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In the previous three chapters of this book, we’ve gone through the syntax and
semantics of the C++/CLI language. It’s now time to step it up a gear and move
into the world of mixed-mode programming. 

 When I say mixed-mode programming, I mean mixing managed and native
code in the same assembly. You can’t do that with any other CLI language,
because except for C++/CLI, every other CLI compiler only understands man-
aged code. Because C++ is intrinsically an unmanaged programming language,
mixing managed and native code is absolutely within its capabilities. Of course,
things don’t work the same way in managed code as they do in native code. The
types are different; memory allocation is manual in one and automatic in the
other; the API is different; and so on. When you mix the two, you need to be able
to accommodate the use of managed and native types together, to convert
between types, and to smoothly interop between the managed and native code. 

 I’m going to show you the basic techniques that you can apply in your mixed-
mode programming projects. By the end of this chapter, you’ll be pretty comfort-
able with mixed-mode programming concepts. We’ll begin with a look at the
concept of CLI pointers and discuss both pinning pointers and interior pointers.
We’ll also discuss how they can be used to perform typical pointer operations. CLI
pointers are frequently required when you’re doing mixed-mode programming,
especially when you’re utilizing native APIs that accept pointer arguments. Thus
it’s important to understand how they work and how they can be used to interop
between native and managed code. 

 We’ll also briefly look at the various interop mechanisms available for mixing
managed and native code, such as COM Callable Wrappers (CCW), P/Invoke, and
C++ interop. Although we’ll be exclusively using C++ interop in this book, it’s
important to be aware of the other mechanisms available and their pros and cons
when compared with C++ interop. 

 We’ll also examine how mixed types can be implemented using C++/CLI; in
the course of the discussion, you’ll learn how to develop a managed smart pointer
class that will handle automatic resource deallocation for a native resource when
used in a managed class. Mixed types will be a prominent feature in your mixed-
mode programming adventures; thus, a good understanding of how to use them
will be extremely beneficial to you. 

 We’ll round off the chapter with a discussion of how to convert between CLI
delegates and unmanaged function pointers using two new methods added in
.NET 2.0 to the Marshal class. This knowledge will be useful to you when wrap-
ping native API that uses unmanaged function pointers as callbacks. 
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4.1 Using interior and pinning pointers

You can’t use native pointers with CLI objects on the managed heap. That is like
trying to write Hindi text using the English alphabet—they’re two different lan-
guages with entirely different alphabets. Native pointers are essentially variables
that hold memory address locations. They point to a memory location rather
than to a specific object. When we say a pointer points to an object, we essentially
mean that a specific object is at that particular memory location. 

 This approach won’t work with CLI objects because managed objects in the CLR
heap don’t remain at the same location for the entire period of their lifetime. Figure
4.1 shows a diagrammatic view of this problem. The Garbage Collector (GC) moves
objects around during garbage-collection and heap-compaction cycles. A native
pointer that points to a CLI object becomes garbage once the object has been relo-
cated. By then, it’s pointing to random memory. If an attempt is made to write to
that memory, and that memory is now used by some other object, you end up cor-
rupting the heap and possibly crashing your application.

 C++/CLI provides two kinds of pointers that work around this problem. The
first kind is called an interior pointer, which is
updated by the runtime to reflect the new
location of the object that’s pointed to every
time the object is relocated. The physical
address pointed to by the interior pointer
never remains the same, but it always points to
the same object. The other kind is called a pin-
ning pointer, which prevents the GC from relo-
cating the object; in other words, it pins the
object to a specific physical location in the CLR
heap. With some restrictions, conversions are
possible between interior, pinning, and native
pointers. 

 Pointers by nature aren’t safe, because they
allow you to directly manipulate memory. For
that reason, using pointers affects the type-
safety and verifiability of your code. I strongly
urge you to refrain from using CLI pointers in
pure-managed applications (those compiled
with /clr:safe or /clr:pure) and to use them
strictly to make interop calls more convenient.

Figure 4.1 Problem using a native 
pointer with a managed object
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4.1.1 Interior pointers

An interior pointer is a pointer to a managed object or a member of a managed
object that is updated automatically to accommodate for garbage-collection cycles
that may result in the pointed-to object being relocated on the CLR heap. You may
wonder how that’s different from a managed handle or a tracking reference; the
difference is that the interior pointer exhibits pointer semantics, and you can per-
form pointer operations such as pointer arithmetic on it. Although this isn’t an
exact analogy, think of it like a cell phone. People can call you on your cell phone
(which is analogous to an interior pointer) wherever you are, because your num-
ber goes with you—the mobile network is constantly updated so that your location
is always known. They wouldn’t be able to do that with a landline (which is anal-
ogous to a native pointer), because a landline’s physical location is fixed. 

 Interior pointer declarations use the same template-like syntax that is used for
CLI arrays, as shown here:

interior_ptr< type > var = [address];

Listing 4.1 shows how an interior pointer gets updated when the object it points
to is relocated.

ref struct CData 
{
   int age;
}; 

int main()
{
   for(int i=0; i<100000; i++)   
      gcnew CData(); 

   CData^ d = gcnew CData();   
   d->age = 100;         

   interior_ptr<int> pint = &d->age;   

printf("%p %d\r\n",pint,*pint); 
                     
   for(int i=0; i<100000; i++)   
      gcnew CData();   

   printf("%p %d\r\n",pint,*pint);   
return 0;
}

Listing 4.1 Code that shows how an interior pointer is updated by the CLR

b

c

d

e
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In the sample code, you create 100,000 orphan CData objects b so that you can
fill up a good portion of the CLR heap. You then create a CData object that’s stored
in a variable and c an interior pointer to the int member age of this CData object.
You then print out the pointer address as well as the int value that is pointed to.
Now, d you create another 100,000 orphan CData objects; somewhere along
the line, a garbage-collection cycle occurs (the orphan objects created earlier b get
collected because they aren’t referenced anywhere). Note that you don’t use a
GC::Collect call because that’s not guaranteed to force a garbage-collection cycle.
As you’ve already seen in the discussion of the garbage-collection algorithm in the
previous chapter, the GC frees up space by removing the orphan objects so that it
can do further allocations. At the end of the code (by which time a garbage col-
lection has occurred), you again e print out the pointer address and the value of
age. This is the output I got on my machine (note that the addresses will vary from
machine to machine, so your output values won’t be the same):

012CB4C8 100
012A13D0 100

As you can see, the address pointed to by the interior pointer has changed. Had
this been a native pointer, it would have continued to point to the old address,
which may now belong to some other data variable or may contain random data.
Thus, using a native pointer to point to a managed object is a disastrous thing to
attempt. The compiler won’t let you do that: You can’t assign the address of a CLI
object to a native pointer, and you also can’t convert from an interior pointer to a
native pointer. 

Passing by reference
Assume that you need to write a function that accepts an integer (by reference)
and changes that integer using some predefined rule. Here’s what such a function
looks like when you use an interior pointer as the pass-by-reference argument:

void ChangeNumber(interior_ptr<int> num, int constant)
{
   *num += constant * *num;
}

And here’s how you call the function:

CData^ d = gcnew CData();
d->age = 7;
interior_ptr<int> pint = &d->age;
ChangeNumber(pint, 3);
Console::WriteLine(d->age); // outputs 28
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Because you pass an interior pointer, the original variable (the age member of the
CData object) gets changed. Of course, for this specific scenario, you may as well
have used a tracking reference as the first argument of the ChangeNumber function;
but one advantage of using an interior pointer is that you can also pass a native
pointer to the function, because a native pointer implicitly converts to an inte-
rior pointer (although the reverse isn’t allowed). The following code work:

int number = 8;
ChangeNumber(&number, 3);   
Console::WriteLine(number); // outputs 32

It’s imperative that you remember this. You can pass a native pointer to function
that expects an interior pointer as you do here b, because there is an implicit
conversion from the interior pointer to the native pointer. But you can’t pass an
interior pointer to a native pointer; if you try that, you’ll get a compiler error.
Because native pointers convert to interior pointers, you should be aware that an
interior pointer need not necessarily always point to the CLR heap: If it contains a
converted native pointer, it’s then pointing to the native C++ heap. Next, you’ll
see how interior pointers can be used in pointer arithmetic (something that can’t
be done with a tracking reference). 

Pointer arithmetic
Interior pointers (like native pointers) support pointer arithmetic; thus, you may
want to optimize a performance-sensitive piece of code by using direct pointer
arithmetic on some data. Here’s an example of a function that uses pointer arith-
metic on an interior pointer to quickly sum the contents of an array of ints:

int SumArray(array<int>^% intarr)
{
    int sum = 0;
    interior_ptr<int> p = &intarr[0];   
    while(p != &intarr[0]+ intarr->Length)  
        sum += *p++;                        
    return sum;        
}

In this code, p is an interior pointer to the array b (the address of the first ele-
ment of the array is also the address of the array). You don’t need to worry about
the GC relocating the array in the CLR heap. You iterate through the array by
using the ++ operator on the interior pointer c, and you add each element to the
variable sum as you do so. This way, you avoid the overhead of going through
the System::Array interface to access each array element. 

