/lll MANNING

Dottie
Text Box

SAMPLE CHAPTER

Open Source SOA
by Jeff Davis

Chapter 1

Copyright 2009 Manning Publications

brief contents

PART 1

PART 2

PART 3

PART 4

HISTORY AND PRINCIPLES .ceceveeseescesccesccscesscsscsssessssssnses 1

1 m SOA essentials 3
2 m Defining the Open SOA Platform 28

ASSEMBLING COMPONENTS AND SERVICES ...cccecceeeceeces 59

3 = Creating services using Apache Tuscany 61
4 w Advanced SCA 94

BUSINESS PROCESS MANAGEMENT ..ceeeerescecesescscesescsons 123

5 wm Introducing jBPM 125
6 = jBPMtasks 157
7 w Advanced jBPM capabilities 180

EVENT STREAM PROCESSING, INTEGRATION,
AND MEDIATION 0000000000000 00 215

8 = Complex events using Esper 217
9 wm Enterprise integration and ESBs 252
10 = ESB implementation with Apache Synapse 283

vi BRIEF CONTENTS

PART 5 ENTERPRISE DECISION MANAGEMENT ..ccceeecercescecescescs 323

11 = Business rules using JBoss Drools 325

12 = Implementing Drools 364

Part 1

History and principles

ervice-oriented architecture (SOA) has emerged over the past several years
as one of the preferred approaches for systems design, development, and inte-
gration. Leveraging open standards and the ubiquity of the internet, SOA is pre-
mised on the notion of reusable services that correspond to self-contained,
logical units of work. The promise is that these services can be quickly pieced
together using common patterns to form new applications that are tightly
aligned with the needs of the business. The upshot? Improved business agility
and cost-effective utilization of IT resources and assets.

In part 1, we’ll examine the history behind SOA and explore some of the
commonalities that it shares with earlier architectural and technology
approaches. We’ll then identify some of the core characteristics of SOA, and
explain how they’re manifested in actual technologies that can be used in your
own enterprise. Collectively, these technologies will combine to form what we
are calling the Open SOA Platform. Once these technologies, such as business pro-
cess management (BPM), are identified, our attention will turn to surveying the
landscape of possible open source products that can be used to satisfy these
technology requirements.

The maturity and adoption of open source products within the enterprise has
become widespread. Many of these products are now suitable for use in crafting
a technology stack that can support SOA. Some of the major challenges that have
precluded more widespread adoption of these solutions in the past pertain to
how they can be rationally assessed, and then integrated, within an organization.
We’ll present requirements for analyzing the product categories of the SOA tech-
nology stack, and using them, select what we consider to be the “best of breed”

open source solutions for each category. The selection criteria, as we’ll see, are also
based on how well they can be integrated to form a complete SOA solution. What’s
more, this can be accomplished at a fraction of the cost of commercial alternatives—an
important consideration in today’s challenging economic environment.

SOA essentials

This chapter covers

m Origins of SOA in distributed computing
m Requirements of a SOA environment
m Key technologies supporting SOA

Ponce de Ledn’s early quest to find the “Fountain of Youth” in Florida is one of the
most frequently told stories of American folklore. Although he failed in his journey
to find the “healing waters,” it turns out that he was in good company, for through-
out history we can find tales of similar adventures that never materialized. The his-
tory of computing bears some resemblance. Every decade or so, a new “silver
bullet” emerges that promises to heal the problems that have plagued software
development in the past. Those problems include protracted development cycles;
solutions that fail to achieve expectations; high maintenance costs; and, of course,
the dreaded cost overruns.

The quest is to find a solution that simplifies development and implementation,
supports effective reuse of software assets, and leverages the enormous and low-cost
computing power now at our fingertips. While some might claim that service-ori-
ented architecture (SOA) is just the latest fad in this illusive quest, tangible results
have been achieved by those able to successfully implement its principles.

11

CHAPTER 1 SOA essentials

According to a recent article in the Harvard Business Journal, companies that have
embraced SOA “have eliminated huge amounts of redundant software, reaped major
cost savings from simplifying and automating manual processes, and realized big
increases in productivity” [HBJ]. Further, SOA has achieved greater staying power than
many earlier alternatives, which does say something of its merits. Perhaps this is
because SOA is a more nebulous concept and embraces technologies as much as it
does principles and guidelines—thus refuting its benefits becomes more difficult.

Until recently, achieving a technology infrastructure capable of sustaining a SOA
generally required purchasing expensive commercial products. This was especially
true if an enterprise desired a well-integrated and comprehensive solution. While sev-
eral early SOA-related open source products were introduced, they tended to focus on
specific, niche areas. For example, Apache Axis was first introduced in 2004 and
became a widely adopted web services toolkit for Java. As we’ll discover, however, web
services represent only a piece of the SOA puzzle. Fastforward to 2008 and we now see
commercially competitive open source products across the entire SOA product spec-
trum. The challenge now for a SOA architect wanting to use open source is how to
select among the bewildering number of competing products. Even more challenging
is how to integrate them.

The goal of this book is to help you identify the core technologies that constitute a
SOA and the open source technologies that you can use to build a complete SOA plat-
form. Our focus will be on how to integrate these core technologies into a compelling
solution that’s comparable in breadth and depth to the expensive offerings provided
by the commercial vendors. SOA is now attainable for even the smallest of enterprises
using high-quality open source software. This book will present a technology blue-
print for open source SOA. Of course, thanks to the plethora of high-quality open
source solutions, you can naturally swap out the solutions I’'m advocating with those
you deem appropriate.

Before jumping headfirst into the technology stack, let’s establish some context for
where SOA originated and develop a common understanding of what it is.

Brief history of distributed computing

The mainframe systems of the 1960s and ’70s, such as the IBM System/360 series,
rarely communicated with each other. Indeed, one of the main selling points of a
mainframe was that it would provide you with everything necessary to perform the
computing functions of a business. When communications were required, the process
usually amounted to transferring data by way of tape from one system to another. Over
time, though, real-time access between systems became necessary, especially as the
number of systems within an organization multiplied. This need was especially appar-
ent in financial markets, where trading required real-time transactional settlements
that often spanned across companies.

Initially, real-time access was accomplished via low-level socket communications.
Usually written in assembly language or C, socket programming was complex and

Brief history of distributed computing 5

required a deep understanding of the underlying network protocols. Over time, pro-
tocols such as Network File System (NFS) and File Transfer Protocol (FTP) came on
the scene that abstracted out the complexity of sockets. Companies such as TIBCO
emerged that developed “middleware” software explicitly designed to facilitate mes-
saging and communications between servers. Eventually, the ability to create distrib-
uted applications became feasible through the development of remote procedure
calls (RPCs). RPCs enabled discrete functions to be performed by remote computers
as though they were running locally. As Sun Microsystems’ slogan puts it, “The Net-
work is the Computer.”

By the 1980s, personal computers had exploded onto the scene, and developers
were seeking more effective ways to leverage the computing power of the desktop. As
the price of hardware came down, the number of servers within the enterprise
increased exponentially. These trends, coupled with the growing maturity of RPC, led
to two important advances in distributed computing:

m Common Object Request Broker Architecture (CORBA)—Originated in 1991 as a
means for standardizing distributed execution of programming functions, the
first several releases only supported the C programming language. Adoption
was slow, as commercial implementations were expensive and the ambiguities
within the specification made for significant incompatibilities between vendor
products. The 2.0 release in 1998 was significant in that it supported several
additional language mappings and addressed many of the shortfalls present in
the earlier standards. However, the advent of Java, which dramatically simplified
distributed computing through Remote Method Invocation (RMI), and finally,
through XML, has largely led to the demise of CORBA (at least in new imple-
mentations).

