.20.1]$ ls
doc examples lib LICENSE.txt NOTICE.txt README.txt

As you can see, the distribution is small, and you can probably guess what each direc-
tory contains already. Here are the details:

¡	doc—Contains the Camel manual in HTML format. This manual is a download
of a large portion of the Apache Camel website at the time of release. As such, it’s
a decent reference for those unable to access the Camel website (or if you mis-
placed your copy of Camel in Action).

¡	examples—Includes 97 Camel examples.
¡	lib—Contains all Camel libraries. You’ll see later in the chapter how Maven can

be used to easily download dependencies for the components outside the core.
¡	LICENSE.txt—Contains the license of the Camel distribution. Because this is an

Apache project, the license is the Apache License, version 2.0.

http://camel.apache.org/download.html
http://camel.apache.org/download.html

 11Getting started

¡	NOTICE.txt—Contains copyright information about the third-party dependen-
cies included in the Camel distribution.

¡	README.txt—Contains a short intro to Camel and a list of helpful links to get
new users up and running.

Now let’s try the first Camel example from this book.

1.2.2 Your first Camel ride

So far, we’ve shown you how to get a Camel distribution and offered a peek at what’s
inside. At this point, feel free to explore the distribution; all examples have instruc-
tions to help you figure them out.

From this point on, though, we won’t be using the distribution at all. All the exam-
ples in the book’s source use Apache Maven, which means that Camel libraries will be
downloaded automatically for you—there’s no need to make sure the Camel distribu-
tion’s libraries are on the classpath.

You can get the book’s source code from the GitHub project that’s hosting the source
(https://github.com/camelinaction/camelinaction2).

The first example you’ll look at can be considered the “hello world” of integrations:
routing files. Suppose you need to read files from one directory (data/inbox), process
them in some way, and write the result to another directory (data/outbox). For simplic-
ity, you’ll skip the processing, so your output will be merely a copy of the original file.
Figure 1.4 illustrates this process.

data/inbox data/outboxFile

It looks simple, right? Here’s a possible solution using pure Java (with no Camel).

Listing 1.1 Routing files from one folder to another in plain Java

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;

public class FileCopier {

 public static void main(String args[]) throws Exception {
 File inboxDirectory = new File("data/inbox");
 File outboxDirectory = new File("data/outbox");
 outboxDirectory.mkdir();
 File[] files = inboxDirectory.listFiles();
 for (File source : files) {
 if (source.isFile()) {
 File dest = new File(

Figure 1.4 Files are routed from the data/inbox
directory to the data/outbox directory.

https://github.com/camelinaction/camelinaction2

12 chapter 1 Meeting Camel

 outboxDirectory.getPath()
 + File.separator
 + source.getName());
 copyFile(source, dest);
 }
 }
 }

 private static void copyFile(File source, File dest)
 throws IOException {
 OutputStream out = new FileOutputStream(dest);
 byte[] buffer = new byte[(int) source.length()];
 FileInputStream in = new FileInputStream(source);
 in.read(buffer);
 try {
 out.write(buffer);
 } finally {
 out.close();
 in.close();
 }
 }
}

This FileCopier example is a simple use case, but it still results in 37 lines of code.
You have to use low-level file APIs and ensure that resources get closed properly—a
task that can easily go wrong. Also, if you want to poll the data/inbox directory for new
files, you need to set up a timer and keep track of which files you’ve already copied.
This simple example is getting more complex.

Integration tasks like these have been done thousands of times before; you shouldn’t
ever need to code something like this by hand. Let’s not reinvent the wheel here.
Let’s see what a polling solution looks like if you use an integration framework such as
Apache Camel.