Pass native pointer to functionb

Get interior 
pointer to array

b

Iterate 
through array

c



Using interior and pinning pointers 139

 It’s not just arrays that can be manipulated using an interior pointer. Here’s
another example of using an interior pointer to manipulate the contents of a
System::String object:

String^ str = "Nish wrote this book for Manning Publishing";
interior_ptr<Char> ptxt = const_cast< interior_ptr<Char> >(
    PtrToStringChars(str));       
interior_ptr<Char> ptxtorig = ptxt;   
while((*ptxt++)++);       
Console::WriteLine(str);      
while((*ptxtorig++)--);   
Console::WriteLine(str);      

You use the PtrToStringChars helper function b to get an interior pointer to the
underlying string buffer of a System::String object. The PtrToStringChars func-
tion is a helper function declared in <vcclr.h> that returns a const interior
pointer to the first character of a System::String. Because it returns a const inte-
rior pointer, you have to use const_cast to convert it to a non-const pointer. You
go through the string using a while-loop d that increments the pointer as well as
each character until a nullptr is encountered, because the underlying buffer of a
String object is always nullptr-terminated. Next, when you use Console::Write-
Line on the String object e, you can see that the string has changed to

Ojti!xspuf!uijt!cppl!gps!Nboojoh!Qvcmjtijoh

You’ve achieved encryption! (Just kidding.) Because you saved the original pointer
in ptxtorig c, you can use it to convert the string back to its original form using
another while loop. The second while loop f increments the pointer but decre-
ments each character until it reaches the end of the string (determined by the
nullptr). Now, g when you do a Console::WriteLine, you get the original string:

Nish wrote this book for Manning Publishing

Whenever you use an interior pointer, it’s represented as a managed pointer in
the generated MSIL. To distinguish it from a reference (which is also represented
as a managed pointer in IL), a modopt of type IsExplicitlyDereferenced is
emitted by the compiler. A modopt is an optional modifier that can be applied to a
type’s signature. Another interesting point in connection with interior pointers is
that the this pointer of an instance of a value type is a non-const interior pointer
to the type. Look at the value class shown here, which obtains an interior pointer to
the class by assigning it to the this pointer:

value class V
{

b
c

d
e

f
g
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    void Func()
    {
        interior_ptr<V> pV1 = this;
        //V* pV2 = this; <-- this won't compile
    }
};

As is obvious, in a value class, if you need to get a pointer to this, you should use
an interior pointer, because the compiler won’t allow you to use a native pointer.
If you specifically need a native pointer to a value object that’s on the managed
heap, you have to pin the object using a pinning pointer and then assign it to the
native pointer. We haven’t discussed pinning pointers yet, but that’s what we’ll
talk about in the next section.  

A dangerous side-effect of using interior pointers 
to manipulate String objects

The CLR performs something called string interning on managed strings, so that
multiple variables or literal occurrences of the same textual string always refer to
a single instance of the System::String object. This is possible because
System::String is immutable—the moment you change one of those variables,
you change the reference, which now refers to a new String object (quite possibly
another interned string). All this is fine as long as the strings are immutable. But
when you use an interior or pinning pointer to directly access and change the
underlying character array, you break the immutability of String objects. Here’s
some code that demonstrates what can go wrong:

String^ s1 = "Nishant Sivakumar";
String^ s2 = "Nishant Sivakumar";

interior_ptr<Char> p1 = const_cast<interior_ptr<Char> >(
    PtrToStringChars(s1));  // Get a pointer to s1
while(*p1)  // Change s1 through pointer p1
    (*p1++) = 'X';

Console::WriteLine("s1 = {0}\r\ns2 = {1}",s1,s2);

The output of is as follows:

s1 = XXXXXXXXXXXXXXXXX
s2 = XXXXXXXXXXXXXXXXX
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4.1.2 Pinning pointers

As we discussed in the previous section, the GC moves CLI objects around the CLR
heap during garbage-collection cycles and during heap-compaction operations.
Native pointers don’t work with CLI objects, for reasons previously mentioned.
This is why we have interior pointers, which are self-adjusting pointers that
update themselves to always refer to the same object, irrespective of where the
object is located in the CLR heap. Although this is convenient when you need
pointer access to CLI objects, it only works from managed code. If you need to
pass a pointer to a CLI object to a native function (which runs outside the CLR),
you can’t pass an interior pointer, because the native function doesn’t know what
an interior pointer is, and an interior pointer can’t convert to a native pointer.
That’s where pinning pointers come into play. 

 A pinning pointer pins a CLI object on the CLR heap; as long as the pinning
pointer is alive (meaning it hasn’t gone out of scope), the object remains pinned.
The GC knows about pinned objects and won’t relocate pinned objects. To con-
tinue the phone analogy, imagine a pinned pointer as being similar to your being

You only changed one string, but both strings are changed. If you don’t understand
what’s happening, this can be incredibly puzzling. You have two String handle
variables, s1 and s2, both containing the same string literal. You get an interior
pointer p1 to the string s1 and change each character in s1 to X (basically blanking
out the string with the character X). Common logic would say that you have
changed the string s1, and that’s that. But because of string interning, s1 and s2
were both handles to the same String object on the CLR heap. When you change
the underlying buffer of the string s1 through the interior pointer, you change the
interned string. This means any string handle to that String object now points
to an entirely different string (the X-string in this case). The output of the
Console::WriteLine should now make sense to you. 

In this case, figuring out the problem was easy, because both string handles were
in the same block of code, but the CLR performs string interning across application
domains. This means changing an interned string can result in extremely hard-to-
debug errors in totally disconnected parts of your application. My recommendation
is to try to avoid directly changing a string through a pointer, except when you’re
sure you won’t cause havoc in other parts of the code. Note that it’s safe to read a
string through a pointer; it’s only dangerous when you change it, because you
break the “strings are immutable” rule of the CLR. Alternatively, you can use the
String::IsInterned function to determine if a specific string is interned, and
change it only if it isn’t an interned string. 
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forced to remain stationary (analogous to being pinned). Although you have a
cell phone, your location is fixed; it’s almost as if you had a fixed landline. 

 Because pinned objects don’t move around, it’s legal to convert a pinned
pointer to a native pointer that can be passed to the native caller that’s running
outside the control of the CLR. The word pinning or pinned is a good choice; try to
visualize an object that’s pinned to a memory address, just like you pin a sticky
note to your cubicle’s side-board. 

 The syntax used for a pinning pointer is similar to that used for an inte-
rior pointer:

pin_ptr< type > var = [address];

The duration of pinning is the lifetime of the pinning pointer. As long as the pin-
ning pointer is in scope and pointing to an object, that object remains pinned.
If the pinning pointer is set to nullptr, then the object isn’t pinned any longer; or
if the pinning pointer is set to another object, the new object becomes pinned
and the previous object isn’t pinned any more.

 Listing 4.2 demonstrates the difference between interior and pinning point-
ers. To simulate a real-world scenario within a short code snippet, I uses for loops
to create a large number of objects to bring the GC into play.

for(int i=0; i<100000; i++)   
   gcnew CData();             

CData^ d1 = gcnew CData();   
for(int i=0; i<1000; i++)    
   gcnew CData();            
CData^ d2 = gcnew CData();   

interior_ptr<int> intptr = &d1->age;   
pin_ptr<int> pinptr = &d2->age;   

printf("intptr=%p pinptr=%p\r\n",   
   intptr,pinptr);            

for(int i=0; i<100000; i++)   
   gcnew CData();             

printf("intptr=%p pinptr=%p\r\n",   
   intptr,pinptr);

In the code, you create two CData objects with a gap in between them b and asso-
ciate one of them with an interior pointer to the age member of the first object c.

Listing 4.2 Code that compares an interior pointer with a pinning pointer

Fill portion 
of CLR heap

b

c
d

Display pointer 
addresses before GC

e

Display pointer 
addresses after GC
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The other is associated with a pinning pointer to the age member of the second
object d. By creating a large number of orphan objects, you force a garbage-
collection cycle e (again, note that calling GC::Collect may not always force a
garbage-collection cycle; you need to fill up a generation before a garbage-
collection cycle will occur). The output I got was

intptr=012CB4C8 pinptr=012CE3B4
intptr=012A13D0 pinptr=012CE3B4

Your pointer addresses will be different, but after the garbage-collection cycle,
you’ll find that the address held by the pinned pointer (pinptr) has not changed,
although the interior pointer (intptr) has changed. This is because the CLR and
the GC see that the object is pinned and leave it alone (meaning it doesn’t get
relocated on the CLR heap). This is why you can pass a pinned pointer to native
code (because you know that it won’t be moved around).

Passing to native code
The fact that a pinning pointer always points to the same object (because the
object is in a pinned state) allows the compiler to provide an implicit conversion
from a pinning pointer to a native pointer. Thus, you can pass a pinning pointer
to any native function that expects a native pointer, provided the pointers are of
the same type. Obviously, you can’t pass a pinning pointer to a float to a function
expecting a native pointer to a char. Look at the following native function that
accepts a wchar_t* and returns the number of vowels in the string pointed to by
the wchar_t*:

#pragma unmanaged
int NativeCountVowels(wchar_t* pString)
{
   int count = 0;
   const wchar_t* vowarr = L"aeiouAEIOU";
   while(*pString)
      if(wcschr(vowarr,*pString++))
         count++;
   return count;
}
#pragma managed

Here’s how you pass a pointer to a CLI object, after first pinning it, to the native
function just defined:

String^ s = "Most people don't know that the CLR is written in C++";
pin_ptr<Char> p = const_cast< interior_ptr<Char> >(
   PtrToStringChars(s));
Console::WriteLine(NativeCountVowels(p));
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PtrToStringChars returns a const

interior pointer, which you cast to a
non-const interior pointer; this is
implicitly converted to a pinning
pointer. You pass this pinning pointer,
which implicitly converts to a native
pointer, to the NativeCountVowels

function. The ability to pass a pinning
pointer to a function that expects a
native pointer is extremely handy in
mixed-mode programming, because
it gives you an easy mechanism to
pass pointers to objects on the CLR
heap to native functions. Figure 4.2
illustrates the various pointer conversions that are available.

