
77

C H A P T E R 5

Screen layout

5.1 Introduction to layout 77
5.2 Packer 79
5.3 Grid 86

5.4 Placer 90
5.5 Summary 94

GUI layout is an often-misunderstood area; a programmer could conceivably waste a lot of
time on it. In this chapter, the three geometry managers, Pack, Grid and Place are covered
in detail. Some advanced topics, including approaches to variable-size windows and the atten-
dant problems of maintaining visually attractive and effective interfaces, will be presented.

5.1 Introduction to layout
Geometry managers are responsible for controlling the size and position of widgets on the
screen. In Motif, widget placement is handled by one of several manager widgets. One
example is the Constraint Widget class which includes the XmForm widget. Here, layout is
controlled by attaching the widget by one, or more, of the top, bottom, left or right sides to
adjacent widgets and containers. By choosing the appropriate combinations of attachments,
the programmer can control a number of behaviors which determine how the widget will
appear when the window is grown or shrunk.

Tk provides a flexible approach to laying out widgets on a screen. X defines several man-
ager class widgets but in Tk, three geometry managers may be used. In fact, it is possible to

78 CHAPTER 5 SCREEN LAYOUT

use the managers with each other (although there are some rather important rules about how
one goes about this). Tk achieves this flexibility by exploiting the X behavior that says widget
geometry is determined by the geometry managers and not by the widgets themselves. Like X,
if you do not manage the widget, it will not be drawn on the screen, although it will exist in
memory.

Geometry managers available to Tkinter are these: the Packer, which is the most com-
monly used manager; the Grid, which is a fairly recent addition to Tk; the Placer, which has
the least popularity, but provides the greatest level of control in placing widgets. You will see
examples of all three geometry managers throughout the book. The geometry managers are
available on all architectures supported by Tkinter, so it is not necessary to know anything
about the implementation of the architecture-dependent toolkits.

5.1.1 Geometry management
Geometry management is a quite complex topic, because a lot of negotiation goes on between
widgets, their containers, windows and the supporting window manager. The aim is to lay out
one or more slave widgets as subordinates of a master widget (some programmers prefer to
refer to child widgets and parents). Master widgets are usually containers such as a Frame or a
Canvas, but most widgets can act as masters. For example, place a button at the bottom of a
frame. As well as simply locating slaves within masters, we want to control the behavior of the
widget as more widgets are added or when the window is shrunk or grown.

The negotiation process begins with each slave widget requesting width and height ade-
quate to display its contents. This depends on a number of factors. A button, for example, cal-
culates its required size from the length of text displayed as the label and the selected font size
and weight.

Next, the master widget, along with its geometry manager, determines the space available
to satisfy the requested dimensions of the slaves. The available space may be more or less than
the requested space, resulting in squeezing, stretching or overlapping of the widgets, depending
on which geometry manager is being employed.

Next, depending on the design of the window, space within a master’s master must be
apportioned between all peer containers. The results depend on the geometry manager of the
peer widgets.

Finally, there is negotiation between the toplevel widget (normally the toplevel shell) and
the window manager. At the end of negotiations the available dimensions are used to deter-
mine the final size and location in which to draw the widgets. In some cases there may not be
enough space to display all of the widgets and they may not be realized at all. Even after this
negotiation has completed when a window is initialized, it starts again if any of the widgets
change configuration (for example, if the text on a button changes) or if the user resizes the
window. Fortunately, it is a lot easier to use the geometry managers than it is to discuss them!

A number of common schemes may be applied when a screen is designed. One of the prop-
erties of the Packer and to a lesser extent the Grid, is that it is possible to allow the geometry
manager to determine the final size of a window. This is useful when a window is created
dynamically and it is difficult to predict the population of widgets. Using this approach, the win-
dow changes size as widgets are added or removed from the display. Alternatively, the designer
might use the Placer on a fixed-size window. It really depends on the effect that is wanted.

Let’s start by looking at the Packer, which is the most commonly used manager.