» Distributed Computing Object Model (DCOM)—DCOM is a proprietary Microsoft
technology that was largely motivated as a response to CORBA. The first imple-
mentations appeared in 1993. While successful within the Microsoft world, the
proprietary nature obviously limited its appeal. The wider enterprise class of
applications that were emerging at the time—Enterprise Resource Planning
(ERP) systems—generally used non-Microsoft technologies. Later, Java’s Enter-
prise JavaBeans (EJB) platform could be construed as Java’s alternative to
DCOM, as it shared many of the same characteristics.

By the late 1990s, with the widespread adoption of the internet, companies began rec-
ognizing the benefits of extending their computing platform to partners and custom-
ers. Before this, communications among organizations were expensive and had to rely
on leased lines (private circuits). Leased lines were impractical except for the largest
of enterprises. Unfortunately, using CORBA or DCOM over the internet proved to be
challenging, in part due to networking restrictions imposed by firewalls that only per-
mitted HTTP traffic (necessary for browser and web server communications). Another
reason was that neither CORBA nor DCOM commanded dominant market share, so
companies attempting communication links often had competing technologies.

111

1.1.2

CHAPTER 1 SOA essentials

When the Simple Object Access Protocol (SOAP) first arrived (in January 2000), it
was touted as a panacea due to its interoperable reliance on XML. SOAP was largely
envisioned as an RPC alternative to CORBA and DCOM. Since RPCs were the predomi-
nant model for distributed computing, it naturally followed that SOAP was originally
used in a similar capacity. However, RPC-based solutions, regardless of their technology
platform, proved nettlesome. (It is worth noting that SOAP’s RPC was an improvement
over earlier RPC implementations, as it relied on XML as the payload, which facilitates
a much higher degree of interoperability between programming languages.)

Problems related to RPC-based solutions

While RPC-based distributed computing was no doubt a substantial improvement over
earlier lower-level socket-based communications, it suffered from several limitations:

= Tight coupling between local and remote systems requires significant band-
width demands. Repeated RPC calls from a client to server can generate sub-
stantial network load.

» The fine-grained nature of RPC requires a highly predictable network. Unpre-
dictable latency, a hallmark of internet-based communications, is unacceptable
for RPC-based solutions.

= RPC’s data type support, which aims to provide complete support for all native
data types (arrays, strings, integers, etc.), becomes challenging when attempt-
ing to bridge between incompatible languages, such as C++ and Java. Often,
incompatibilities result, greatly complicating its use.

SOAP RPC-style messages also suffered from the same inherent limitations as those
mentioned here. Fortunately, SOAP offers alternative message styles that overcome
these shortcomings.

Understanding SOAP’s messaging styles

In addition to the RPC-style SOAP messaging, the founders of the standard had the
foresight to create what is known as the document-style SOAP message. As pointed out
earlier, the RPC style is for creating tightly coupled, distributed applications where a
running program on one machine can rather transparently invoke a function on a
remote machine. The intention with RPC is to treat the remote function in the same
way as you would a local one, without having to dwell on the mechanics of the network
connectivity. For example, a conventional client-server application could utilize SOAP
RPC-style messaging for its communication protocol.

Document style, on the other hand, was envisioned more as a means for applica-
tion-to-application messaging, perhaps among business partners. In other words, it
was intended for more “loosely coupled” integrations, such as document or data trans-
fers. The differences between the two styles are defined within the SOAP standard and
are reflected in the Web Service Definition Language (WSDL) interface specification
that describes a given service.

113

Brief history of distributed computing 7

After the initial flirtation with RPC-based web services, a coalescing of support has
emerged for the document-style SOAP messaging. Microsoft was an early proponent of
the document style, and Sun likewise embraced it completely when introducing the
Java API for XML Web Services (JAX-WS). Web services became viewed as a panacea to
achieving SOA. After all, a linchpin of SOA is the service, and a service requires three
fundamental aspects: implementation; elementary access details; and a contract
[MargolisSharpe]. A SOAP-based web service, with its reliance on the WSDL standard,
appeared to address all three. The implementation is the coding of the service func-
tionality; the access details and contract are addressed within the WSDL as the port
type and XML schema used for document-style messaging. So if you simply expose all
your internal components as SOAP-based services, you then have the foundation by
which you can (a) readily reuse the services, and (b) combine the services into higher-
level business processes—characteristics that eventually would become cornerstones
of SOA. So what exactly is SOA?

Advent of SOA

The concepts that today are associated with SOA began to emerge with the widespread
adoption of the internet, and more specifically, HTTP. By 2003, Roy Schulte of Gartner
Group had coined the term SOA, and it quickly became ubiquitous. What it was,
exactly, remained somewhat difficult to quantify. Through time, some commonalities
appeared in the various definitions:

Contemporary SOA represents an open, agile extensible, federated, composable architecture
comprised of autonomous, QoS-capable, vendor diverse, interoperable, discoverable, and
potentially reusable services, implemented as Web services. [Er12005]

Service-Oriented Architecture is an IT strategy that organizes the discrete functions
contained in enterprise applications into interoperable, standards-based services that can
be combined and reused quickly to meet business needs. [BEA]

As you can see, the common theme is the notion of discrete, reusable business services
that can be used to construct new and novel business processes or applications. As you
learned earlier, however, many past component-based frameworks attempted similar
objectives. What distinguishes these approaches from the newer SOA?

= As discussed earlier, CORBA, EJB, and DCOM are all based on RPC technologies.
In many ways, this is the exact opposite of SOA, since it introduces highly cou-
pled solutions by way of using distributed objects and remote functions. A cen-
tral theme of SOA, on the other hand, specifically encourages loosely coupled
services (I'll address this concept in greater detail later in this chapter).

= In the case of EJB and DCOM, they are both tied to specific platforms and are
thus not interoperable. Unless a homogenous environment exists (which is rare
in today’s enterprises, as they are often grown through acquisition), the bene-
fits from them couldn’t be achieved easily. SOA-based web services were
designed with interoperability in mind.

CHAPTER 1 SOA essentials

= CORBA, EJB, and, to a lesser degree, DCOM were complicated technologies that
often required commercial products to implement (at least in their earliest
incarnations). In particular, CORBA required use of Interface Description Lan-
guage (IDL) mappings, which were tedious to manage, and until recently with
the 3.0 release of EJB, complex XML descriptor files were required for its imple-
mentation. SOA can be introduced using a multitude of off-the-shelf, open
source technologies.

m SOA relies on XML as the underlying data representation, unlike the others,
which used proprietary, binary-based objects. XML’s popularity is undeniable, in
part because it is easy to understand and generate.

Another distinction between a SOA and earlier RPC-based component technologies is
that a SOA is more than technology per se, but has grown to embrace the best prac-
tices and standards that are rooted in the lessons found through decades of tradi-
tional software development. This includes notions such as governance, service-level
agreements, metadata definitions, and registries. These topics will be addressed in
greater detail in the sections that follow.

So what does a SOA resemble conceptually? Figure 1.1 depicts the interplay
between the backend systems, exposed services, and orchestrated business processes.