 As you can see in the figure, the only pointer conversion that is illegal is that
from an interior pointer to a native pointer; every other conversion is allowed and
implicitly done. You have seen how pinning pointers make it convenient for you to
pass pointers to CLI objects to unmanaged code. I now have to warn you that pin-
ning pointers should be used only when they’re necessary, because tactless usage
of pinning pointers results in what is called the heap fragmentation problem. 

The heap fragmentation problem
Objects are always allocated sequentially in the CLR heap. Whenever a garbage
collection occurs, orphan objects are removed, and the heap is compacted so it
won’t remain in a fragmented condition. (We covered this in the previous chapter
when we discussed the multigenerational garbage-collection algorithm used by
the CLR.) Let’s assume that memory is allocated from a simple heap that looks

#pragma managed/unmanaged

These are #pragma compiler directives that give you function-level control for com-
piling functions as managed or unmanaged. If you specify that a function is to be
compiled as unmanaged, native code is generated, and the code is executed out-
side the CLR. If you specify a function as managed (which is the default), MSIL is
generated, and the code executes within the CLR. Note that if you have an unman-
aged function that you’ve marked as unmanaged, you should remember to re-
enable managed compilation at the end of the function

Figure 4.2 Pointer conversions between native, 
interior, and pinning pointers
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like figures 4.3 through 4.6. Of course, this is a simplistic representation of the
CLR’s GC-based memory model, which involves a more complex algorithm. But
the basic principle behind the heap fragmentation issue remains the same, and
thus this simpler model will suffice for the present discussion. Figure 4.3 depicts
the status of the heap before a garbage-collection cycle occurs.

There are presently three objects in the heap. Assume that Obj2 (with the gray
shaded background) is an orphan object, which means it will be cleaned up dur-
ing the next garbage-collection cycle. Figure 4.4 shows what the heap looks like
after the garbage-collection cycle.

The orphan object has been removed and a heap compaction has been per-
formed, so Obj1 and Obj3 are now next to each other. The idea is to maximize the
free space available in the heap and to put that free space in a single contiguous
block of memory. Figure 4.5 shows what the heap would look like if there was a
pinned object during the garbage-collection cycle.

Assume that Obj3 is a pinned object (the circle represents the pinning). Because
the GC won’t move pinned objects, Obj3 remains where it was. This results in frag-
mentation because the space between Obj1 and Obj2 cannot be added to the large
continuous free block of memory. In this particular case, it’s just a small gap that
would have contained only a single object, and thus isn’t a major issue. Now,
assume that several pinned objects exist on the CLR heap when the garbage-
collection cycle occurs. Figure 4.6 shows what happens in such a situation.

Figure 4.3 Before a garbage-collection cycle

Figure 4.4 After a garbage-collection cycle (assuming no 
pinned objects)

Figure 4.5 After a garbage-collection cycle (one pinned object)
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None of those pinned objects can be relocated. This means the compaction pro-
cess can’t be effectively implemented. When there are several such pinned
objects, the heap is severely fragmented, resulting in slower and less-efficient
memory allocation for new objects. This is the case because the GC has to try that
much harder to find a block that’s large enough to fit the requested object. Some-
times, although the total free space is bigger than the requested memory, the fact
that there is no single continuous block of memory large enough to hold that
object results in an unnecessary garbage-collection cycle or a memory exception.
Obviously, this isn’t an efficient scenario, and it’s why you have to be extremely
cautious when you use pinning pointers. 

Recommendations for using pinning pointers
Now that you’ve seen where pinning pointers can be handy and where they can be
a little dodgy, I’m going to give you some general tips on effectively using pin-
ning pointers. 

 Unless you absolutely have to, don’t use a pinning pointer! Whenever you
think you need to use a pinning pointer, see if an interior pointer or a tracking ref-
erence may be a better option. If an interior pointer is acceptable as an alternative,
chances are good that this is an improper place for using a pinning pointer.

 If you need to pin multiple objects, try to allocate those objects together so
that they’re in an adjacent area in the CLR heap. That way, when you pin them,
those pinned objects will be in a contiguous area of the heap. This reduces frag-
mentation compared to their being spread around the heap.

 When making a call into native code, check to see if the CLR marshalling layer
(or the target native code) does any pinning for you. If it does, you don’t need to
pin your object before passing it, because you’d be writing unnecessary (though
harmless) code by adding an extra pinning pointer to the pinned object (which
doesn’t do anything to the pinned state of the object).

 Newly-allocated objects are put into Generation-0 of the CLR heap. You know
that garbage-collection cycles happen most frequently in the Generation-0 heap.
Consequently, you should try to avoid pinning recently allocated objects; chances
are that a garbage-collection cycle will occur while the object is still pinned. 

 Reduce the lifetime of a pinning pointer. The longer it stays in scope, the
longer the object it points to remains pinned and the greater the chances of heap

Figure 4.6 After a garbage-collection cycle (several pinned objects)
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fragmentation. For instance, if you need a pinning pointer inside an if block,
declare it inside the if block so the pinning ends when the if block exits. 

 Whenever you pass a pinning pointer to a native pointer, you have to ensure
that the native pointer is used only if the pinning pointer is still alive. If the pin-
ning pointer goes out of scope, the object becomes unpinned. Now it can be
moved around by the GC. Once that happens, the native pointer is pointing to
some random location on the CLR heap. I’ve heard the term GC hole used to refer
to such a scenario, and it can be a tough debugging problem. Although it may
sound like an unlikely contingency, think of what may happen if a native function
that accepts a native pointer stores this pointer for later use. The caller code may
have passed a pinning pointer to this function. Once the function has returned,
the pinning will quickly stop, because the original pinning pointer won’t be alive
much longer. However, the saved pointer may be used later by some other func-
tion in the native code, which may result in some disastrous conditions (because
the location the pointer points to may contain some other object now or even be
free space). The best you can do is to know what the native code is going to do
with a pointer before you pass a pinning pointer to it. That way, if you see that
there is the risk of a GC hole, you avoid calling that function and try to find an
alternate solution. 

 Note that these are general guidelines and not hard rules to be blindly fol-
lowed at all times. It’s good to have some basic strategies and to understand the
exact consequences of what happens when you inappropriately use pinning
pointers. Eventually, you have to evaluate your coding scenario and use your
judgment to decide on the best course. 

4.2 Working with interop mechanisms

The term interop (short for interoperability) is used to represent any situation where
managed and unmanaged code have to interact with each other; it includes call-
ing managed code from unmanaged code, as well as the reverse. C++/CLI provides
the same mechanisms for interop that are available in other languages like C#,
such as CCW and P/Invoke. In addition, C++/CLI also provides a mechanism called
C++ interop, which allows you to use a mixed-mode executable or DLL to handle
interop scenarios. For most purposes, C++ interop is a lot more convenient, flex-
ible and performant than the other interop mechanisms. Throughout the rest of
this book, we’ll use C++ interop for the mixed-mode programming ventures.

 In this section, we’ll look at all three of the mechanisms available in VC++
2005 to interop between managed and unmanaged code, and compare them in
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terms of ease of use and performance. When we discuss CCW and P/Invoke, you’ll
see why you may prefer C++ interop over them whenever that is an option. Of
course, you should also be aware that both CCW and P/Invoke are powerful mech-
anisms that are handy for specific situations where C++ interop may not be the
best option. 

 To simplify the discussion, I have sectioned it into the two potential interop sit-
uations: accessing a managed library from native code and accessing a native
library from managed code. For most real-life applications that require some sort
of interop, you’ll encounter at least one of these situations, and quite possibly both. 

4.2.1 Accessing a managed library from native code

You’ll encounter scenarios where you need to access a managed library from
native code, typically when you have an existing unmanaged application and, for
whatever reasons, you need to interop with a new managed library as part of
enhancing or revising your application. This is analogous to trying to play a DVD
on an old VCR. You need to convert the DVD data (analogous to the managed
library) to a format that can be played by the VCR (analogous to your native code). 

 In this section, you’ll see how to do this using two different techniques: The first
one will use a CCW, and the second one will use C++ interop. You’ll use a simple
managed library that lets you order a movie from a fictitious video store.
Listing 4.3 shows the interface and skeletal class implementation for such a library.

namespace ManLib 
{
    public interface class IVideoStore
    {
        bool IsMovieAvailable(String^);
        int GetMovieID(String^);
        int GetStockCount(int);
        bool OrderMovie(int, int);
        array<String^>^ GetMovieCast(int);

    };

    public ref class VideoStore : IVideoStore
    {
    public:
        virtual bool IsMovieAvailable(String^ strMovieName)
        . . .
        virtual int GetMovieID(String^ strMovieName)

Listing 4.3 The managed library implementation for the video store
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        . . .
        virtual int GetStockCount(int movieID)
        . . .
        virtual bool OrderMovie(int movieID, int count)
        . . .
        virtual array<String^>^ GetMovieCast(int movieID)
        . . .
    };
}

The method names are self-explanatory, so I won’t attempt to describe what each
method does. Next, you’re going to write two different applications. One uses a
CCW and the other uses C++ interop, but both applications are functionally iden-
tical. They both check if a movie is available; after checking to see if the store has
it, you’ll order six copies of it. The applications also display a list of the cast of
characters once the order is completed. All this is done through the managed
library you just defined. Let’s start with the CCW caller application.