PACKER 79

5.2 Packer
The Packer positions slave widgets in the master by adding them one at a time from the out-
side edges to the center of the window. The Packer is used to manage rows, columns and com-
binations of the two. However, some additional planning may have to be done to get the
desired effect.

The Packer works by maintaining a list of slaves, or the packing list, which is kept in the
order that the slaves were originally presented to the Packer. Take a look at figure 5.1 (this fig-
ure is modeled after John Ousterhout’s description of the Packer).

Figure 5.1(1) shows the space available for placing widgets. This might be within a frame
or the space remaining after placing other widgets. The Packer allocates a parcel for the next
slave to be processed by slicing off a section of the available space. Which side is allocated is
determined by the options supplied with the pack request; in this example, the side=LEFT and
fill=Y options have been specified. The actual size allocated by the Packer is determined by
a number of factors. Certainly the size of the slave is a starting point, but the available space
and any optional padding requested by the slave must be taken into account. The allocated par-
cel is shown in figure 5.1(2).

Available Space

Master

Slave Pa
rc

el

1 2

3 4

Space available
for remaining
slaves

Parcel

5

6 7

Figure 5.1 Packer operation

80 CHAPTER 5 SCREEN LAYOUT

Next, the slave is positioned within the parcel. If the available space
results in a smaller parcel than the size of the slave, it may be
squeezed or cropped, depending on the requested options. In this
example, the slave is smaller than the available space and its height
is increased to fill the available parcel. Figure 5.1(4) shows the
available space for more slaves. In figure 5.1(5) we pack another

slave with side=LEFT and fill=BOTH options. Again, the available parcel is larger than the
size of the slave (figure 5.1(6)) so the widget is grown to fill the available space. The effect is
shown in figure 5.1(7).

Here is a simple example of using the pack method, shown in figure 5.2:

from Tkinter import *

class App:
def __init__(self, master):

Button(master, text='Left').pack(side=LEFT)
Button(master, text='Center').pack(side=LEFT)
Button(master, text='Right').pack(side=LEFT)

root = Tk()
root.option_add('*font', ('verdana', 12, 'bold'))
root.title("Pack - Example 1")
display = App(root)
root.mainloop()

Code comments
The side=LEFT argument tells the Packer to start locating the widgets in the packing list
from the left-hand side of the container. In this case the container is the default Toplevel
shell created by the Tk initializer. The shell shrinks or expands to enclose the packed widgets.

Enclosing the widgets in a frame has no effect
on the shrink-wrap effect of the Packer. In this
example (shown in figure 5.3), we have
increased the length of the text in the middle
button and the frame is simply stretched to the
requested size.

fm = Frame(master)
Button(fm, text='Left').pack(side=LEFT)
Button(fm, text='This is the Center button').pack(side=LEFT)
Button(fm, text='Right').pack(side=LEFT)
fm.pack()

Example_5_1.py

Example_5_2.py

Figure 5.2 Pack ge-
ometry manager

�

�

Figure 5.3 Packer accommodates
requested widget sizes

PACKER 81

Packing from the top of the frame generates the result shown
in figure 5.4. Note that the Packer centers the widgets in the
available space since no further options are supplied and since
the window is stretched to fit the widest widget.

Button(fm, text='Top').pack(side=TOP)
Button(fm, text='This is the Center button').pack(side=TOP)
Button(fm, text='Bottom').pack(side=TOP)

Combining side options in the Packer list may achieve the
desired effect (although more often than not you’ll end up with an
effect you did not plan on!). Figure 5.5 illustrates how unusual lay-
outs may be induced.

In all of these examples we have seen that the Packer negoti-
ates the overall size of containers to fit the required space. If you
want to control the size of the container, you will have to use geom-
etry options, because attempting to change the Frame size (see
example_5_4.py) has no effect as shown in figure 5.6.

fm = Frame(master, width=300, height=200)
Button(fm, text='Left').pack(side=LEFT)

Sizing windows is often a problem when pro-
grammers start to work with Tkinter (and most
other toolkits, for that matter) and it can be frustrat-
ing when there is no response as width and height
options are added to widget specifications.