As you can see, low-level services (sometimes referred to as fine-grained) represent
the layer atop the enterprise business systems/applications. These components allow
the layers above to interact with these systems. The composite services layer represents
more coarse-grained services that consist of two or more individual components. For
example, a createPO composite service may include integrating finer-grained services

ESB
Orchestrated
Business
Processes
Adapters N\ AN\ N\ AN\
i 1 E il - [
= Service
Composite
bid i Fomerl
4|8 O
© g E||low é
2 - o ||Level
=y = = | |services
oflw|la
Elslle 1 I
=
= Supply
‘Chain

Figure 1.1 Illlustration of a SOA environment. Notice the relationships between services
and business processes.

1.2

The promise of web services for delivering SOA 9

such as createCustomer; createPOHeader, and createPOLineltems. The composite services, in
turn, can then be called by higherlevel orchestrations, such as one for processing
orders placed through a website.

What is interesting is that, in many respects, SOA is a significant departure from
older distributed computing models, which centered around the exchange of distrib-
uted objects and remote functions. SOA instead emphasizes a loosely coupled affilia-
tion of services that are largely autonomous in nature.

The benefits achieved from embracing SOA are now being realized by the early
adopters. When monolithic applications are replaced by discrete services, software
can be updated and replaced on a piece-by-piece basis, without requiring wholesale
changes to entire systems. This strategy improves flexibility and efficiency. An often-
overlooked benefit is that this then enables a company to selectively outsource nonpri-
mary activities to specialists who can perform the function more efficiently and at the
lowest cost. Thanks to the advances in connectivity, where a service is housed can be
largely transparent to the enterprise.

However, SOA is clearly no silver bullet. According to a recent InformationWeek
survey [IW], 58 percent of respondents reported that their SOA projects introduced
more complexity into their IT environments. In 30 percent of those projects, the costs
were more than anticipated. Nearly the same percentage responded that their SOA
initiatives didn’t meet expectations. SOAP-based web services do introduce some
added complexity to the SOA equation, despite their hype.

The promise of web services for delivering SOA

The SOAP standard, with its reliance on WSDLs, appeared to address many of the fun-
damental requirements of a SOA. That being the case, SOA, in many individuals’ eyes,
became rather synonymous with web services. The major platform vendors, such as
Sun, IBM, Microsoft, BEA (now Oracle), and JBoss, developed tools that greatly facili-
tated the creation of SOAP-based web services. Companies began to eagerly undertake
proof-of-concept initiatives to scope out the level of effort required to participate in
this new paradigm. Web commerce vendors were some of the earliest proponents of
exposing their API through SOAP, with eBay and Amazon.com leading the way (more
than 240,000 people have participated in Amazon Web Services). Software as a Service
(SaaS) vendors such as Salesforce emerged that greatly leveraged on the promise of
web services. Indeed, Salesforce became the epitome of what the next generation of
software was touted to become.

Within organizations, the challenge of exposing core business functionality as web
services turned out to be daunting. Simply exposing existing objects and methods as
web services often proved ill advised—to do so simply embraces the RPC model of dis-
tributed computing, not the SOA principles of loosely coupled, autonomous services.
Instead, facade patterns or wrappers were often devised to create the desired web ser-
vices. This approach often entailed writing significant amounts of new code, which
contrasted with the heady promises made by vendors. The challenges were

10

1.3

13.1

CHAPTER 1 SOA essentials

compounded by the vast number of choices that were available, even within a particu-
lar language environment. In the Java world alone, there were a bewildering number
of choices for creating web services: Apache Axis (and Axis 2); Java-WS; Spring-WS,
JBossWS, and CXF (previously known as XFire)—and these are just the open source
products! Knowing which technology to use alone required significant investment.

Other factors also served to dampen the interest in SOAP web services. The per-
ceived complexity of the various WS-* standards led to a movement to simply use XML-
over-HTTP, as is the basis for Representational State Transfer (REST)-based web ser-
vices (for more on this raging controversy between REST and SOAP, see [RESTvs-
SOAP]). The nomenclature found in the WSDL specification, such as port types and
bindings, is alien to many developers and strikes them as overly convoluted, especially
for simple services (in the WSDL 2.0 standard, some of this arcane nomenclature has
been removed, for instance, replacing port type with interface and port with endpoint,
which is a big improvement, especially for Java and C# developers who are already
familiar with such terms and their meaning). Interestingly enough, some convergence
between REST and SOAP is taking place, such as the acknowledgment among some
REST advocates that the metadata description capabilities of a WSDL are important.
Towards this end, REST advocates have devised a new metadata specification for REST-
based web services called the Web Application Description Language (WADL)
[WADL]. While I may sometimes appear to be a bigot of SOAP, that’s primarily
because of the metadata features of WSDL, and REST coupled with WADL creates a
compelling alternative.

The early enthusiasm for SOAP-based web services as the springboard for SOA began
to wane as alternatives such as Web-Oriented Architecture (WOA) began to emerge,
which promises a simpler, non-SOAP-based SOA architecture (see [Hinchcliffe]). Truth
be told, there’s likely room for both, with large enterprises opting for the WS-* stack
due to its well-defined interface support, security, and reliable messaging provisions.

Understanding the core characteristics of SOA

As it turns out, achieving SOA requires more than SOAP-based web services. The char-
acteristics of SOA transcend a particular technology. SOA is an amalgamation of tech-
nologies, patterns, and practices, the mostimportant of which I'll address in this section.

Service interface/contract

Services must have a well-defined interface or contract. A contract is the complete spec-
ification of a service between a service provider and a specific consumer. It should also
existin a form that’s readily digestible by possible clients. This contract should identify
what operations are available through the service, define the data requirements for any
exchanged information, and detail how the service can be invoked. A good example of
how such a contract can be crafted can be found in a WSDL. Apart from describing
which operations are available through a given network “endpoint,” italso incorporates
XML Schema support to describe the XML message format for each of the service oper-
ations. Figure 1.2 illustrates the relationship between WSDL and XML Schema.

132

Understanding the core characteristics of SOA 11

Service(s) | Operations XSDs
— 1 Operation

Message In/Out

2 Operation

of XML Schema for
defining the specification
of an operation

- Figure 1.2 WSDL usage
Message In/Out =

Multiple operations can be defined, each of which can have its own schema definition
associated with it. While the WSDL nomenclature can be confusing (particularly the
1.1 specification, with its rather arcane concepts of ports and bindings), it has, argu-
ably, been the most successful means for defining what constitutes an interface and
contract for a service. Commercial vendors, in particular, have created advanced tool-
ing within their platforms that can parse and introspect WSDLs for code generation
and service mapping. The WSDL 2.0 specification is intended to simplify the learning
curve and further advance its adoption.

One of the early criticisms of the WSDL specification was that the specific service
endpoint was “hardwired” into the specification. This limitation was largely addressed
in the WS-Addressing standard, which has achieved widespread adoption. It supports
dynamic endpoint addressing by including the addressing information within the
body of the SOAP XML message, and not “outside” of it within the SOAPAction HTTP
header. The endpoint reference contained with the WS-Addressing block could also
be alogical network location, not a physical one. This enables more complex load-bal-
ancing and clustering topologies to be supported. We’ll explore the issue of why such
“service transparency” is beneficial next.