Using a CCW to access a CLI library
CCW is a mechanism available in .NET that allows a COM client (such as a native
C++ or VB 6 application) to access managed objects via proxy COM objects which
wrap the managed objects. Figure 4.7 shows a diagrammatic representation of
how the CCW connects a CLI library with a native caller.

 The CCW is responsible for all managed/unmanaged marshalling. The man-
aged object is virtually invisible to the COM client, which sees only the CCW.
Using the DVD-VCR analogy, a CCW is like an external device that reads a DVD
and passes converted data to a dummy video cassette disk that can be played on
a VCR. 

 The CCW is reference-counted (like a normal COM object) and manages the
lifetime of the wrapped managed object. When its reference count reaches zero,
the managed object becomes a candidate for garbage collection. A deeper
explanation of CCW or COM isn’t within the scope or subject matter of this
book, and unless you have some basic COM awareness, the code in this section
may look a little strange. You should, however, still go through it, so that when
you see the C++ interop version of the same app, you’ll appreciate how much
simpler and more convenient C++ interop is. In general, unless you’ve previ-
ously done a bit of COM programming, CCW isn’t something I recommend as a
suitable interop mechanism. With that in mind, let’s get started on the CCW
caller application.
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The managed assembly has to be registered for use by COM clients. For this,
you use Regasm.exe, the Assembly Registration Tool provided with the .NET
Framework. You can run the following command to register the assembly for
COM access:

RegAsm.exe  ManLib.dll /tlb:ManLib.tlb

You use the /tlb option to output a type library file that will contain the accessible
COM types within that library. You do that so you can import type information
into the application by using #import on this tlb file. Note that only public mem-
bers of public types are exposed via COM, and any other members or types will be
invisible to the CCW. You can also control COM visibility of an assembly or a type
at various levels of granularity using custom attributes such as ComVisible.

 Before I show you the code for the application, look at the output you’ll get
when you run the final CCW application, shown in figure 4.8. You’ll then know
exactly what is being done as you examine the code.

Figure 4.7 Native caller using a CCW to call into a CLI library
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Remember that the CCW caller is a native application and knows nothing of .NET
or of managed types. Listing 4.4 shows the CCW caller application code.

#import "..\debug\ManLib.tlb" raw_interfaces_only   

using namespace ManLib;

void BuyMovie()
{
    cout << "CCW caller" << endl;
    ManLib::IVideoStorePtr pVidStore(__uuidof(VideoStore));   

    unsigned char ret = 0;
    CComBSTR strMovie = "Batman Begins";

    cout << "Attempting to order Batman Begins." << endl;
    if(SUCCEEDED(pVidStore->IsMovieAvailable(   
        strMovie, &ret)) && ret)
    {   
        long movieid = 0;
        if(SUCCEEDED(pVidStore->GetMovieID(strMovie, &movieid)))  
        {
            long count = 0;
            if(SUCCEEDED(pVidStore->GetStockCount(   
                movieid, &count)) && count > 5)
            {
                cout << count << " copies available." << endl;
                if(SUCCEEDED(pVidStore->OrderMovie(   
                    movieid, 6, &ret)) && ret)
                {
                    cout << "6 copies ordered." << endl;
                    SAFEARRAY* pSA= NULL;
                    if(SUCCEEDED(pVidStore->GetMovieCast(   
                        movieid, &pSA)))

Listing 4.4 Accessing the managed library via a CCW

Figure 4.8
Output from the CCW caller application
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                    {   
                        long lbound = 0, ubound = 0;             

                        SafeArrayGetLBound (pSA, 1, &lbound);    
                        SafeArrayGetUBound (pSA, 1, &ubound);    
                        
                        BSTR* s = NULL;
                        SafeArrayAccessData(pSA, (void**) &s);   
                        cout << "Main cast" << endl;
                        for(long i=lbound; i<=ubound; i++)       
                        {
                            wcout << "\t" << s[i] << endl;       
                        }
                        SafeArrayUnaccessData(pSA);              
                        SafeArrayDestroy (pSA);                  
                    }
                }
            }
        }
    }
}

The most noticeable thing about this code listing is that it’s essentially COM-
based in nature. There is no .NET presence syntactically in that code, and that
code is only aware that it’s accessing a COM object and its methods. The fact that
the COM object is a CCW for an underlying managed object is imperceptible to the
caller application. When you use #import, the compiler creates the required smart
pointers to access the COM object, which saves you the trouble of manually having
to call COM functions such as AddRef, Release, QueryInterface, and so on. 

 The .NET interface is now accessed via the CCW interface, which means the
prototypes for the managed functions have been replaced with COM versions. As
is typical in COM, all functions return an HRESULT. The return type in the managed
code is converted to an out parameter of the function. For example, this is what
the IsMovieAvailable function looks like in managed code:

bool IsMovieAvailable(String^);

And here’s the COM version used in the CCW caller:

HRESULT IsMovieAvailable (/*[in]*/ BSTR,
    /*[out,retval]*/ unsigned char *);

The String^ argument in managed code becomes a BSTR argument in COM code,
and the bool return type, which is now an out parameter of the function, becomes
an unsigned char*. Similarly, every other managed function has been given a
COM version which uses COM types. 

Enumerates returned
SAFEARRAY
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 In the case of the GetMovieCast function, the COM version can be a little for-
midable for people without COM experience: It uses a SAFEARRAY, which isn’t the
simplest of the COM types. The original managed function, which looked like this

array<String^>^ GetMovieCast(int);

has been converted to the following COM version:

HRESULT GetMovieCast (/*[in]*/ long, /*[out,retval]*/ SAFEARRAY**);

Although the CLR marshalling layer takes care of type conversions between the
managed and the COM world, the caller is responsible for freeing native
resources once they’re no longer required. You’ll notice how you use SafeArray-
Destroy to free the SAFEARRAY once you finish iterating through its contents. You
can simplify the SAFEARRAY usage considerably by using the ATL CComSafeArray
wrapper class, but I wanted to use straight COM to exemplify the differences
between the CCW approach and the C++/CLI approach that will be discussed in
the next section.

 As I said, unless you’re reasonably comfortable with COM and prepared to be
responsible for native resource deallocation (or be familiar with using ATL wrap-
per classes), CCW can be intimidating. Of course, if your native application is
COM-based and already makes extensive use of COM, CCW is the most natural
choice and will merge smoothly with the rest of your native code. If not, then I
strongly recommend that you don’t use CCW; instead, you should use C++
interop. Moving on to the C++ interop version of the app you wrote previously,
you’ll appreciate how convenient it can be compared to CCW.

Preserving method signature for CCW

In the example, the return type of the managed method is converted to an out
parameter in the COM method, and the return type is changed to an HRESULT. This
can be inconvenient at times, because you need to check the HRESULT for success.
You also need to pass a pointer to the original return type as a final argument. If
you have control over the managed library and have the option of modifying the
original managed code, you can use the MethodImplAttribute attribute with
MethodImplOptions::PreserveSig on those methods where you want the signa-
ture to be preserved. For example, if you applied it to the IsMovieAvailable
method, you’d get the following COM method: unsigned char IsMovieAvail-
able([in] BSTR), which is a little closer to the original managed method. You can
also directly use the return type instead of having to pass a pointer to a variable. 
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Using C++ interop to access a CLI library
The C++ interop caller app is
functionally identical to the CCW
caller app. However, although the
CCW caller was a native C++
application, the C++ interop
caller has to be compiled with the
/clr compilation switch—if not
the whole application, then at
least those source files that will
access the managed library. You
also need to add a reference to
the managed library in the
project settings. Figure 4.9 shows
a diagrammatic view of a mixed-
mode application accessing a CLI
library via C++ interop. Using the
DVD-VCR analogy, C++ interop is
analogous to directly adding sup-
port for playing a DVD to your old
VCR by adding a DVD player to
the device (analogous to enabling
/clr compilation). 

 As you did with the CCW, look at the output you’ll get when you run the final
C++ interop application; see figure 4.10.

 Listing 4.5 shows the code for the C++ interop version of the application. Not
only is it shorter than the CCW version, but it directly uses CLI types to access the
managed library. 

void BuyMovie()
{
    cout << "C++/CLI caller" << endl;
    VideoStore^ vidstore = gcnew VideoStore();   
    cout << "Attempting to order Batman Begins." << endl;
    System::String^ strMovie = "Batman Begins";
    if(vidstore->IsMovieAvailable(strMovie))            
    {
        int movieid = vidstore->GetMovieID(strMovie);   
        int count = 0;

Listing 4.5 Accessing the managed library via C++ interop

Figure 4.9 Accessing a CLI library using C++ interop

Figure 4.10 Output from the C++ interop 
caller application
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VideoStore object

Invoke VideoStore 
methods
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        if((count = vidstore->GetStockCount(movieid)) > 5)
        {
            cout << count << " copies available." << endl;
            if(vidstore->OrderMovie(movieid, 6))
            {
                cout << "6 copies ordered." << endl;
                cout << "Main cast" << endl;
                for each(System::String^ s in 
                    vidstore->GetMovieCast(movieid))   
                {
                    System::Console::WriteLine("\t{0}", s);
                }
            }
        }
    }
}

As you can see, this is conventional C++/CLI code, except that it’s part of a pri-
marily unmanaged application that has had /clr enabled. In other words, you’re
seeing a mixed-mode application, albeit a simple one. You directly use CLI types
like String^ and CLI arrays, and thus there is no need to convert managed types to
native types. In a real-life scenario, unless the original native application is COM-
based, the mere fact that you didn’t have to go through the exacting chore of enu-
merating a SAFEARRAY and can instead have the luxury of using for each b on the
returned String^ array should itself be reason enough to choose C++ interop
over CCW in such a situation. Although I am firmly in favor of C++ interop over
CCW, it is imprudent to take an uncompromising approach to all interop scenar-
ios. There are situations where CCW is best and other situations (the majority, in
my opinion) where C++ interop is more suitable. In the next section, we’ll com-
pare the two mechanisms to see where each is the better choice.