To set the size of the window, we have to make
use of the wm.geometry option. Figure 5.7 shows
the effect of changing the geometry for the root
window.

master.geometry("300x200")

Example_5_2a.py

 Example_5_4.py

Example_5_5.py

Figure 5.4 Packing from
the top side

Figure 5.5
Combining sides

Figure 5.6 Effect of
changing frame size

Figure 5.6 Assigning the geome-
try of the Toplevel shell

82 CHAPTER 5 SCREEN LAYOUT

5.2.1 Using the expand option
The expand option controls whether the Packer expands the widget when the window is
resized. All the previous examples have accepted the default of expand=NO. Essentially, if
expand is true, the widget may expand to fill the available space within its parcel; whether it
does expand is controlled by the fill option (see “Using the fill option” on page 82).

Button(fm, text='Left').pack(side=LEFT, expand=YES)
Button(fm, text='Center').pack(side=LEFT, expand=YES)
Button(fm, text='Right').pack(side=LEFT, expand=YES)

Figure 5.7 shows the effect of setting expand to true (YES) without using the fill option
(see Example_5_6.py). The vertical orientation in the second screen is similar to side=TOP
(see Example_5_2a.py).

5.2.2 Using the fill option
Example_5_7.py illustrates the effect of combining fill and expand options; the output is
shown in figure 5.9(1)

Example_5_6.py

Figure 5.7 Expand without fill options

Figure 5.8 Using the fill option

1 2 3

PACKER 83

.

Button(fm, text='Left').pack(side=LEFT, fill=X, expand=YES)
Button(fm, text='Center').pack(side=LEFT, fill=X, expand=YES)
Button(fm, text='Right').pack(side=LEFT, fill=X, expand=YES)

If the fill option alone is used in Example_5_7.py, you will obtain a display similar to
figure 5.9(2). By using fill and expand we see the effect shown in figure 5.9(3).

Varying the combination of fill and expand options may be used for different effects
at different times. If you mix expand options, such as in example_5_8.py, you can allow some
of the widgets to react to the resizing of the window while others remain a constant size. Figure
5.10 illustrates the effect of stretching and squeezing the screen.

Button(fm, text='Left').pack(side=LEFT, fill=X, expand=NO)
Button(fm, text='Center').pack(side=LEFT, fill=X, expand=NO)
Button(fm, text='Right').pack(side=LEFT, fill=X, expand=YES)

Using fill=BOTH allows the widget to use all of its parcel. However, it might create some
rather ugly effects, as shown in figure 5.11. On the other hand, this behavior may be exactly
what is needed for your GUI.

Example_5_7.py

Figure 5.9 Allowing widgets to expand and fill independently

Example_5_8.py

Figure 5.10 Using fill=BOTH

84 CHAPTER 5 SCREEN LAYOUT

5.2.3 Using the padx and pady options
The padx and pady options allow the widget to be packed with
additional space around it. Figure 5.12 shows the effect of add-
ing padx=10 to the pack request for the center button. Padding
is applied to the specified left/right or top/bottom sides for
padx and pady respectively. This may not achieve the effect you
want, since if you place two widgets side by side, each with a

padx=10, there will be 20 pixels between the two widgets and 10 pixels to the left and right of
the pair. This can result in some unusual spacing.

5.2.4 Using the anchor option
The anchor option is used to determine where a widget will be
placed within its parcel when the available space is larger than
the size requested and none or one fill direction is specified.
Figure 5.13 illustrates how a widget would be packed if an
anchor is supplied. The option anchor=CENTER positions the
widget at the center of the parcel. Figure 5.14 shows how this
looks in practice.

5.2.5 Using hierarchical packing
While it is relatively easy to use the Packer to lay out simple screens, it is usually necessary to
apply a hierarchical approach and employ a design which packs groups of widgets within
frames and then packs these frames either alongside one other or inside other frames. This
allows much more control over the layout, particularly if there is a need to fill and expand the
widgets.