Service transparency

Service transparency pertains to the ability to call a service without specific awareness of
its physical endpoint within the network. The perils of using direct physical endpoints
can be found in recent history. Nearly all enterprise systems began offering significant
API support for their products by the mid-1990s. This trend allowed clients to begin
tapping into the functionality and business rules of the systems relatively easily. One of
the most immediate, and undesirable, consequences of doing this was the introduc-
tion of point-to-point interfaces. Before long, you began seeing connectivity maps that
resemble figure 1.3.

An environment punctuated by such point-to-point connections quickly becomes
untenable to maintain and extremely brittle. By making a change in something as sim-
ple as the endpoint connection string or URI, you can break a number of applications,

12

CHAPTER 1 SOA essentials

Portals CRM

ERP

Mobile
Apps

—| J2EE
~ | Applications

\
\

Data Warehouse

Figure 1.3 Example of how point-to-point connections greatly complicate service integration

perhaps even unknowingly. For example, in figure 1.3 imagine if the CRM system’s
network address changed—a multitude of other apps would immediately break.

An enterprise service bus (ESB) is often touted as the savior for avoiding the prolif-
eration of such point-to-point connections, since its messaging bus can act as a con-
duit for channeling messages to the appropriate endpoint location. It no doubt
performs such functionality admirably, but the same thing can be accomplished
through a simple service mediator or proxy. The scenario depicted in figure 1.3 could
then be transformed to the one shown in figure 1.4.

Obviously, figure 1.4 is an improvement over figure 1.3. No longer does the client
application or API user have to explicitly identify the specific endpoint location for a
given service call. Instead, all service calls are directed to the proxy or gateway, which,
in turn, forwards the message to the appropriate endpoint destination. If an endpoint
address then changes, only the proxy configuration will be required to be changed.

The WS-Addressing specification, one of the earliest and most well-supported of
the WS-* standards, defines an in-message means for defining the desired endpoint or
action for SOAP-based web services. It is significant in that, without it, only the trans-
port protocol (typically HTTP) contains the routing rules (it’s worth noting that SOAP
supports more transports than just HTTP, such as JMS). WS-Addressing supports the
use of logical message destinations, which would leave the actual physical destination
to be determined by a service mediator (to learn more about WS-Addressing, see the
[WSAddressing] reference in the Resources section at the end of this book).

Until fairly recently, no true open source web service proxy solution was available.
However, Apache Synapse, although sometimes positioned as an ESB, is designed
largely with this capability in mind. It supports outstanding proxy capabilities and can
also serve as a protocol switcher. For instance, Synapse can be easily configured to
receive a SOAP HTTP message and deposit it for internal consumption by a Java JMS
queue. Synapse will be covered in depth in upcoming chapters.

1.3.3

Understanding the core characteristics of SOA 13

1\
1\

Portals = ERP

\ = : Mobile
Apps

Serwced‘ > > .I -

Proxy

el

Data Warehouse

J2EE
Applications

W

Figure 1.4 Example of mediator or proxy-based service endpoint environment

Service loose coupling and statelessness

Simply exposing a service as a SOAP-based web service, defined by a WSDL, does not,
by itself, constitute service enablement. A key consideration is also whether the service
is sufficiently self-contained so that it could be considered stand-alone. This factor is
sometimes referred to as the level of “service coupling.” For example, let’s assume that
we want to create a new service to add a new customer to your company’s CRM system.
If in order to use the service you must include CRM-specific identifiers such as Orga-
nizationId, you have now predicated the use of that service on having a prior under-
standing of the internals of the CRM. This can greatly complicate the use of the service
by potential consumers and may limit its audience potential. In this case, it would be
preferable to create a composite service that performs the OrganizationId lookup
first, and then performs the call to insert the new customer.

Related to this issue is granularity, which refers to the scope of functionality
addressed by the service. For instance, a fine-grained service may resemble something
like addCustomerAddress, whereas a coarse-grained service is more akin to addCustomer.
The preponderance of literature advocates the use of coarse-grained services, in part
for performance reasons as well as convenience. If the objective is to add a new cus-
tomer to your CRM system, calling a single service with a large XML payload is obvi-
ously preferable to having to chain together a multitude of lower-level service calls.
That said, maximizing reusability may sometimes warrant the construction of finer-
grained services. In our example, having the ability to addCustomerAddress can be used
in a variety of cases, not limited to just creating a new customer. Indeed, composite
services that are coarser grained in function can then be crafted based on the lower-
level services.

Finally, if possible, a service should be stateless. What would be an example of a
stateful service? Imagine a service that includes a validation operation that first must

14

134

CHAPTER 1 SOA essentials

be called prior to the actual action operation. If successful, the validation call would
return a unique identifier. The action operation would then require that validation
ID as its input. In this scenario, the data input from the validation call would be
stored in a session state awaiting a subsequent call to perform the desired activity.
While this solution avoids forcing the client user to resubmit the complete data set
twice (one for the operation, the other for the action), it introduces additional com-
plexity for the service designer (though various service implementations, both open
source and proprietary, do attempt to simplify building stateful services). In particu-
lar, scalability can be adversely impacted, as the application server must preserve ses-
sion state and manage the expiration of unused sessions. Performance management
is complicated if appliance-based load balancing is being used, as it must pin the ses-
sion calls to specific application servers (software clustering can overcome this, but it
introduces its own challenges).

In the previous scenario, statefulness can be avoided by requiring the client to again
send all relevant data when making the action call, along with the validation ID
retrieved from the validation call. The validation ID would be persisted in a database
and provided a timestamp. The action call would have to take place within a given
number of minutes before the validation ID became invalidated.

Service composition

One of the main objectives of a SOA is the ability to generate composite services and/
or orchestrations using service components as the building blocks. A composable service
is largely a function of how well it is designed to participate in such a role. As was illus-
trated in figure 1.1, there are two general types of composite services. The first type,
which could be classified as simple or primitive, simply wraps one or more lower-level
services together into a more coarse-grained operation. This process can usually be
accomplished by defining a simple data flow that stitches together services and then
exposes the new functionality as a new service. Another goal may be to simply impose
a new service contract for an existing service while leaving the underlying target end-
point unchanged. In any case, the underlying service or services participating in the
simple composition must adhere to these attributes we’ve already addressed (and
some of which will follow). They include a well-defined service contract; stateless in
design, loosely coupled, and offer high availability. A composite service should be no
different, and should be treated like any other service, as shown in figure 1.5.

The second type of composite services is the complex or workflow-type business pro-
cesses, often referred to as business process management (BPM). These processes are
generally multistep creations that may optionally include long-running transactions.
The WS-BPEL (Business Process Execution Language) set of standards defines an
XML-based language for describing a sequence flow of activities, or process. Within a
process definition, a rich set of nodes can be used for routing, event handling, excep-
tion management (compensation), and flow control. The core WS-BPEL standard is
tailored for working with SOAP-based web services. Because of this orientation, the

1.3.5

Understanding the core characteristics of SOA 15

Services Catalog Services Catalog
Prior to Creation of Following Creation
Composite Service of Composite Service

Y Y IO X X}
000 o0

e © .

000 .

Figure 1.5 A composite service is added to an existing catalog of services.

[X T3
000

(.

entry point for invoking a WS-BPEL process is most typically a SOAP web service (other
possibilities may include a timer service, for example). This can be either a blessing or
a curse, depending on whether SOAP services are a standard within your environment.