Comparison of the two techniques

You’ve seen two different techniques to access a managed library from a native
application. One uses the CCW mechanism supported by the .NET Framework,
and the other uses C++ interop supported by the C++/CLI compiler. The CCW
caller is typically a native application (although you can do CCW from a mixed-
mode app too), whereas the C++ interop caller has to enable /clr and is always a
mixed-mode application. If you aren’t prepared to use a mixed-mode caller
application, CCW is your better choice, because C++ interop requires mixed-
mode compilation. 

Enumerate 
String array

b

Invoke VideoStore
methods
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 If you aren’t familiar with COM, or if your caller app isn’t primarily COM-
based, using CCW has the obvious disadvantage that you’ll be forced to do quite a
bit of COM programming. In most cases, you’ll be responsible for freeing COM
resources such as SAFEARRAYs and BSTRs. And unless you can apply the Method-
ImplAttribute with the PreserveSig option on your managed methods (which
requires that you have source code access to the managed library), you’ll also have
to handle out parameters for your return types because the COM methods will
return HRESULTs. If you use C++ interop, you’ll directly use C++/CLI to access the
managed library using .NET types.

 Another issue with using CCW is that CCW lets you instantiate only those
objects that have a default constructor. If an object has only nondefault construc-
tors, you can’t use that object through CCW. You can write another factory class
that will instantiate and return an object of the type you want, but doing so adds
unnecessary work and is possible only in scenarios where you can change the
managed library. There are no such issues with C++ interop.

 The last issue is that of performance. Although the performance improvement
will vary depending on the scenario where interop is applied, typically C++
interop is much more performant than CCW. With CCW, the managed/unman-
aged transitions are handled by the CCW marshalling layer. With C++ interop,
you have more direct control over what you do, because you can choose to use
managed types by default and convert to native types only where required. 

 Summarizing these points, my recommendation is to use CCW only when you
have to, such as when the native app is COM-based and you don’t want to bring in
/clr compilation. For all other scenarios, C++ interop is your fastest and most
convenient option. In later chapters, you’ll see how you can take advantage of
C++ interop when you mix managed technologies such as Windows Forms, Ava-
lon, and so on, with native technologies like MFC. Now that you’ve seen how to
access managed libraries from native code, let’s look at the reverse process in the
next section—accessing native libraries from managed code.

4.2.2 Accessing a native library from managed code

In this section, we’ll look at the reverse scenario of what we covered in the previ-
ous section: accessing a native library from managed code. For example, you may
want to use a native library that you have been using for years from your new
managed applications, because you can’t find a managed equivalent for it that’s
efficient enough for your purposes. Think of the DVD-VCR analogy, and swap the
situation; you have a video tape, and you want to play it on your DVD player. You
can approach this in two ways—one is to use the P/Invoke mechanism, and the
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other is to use C++ interop. We’ll cover both mechanisms in this section, and
we’ll use the following library as the example native code:

class __declspec(dllexport) CStudentDB   
{
public:
    CStudentDB(int id);                  
    int GetScore();
};                                       

extern "C"  __declspec(dllexport) int GetStudentID(
    LPCTSTR strName);                                    
extern "C" __declspec(dllexport) void GetStudentAddress(  
    int id, LPTSTR szAddress);                           

This code is part of a native DLL. There are two exported functions c, as well
as an exported class b. You’re going to write two sample programs, one using
P/Invoke and the other using C++ interop, both of which will access this native
DLL. Let’s start with the P/Invoke sample.

Using P/Invoke to access a native DLL
P/Invoke (short for Platform Invoke) is a mechanism that allows you to call unman-
aged functions declared in native DLLs from managed code by declaring those
functions using the DllImport attribute. This is analogous to using a device that con-
verts the video cassette data to a video stream that can be directly passed to the DVD
player. The .NET P/Invoke layer does the type marshalling across the managed/
unmanaged boundary. When you make a P/Invoke function call, the P/Invoke layer
loads the containing DLL into the process memory (if it’s not already loaded),
gets the address of the unmanaged function to call, converts the managed types
to native types as required, calls the function, converts the native types back to
managed types as required, and returns control to the calling managed code.
Figure 4.11 shows how a managed application accesses a native C-based API
through P/Invoke. 

 All this is done transparently. As a user, it’s convenient to call an unmanaged
function as if it was a managed call, but you pay a price for all that convenience—
performance. The managed/unmanaged transitions and data conversions slow
down your application, although depending on your scenario, that may not be a
big issue. Listing 4.6 shows the P/Invoke version of the program that calls into the
native DLL you declared earlier.
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[DllImport("Natlib.dll",CharSet=CharSet::Unicode)]   
extern "C" int GetStudentID(String^ strName);        
[DllImport("Natlib.dll",CharSet=CharSet::Unicode)]   
extern "C" void GetStudentAddress(int id,            
    StringBuilder^ szAddress);                       

int main(array<System::String ^> ^args)
{
    int studid = GetStudentID("Howard Jones");        
    StringBuilder^ addr = gcnew StringBuilder(100);   
    GetStudentAddress(studid, addr);                  
    Console::WriteLine("Student ID : {0}", studid);
    Console::WriteLine("Address : {0}", addr->ToString());
    return 0;
}

In the code, you declare each unmanaged function that you need to call. For the
GetStudentID function b, notice how the LPCTSTR parameter in the DLL function

Listing 4.6 Using P/Invoke to call functions in a native DLL

Figure 4.11
The P/Invoke mechanism
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has been changed to a String^ parameter in the P/Invoked function. When the
call is made, the P/Invoke layer converts the String^ to an LPCTSTR before making
the call. Similarly, for the GetStudentAddress function c, you use a String-
Builder^, where the native function used an LPTSTR. You need to use managed
types that closely match the corresponding unmanaged types, or else the calls will
either fail with erroneous results or you may get a crash. For example, passing an
int where a char* is expected results in unpredictable behavior depending on
what the native function expects that char* to be. DllImport can take several argu-
ments; for example, in the declaration of GetStudentAddress c, you specify that
the CharSet is Unicode. Because the focus of this book is on using C++ interop, I
don’t want to discuss the various DllImport options in detail, but if you ever end
up using P/Invoke, you should look them up in the MSDN library.

 Notice that you don’t make a call into the exported class, because you can only
call exported functions using P/Invoke. If you want to use the exported class and
you have access to the DLL source code, you have to export a function that would
wrap the calls to the class for you. For instance, you’d have to export a function
from the DLL such as the following, where the function declares an instance of
the class, makes a call into a class method, and returns the value returned by the
class method:

extern "C" __declspec(dllexport)_API int GetStudentScore(int id)
{
    CStudentDB sdb(id);
    return sdb.GetScore();
}

Obviously, if you have a DLL that exports several classes, and you don’t have the
option of writing wrapper functions for them, P/Invoke isn’t applicable in calling
those functions. The advantage of using P/Invoke is that you can directly use
managed types and let the P/Invoke layer do your data marshalling for you. The
disadvantages are poorer performance and having to re-declare every function
you intend to call. That’s why C++ interop is so much more convenient and, for
most purposes, a far more performant option. With that in mind, let’s move on to
the C++ interop version of the previous program.

Using C++ interop to access a native DLL
To access the native library from C++ interop, all you need to do is to #include
the required header files and link with the required lib files. This is like adding
video cassette support to a DVD player—like one of those 2-in-1 players available
from your nearest Wal-Mart. Figure 4.12 shows a diagrammatic view of how a
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mixed-mode caller can directly access a native API via C++ interop; notice how
there’s no need for a middleman. 

 Once you do that, you can use the class directly, as shown in the listing 4.7.

#include "../NatLib.h" [#1]
#pragma comment(lib,"../Natlib")   

using namespace System;

int main(array<System::String ^> ^args)
{
    int studid = GetStudentID(_T("Howard Jones"));      
    TCHAR addr[100];
    GetStudentAddress(studid, addr);
    Console::WriteLine("Student ID : {0}", studid);     
    std::wcout << L"Address : " << addr << std::endl;   
    CStudentDB sdb(studid);                              
    Console::WriteLine("Score : {0}", sdb.GetScore());   
    return 0;
}

As is typical in mixed-mode applications, you use both native objects such as cout
as well as managed objects such as Console. In addition, you can easily instantiate
and use the exported class b, which you couldn’t do with P/Invoke without the
help of an exported helper function that would do it for you. C++ interop is more
convenient to use than P/Invoke because you don’t have to declare the P/Invoke
functions and can directly use the native types that are expected by the native
DLL. Very often, you can avoid doing managed/unmanaged type conversions
except where required. But P/Invoke does have its uses too; ideally, both mecha-
nisms should be used where they’re most suitable.