Figure 5.15 illustrates the result of attempting to lay out two columns of widgets. At first
glance, the code appears to work, but it does not create the desired layout. Once you have

Figure 5.11 Using padx
to create extra space

Figure 5.12 Anchoring
a widget within the
available space

N
NE

E

SESSW

W

NW

Figure 5.13 Using the anchor option to place widgets

PACKER 85

packed a slave using side=TOP, the remaining space is below the slave, so you cannot pack
alongside existing parcels.

fm = Frame(master)
Button(fm, text='Top').pack(side=TOP, anchor=W, fill=X, expand=YES)
Button(fm, text='Center').pack(side=TOP, anchor=W, fill=X, expand=YES)
Button(fm, text='Bottom').pack(side=TOP, anchor=W, fill=X, expand=YES)
Button(fm, text='Left').pack(side=LEFT)
Button(fm, text='This is the Center button').pack(side=LEFT)
Button(fm, text='Right').pack(side=LEFT)
fm.pack()

All we have to do is to pack the two columns of widgets in separate frames and then pack
the frames side by side. Here is the modified code:

fm = Frame(master)
Button(fm, text='Top').pack(side=TOP, anchor=W, fill=X, expand=YES)
Button(fm, text='Center').pack(side=TOP, anchor=W, fill=X, expand=YES)
Button(fm, text='Bottom').pack(side=TOP, anchor=W, fill=X, expand=YES)
fm.pack(side=LEFT)
fm2 = Frame(master)
Button(fm2, text='Left').pack(side=LEFT)
Button(fm2, text='This is the Center button').pack(side=LEFT)
Button(fm2, text='Right').pack(side=LEFT)
fm2.pack(side=LEFT, padx=10)

Figure 5.16 shows the effect achieved by running Example_5_13.py.
This is an important technique which will be seen in several examples throughout the

book. For an example which uses several embedded frames, take a look at Examples/chapter17/
Example_16_9.py, which is available online.

Example_5_12.py

Example_5_13.py

Figure 5.14 Abusing the Packer

Figure 5.15 Hierarchical packing

86 CHAPTER 5 SCREEN LAYOUT

5.3 Grid
Many programmers consider the Grid geometry manager the easiest manager to use. Person-
ally, I don’t completely agree, but you will be the final judge. Take a look at figure 5.17. This
is a fairly complex layout task to support an image editor which uses a “by example” motif.
Laying this out using the Packer requires a hierarchical approach with several nested Frames
to enclose the target widgets. It also requires careful calculation of padding and other factors
to achieve the final layout. It is much easier using the Grid.

Before we tackle laying out the image editor, let’s take
a look at a simpler example. We’ll create a dialog containing
three labels with three entry fields, along with OK and Can-
cel buttons. The fields need to line up neatly (the example
is a change-password dialog). Figure 5.18 shows what the
Grid manager does for us. The code is quite simple, but I
have removed some less-important lines for clarity:

class GetPassword(Dialog):
def body(self, master):

self.title("Enter New Password")

Label(master, text='Old Password:').grid(row=0, sticky=W)
Label(master, text='New Password:').grid(row=1, sticky=W)
Label(master, text='Enter New Password Again:').grid(row=2, sticky=W)

Example_5_14.py

Figure 5.16 An image
enhancer using Grid
geometry management

Figure 5.17 A dialog laid out
using Grid

�

GRID 87

self.oldpw = Entry(master, width = 16, show='*')
self.newpw1 = Entry(master, width = 16, show='*')
self.newpw2 = Entry(master, width = 16, show='*')

self.oldpw.grid(row=0, column=1, sticky=W)
self.newpw1.grid(row=1, column=1, sticky=W)
self.newpw2.grid(row=2, column=1, sticky=W)

Code comments
First, we create the labels. Since we do not need to preserve a reference to the label, we can
apply the grid method directly. We specify the row number but allow the column to default
(in this case to column 0). The sticky attribute determines where the widget will be
attached within its cell in the grid. The sticky attribute is similar to a combination of the
anchor and expand options of the Packer and it makes the widget look like a packed widget
with an anchor=W option.