How does a composite service author have visibility into which services are avail-
able for use when constructing such processes? This is the role of the service registry,
which we'll cover next.

Service registry and publication

Unlike in the movie Field of Dreams, “if you build it, they will come” doesn’t apply to
services. Clients must be aware of the existence of a service if they’re expected to use
it. Not only that, services must include a specification or contract that clearly identifies
input, outputs, faults, and available operations. The web services WSDL specification is
the closest and most well-adopted solution for service reflection. The Universal
Description, Discovery, and Integration (UDDI) standard was intended as a platform-
independent registry for web services. UDDI can be used as both a private or public
registry. Further, using the UDDI API, a client could theoretically, at least, “discover”
services and bind to them. Unfortunately, UDDI suffered from an arcane and complex
nomenclature, and its dynamic discovery features were myopic and predicated on
naive assumptions. Today, relatively few enterprise customers are using UDDI and
fewer still public registries. In practice, UDDI is rarely used today, except behind the
scenes in a handful of commercial products where its complexity can be shielded
from the user. Unfortunately, no standards-based alternative to UDDI is in sight.

The failure of UDDI doesn’t obviate the need for a registry, and most companies
have instead devised a variety of alternatives. For SOAP-based web services, a compre-
hensive WSDL can often be adequate. It can list all the available services and opera-
tions. Others have used simple database or Lightweight Directory Access Protocol
(LDAP) applications to capture service registry information. Simply storing a catalog
of services and their descriptions and endpoints in a wiki may suffice for many
companies. Recently, there has also been an emergence of new open source registry

16

14

14.1

CHAPTER 1 SOA essentials

solutions, such as MuleSource’s Galaxy and WSO2’s Registry, which attempt to fill this
void; we’ll discuss these solutions in the next chapter.

Now that we’ve identified some of the core characteristics of SOA, let’s turn our
attention to how those higher-level objectives can be decomposed into specific tech-
nologies that, when combined, can comprise a complete SOA technology platform.

Technologies of a SOA platform

As pointed out earlier, it’s a mistake to assume that SOA is all about technology
choices. Issues like governance, quality of service, and so forth are all major contribu-
tors to crafting a complete SOA. That said, our intention is to focus on the technical
aspects, as the other areas largely fall outside the scope of this book. Figure 1.6 depicts
the various technologies that constitute a SOA technology platform, which, moving
forward, I will refer to as the Open SOA Platform. We'll explore each in greater detail
along with an explanation of how the technologies tie together.

;_I_

fiil B N

')\} '* Orchestrated Event U
= Business Stream
Processes Proc.

g PEIAN J lnveqtuganj\’, g
h=] o 3
‘6 £ 2 s j==| == === Business N Publ::h =
-] Enterprise e 5
2 @ | Decision Regnstry((u ‘)) /O :
3
§ g\ kManagement f m '%BRMS / Search / wn
L ® v
> w [< 2

9 9 i ite Enterprise Adapters
[} Composite P o
P2 [o cPocfo|fsy o)

3 Bus =

9 S | components
21 & |\ LA X X X E X Iy
_ERP ™
ERP CRM Back- 1 Supply
Q : ffice hain (i
'
4

Figure 1.6 SOA technology platform. In chapter 2, we begin identifying applicable technologies for many
of these areas.

Business process management

Business process management (BPM) is a set of technologies that enables a company to
build, usually through visual flow steps, executable processes that span across multiple
organizations or systems. In the past, such systems were less elegantly referred to as
workflow processing engines. The promise of BPM, as optimistically stated by Howard

14.2

Technologies of a SOA platform 17

Where are the applications?

In looking at figure 1.6, you may be wondering, “Where are the applications?” The
presentation layer can be considered your typical application, but with such a variety
of different delivery models (mobile, web, gadgets, hybrids like Adobe AIR, RSS
feeds, and so forth), the very notion of what constitutes an application is changing.
Hence, we use “Presentation Services,” which represent anything that can be con-
sidered an interface to computing services.

Smith and Peter Finger is that, “BPM doesn’t speed up applications development; it
eliminates the need for it” [SmithFinger]. This is because business applications, in this
historical context, create stovepipes that are separated by function, time, and the data
they use. The process in BPM refers to a holistic view of the enterprise, which incorpo-
rates employees, partners, customers, systems, applications, and databases. This also
serves to extract the full value of these existing assets in ways never before possible.

Many consider BPM to be the “secret sauce” of SOA, insofar as the benefit it pro-
vides to companies that adopt it. In the book The New Age of Innovation, the authors
identify business processes as the “key enablers of an innovation culture” [Prahalad].
To be competitive in a dynamic marketplace, business processes must change at a
rapid pace, and this can only be achieved through BPM systems that enable defining,
visualizing, and deploying such processes.

For a system to participate in a BPM process, services or functionality must be made
externally accessible. For this reason, SOA is often considered a prerequisite for BPM,
since SOA is fundamentally about exposing services in a way that enables them to par-
ticipate in higher-level collaborations. Theoretically at least, BPM allows business users
to design applications using a Lego-like approach, piecing together software services
one-upon-another to build a new higher-level solution. In reality, it’s obviously not
quite so simple, but skilled business analysts can use the visual design and simulation
tools for rapid prototyping. These design primitives can also be highly effective at con-
veying system requirements.

The fundamental impetus behind BPM is cost savings and improved business agility. As
TIBCO founder Vivek Ranadivé notes, “The goal of BPM is to improve an organization’s
business processes by making them more efficient, more effective and more capable of
adapting to an ever-changing environment” [Ranadivé]. Integrating many disparate sys-
tems and linking individuals across organizational boundaries into coherent processes
can naturally result in significant return on investment (ROI). A useful byproduct of
such efforts is improved reporting and management visibility. Agility, or the ability of a
company to quickly react to changes in the marketplace, is improved by enabling new
business processes to be created quickly, using existing investments in technology.

Enterprise decision management

An enterprise decision management (EDM) system incorporates a business rule
engine (BRE) for executing defined business rules and a Business Rule Management

18

CHAPTER 1 SOA essentials

System (BRMS) for managing the rules. What exactly is a business rule? It is a state-
ment, written in a manner easily digestible by those within the business, which makes
an assertion about some aspect of how the business should function. For example, a
company’s policy for when to extend credit is based on certain business rules, such as
whether the client has a Dun & Bradstreet number and has been in business for x
number of years. Such rules permeate most historical applications, where literally
thousands of them may be defined within the application code. Unfortunately, when
they are within application code, modifying the rules to reflect changing business
requirements is costly and time consuming.

A rules-based system, or BRMS, attempts to cleanly separate such rules from pro-
gram code. The rules can then be expressed in a language the business user can
understand and easily modify without having to resort to application development
changes. This also serves to make business rules an “enterprise asset” that represents
the very lifeblood of an organization. Figure 1.7 illustrates how a centralized decision
service can be used by services and applications.

One of the biggest challenges when building applications is bridging the knowl-
edge gap that exists between the subject matter experts (SMEs) who have an intimate
understanding of the business, and the developers who often possess only a cursory
awareness (and sometimes desire no more than that). Developers are faced with trans-
lating business requirements into abstract representations in code. This gap is often
responsible for the disappointing results that too often surround the rollout of new
applications. As Taylor and Raden note, "Embedding business expertise in the system
is hard because those who understand the business can’t code, and those who under-
stand the code don’t run the business” [TaylorRaden].