Listing 1.2 Routing files from one folder to another with Apache Camel

import org.apache.camel.CamelContext;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.impl.DefaultCamelContext;

public class FileCopierWithCamel {

 public static void main(String args[]) throws Exception {
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(new RouteBuilder() {
 public void configure() {
 from("file:data/inbox?noop=true")
 .to("file:data/outbox");
 }
 });
 context.start();
 Thread.sleep(10000);
 context.stop();
 }
}

1 Routes files from
inbox to outbox

 13Getting started

Most of this code is boilerplate stuff when using Camel. Every Camel application uses
a CamelContext that’s subsequently started and then stopped. You also add a sleep
method to allow your simple Camel application time to copy the files. What you should
focus on in listing 1.2 is the route 1.

Routes in Camel are defined in such a way that they flow when read. This route can be
read like this: consume messages from file location data/inbox with the noop option
set, and send to file location data/outbox. The noop option tells Camel to leave the
source file as is. If you didn’t use this option, the file would be moved. Most people
who’ve never seen Camel before will be able to understand what this route does. You
may also want to note that, excluding the boilerplate code, you created a file- polling
route in just two lines of Java code 1.

To run this example, you need to download and install Apache Maven from the
Maven site at http://maven.apache.org/download.html. When you have Maven up and
working, open a terminal and browse to the chapter1/file-copy directory of the book’s
source. If you take a directory listing here, you’ll see several things:

¡	data—Contains the inbox directory, which itself contains a single file named mes-
sage1.xml.

¡	src—Contains the source code for the listings shown in this chapter.
¡	pom.xml—Contains information necessary to build the examples. This is the

Maven Project Object Model (POM) XML file.

NOTE We used Maven 3.5.0 during the development of the book. Different
versions of Maven may not work or appear exactly as we’ve shown.

The POM is shown in the following listing.

Listing 1.3 The Maven POM required to use Camel’s core library

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.camelinaction</groupId>
 <artifactId>chapter1</artifactId>
 <version>2.0.0</version>
 </parent>

 <artifactId>chapter1-file-copy</artifactId>
 <name>Camel in Action 2 :: Chapter 1 :: File Copy Example</name>

 <dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 </dependency>

1 Parent POM

2 Camel’s core library

http://maven.apache.org/download.html

14 chapter 1 Meeting Camel

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </dependency>
 </dependencies>
</project>

Maven itself is a complex topic, and we don’t go into great detail here. We’ll give you
enough information to be productive with the examples in this book. Chapter 8 also
covers using Maven to develop Camel applications, so there’s a good deal of informa-
tion there too.

The Maven POM in listing 1.3 is probably one of the shortest POMs you’ll ever see—
almost everything uses the defaults provided by Maven. Besides those defaults, some
settings are configured in the parent POM 1. Probably the most important section to
point out here is the dependency on the Camel library 2. This dependency element
tells Maven to do the following:

1 Create a search path based on the groupId, artifactId, and version. The ver-
sion element is set to the camel-version property, which is defined in the POM
referenced in the parent element 1, and resolves to 2.20.1. The type of depen-
dency isn’t specified, so the JAR file type is assumed. The search path is org/
apache/camel/camel-core/2.20.1/camel-core-2.20.1.jar.

2 Because listing 1.3 defines no special places for Maven to look for the Camel
dependencies, it looks in Maven’s central repository, located at http://repo1
.maven.org/maven2.

3 Combining the search path and the repository URL, Maven tries to download
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.20.1/camel-
core-2.20.1.jar.

4 This JAR is saved to Maven’s local download cache, which is typically located
in the home directory under the .m2/repository. This is ~/.m2/repository on
Linux/macOS, and C:\Users\<Username>\.m2\repository on recent versions of
Windows.

5 When the application code in listing 1.2 is started, the Camel JAR is added to the
classpath.

To run the example in listing 1.2, change to the chapter1/file-copy directory and use
the following command:

mvn compile exec:java

This instructs Maven to compile the source in the src directory and to execute the
FileCopierWithCamel class with the camel-core JAR on the classpath.