We do need a reference to the entry fields, so we create them separately.

Finally, we add the entry fields to the grid, specifying both row and column.

Let’s go back to the image editor example. If you plan the layout for the fields in a grid
it is easy to see what needs to be done to generate the screen. Look at figure 5.19 to see how
the areas are to be gridded. The important feature to note is that we need to span both rows
and columns to set aside the space for each of the components. You may find it convenient to
sketch out designs for complex grids before committing them to code. Here is the code for the
image editor. I have removed some of the code, since I really want to focus on the layout and
not the operation of the application. The full source code for this example is available online.

�

�

�

�

�

Figure 5.18 Designing the layout for a gridded display

0 1 2 3 4 5 6 7
1
2
3
4
5
6
7
8
9
10
11

12
13
14

Im
ag

e

Im
ag

e

Im
ag

e

label

Im
ag

e

Im
ag

e

Im
ag

e

Im
ag

e

Im
ag

e

Im
ag

e

Im
ag

e

label

radiobutton

radiobutton

radiobutton
radiobutton

combobox

button

button

button

button

88 CHAPTER 5 SCREEN LAYOUT

from Tkinter import *
import sys, Pmw, Image, ImageTk, ImageEnhance

class Enhancer:
def __init__(self, master=None, imgfile=None):

self.master = master
self.masterImg = Image.open(imgfile)
self.masterImg.thumbnail((150, 150))

self.images = [None]*9
self.imgs = [None]*9
for i in range(9):

image = self.masterImg.copy()
self.images[i] = image
self.imgs[i] = ImageTk.PhotoImage(self.images[i].mode,

self.images[i].size)

i = 0
for r in range(3):

for c in range(3):
lbl = Label(master, image=self.imgs[i])
lbl.grid(row=r*5, column=c*2,

rowspan=5, columnspan=2,sticky=NSEW,
padx=5, pady=5)

i = i + 1

self.original = ImageTk.PhotoImage(self.masterImg)
Label(master, image=self.original).grid(row=0, column=6,

rowspan=5, columnspan=2)

Label(master, text='Enhance', bg='gray70').grid(row=5, column=6,
columnspan=2, sticky=NSEW)

self.radio = Pmw.RadioSelect(master, labelpos = None,
 buttontype = 'radiobutton', orient = 'vertical',
 command = self.selectFunc)

self.radio.grid(row=6, column=6, rowspan=4, columnspan=2)

--- Code Removed --

Label(master, text='Variation',
 bg='gray70').grid(row=10, column=6,

columnspan=2, sticky=NSWE)

self.variation=Pmw.ComboBox(master, history=0, entry_width=11,
 selectioncommand = self.setVariation,
 scrolledlist_items=('Fine','Medium Fine','Medium',

'Medium Course','Course'))

self.variation.selectitem('Medium')

self.variation.grid(row=11, column=6, columnspan=2)

imageEditor.py

�

�

�

�

�

�

GRID 89

Button(master, text='Undo',
 state='disabled').grid(row=13, column=6)

Button(master, text='Apply',
 state='disabled').grid(row=13, column=7)
Button(master, text='Reset',
 state='disabled').grid(row=14, column=6)
Button(master, text='Done',
 command=self.exit).grid(row=14, column=7)

--- Code Removed --

root = Tk()
root.option_add('*font', ('verdana', 10, 'bold'))
root.title('Image Enhancement')
imgEnh = Enhancer(root, sys.argv[1])
root.mainloop()

Code comments
This example uses the Python Imaging Library (PIL) to create, display, and enhance images.
See “Python Imaging Library (PIL)” on page 626 for references to documentation supporting
this useful library of image methods.

Although it’s not important in illustrating the grid manager, I left some of the PIL code in place
to demonstrate how it facilitates handling images. Here, in the constructor, we open the master
image and create a thumbnail within the bounds specified. PIL scales the image appropriately.

self.masterImg = Image.open(imgfile)
self.masterImg.thumbnail((150, 150))

Next we create a copy of the image and create a Tkinter PhotoImage placeholder for each of
the images in the 3x3 grid.