What differentiates a BRMS from an EDM? To be honest, it’s probably mostly
semantics, but EDM does emphasize centralized management of all business rules,
including those considered operational, which may range in the thousands for a given
company. According to Taylor and Raden, this includes heretofore “hidden” decisions
that permeate a company, such as product pricing for a particular customer, or
whether a customer can return a given product.

Validation Enterprise -off - DB
i Data
= Service
Customer Pricing
Support Decision i
Service Service Soame
Product Figure 1.7 A centralized decision
Pm;:rrvei:':"t Configuration service can be used by other services and

Clallos applications.

143

Technologies of a SOA platform 19

In chapters 11 and 12 we cover EDM in more detail, and describe how the use of
domain-specific languages (DSLs) can be used to create business-specific, natural lan-
guage representations of rules most suitable for maintenance by SMEs.

Enterprise service bus

An enterprise service bus (ESB) is at its core a “middleware” application whose role is
to provide interoperability between different communication protocols. For example,
it’'s not uncommon for a company to receive incoming ASCII-delimited orders
through older protocols such as FTP. An ESB can “lift” that order from the FTP site,
transform it into XML, and then submit internally to a web service for consumption
and processing. Although this can all be done manually, an ESB offers out-of-the-box
adapters for such processing, and most commonly, event-flow visual modeling tools to
generate chained microflows. The cost savings over conventional code techniques is
often substantial.

How does such a microflow (or what could be alternatively called a real-time data
flow) differ from a BPM-type application? After all, at first glance they may appear sim-
ilar. One key distinction is that BPM applications are typically designed for support of
long-running transactions and use a central orchestration engine to manage how the
process flow occurs. A real-time data flow, however, typically uses a model more akin to
what’s known as choreography. In a choreographed flow, each node (or hop) encap-
sulates the logic of what step to perform next. In addition, a real-time data flow typi-
cally passes data by way of message queues, and thus there’s a single running instance
of the process, with queues corresponding to each node that consume those mes-
sages. A BPM, on the other hand, typically instantiates a separate process instance for
each new inbound message. This is because, as a potentially long-running transaction,
the sequential queuing method would not be appropriate. To keep the number of
running processes to a reasonable number, a BPM engine will “hydrate” or “dehy-
drate” the process to and from running memory to a serialized form, which can then
be stored in a database.

Table 1.1 describes a typical set of services provided in an ESB. Because of the num-
ber of services provided by an ESB, it sometimes is described as a “backplane” or cen-
tral nervous system that ties together the various SOA technologies.

Table 1.1 Core ESB features and capabilities

Feature Description

Data Connectivity/Adapters | HTTP (SOAR XML), FTR SFTR File, and JMS connectivity.
Data Transformation XSLT for XML-based transformations.

Intelligent Routing Content-based routing based on message properties or inline XML via
XPath. Some include additional, more advanced rule-based routing using
a rules engine.

20 CHAPTER 1 SOA essentials

Table 1.1 Core ESB features and capabilities (continued)

Feature Description

Service Management Administrative tools for managing deployments, versioning, and system
configuration.

Monitoring & Logging The ability to monitor, in real time, document and message flows. Benefi-
cial is the capability to put inline interceptors between nodes and specifi-
cally target individual nodes for more verbose logging.

Data-flow Choreography The ability to visually (or through editing declarative XML files) create
graphs or chains to describe a sequence of steps necessary to complete
a data flow.

Custom API The ability to add custom adapters or components to the ESB.

Timing Services The ability to create time-based actions or triggers.

Figure 1.8 depicts the role that an ESB plays in integrating various protocols and how
they can be exposed through a standard messaging bus.

The flexibility of an ESB to tap into a variety of communication protocols lends
some merit to an ESB-centric architecture. However, if an organization can success-
fully expose its business services as web services, the central role that an ESB plays is
diminished (in any case, it certainly has a role in a SOA technology stack).

Let’s now turn our attention to how analytical information can be drawn by the
messages that flow through an ESB.

- er Tl\se
Graphical Use! Interface Real-Time EnterP
1t

)OfO
R
U, I8
20,5
(* 4
4700‘?_’)?9 HTTP/XML S
4 S, Ad (
o . aper | N
o - Portal Adapter | .
Bus . - E
i) Adapter o, — szseﬂ""'-z , m—
¥ML Adapter EME‘P“ S Messaging SOAP
S s GaCUIE IcA Adapter
x‘x}cﬂf) - BizTalk A {
G) S, O : Adapter
f@f l’)‘(-. ‘e | Oracle |
Dpr €58 Adapter I
gr r,é G\,ﬁ . Data
édcf_o{@ 4 ! : al Providers f
24 3 |
60 //‘\] Intranet Portal i
"), L8 1 Trading
L . o E Partners/Clients
Care Transaction Legacy
O .; System ERP Applications
/‘f?f)' Customer —
/)-/é(,{ Service (CRM) Da; b - < -
AabDas
0,%?@0,6\ Enu'\\‘of‘mem
%‘(r%@f H tewgeneo\l‘—‘
Cr, O e
Q/’@ %

Figure 1.8 Example of an ESB-centric approach for enterprise architecture

144

Technologies of a SOA platform 21

Event stream processor

An event is simply something of interest that happens within your business. It may be
expected and normal, or abnormal. An event that doesn’t occur may have as much
importance as those that do. Too many events may also indicate a problem. Why is it
relevant to SOA? Event stream processing (ESP) support can be integrated into the
implementation of your services so that real-time visibility into systems becomes a real-
ity. This operational intelligence arms your enterprise with the ability to quickly spot
anomalies and respond accordingly. Adding such capabilities into legacy solutions is
often not feasible, and instead you must rely on data warehouse and business intelli-
gence tools, neither of which provides real-time visibility.

Event stream processing is considered part of a relatively new technology some-
times referred to as complex event processing (CEP). TIBCO’s Ranadivé defines it as

...an innovative technology that pulls together real-time information from multiple
databases, applications and message-based systems and then analyzes this information to
discern patterns and trends that might otherwise go unnoticed. CEP gives companies the
ability to identify and anticipate exceptions and opportunities buried in seemingly
unrelated events. [Ranadivé]

The role of an ESP is to receive multiple streams of real-time data and to, in turn,
detect patterns among the events. A variety of filters, time-based aggregations, trig-
gers, and joins are typically used by the ESP to assist in pattern detection. The inter-
preted results from the ESP can then be fed into business activity monitoring (BAM)
dashboards.

In Performance Dashboards, Wayne Eckerson identifies three types of business intelli-
gence dashboards: operational, tactical, and strategic [Eckerson]. Operational dash-
boards generate alerts that notify users about exception conditions. They may also
utilize statistical models for predictive forecasting. Tactical dashboards provide high-
level summary information along with modeling tools. Strategic dashboards, as the name
implies, are primarily used by executives to ensure company objectives are being met.
Operational dashboards rely on the data that event stream processors generate. As the
saying goes, you can’t drive forward while looking in your rearview mirror. For a busi-
ness to thrive in today’s competitive landscape, real-time analysis is essential. This pro-
vides a company with the ability to immediately spot cost savings opportunities, such
as sudden drops in critical raw materials; proactively identify problem areas, such as a
slowdown in web orders due to capacity issues; and unleash new product offerings.