Listing 4.7 Using C++ interop to call functions in a native DLL

Figure 4.12
Accessing a native library 
using C++ interop

Include required 
header and lib files

Directly call 
exported native 
functions

Instantiate exported class,
and invoke methods b



Working with interop mechanisms 161

Comparison of the two techniques

Now that you have seen both techniques, let’s summarize the pros and cons of
each. P/Invoke is directly supported by the .NET Framework, and other lan-
guages like C# and VB.NET use it exclusively to call into unmanaged API. P/
Invoke is extremely advantageous for other languages like C# and VB because it
lets you access the unmanaged functions using managed types. Because C# and
VB only understand managed types, this is a boon for them. With C++, this isn’t
as advantageous considering that C++/CLI supports both managed and unman-
aged types. But if your scenario requires you to compile your C++/CLI code
using /clr:pure (generate only MSIL—no native code), then P/Invoke is your
only option. C++ interop isn’t compatible with /clr:pure because it requires a
mixed-mode assembly.

 If that isn’t a constraint, then C++ interop is far more convenient to use than
P/Invoke. With C++ interop, you don’t have to declare every API function and
native structure using the DllImport attribute. You just include the header and lib
files, and directly use the API as you would have done in an unmanaged applica-
tion. You can access exported classes in a DLL, something that can’t be directly
done using P/Invoke. Another advantage is that you can minimize the managed/
unmanaged type conversions that are required. For example, suppose your app
needs a result that can be obtained from calling three native functions and then
doing some processing on them. With C++ interop, you can make those API
calls and perform native processing on their results to obtain the final result,
which can at that point be converted to a managed type. With P/Invoke, even the
subresults would use managed types, thus increasing the number of type conver-
sions required. 

 In general, C++ interop is more performant than P/Invoke because of fewer
type-marshalling requirements. Although you can tune up P/Invoke calls by using
appropriate managed types in the declarations that reduce the type conversions
required during P/Invoke, you eventually end up doing type marshalling on your
own. With C++ interop, you have more control over the managed/unmanaged
type conversions that need to be done. And you can speed up calls into native
code by putting them in #pragma unmanaged blocks in your source code.

 In this book, we’ll be using C++ interop exclusively, because although P/Invoke
may have its advantages, it’s primarily intended for languages like C# and VB.NET.
With C++/CLI, when you have the flexibility of using a powerful mechanism like
C++ interop, you don’t have to use P/Invoke. Whether you’re calling into man-
aged code from native code, calling native code from managed code, or mixing
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managed and native calls in a single block of code, we’ll use C++ interop exclu-
sively over other mechanisms like CCW and P/Invoke. 

4.3 Using mixed types

A mixed type is one that requires object members to be allocated on both the CLI
heap and in unmanaged memory, where these object members may be directly
declared in the class or inherited from a parent. A more simplistic definition is to
say that a mixed type is either a native type with a managed type member, or a
managed type with a native type member. In this section, we’ll examine both sce-
narios. An analogy is to think of a clock that shows time using hour, minute, and
second hands as well as using a digital display—the time is represented both in
analog and digital formats. 

 The VC++ 2005 compiler doesn’t directly support mixed types! You may be
thinking, if it doesn’t, then why are you discussing mixed types in this chapter? I
said “doesn’t directly support”—the operative word is directly. There are library-
provided workarounds to implement mixed types, and you can even write a smart
pointer class to augment the possibilities.

 The ability to support mixed types is important for C++/CLI as a language.
The language is primarily being promoted as the number-one choice for doing
any kind of managed/unmanaged interop programming. The moment you start
doing that, the first thing you need, perhaps without your even realizing it, is
support for mixed types. It’s not surprising, when you think about it. Say you
have an extensive MFC application with hundreds of MFC-derived classes. If
you attempt to add a managed library to this application, you’ll soon want to
add managed type members to your MFC-derived classes (those would then be
mixed types). The reverse situation for a managed application is equally possi-
ble, where your managed classes need native members when you try to add
some native library to the application. In later chapters, when you see real-life
applications of mixed-mode programming, just about every class you write will
be a mixed-mode class. 

4.3.1 Native types with managed members

In this section, we’ll discuss how you can declare managed types in a native class.
Obviously, you can’t directly declare a managed type member in a native type. If
you attempt to do so, you’ll be greeted with a compiler error. The following code
won’t compile:
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ref class Managed{};
class Native
{
    Managed^ m;   
};

This code snippet throws compiler error C3265 b because you attempt to declare
a managed object as a native class member. To declare the managed member
in the native type, you have to use the gcroot template class (which is declared in
<gcroot.h>), which wraps the GCHandle structure (which is under the System::
Runtime::InteropServices namespace). Here’s how gcroot is used:

gcroot<MANTYPE^> pMan; 
. . .
pMan = gcnew MANTYPE();   
pMan->ManagedMethod();    

Note how you can directly use gcnew to instantiate the gcroot variable b. This is
possible because the gcroot template has an assignment operator that accepts a
type T, which in this code snippet will be a MANTYPE^. There’s also a conversion
constructor for gcroot that takes a type T, which comes into play if you directly
construct a gcroot object using gcnew. Similarly, you can also make MANTYPE
method calls on the variable c. This is possible because gcroot has an opera-
tor-> that returns a T (which is MANTYPE^ in the example). In general, once you
have a gcroot<T> variable, you can use it just as if it was a T variable, which is what
gcroot is there for. Let’s look at an example.

 Imagine that you have a native Grid class that represents a grid control, which
is internally bound to an XML data store. Next, assume that you have a managed
XmlDB class, which is used to read and write data between the grid control and the
XML data store. You’re going to see how the native Grid class can have the XmlDB
managed class as a member. The XmlDB class opens the Xml file in its constructor
and closes the file in its destructor—thus, it’s imperative that the destructor is
called as soon as the grid control is closed. Here’s the skeletal code listing of the
managed XmlDB class:

ref class XmlDB
{
public:
    XmlDB(String^ XmlFile)
    {//Open XML data store
    }
    ~XmlDB()
    {//Close XML data store
    }

Throw compiler 
error C3265

b

Wrap managed 
type MANTYPE

b

Directly invoke methods of MANTYPEc
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    void Read(int x, int y, String^ node)
    {//Read node data into (x,y)
    }
    void Write(int x, int y, String^ node)
    {//Write data in (x,y) into node
    }
};

I’ve kept the class simple, with both Read and Write methods, and nontrivial con-
structor and destructor. Listing 4.8 shows the skeletal native Grid class that uses
gcroot to declare and use a member variable of type XmlDB.

class Grid
{
    gcroot<XmlDB^> _xmldb;   
public:
    Grid(char* XmlFile)
    {
        _xmldb = gcnew XmlDB(gcnew String(XmlFile));   
    }
    ~Grid()
    {
        delete _xmldb;   
    }
    const char* GetXmlStore()
    {//Return Xml file path
    }
    void PopulateGrid()                           
    {//Populate grid using the Xml file           
        . . .
        for(int i=0; i<rows; i++)
            for(int j=0; j<cols; j++)
                _xmldb->Read(i, j, node[i,j]);    
    }
    void OnGridUpdated()
    {//Write updated cells back to the Xml file   
        . . .
        for(int i=0; i<rows; i++)
            for(int j=0; j<cols; j++)             
                _xmldb->Write(i, j, node[i,j]);   
    }
    . . . //rest of the class goes here           
};

You basically use the gcroot<XmlDB^> variable as if it was an XmlDB^ variable. The
only thing you have to watch out for is remembering to delete the managed

Listing 4.8 Using gcroot to declare a managed member object

Managed member 
declared using gcroot

Managed object 
instantiated

Managed object 
deleted in destructor

Calls made into 
managed object
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object explicitly in the native destructor. The XmlDB object closes the file connec-
tion in its destructor, so it’s important that you call delete as soon as the object
isn’t needed any longer (or else the file connection will remain open until the
next garbage-collection cycle). This is such a common scenario that another tem-
plate called auto_gcroot (declared in <msclr\auto_gcroot.h>) has been provided,
which is almost the same as gcroot, except that it behaves like a smart pointer and
has automatic resource management support. If you use auto_gcroot, you don’t
need to manually delete the managed object, because it’s automatically done for
you. If you re-wrote the class above using auto_gcroot, it would look like listing 4.9.

class Grid
{
    msclr::auto_gcroot<XmlDB^> _xmldb;   
public:
    Grid(char* XmlFile)
    {
        _xmldb = gcnew XmlDB(gcnew String(XmlFile));
    }
    const char* GetXmlStore()
    {//Return Xml file path
    }
    void PopulateGrid()
    {//Populate grid using the Xml file
     . . .
    }
    void OnGridUpdated()
    {//Write updated cells back to the Xml file     
     . . .
    }
};

There are no changes except that you use auto_gcroot instead of gcroot b, and
you don’t have to call delete on the managed object, which is why you don’t have
a destructor. Of course, if the Grid class needs some resource cleanup, it will have a
destructor, but it won’t have to call delete on the auto_gcroot object. Now that
you have seen how to have native types with managed members using gcroot and
auto_gcroot, let’s move ahead and see how to do the reverse—have managed
types with native members.

Listing 4.9 Using an auto_gcroot member

Use auto_gcroot 
instead of gcroot

b
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4.3.2 Managed types with native members

As of VC++ 2005, the compiler won’t permit you to put a whole native object
member into a managed class. The following code won’t compile:

class Native{};

ref class Managed
{
    Native m_n;   
};

The attempt to declare a native member b throws compiler error C4368: cannot
define 'm_n' as a member of managed 'Managed' : mixed types are not supported. But it’s per-
missible to have a pointer to a native object. The code in listing 4.10 will compile.

ref class Managed
{
    Native* m_n;   
public:
    Managed()
    {
        m_n = new Native();   
    }
    ~Managed()
    {
        delete m_n;   
    }
};

The primary concern in this example is that you should delete the native object
b in the managed destructor. If you don’t do so, there will be a memory leak,
because native heap objects don’t have the garbage collection and finalization
support available in the CLR. In the previous section, you saw how the auto_gcroot
template class acts as a smart pointer that automatically frees the managed
resource when it goes out of scope. It would have been nice if such a class was
provided for native objects too, but there isn’t one provided in the library. Well,
nothing stops you from rolling out your own smart pointer class that manages
the native resource. Listing 4.11 shows a skeletal listing of what such a class can
look like. 