Inside a double for loop we create a Label and place it in the appropriate cell in the grid,
adding rowspan and columnspan options.

lbl = Label(master, image=self.imgs[i])
lbl.grid(row=r*5, column=c*2,

rowspan=5, columnspan=2,sticky=NSEW, padx=5,pady=5)

Note that in this case the sticky option attaches the images to all sides of the grid so
that the grid is sized to constrain the image. This means that the widget will stretch and
shrink as the overall window size is modified.

Similarly, we grid a label with a different background, using the sticky option to fill all of
the available cell.

Label(master, text='Enhance', bg='gray70').grid(row=5, column=6,
columnspan=2, sticky=NSEW)

The Pmw RadioSelect widget is placed in the appropriate cell with appropriate spans:
self.radio = Pmw.RadioSelect(master, labelpos = None,

 buttontype = 'radiobutton', orient = 'vertical',
 command = self.selectFunc)

self.radio.grid(row=6, column=6, rowspan=4, columnspan=2)

Finally, we place the Button widgets in their allocated cells.

�

�

�

�

�

�

�

�

90 CHAPTER 5 SCREEN LAYOUT

You have already seen one example of the ImageEditor in use (figure 5.17). The real
advantage of the grid geometry manager becomes apparent when you run the application with
another image with a different aspect. Figure 5.20 shows this well; the grid adjusts perfectly
to the image. Creating a similar effect using the Packer would require greater effort.

5.4 Placer
The Placer geometry manager is the simplest of the
available managers in Tkinter. It is considered diffi-
cult to use by some programmers, because it allows
precise positioning of widgets within, or relative to,
a window. You will find quite a few examples of its
use in this book so I could take advantage of this
precision. Look ahead to figure 9.5 on page 213 to
see an example of a GUI that would be fairly diffi-
cult to implement using pack or grid. Because we
will see so many examples, I am only going to
present two simple examples here.

Let’s start by creating the simple scrapbook
window shown in figure 5.21. Its function is to dis-
play some images, which are scaled to fit the window.
The images are selected by clicking on the numbered

Figure 5.19 ImageEditor—scales for
image size

Figure 5.20 A simple scrapbook
tool

PLACER 91

buttons. It is quite easy to build a little application like this; again, we use PIL to provide sup-
port for images.

It would be possible to use pack to lay out the window (and, of course, grid would work
if the image spanned most of the columns) but place provides some useful behavior when
windows are resized. The Buttons in figure 5.21 are attached to relative positions, which means
that they stay in the same relative position as the dimensions of the window change. You
express relative positions as a real number with 0.0 representing minimum x or y and 1.0 rep-
resenting maximum x or y. The minimum values for the axes are conventional for window
coordinates with x0 on the left of the screen and y0 at the top of the screen. If you run scrap-
book.py, test the effect of squeezing and stretching the window and you will notice how the
buttons reposition. If you squeeze too much you will cause the buttons to collide, but somehow
the effect using place is more acceptable than the clipping that occurs with pack. Here is the
code for the scrapbook.

from Tkinter import *
import Image, ImageTk, os

class Scrapbook:
def __init__(self, master=None):

self.master = master
self.frame = Frame(master, width=400, height=420, bg='gray50',

 relief=RAISED, bd=4)

self.lbl = Label(self.frame)
self.lbl.place(relx=0.5, rely=0.48, anchor=CENTER)

self.images = []
images = os.listdir("images")

xpos = 0.05
for i in range(10):

Button(self.frame, text='%d'%(i+1), bg='gray10',
 fg='white', command=lambda s=self, img=i: \
 s.getImg(img)).place(relx=xpos, rely=0.99, anchor=S)
xpos = xpos + 0.08
self.images.append(images[i])