An event architecture strategy must be part of any SOA solution and must be
designed from the get-go to be effective. Bolting on such capabilities later can result
in expensive reengineering of code and services. Service components and backbone
technologies (such as the ESB) should be propagating notable events. While a process
may not be immediately in place to digest them, adding such capabilities later can be
easily introduced by adding new Event Query Language (EQL) expressions into the
ESP engine. We’ll examine EQL in more detail in chapter 8.

22

1.4.5

1.4.6

CHAPTER 1 SOA essentials

The messages that carry event data that flow into an ESP are, within a Java environ-
ment, most likely to arrive by way of the Java Message Service (JMS), which is
addressed next.

Java Message Service

The Java Message Service is one of the fundamental technologies associated with the
Java Platform Enterprise Edition. Itis considered message-oriented middleware (MOM)
and supports two types of message models: (1) the point-to-point queuing model, and
(2) the publish and subscribe model. The queuing model, which is probably used most
frequently, enables a broadcaster to publish a message to a specific queue, whereby it
can then be consumed by a given client. It is considered point-to-point because once
the message is consumed by a client, itis no longer available to other clients. In the pub-
lish/subscribe model, events are published to one or more interested listeners, or
observers. This model is analogous to broadcast television or radio, where a publisher
(station) is sending out its signal to one or more subscribers (listeners).

JMS typically is ideally suited for asynchronous communications, where a “fire-and-
forget” paradigm can be used. This contrasts with SOAP-based web services, which fol-
low a request/response type model (this isn’t a concrete distinction—there are varia-
tions of JMS and SOAP that support more than one model—but a generalization). JMS
is typically used as one of the enabling technologies within an ESB and is usually
included within such products.

Since JMS is rather ubiquitous in the Java world and well documented through
books and articles, I won’t cover it directly in this book. It is, however, a critical tech-
nology for Java-based SOA environments. Let’s now address an often-overlooked but
critical technology for building a SOA platform: a registry.

Registry

The implementation artifacts that derive from a SOA should be registered within a
repository to maximize reuse and provide for management of enterprise assets. Meta-
data refers to data about data, so in this context, it refers to the properties and attri-
butes of these assets. Assets, as shown in figure 1.9, include service components and
composites, business process/orchestrations, and applications. It may also include typ-
ical LDAP objects such as users, customers, and products.

Customers Services

SR

& &
== \ /
Figure 1.9 Example of
Users \ /’roducts an LDAP repository used
as a registry. Notice that
ﬁ) — _“‘f it’s not just used for
— 1~ ppp A users, but also for
Orchestrations ° P ‘ Applications products and even
applications.

14.7

Technologies of a SOA platform 23

For smaller organizations, more informal repositories may be utilized and could
be as simple as wiki articles or a simple database that describes the various assets. As
organizations grow in size, however, having an appropriate technology like LDAP sim-
plifies management and assists in reporting, governance, and security profiling. It’s
important to treat the SOA artifacts as true corporate assets—this represents highly
valuable intellectual property, after all.

The metadata attributes for a given asset type will vary, so a flexible repository schema
is essential. For example, a service component’s attributes include the following:

= Service endpoint (WS-Addressing)

= Service description

= WSDL location

m Revision/version number

= Source code location

= Example request/response messages

= Reference to functional and design documents
= Change requests

= Readme files

= Production release records

Orchestrations and application may share a similar, if expanded, set of attributes,
whereas those relating to a user will obviously vary significantly. A bonus chapter avail-
able at http://www.manning.com/davis includes coverage of registries.

We’re nearly completed with our whirlwind overview of critical SOA technologies.
One essential technology, indeed a cornerstone of SOA, is addressed next: services.

Service components and compositions

Service components and composites represent the core building blocks for what con-
stitutes a SOA platform. A service can be construed as an intelligent business function
that combines data and logic to form an abstract interaction with an underlying busi-
ness service. This service is often a discrete piece of functionality that represents a
capability found within an existing application. An example of such a service might be
a customer address lookup using information found within a CRM system. The service
component, in this instance, “wraps” CRM API calls so that it can be called from a vari-
ety of clients using just a customer name as the service input. If the CRM API had to be
called directly, a multistep process of (a) first identifying the customerId based on the
customer name, (b) performing code-list lookups for finding coded values, and (c)
using the customerId to then call a getAddress operation may be necessary. The ser-
vice component abstracts the methods and objects of the CRM into generic methods
or objects and makes the underlying details transparent to the calling client. An illus-
tration of such a service facade or wrapper is shown in figure 1.10.

24

CHAPTER 1 SOA essentials

Service
Consumers

Service Contract

. schema
endpoint
Service Logic DB
Lookup
1 2
API call API Call

Figure 1.10 Using a facade/wrapper pattern for exposing service functionality

A service must support two fundamental requirements: a well-defined interface and
binding. The interface is the contract that defines the service specification and is rep-
resented as a WSDL for SOAP-based web services. The binding is the communications
protocol for how the client will interact with the service. Examples of such protocols
are SOAP over HTTP; JMS; Java RMI (RMI); and EJB. Using a combination of those two
requirements, a developer who wants to create a client that uses a service should be
able to do so. Of course, how well the interface is designed will dictate how truly use-
ful the service is.

A composite service, as the name suggests, is created by combining the functional-
ity of one or more individual components. Composites may serve to further abstract
functionality and are often considered coarse-grained services (such as a service to
create a new customer). A composite service, in turn, may then be combined with
other services to create even higher level composites. In any event, composites share
the same requirements as components—an interface and binding.

Thomas Erl classifies compositions into two distinct types: primitive and complex
[Er12007]. A primitive type might be used for simple purposes such as content filtering
or routing and usually involves two or three individual components. A complex compo-
sition could be a BPEL-based service that contains multiple nodes or sequence steps.
Chapters 3 and 4 provides in-depth coverage of service components and composites.

Regardless of what protocol and standards your services use, there will likely be
scenarios, particularly when integrating with outside organizations, that deviate from
your best laid plans. One way to bridge such differences, and to improve service avail-
ability and performance, is through web service mediation technology—the topic of
the next section.

148

1.5

Introducing a SOA maturity model 25

Web service mediation

Mediation refers to bridging the differences between two parties. Consistent with that
definition, web service mediation (WSM) refers to bridging between different commu-
nications protocols, with the result being a SOAP-based web service that can be redi-
rected to an appropriate endpoint. For example, a web mediation engine might be
used to process authenticating the credentials of inbound calls from an external part-
ner’s SOAP message using WS-Security (WSS). If approved, the message can then be
forwarded, minus the WS-Security heading, to an internal web service to process the
request. Or, perhaps a partner is unwilling or unable to use SOAP, and instead prefers
a REST (XML over HTTP) solution. Using a mediator, the inbound REST call can be
easily transformed into SOAP by adding the appropriate envelope. Even transforma-
tions between entirely different protocols, such as FTP to SOAP, are typically possible.
Figure 1.11 depicts the role of the mediator.
A mediator serves other purposes

w®
as well, such as logging of all requests ;,o*?l
and responses, internal load balanc- &)\’
ing, advanced caching, and support of < %4

Q
advanced WS-* features such as WS- ;9?\ manags /?")
<

ReliableMessaging. Another important

I & %
. - %
feature is the ability to act as a proxy £ e & % @
. ~ = transform =3
server. This allows the WSM to trans- E~ g (XSLT, E4X) g
parently intercept outbound messages, ~ * .
log them, and apply a WS—Sec.urlty " / route \ o
envelope, for example. The publisher < balance \é’
L
of the originating message can let such [&
policies be applied externally in a con- q%,a?
iy

sistent fashion and not have to worry

about implementing such compleX rigyre 111 The role of web services mediator in
details. Compliance and security can bridging between protocols

be managed independently of the

application—a major benefit.