 

Listing 4.10 Managed class with native pointer member

Compiler 
error C4368

b

Declare pointer 
to native object

Use new to create 
native object

Manually delete 
native object

b
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template<typename T> ref class CAutoNativePtr
{
private:
    T* _ptr;   
public:
    CAutoNativePtr() : _ptr(nullptr)        
    . . .
    CAutoNativePtr(T* t) : _ptr(t)
    . . .
    CAutoNativePtr(CAutoNativePtr<T>% an) : _ptr(an.Detach())   
    . . .
    template<typename TDERIVED> 
        CAutoNativePtr(CAutoNativePtr<TDERIVED>% an) 
            : _ptr(an.Detach())                                 
    . . .
    !CAutoNativePtr()   
    . . .
    ~CAutoNativePtr()   
    . . .
    CAutoNativePtr<T>% operator=(T* t)           
    . . .
    CAutoNativePtr<T>% operator=(CAutoNativePtr<T>% an)              
    . . .
    template<typename TDERIVED> 
        CAutoNativePtr<T>% operator=(CAutoNativePtr<TDERIVED>% an)   
                                                                     
    . . .
    static T* operator->(CAutoNativePtr<T>% an)   
    . . .
    static operator T*(CAutoNativePtr<T>% an)   
    . . .
    T* Detach()         
    . . .
    void Attach(T* t)   
    . . .
    void Destroy()   
    . . .
};

Now let’s implement the various pieces of this class one by one. Doing so will also
give you an example of how to implement a smart pointer class using managed
code. Let’s begin with the constructor overloads; see listing 4.12.

 
 

Listing 4.11 CAutoNativePtr skeletal listing

T* holds native 
resource

Constructor
overloads

Destructor 
and finalizer

Assignment
operator

overloads

Pointer to member 
operator overload

Cast operator 
to T*

Methods to associate 
and de-associate T*

Delete 
underlying T*
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CAutoNativePtr() : _ptr(nullptr)   
{
}
CAutoNativePtr(T* t) : _ptr(t)   
{
}
CAutoNativePtr(CAutoNativePtr<T>% an) 
    : _ptr(an.Detach())   
{
}
template<typename TDERIVED> 
    CAutoNativePtr(CAutoNativePtr<TDERIVED>% an) 
        : _ptr(an.Detach())   
{
}

The default constructor b sets _ptr to a nullptr, whereas the constructor that
takes an existing T* associates that T* with the class by assigning it to _ptr. Once a
T* is associated with the class, the class is responsible for freeing that T* when it’s
no longer needed (which is when it goes out of scope). For the copy constructor
c, you first detach the T* from the source object; otherwise, there will be two
smart pointers associated with the same T*, which will result in double-deletion
because both objects will attempt to delete the T* when it goes out of scope. By
detaching the T* from the source object, you ensure that only one smart pointer is
associated with the T*. You also need to have a specialization of the copy construc-
tor d to handle objects associated with a TDERIVED* where TEDERIVED is a type
derived directly or indirectly from T. 

 Now, let’s implement the destructor and the finalizer. You’ll implement both
so that even if somehow the user declares the smart pointer using handle seman-
tics (instead of stack semantics) and then forgets to call delete, the finalizer will
still free up the native resource:

!CAutoNativePtr()
{   
    delete _ptr;
}
~CAutoNativePtr()
{
    this->!CAutoNativePtr();
}

Listing 4.12 CAutoNativePtr constructor overloads

Default ctorb

Construct object 
from existing T*

Copy ctorc

Copy ctor specialization 
for derived objectd
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Notice how you delete the native object in the finalizer and invoke the finalizer in
the destructor. You do that to avoid code duplication. Let’s implement the assign-
ment operators now; you have three overloads for that, as shown in listing 4.13.

CAutoNativePtr<T>% operator=(T* t)   
{
    Attach(t);
    return *this;
}

CAutoNativePtr<T>% operator=(CAutoNativePtr<T>% an)   
{
    if(this != %an) //check for self assignment
        Attach(an.Detach());
    return *this;
}

template<typename TDERIVED> 
    CAutoNativePtr<T>% operator=(
        CAutoNativePtr<TDERIVED>% an)   
{
    Attach(an.Detach());
    return *this;
}

The first overload b takes a T* and is internally implemented using a call to
Attach. You haven’t seen Attach yet, but when you implement it,  if the class is
currently associated with a T*, it must be deleted before you take ownership of
the new T*. The second overload c is a copy assignment operator. You check
for self-assignment and then use Attach on the T* that is obtained by calling
Detach on the source object. The reason you call Detach is the same reason as for
the copy constructor: You don’t want two objects holding onto the same T*,
because that would result in double deletion. The last overload d is a specializa-
tion of the copy assignment operator that handles a CAutoNativePtr that owns a
T-derived object. 

 Let’s implement the pointer-to-member and the T*-cast operators, both of
which return a T*:

static T* operator->(CAutoNativePtr<T>% an)
{
   return an._ptr;
}

Listing 4.13 CAutoNativePtr assignment operators

Assignment 
from T*b

Assignment 
from another 
CAutoNativePtrc

Assignment from derived 
type CAutoNativePtrd
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static operator T*(CAutoNativePtr<T>% an)
{
   return an._ptr;
}

Both operators are implemented simply and return the T* owned by the object.
The cast to T* allows CAutoNativePtr objects to be used anywhere a T* is expected.
The -> operator lets a user directly access T methods using the CAutoNativePtr
object (essentially, this is what makes it a smart pointer). You still have to write the
Attach, Detach, and Destroy methods; once you do that, you’ll see an example of
how to use the smart pointer class. Listing 4.14 shows the last of the methods.

T* Detach()           
{
    T* t = _ptr;      
    _ptr = nullptr;   
    return t;
}                     

void Attach(T* t)                                      
{
    if(t)
    {   
        if(_ptr != t)                                  
        {
            delete _ptr;                               
            _ptr = t;
        }
    }
    else
    {                                                  
#ifdef _DEBUG
        throw gcnew Exception(
            "Attempting to Attach(...) a nullptr!");   
#endif                                                 
    }                                                  
}                                                      

void Destroy()        
{
    delete _ptr;
    _ptr = nullptr;   
}                     

The Detach method b releases ownership of the T* by setting its internal T* vari-
able to a nullptr and returning the original T*. Once Detach is called, the smart

Listing 4.14 The Detach, Attach, and Destroy methods

Detach method 
releases T*

b

Attach method 
takes over 
ownership of T*

c

Delete underlying 
T* object

d
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pointer is no longer responsible for the native object, and the caller is responsible
for freeing the resource when it’s no longer needed. The Attach method c takes
over ownership of a T*; before it does that, it deletes the currently owned T*, if
any. It also takes some safety precautions, such as checking to see that the calling
code isn’t erroneously trying to re-attach an already attached T*, in which case
Attach does nothing; and checking to see if the caller is attempting to attach a
nullptr, in which case it throws an exception (only in debug mode). The Destroy
method d deletes the underlying native object and sets the smart pointer’s inter-
nal T* variable to a nullptr. 

 That’s it; you’ve finished writing the smart pointer class. All you need to do
now is write some code to see it in action: see listing 4.15. 

class Native
{
public:
    void F(){}
};

class Derived : public Native{};

void SomeFunc(Native){}         
void SomeOtherFunc(Native*){}   

ref class Ref
{
    CAutoNativePtr<Native> m_native;   
public:
    Ref()
    {}

    Ref(Native* pN) : m_native(pN)   
    {}

    Ref(CAutoNativePtr<Native> pN) : m_native(pN)   
    {}

    void Change(Native* pNew)
    {
        m_native = pNew;    
    }

    void Change(CAutoNativePtr<Native> pNew)
    {
        m_native = pNew;   
    }

Listing 4.15 Using the CAutoNativePtr class

Functions that take 
Native object and Native*

Declare smart 
pointer object

Constructor 
that takes T*

Copy constructor 
comes into play

Assign from T*

Assign from another 
smart pointer
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    void DoStuff()
    {
        if(!m_native)   
        {
        }
        else
        {
            m_native->F();   
            SomeFunc(*m_native);       
            SomeOtherFunc(m_native);   
        }
    }

    bool DoComparisons(CAutoNativePtr<Native> a1, 
        CAutoNativePtr<Native> a2, CAutoNativePtr<Native> a3)
    {
        return (a1 == a2) && (a1 != a3);   
    }

    void Close()
    {
        m_native.Destroy();   
    }
};

int main()
{
    CAutoNativePtr<Derived> d1(new Derived); 
    CAutoNativePtr<Derived> d2(new Derived);

    CAutoNativePtr<Native> n1(d1);   

    n1 = d2;   

    return 0;
}

The class not only takes responsibility for freeing the native resource when it’s no
longer required, but it also provides a convenient interface to the caller. By using
the -> operator b, the calling code can directly access the T* methods. Because
of the T* cast, passing the smart pointer to a function that expects a T object or a
T* is also possible c. In general, the smart pointer object can be used and han-
dled just as if it was a T* object, which is what you set out to do when you wrote
the class. I hope that the step-by-step implementation of the earlier class gave
you a good idea of how managed classes are written and how various operators
are handled. 