Logging support

http://repo1.maven.org/maven2
http://repo1.maven.org/maven2
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.20.1/camel-core-2.20.1.jar
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.20.1/camel-core-2.20.1.jar

 15Camel’s message model

NOTE To run any of the examples in this book, you need an internet con-
nection. Apache Maven will download many JAR dependencies of the exam-
ples. The whole set of examples will download several hundred megabytes of
libraries.

Run the Maven command from the chapter1/file-copy directory, and after it com-
pletes, browse to the data/outbox folder to see the file copy that’s just been made.
Congratulations—you’ve run your first Camel example! It’s a simple one, but knowing
how it’s set up will enable you to run pretty much any of the book’s examples.

We now need to cover Camel basics and the integration space in general to ensure
that you’re well prepared for using Camel. We’ll turn our attention to the message
model, the architecture, and a few other Camel concepts. Most of the abstractions are
based on known EIP concepts and retain their names and semantics. We’ll start with
Camel’s message model.

1.3 Camel’s message model
Camel uses two abstractions for modeling messages, both of which we cover in this
section:

¡	org.apache.camel.Message—The fundamental entity containing the data
being carried and routed in Camel.

¡	org.apache.camel.Exchange—The Camel abstraction for an exchange of
messages. This exchange of messages has an in message, and as a reply, an out
message.

We’ll start by looking at messages so you can understand the way data is modeled and
carried in Camel. Then we’ll show you how a “conversation” is modeled in Camel by
the exchange.

1.3.1 Message

Messages are the entities used by systems to communicate with each other when using
messaging channels. Messages flow in one direction, from a sender to a receiver, as
illustrated in figure 1.5.

Sender Receiver

Message

Messages have a body (a payload), headers, and optional attachments, as illustrated in
figure 1.6.

Figure 1.5 Messages are entities used to
send data from one system to another.

16 chapter 1 Meeting Camel

Message

Headers

Attachments

Body

Messages are uniquely identified with an identifier of type java.lang.String. The
identifier’s uniqueness is enforced and guaranteed by the message creator, it’s pro-
tocol dependent, and it doesn’t have a guaranteed format. For protocols that don’t
define a unique message identification scheme, Camel uses its own ID generator.

headers and attachments

Headers are values associated with the message, such as sender identifiers, hints about
content encoding, authentication information, and so on. Headers are name-value
pairs; the name is a unique, case-insensitive string, and the value is of type java.lang.
Object. Camel imposes no constraints on the type of the headers. There are also no
constraints on the size of headers or on the number of headers included with a mes-
sage. Headers are stored as a map within the message. A message can also have optional
attachments, which are typically used for the web service and email components.

body

The body is of type java.lang.Object, so a message can store any kind of content and
any size. It’s up to the application designer to make sure that the receiver can under-
stand the content of the message. When the sender and receiver use different body
formats, Camel provides mechanisms to transform the data into an acceptable format,
and in those cases the conversion happens automatically with type converters, behind
the scenes. Chapter 3 fully covers message transformation.

fault flag

Messages also have a fault flag. A few protocols and specifications, such as SOAP Web
Services, distinguish between output and fault messages. They’re both valid responses
to invoking an operation, but the latter indicates an unsuccessful outcome. In general,
faults aren’t handled by the integration infrastructure. They’re part of the contract
between the client and the server and are handled at the application level.

During routing, messages are contained in an exchange.

1.3.2 Exchange

An exchange in Camel is the message’s container during routing. An exchange also
provides support for the various types of interactions between systems, also known as
message exchange patterns (MEPs). MEPs are used to differentiate between one-way and

Figure 1.6 A message can contain
headers, attachments, and a body.

 17Camel’s message model

request-response messaging styles. The Camel exchange holds a pattern property that
can be either of the following:

¡	InOnly—A one-way message (also known as an event message). For example,
JMS messaging is often one-way messaging.

¡	InOut—A request-response message. For example, HTTP-based transports are
often request-reply: a client submits a web request, waiting for the reply from the
server.