Many of the web mediation capabilities we’ve talked about can now be found in
modern-day ESBs. In fact, as you’ll see moving forward, the ESB we’ve selected from
the Open SOA Platform can perform both conventional ESB duties as well as the medi-
ation features we’ve identified.

Does implementing SOA require all of the technologies we’ve alluded to in this
section? Of course, the answer is no. In large part, it depends on your particular needs
and requirements, so let’s explore this further.

Introducing a SOA maturity model

A maturity model can be useful when you’re analyzing the readiness of an IT organi-
zation in embracing the various levels of SOA that can be achieved. Figure 1.12

26

CHAPTER 1 SOA essentials

4 Event & Messaging
Infrastructure
3 Composite Business
Services Rules
2/ Governance

1 Figure 1.12 SOA maturity model.
Low-Level Services & Components Not all levels are required for every

environment

depicts such a model, and as the pyramid suggests, each stage, at least in part,
depends on the former.

Level 1 begins with the foundation of services and related components. Moving
forward to level 2 requires a governance program to ensure that these services are
consistently developed using a common framework, along with associated security pol-
icies and a means for publication (i.e., think registry). After all, a service isn’t really a
service unless it’s discoverable and reusable. The next tier, level 3, is where significant
benefits begin to be realized. With a governance program in place, it now becomes
possible to build more coarse-grained, composite services, whose audience may span
beyond just the technical team. Business “power users” may begin consuming the ser-
vices by using simple, end-user integration products like Jitterbit (http://
www,jitterbit.com), OpenSpan (http://www.openspan.com), or Talend (http://
www.talend.com). While using a business rule engine may make sense at any level, it
often becomes a requirement when composite services become introduced, which is
why it’s also shown in level 3. This is because composite services often require business
rule logic to determine how to logically combine lower-level services.

Similar to business rules, a message- and event-driven architectural orientation can
be introduced earlier in the pyramid—it’s a requirement for those aspiring to level 5.
The ability to monitor, in real time, events that occur within your enterprise is essen-
tial for optimizing business processes and operational decisions. This capability repre-
sents level 4, and without it, decisions and processes are optimized in a vacuum and
may not accurately reflect either the business bottom line or relevant trends.

This brings us to level 5, which is where BPM and EDM can really flourish.
Although you can attempt to introduce these technologies lower in the maturity
model, both benefit immensely by having the prior layers in place. BPM almost always
requires the ability to tightly integrate with applications, data, and business rules, and
when these assets are exposed as services using SOA principles, implementing BPM is

1.6

Summary 27

greatly simplified. Centrally managing business rules through EDM exposes business
rule assets to a wider audience of business users, who are best positioned to align them
to the dynamic changes of the marketplace, which can detect more accurately when
events can be assessed in real time through complex event processing (CEP) filters.

For those just undertaking their first SOA projects, attempting to embrace all of the
technologies we talk about in this book may seem overly ambitious. By treating SOA as
a journey, you begin benefiting quickly as you build reusable services and marry them
with the introduction of a business rule engine. Since SOA isn’t just about technology
but also process, wrapping a governance layer is essential but not difficult (it just
requires some discipline). Once these pieces are in place, you can decide whether you
want to move further up the pyramid. If you achieve layer 5 on an enterprise basis, the
benefits through tighter alignment between IT and business will make your organiza-
tion much more agile, productive, and frankly, a more fun place to work!

Summary

In this chapter, we covered the historical origins of SOA, dating back from its roots in
earlier distributed computing architectures. The emergence of SOAP-based web ser-
vices is a critical enabler for a SOA, but it turns out that it’s only one, albeit critical,
part. Simply “exposing” an application’s operations as a web service provides little
more than earlier RPC-based models. Instead, a deeper dive into what constitutes SOA
revealed five main technologies and principles that are the bedrock of a SOA environ-
ment: service interfaces; service transparency; service loose-coupling and statelessness;
service composition; and service registry and publication. With that broad under-
standing of what constitutes a SOA, we then focused on the technical requirements to
form the Open SOA Platform. Nine specific technologies were identified that were
essential platform building blocks: application server; business process management;
enterprise decision management; enterprise service bus; event stream processing; Java
Message Service; metadata repository; service composition and composites; and web
service mediation.

Until recently, there hasn’t been a robust and complete set of open source technol-
ogies that addressed each of these nine areas. Instead, only the commercial vendors,
with their deeper pockets and pricy products, appeared able to provide a comprehen-
sive SOA environment. That has changed. Compelling open source solutions now
exist for each of those eight technologies, and the next chapter provides an overview
of them. Following that, we revisit these eight core technologies individually, with sub-
stantive examples provided so that you can implement your comprehensive open
source SOA platform. The benefits of SOA are no longer limited to big companies with
big budgets. Instead, even the smallest of enterprises can participate in this exciting
new paradigm by enjoying the fruits of dedicated, and very bright, open source devel-
opers. In chapter 2 we assess the open source landscape for the SOA technology plat-
form and identify those that will be the focus for the remainder of the book.

ENTERPRISE JAVA

OPEN SOURCE SOA Jef Davi

ou can now build an enterprise-class SOA solution us-

ing just open source applications. But there’s a catch.

You'll have to decide which products to use and how to
integrate them into a working whole. The areas to integrate
range from business process management, complex event
processing, messaging and middleware, and ESBs, to busi-
ness rules. The task can be daunting.

If you are a developer or architect whod like some help
with this task, then Open Source SOA is the guide for you.
You'll learn key SOA concepts and how these technologies
fit into the SOA equation. You'll learn valuable ways to in-
tegrate them, based on hard-won experience by the author.
And you'll discover just why these open source products are
a competitive alternative to expensive commercial solutions,
and are in many cases superior.

What's Inside

¢ Full lifecycle coverage of building an SOA system

* Mix, match, and blend different tools

* Hard-to-find case studies and unique solutions

¢ Introductions to JBoss jBPM, Drools, Apache Tuscany,
Synapse, Esper, and more

* An integrated Eclipse project, with all libraries packaged
for running the examples

Jeff Davis is Director of Software Architecture at HireRight.

For online access to the author, code samples, and a free ebook for
owners of this book, go to www.manning.com/OpenSourceSOA

$49.99 / Can $62.99 [INCLUDING eBOOK]

,ﬂ%jg(zta (El)()ca{*
SEE INSERT

“A survival guide in the

complex landscape of open
source SOA.”
—Alberto Lagna, whitebox.it

“An invaluable guide ...

excellent examples.”
—Rick Wagner, Acxiom Corp.

“The in-depth comparisons

of various open source SOA
products are worth the price

of the book.”

—Peter Johnson, Unisys

“... applicable to any SOA

project, regardless of the
platform.”
—Irena Kennedy, Microsoft

“Practical SOA solution that

integrates key OPCH source
technologies.”
—Doug Warren, Java Web Services

ISBN 13 978-1- ‘333‘!6& 54-2
1-9339868-54-

“ 5|4 | 9‘9