Logical NOT 
applied via T* cast

-> operator 
at work

b

T* cast 
at work

c

Operators == and != 
applied via T* cast

Free native 
resource

Call specialized ctor 
for derived types

Specialized 
assignment operator 
for derived types
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 One last topic that we’ll cover in this chapter is how to bridge the gap between
native function pointers and CLI delegates. 

4.4 Function pointers and delegates: bridging the gap

Function pointers are often used to implement a callback mechanism in native
code. A callback function is one that’s not explicitly invoked but is automatically
invoked by another function when a certain event or state is triggered. Callback
functions are similar to the CLI delegate/event mechanism, where the delegate
associated with the event is invoked when that event is triggered. If you haven’t
used callbacks before, think of them as being similar to calling up a restaurant,
placing an order, and asking them to call you back on your phone once the order
is ready so you can pick it up.

 When you start mixing native and managed code, you’ll soon encounter a sit-
uation where you need to call a native function that expects a pointer to a callback
function from managed code. At that point, you’ll probably find it convenient if
you can pass a delegate to that function rather than a function pointer. Delegates
are an intrinsic part of the CLI, so using them is more natural from managed
code, compared to passing a pointer to a function. (Note that this is one scenario
where the P/Invoke mechanism may be useful, because it performs behind-the-
scenes conversions between function pointers and delegates.) The reverse situa-
tion is also possible, where you have native code that is using an object that takes
event handlers. You may find it convenient if you can pass a pointer to a native
function as the event handler method. 

 In .NET 2.0, the framework has two new functions called GetFunctionPointer-
ForDelegate and GetDelegateForFunctionPointer in the Marshal class. These
functions convert between a function pointer and a delegate (see figure 4.13).

4.4.1 Using GetFunctionPointerForDelegate

Let’s start by writing a managed class that enumerates the visible windows on
your desktop; internally, you’ll use the EnumWindows API function to do the window
enumeration. The EnumWindows API is declared as follows:

BOOL EnumWindows(WNDENUMPROC lpEnumFunc,LPARAM lParam);

The first parameter to the function is a function pointer, typedef-ed as WNDENUM-
PROC, which is defined as follows:

typedef BOOL (CALLBACK* WNDENUMPROC)(HWND, LPARAM);
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For every window that is found, the API will call the function pointed to by
lpEnumFunc. In the managed class, you’ll declare a delegate that will serve as the
managed version of this function pointer, and use that delegate to expose an
event. You’ll then use Marshal::GetFunctionPointerForDelegate to convert that
delegate to a function pointer that can then be passed to the EnumWindows API
function. Listing 4.16 shows the managed window enumeration class.

delegate bool EnumWindowsDelegateProc(
    IntPtr hwnd,IntPtr lParam);   

ref class WindowEnumerator
{
private:
    EnumWindowsDelegateProc^ _WindowFound;   
public:
    WindowEnumerator(EnumWindowsDelegateProc^ handler) 
    {
        _WindowFound = handler; 
    }
    void Init()
    {
        pin_ptr<EnumWindowsDelegateProc^> tmp =  &_WindowFound;   

Listing 4.16 Class to enumerate windows

Figure 4.13
Converting between function 
pointers and delegates

Delegate used in lieu 
of function pointer

Private delegate 
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Pin delegate before
passing to native code

b
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        EnumWindows((WNDENUMPROC)                   
            Marshal::GetFunctionPointerForDelegate(
            _WindowFound).ToPointer(), 0);        
    }
};

Note that you don’t strictly need to pin the delegate b; you only need to ensure
that the GC doesn’t collect it. This is because the GC doesn’t keep track of unman-
aged pointers; but pinning solves that issue for you and doesn’t cause any notice-
able overhead in this scenario. When the call to EnumWindows is executed c, the
callback that is passed to it is a native pointer to the delegate, which means this
delegate is invoked for every window. 

 To use this class, all you need is a method that matches the EnumWindows-
DelegateProc delegate signature. You’re going to write such a method (as a
static method of a class); it will display the title text of each visible window
that’s enumerated. 

4.4.2 Using GetDelegateForFunctionPointer
You have only seen GetFunctionPointerForDelegate in action so far. To see the
reverse function GetDelegateForFunctionPointer, you’ll use a pointer to the native
printf function to display each enumerated window. That way, in using a single
example, you can see both conversions. Listing 4.17 shows the code for the class.

ref class MyClass
{
    delegate int DispProc(String^, String^);   
    static DispProc^ pDispProc = nullptr;
public:
    static MyClass()
    {
        HMODULE hLib = LoadLibrary(_T("msvcrt.dll"));         
        if(hLib)
        {
            typedef int (*FUNC_PTR)(const char *, ...);       
            FUNC_PTR pfn = reinterpret_cast<FUNC_PTR>(
                GetProcAddress(hLib, "printf"));
            if(pfn)
            {
                pDispProc = (DispProc^)                       
                    Marshal::GetDelegateForFunctionPointer(   
                    (IntPtr)pfn,DispProc::typeid);
            }
            FreeLibrary(hLib);                                

Call API with converted 
function pointerc

Listing 4.17 Code that performs delegate/function pointer conversions
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each window

b

Convert printf 
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        }
    }
    static bool HandleFoundWindow(IntPtr hwnd,IntPtr lParam)
    {
        TCHAR buff[512];
        GetWindowText((HWND)hwnd.ToPointer(), buff, 511);
        if(IsWindowVisible((HWND)hwnd.ToPointer()) && _tcslen(buff))
            pDispProc("%s\r\n\r\n",gcnew String(buff));   
        return TRUE;
    }
};

A delegate b is used to display each enumerated window. The most interesting
portion in this code snippet is the static constructor c, where you obtain a func-
tion pointer to the printf function (from msvcrt.dll), convert it to a delegate, and
then save it in the pDispProc delegate variable. In the HandleFoundWindow
method, when you invoke the pDispProc delegate d, printf gets executed,
because the delegate is merely a proxy to the unmanaged function pointer (that
points to printf). In the previous class, you passed a delegate to a method expect-
ing a function pointer, and the delegate was invoked through that function
pointer. However, in this class, you pass a function pointer to a delegate, and the
function pointer is invoked through the delegate. Here’s a code snippet that
shows how these two classes can be put to use:

WindowEnumerator we(gcnew EnumWindowsDelegateProc(
    MyClass::HandleFoundWindow));
we.Init();

As you can see, the calling code has no idea that the class internally converts the
delegate to a function pointer. This ability to convert between function pointers
and delegates is particularly useful when you’re wrapping a native library so as to
expose it to the .NET world. Languages such as C# and VB.NET only understand
delegates, whereas a lot of native libraries use function pointers to provide call-
backs. By using these Marshal class methods, you can expose delegates to lan-
guages like C# and VB.NET and internally continue to use function pointers. In the
same way, when you’re attempting to use a managed class that has events from
native code, you can take advantage of the ability to convert a function pointer to a
delegate to directly pass pointers to native methods as the event handler functions. 

Use pDispProc to
indirectly invoke printf d
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4.5 Summary

In this chapter, we’ve discussed some seemingly disconnected topics, but they’re
all important concepts in mixed-mode programming. It was vital that you under-
stand the workings of pinning and interior pointers and also have an idea of
when and when not to use them. 

 We also covered various interop mechanisms, and although you saw that every
mechanism has its own set of advantages and best-use situations, we won’t be
using either CCW or P/Invoke in the rest of this book. For the sort of mixed-mode
programming we’ll be covering, C++ interop is the fastest and most convenient
option. We’ll use that exclusively for our interop needs. 

A trick to use assembly code from managed code

You can’t have inline assembly language code in managed blocks, which rules out
using them in pure MSIL modules. Even in mixed-mode modules, you’d need to
restrict them to unmanaged blocks of code. Here’s a trick that uses GetDelegate-
ForFunctionPointer and allows you to directly execute assembly code. You can
declare an unsigned char array containing the assembly code for a function, con-
vert that to a delegate using GetDelegateForFunctionPointer, and then execute
that delegate. Here’ s some sample code:

delegate Int32 DoubleNum(Int32 x);

unsigned char pNative[] =
{
    0x55, // push ebp   
    0x8B, 0xEC, // mov ebp,esp
    0x8B, 0x45, 0x08, // mov eax,dword ptr [arg] 
    0x03, 0x45, 0x08, // add eax,dword ptr [arg] 
    0x5D, // pop ebp     
    0xC3 // ret
};

DoubleNum^ pDoubleNum = (DoubleNum^)
    Marshal::GetDelegateForFunctionPointer(
        (IntPtr)pNative, DoubleNum::typeid);    

Console::WriteLine(pDoubleNum(19));

You should do this only if you’re familiar with assembly and are sure of what you’re
doing. It’s more of a feel-good trick rather than something you’d want to put to use
in production code.
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 We discussed mixed types and how to use the gcroot/auto_gcroot library’s
provided classes. We also implemented a similar smart pointer class for automat-
ically managing a native resource in a managed class. We’ll be using mixed types
considerably in the rest of this book, and the techniques you learned in this chap-
ter will be repeatedly put into practice. 

 The last topic we discussed, which was how to convert between function point-
ers and delegates, is something that you’ll see again when writing native wrap-
pers for managed code or managed wrappers for native code. 

 In the next chapter, we’ll use the information gained in this and the previous
chapters to demonstrate how you can access and utilize native libraries from man-
aged applications.