Figure 1.7 illustrates the contents of an exchange in Camel.

In message

Exchange

Headers

Attachments

Body

Out message

Headers

Attachments

Exchange ID

Exception

MEP

Properties

Body

Let’s look at the elements of figure 1.7 in more detail:

¡	Exchange ID—A unique ID that identifies the exchange. Camel automatically
generates the unique ID.

¡	MEP—A pattern that denotes whether you’re using the InOnly or InOut messag-
ing style. When the pattern is InOnly, the exchange contains an in message. For
InOut, an out message also exists that contains the reply message for the caller.

¡	Exception—If an error occurs at any time during routing, an Exception will be set
in the exception field.

¡	Properties—Similar to message headers, but they last for the duration of the entire
exchange. Properties are used to contain global-level information, whereas mes-
sage headers are specific to a particular message. Camel itself adds various prop-
erties to the exchange during routing. You, as a developer, can store and retrieve
properties at any point during the lifetime of an exchange.

¡	In message—This is the input message, which is mandatory. The in message con-
tains the request message.

¡	Out message—This is an optional message that exists only if the MEP is InOut. The
out message contains the reply message.

Figure 1.7 A Camel exchange has an ID, MEP,
exception, and properties. It also has an in
message to store the incoming message, and an
out message to store the reply.

18 chapter 1 Meeting Camel

The exchange is the same for the entire lifecycle of routing, but the messages can
change, for instance, if messages are transformed from one format to another.

We discussed Camel’s message model before the architecture because we want you to
have a solid understanding of what a message is in Camel. After all, the most important
aspect of Camel is routing messages. You’re now well prepared to learn more about
Camel and its architecture.

1.4 Camel’s architecture
You’ll first take a look at the high-level architecture and then drill down into the spe-
cific concepts. After you’ve read this section, you should be caught up on the integra-
tion lingo and be ready for chapter 2, where you’ll explore Camel’s routing capabilities.

1.4.1 Architecture from 10,000 feet

We think that architectures are best viewed first from high above. Figure 1.8 shows a
high-level view of the main concepts that make up Camel’s architecture.

CamelContextRouting engine
A DSL wires
endpoints and
processors
together to form
routes.

Route 1
Route 2

Route N
from(“file:c:\aDir”)
 .filter()
 .xpath(expression)
 .to(“jms:aQueue”);

File JMS HTTP
Components
• Provide a uniform
 endpoint interface
• Connect to other systems

Processors
Handle things in
between endpoints
like:
• EIPs
• Routing
• Transformation
• Mediation
• Enrichment
• Validation
• Interception

Message filter
processor

Content-based router
processor

Figure 1.8 At a high level, Camel is composed of routes, processors, and components. All of these are
contained within CamelContext.

The routing engine uses routes as specifications indicating where messages are routed.
Routes are defined using one of Camel’s DSLs. Processors are used to transform and
manipulate messages during routing as well as to implement all the EIPs, which have
corresponding names in the DSLs. Components are the extension points in Camel
for adding connectivity to other systems. To expose these systems to the rest of Camel,
components provide an endpoint interface.

With that high-level view out of the way, let’s take a closer look at the individual con-
cepts in figure 1.8.

 19Camel’s architecture

1.4.2 Camel concepts

Figure 1.8 reveals many new concepts, so let’s take some time to go over them one by
one. We’ll start with CamelContext, which is Camel’s runtime.

camelcontext

You may have guessed that CamelContext is a container of sorts, judging from figure
1.8. You can think of it as Camel’s runtime system, which keeps all the pieces together.

Figure 1.9 shows the most notable services that CamelContext keeps together.

Components Endpoints Routes

Type
converters CamelContext

Data formats

Registry Languages

As you can see, CamelContext has a lot of services to keep track of. These are described
in table 1.1.

Table 1.1 The services that CamelContext provides

Service Description

Components Contains the components used. Camel is capable of loading components on the fly
either by autodiscovery on the classpath or when a new bundle is activated in an
OSGi container. Chapter 6 covers components in more detail.

Endpoints Contains the endpoints that have been used.

Routes Contains the routes that have been added. Chapter 2 covers routes.

Type converters Contains the loaded type converters. Camel has a mechanism that allows you to
manually or automatically convert from one type to another. Type converters are
covered in chapter 3.

Data formats Contains the loaded data formats. Data formats are covered in chapter 3.

Registry Contains a registry that allows you to look up beans. We cover registries in
chapter 4.

Languages Contains the loaded languages. Camel allows you to use many languages to
create expressions. You’ll get a glimpse of the XPath language in just a moment.
A complete reference to Camel’s own Simple expression language is available in
appendix A.

Figure 1.9 CamelContext provides access
to many useful services, the most notable
being components, type converters, a registry,
endpoints, routes, data formats, and languages.

20 chapter 1 Meeting Camel

The details of each service are discussed throughout the book. Let’s now take a look at
routes and Camel’s routing engine.

routing engine

Camel’s routing engine is what moves messages under the hood. This engine isn’t
exposed to the developer, but you should be aware that it’s there and that it does all the
heavy lifting, ensuring that messages are routed properly.

routes

Routes are obviously a core abstraction for Camel. The simplest way to define a route is
as a chain of processors. There are many reasons for using routers in messaging appli-
cations. By decoupling clients from servers, and producers from consumers, routes can
do the following:

¡	Decide dynamically what server a client will invoke
¡	Provide a flexible way to add extra processing
¡	Allow for clients and servers to be developed independently
¡	Foster better design practices by connecting disparate systems that do one

thing well
¡	Enhance features and functionality of some systems (such as message brokers

and ESBs)
¡	Allow for clients of servers to be stubbed out (using mocks) for testing purposes

Each route in Camel has a unique identifier that’s used for logging, debugging, mon-
itoring, and starting and stopping routes. Routes also have exactly one input source
for messages, so they’re effectively tied to an input endpoint. That said, there’s some
syntactic sugar for having multiple inputs to a single route. Take the following route,
for example:

from("jms:queue:A", "jms:queue:B", "jms:queue:C").to("jms:queue:D");

Under the hood, Camel clones the route definition into three separate routes. So, it
behaves similarly to three separate routes as follows:

from("jms:queue:A").to("jms:queue:D");
from("jms:queue:B").to("jms:queue:D");
from("jms:queue:C").to("jms:queue:D");

Even though it’s perfectly legal in Camel 2.x, we don’t recommend using multiple
inputs per route. This ability will be removed in the next major version of Camel. To
define these routes, we use a DSL.

domain-specific language

To wire processors and endpoints together to form routes, Camel defines a DSL. The
term DSL is used a bit loosely here. In Camel, DSL means a fluent Java API that con-
tains methods named for EIP terms.

Consider this example:

from("file:data/inbox")
 .filter().xpath("/order[not(@test)]")
 .to("jms:queue:order");

 21Camel’s architecture

Here, in a single Java statement, you define a route that consumes files from a file end-
point. Messages are then routed to the filter EIP, which will use an XPath predicate to
test whether the message is not a test order. If a message passes the test, it’s forwarded
to the JMS endpoint. Messages failing the filter test are dropped.

Camel provides multiple DSL languages, so you could define the same route by using
the XML DSL, like this:

<route>
 <from uri="file:data/inbox"/>
 <filter>
 <xpath>/order[not(@test)]</xpath>
 <to uri="jms:queue:order"/>
 </filter>
</route>

The DSLs provide a nice abstraction for Camel users to build applications with. Under
the hood, though, a route is composed of a graph of processors. Let’s take a moment
to see what a processor is.

processor

The processor is a core Camel concept that represents a node capable of using, creating,
or modifying an incoming exchange. During routing, exchanges flow from one proces-
sor to another; as such, you can think of a route as a graph having specialized processors
as the nodes, and lines that connect the output of one processor to the input of another.
Processors could be implementations of EIPs, producers for specific components, or
your own custom creation. Figure 1.10 shows the flow between processors.

out in

InOut

Consumer
out in

Processor
out

Processor
InOnly

MEP

Figure 1.10 Flow of an exchange through a route. Notice that the MEP determines whether a reply will
be sent back to the caller of the route.

A route first starts with a consumer (think “from” in the DSL) that populates the initial
exchange. At each processor step, the out message from the previous step is the in
message of the next. In many cases, processors don’t set an out message, so in this case
the in message is reused. At the end of a route, the MEP of the exchange determines
whether a reply needs to be sent back to the caller of the route. If the MEP is InOnly,
no reply will be sent back. If it’s InOut, Camel will take the out message from the last
step and return it.

NOTE Producers and consumers in Camel may seem a bit counterintuitive
at first. After all, shouldn’t producers be the first node and consumers be con-
suming messages at the end of a route? Don’t worry—you’re not the first to
think like this! Just think of these concepts from the point of view of commu-
nicating with external systems. Consumers consume messages from external

22 chapter 1 Meeting Camel

systems and bring them into the route. Producers, on the other hand, send
(produce) messages to external systems.

How do exchanges get in or out of this processor graph? To find out, you need to look
at components and endpoints.

component

Components are the main extension point in Camel. To date, the Camel ecosystem has
more than 280 components that range in function from data transports, to DSLs, to
data formats, and so on. You can even create your own components for Camel—we
discuss this in chapter 8.

From a programming point of view, components are fairly simple: they’re associated
with a name that’s used in a URI, and they act as a factory of endpoints. For example,
FileComponent is referred to by file in a URI, and it creates FileEndpoints. The end-
point is perhaps an even more fundamental concept in Camel.

endpoint

An endpoint is the Camel abstraction that models the end of a channel through which a
system can send or receive messages. This is illustrated in figure 1.11.

`

Data Message
endpoint

Sender
application

Receiver
application

Message
endpoint

DataMessage Channel

Figure 1.11 An endpoint acts as a neutral interface allowing systems to
integrate.

In Camel, you configure endpoints by using URIs, such as file:data/inbox?delay=5000,
and you also refer to endpoints this way. At runtime, Camel looks up an endpoint based
on the URI notation. Figure 1.12 shows how this works.

file:data/inbox?delay=5000

Scheme Context
path

Options

➊ ➋ ➌

The scheme 1 denotes which Camel component handles that type of endpoint. In
this case, the scheme of file selects FileComponent. FileComponent then works as a
factory, creating FileEndpoint based on the remaining parts of the URI. The context
path data/inbox 2 tells FileComponent that the starting folder is data/inbox. The
option, delay=5000 3 indicates that files should be polled at a 5-second interval.

Figure 1.12 Endpoint URIs are divided into three
parts: a scheme, a context path, and options.

 23Camel’s architecture

There’s more to an endpoint than meets the eye. Figure 1.13 shows how an endpoint
works together with an exchange, producers, and consumers. At first glance, figure 1.13
may seem a bit overwhelming, but it will all make sense in a few minutes. In a nutshell,
an endpoint acts as a factory for creating consumers and producers that are capable of
receiving and sending messages to a particular endpoint. We didn’t mention producers
or consumers in the high-level view of Camel in figure 1.8, but they’re important con-
cepts. We’ll go over them next.

producer

A producer is the Camel abstraction that refers to an entity capable of sending a message to
an endpoint. Figure 1.13 illustrates where the producer fits in with other Camel concepts.

When a message is sent to an endpoint, the producer handles the details of getting
the message data compatible with that particular endpoint. For example, FilePro-
ducer will write the message body to a file. JmsProducer, on the other hand, will map
the Camel message to javax.jms.Message before sending it to a JMS destination. This
is an important feature in Camel, because it hides the complexity of interacting with
particular transports. All you need to do is route a message to an endpoint, and the pro-
ducer does the heavy lifting.

Component

Consumer Producer

Processor

Creates

Calls

EndpointExchange

Creates Creates

Creates

consumer

A consumer is the service that receives messages produced by some external system,
wraps them in an exchange, and sends them to be processed. Consumers are the
source of the exchanges being routed in Camel.

Looking back at figure 1.13, you can see where the consumer fits in with other Camel
concepts. To create a new exchange, a consumer will use the endpoint that wraps
the payload being consumed. A processor is then used to initiate the routing of the
exchange in Camel via the routing engine.

Figure 1.13 How endpoints work with producers,
consumers, and an exchange

24 chapter 1 Meeting Camel

Camel has two kinds of consumers: event-driven consumers and polling consumers.
The differences between these consumers are important, because they help solve dif-
ferent problems.

event-driven consumer

The most familiar consumer is probably the event-driven consumer, which is illustrated in
figure 1.14.

Event-driven
consumer

Sender Message

Receiver

This kind of consumer is mostly associated with client-server architectures and web
services. It’s also referred to as an asynchronous receiver in the EIP world. An event-driven
consumer listens on a particular messaging channel, such as a TCP/IP port, JMS
queue, Twitter handle, Amazon SQS queue, WebSocket, and so on. It then waits for a
client to send messages to it. When a message arrives, the consumer wakes up and takes
the message for processing.

polling consumer

The other kind of consumer is the polling consumer, illustrated in figure 1.15.

Polling
consumer

Sender Message

Receiver

In contrast to the event-driven consumer, the polling consumer actively goes and
fetches messages from a particular source, such as an FTP server. The polling con-
sumer is also known as a synchronous receiver in EIP lingo, because it won’t poll for more
messages until it’s finished processing the current message. A common flavor of the
polling consumer is the scheduled polling consumer, which polls at scheduled inter-
vals. File, FTP, and email components all use scheduled polling consumers.

We’ve now covered all of Camel’s core concepts. With this new knowledge, you can
revisit your first Camel ride and see what’s happening.

1.5 Your first Camel ride, revisited
Recall that in your first Camel ride (section 1.2.2), you read files from one directory
(data/inbox) and wrote the results to another directory (data/outbox). Now that you
know the core Camel concepts, you can put this example in perspective.

Figure 1.14 An event-driven consumer remains
idle until a message arrives, at which point it
wakes up and consumes the message.

Figure 1.15 A polling consumer actively checks
for new messages.

 25Summary

Take another look at the Camel application in the following listing.

Listing 1.4 Routing files from one folder to another with Camel

import org.apache.camel.CamelContext;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.impl.DefaultCamelContext;

public class FileCopierWithCamel {

 public static void main(String args[]) throws Exception {
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(new RouteBuilder() {
 public void configure() {
 from("file:data/inbox?noop=true")
 .to("file:data/outbox");
 }
 });
 context.start();
 Thread.sleep(10000);
 context.stop();
 }
}

In this example, you first create CamelContext, which is the Camel runtime. You then
add the routing logic by using RouteBuilder and the Java DSL 1. By using the DSL,
you can cleanly and concisely let Camel instantiate components, endpoints, consum-
ers, producers, and so on. All you have to focus on is defining the routes that mat-
ter for your integration projects. Under the hood, though, Camel is accessing the
 FileComponent, and using it as a factory to create the endpoint and its producer. The
same FileComponent is used to create the consumer side as well.

NOTE You may be wondering whether you always need that ugly Thread.sleep
call. Thankfully, the answer is no! The example was created in this way to demon-
strate the low-level mechanics of Camel’s API. If you were deploying your Camel
route to another container or runtime (as you’ll see in chapters 7 and 15) or as a
unit test (covered in detail in chapter 9, but also used in chapter 2), you wouldn’t
need to explicitly wait a set amount of time. Even for standalone routes not
deployed to any container, there’s a better way. Camel provides the org.apache
.camel.main.Main helper class to start up a route of your choosing and wait for
the JVM to terminate. We cover this in chapter 7.

1.6 Summary
In this chapter, you met Camel. You saw how Camel simplifies integration by relying on
enterprise integration patterns (EIPs). You also saw Camel’s DSL, which aims to make
Camel code self-documenting and keeps developers focused on what the glue code
does, not how it does it.

We covered Camel’s main features, what Camel is and isn’t, and where it can be used.
We showed how Camel provides abstractions and an API that work over a large range of
protocols and data formats.

1 Java DSL route

26 chapter 1 Meeting Camel

At this point, you should have a good understanding of what Camel does and its
underlying concepts. Soon you’ll be able to confidently browse Camel applications and
get a good idea of what they do.

In the rest of the book, you’ll explore Camel’s features and learn practical solutions
you can apply in everyday integration scenarios. We’ll also explain what’s going on
under Camel’s tough skin. To make sure you get the main concepts from each chapter,
from now on we’ll present you with best practices and key points in the summary.

In the next chapter, you’ll investigate routing, which is an essential feature and a fun
one to learn.

Claus Ibsen ● Jonathan Anstey

A
pache Camel is a Java framework that implements
enterprise integration patterns (EIPs) and comes with
over 200 adapters to third-party systems. A concise

DSL lets you build integration logic into your app with just
a few lines of Java or XML. By using Camel, you benefi t
from the testing and experience of a large and vibrant open
source community.

Camel in Action, Second Edition is the defi nitive guide to the
Camel framework. It starts with core concepts like sending,
receiving, routing, and transforming data. It then goes in
depth on many topics such as how to develop, debug, test,
deal with errors, secure, scale, cluster, deploy, and monitor
your Camel applications. The book also discusses how to run
Camel with microservices, reactive systems, containers, and in
the cloud.

What’s Inside
● Coverage of all relevant EIPs
● Camel microservices with Spring Boot
● Camel on Docker and Kubernetes
● Error handling, testing, security, clustering,
 monitoring, and deployment
● Hundreds of examples in Java and XML

Readers should be familiar with Java. This book is accessible
to beginners and invaluable to experts.

Claus Ibsen is a senior principal engineer for Red Hat and the
head of the Apache Camel project. Jonathan Anstey is an engi-
neering manager at Red Hat and a core Camel contributor.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/camel-in-action-second-edition

$69.99 / Can $92.99 [INCLUDING eBOOK]

Camel IN ACTION Second Edition

ENTERPRISE JAVA

M A N N I N G

“I highly recommend this
book to anyone with even a
passing interest in Apache

Camel. Do take Camel
for a ride ... and don’t

 get the hump!”
—From the Foreword by

James Strachan
Creator of Apache Camel

“Claus and Jon are great
writers, relying on fi gures

and diagrams where needed
and presenting lots of code

snippets and worked
 examples.”—From the Foreword by
Dr. Mark Little

Technical Director of JBoss

“The second edition of
this all-time classic is an

indispensable companion for
your Apache Camel rides.”—Gregor Zurowski

Apache Camel Committer

Go to
manning.com/

freebook

	Camel in Action, Second Edition Sample Chapter
	1 Meeting Camel
	1.1	Introducing Camel
	1.1.1	What is Camel?
	1.1.2	Why use Camel?

	1.2	Getting started
	1.2.1	Getting Camel
	1.2.2	Your first Camel ride

	1.3	Camel’s message model
	1.3.1	Message
	1.3.2	Exchange

	1.4	Camel’s architecture
	1.4.1	Architecture from 10,000 feet
	1.4.2	Camel concepts

	1.5	Your first Camel ride, revisited
	1.6	Summary