Button(self.frame, text='Done', command=self.exit,
 bg='red', fg='yellow').place(relx=0.99, rely=0.99, anchor=SE)
self.frame.pack()
self.getImg(0)

def getImg(self, img):
self.masterImg = Image.open(os.path.join("images",

 self.images[img]))
self.masterImg.thumbnail((400, 400))
self.img = ImageTk.PhotoImage(self.masterImg)
self.lbl['image'] = self.img

def exit(self):
self.master.destroy()

root = Tk()

scrapbook.py

�

�

�

�

�

92 CHAPTER 5 SCREEN LAYOUT

root.title('Scrapbook')
scrapbook = Scrapbook(root)
root.mainloop()

Code comments
We create the Label which will contain the image, placing it approximately in the center of
the window and anchoring it at the center. Note that the relative placings are expressed as per-
centages of the width or height of the container.

self.lbl.place(relx=0.5, rely=0.48, anchor=CENTER)

We get a list of files from the images directory

place really lends itself to be used for calculated positioning. In the loop we create a Button,
binding the index of the button to the activate callback and placing the button at the next
available position.

We put one button at the bottom right of the screen to allow us to quit the scrapbook. Note
that we anchor it at the SE corner. Also note that we pack the outer frame. It is quite com-
mon to pack a group of widgets placed within a container. The Packer does all the work of
negotiating the space with the outer containers and the window manager.

getImg is the PIL code to load the image, create a thumbnail, and load it into the Label.

In addition to providing precise window placement, place also provides rubber sheet
placement, which allows the programmer to specify the size and location of the slave window
in terms of the dimensions of the master window. It is even possible to use a master window
which is not the parent of the slave. This can be very useful if you want to track the dimensions
of an arbitrary window. Unlike pack and grid, place allows you to position a window out-
side the master (or sibling) window. Figure 5.22 illustrates the use of a window to display some
of an image’s properties in a window above each of the images. As the size of the image changes,
the information window scales to fit the width of the image.

�

�

�

�

�

Figure 5.21 Adding a sibling window which tracks changes in attached window

PLACER 93

The Placer has another important property: unlike the other Tkinter managers, it does
not attempt to set the geometry of the master window. If you want to control the dimensions
of container widgets, you must use widgets such as Frames or Canvases that have a config-
ure option to allow you to control their sizes. Let’s take a look at the code needed to implement
the information window.

from

Tkinter import *
import Image, ImageTk, os, string

class Scrapbook:
def __init__(self, master=None):

--- Code Removed --

Button(self.frame, text='Info', command=self.info,
 bg='blue', fg='yellow').place(relx=0.99, rely=0.90, anchor=SE)
self.infoDisplayed = FALSE

def getImg(self, img):

--- Code Removed --

if self.infoDisplayed:
self.info();self.info()

def info(self):
if self.infoDisplayed:

self.fm.destroy()
self.infoDisplayed = FALSE

else:
self.fm = Frame(self.master, bg='gray10')
self.fm.place(in_=self.lbl, relx=0.5,

relwidth=1.0, height=50, anchor=S,
rely=0.0, y=-4, bordermode='outside')

ypos = 0.15
for lattr in ['Format', 'Size', 'Mode']:

Label(self.fm, text='%s:\t%s' % (lattr,
getattr(self.masterImg,

'%s' % string.lower(lattr))),
 bg='gray10', fg='white',

font=('verdana', 8)).place(relx=0.3,
rely= ypos, anchor=W)

ypos = ypos + 0.35
self.infoDisplayed = TRUE

--- Code Removed --

scrapbook2.py

�

�

�

�

�

�

94 CHAPTER 5 SCREEN LAYOUT

Code comments

We add a button to display the image information.

To force a refresh of the image info, we toggle the info display.
self.info();self.info()

The info method toggles the information display.

If the window is currently displayed, we destroy it.

Otherwise, we create a new window, placing it above the image and setting its width to match
that of the image. We also add a negative increment to the y position to provide a little
whitespace.

self.fm.place(in_=self.lbl, relx=0.5,
relwidth=1.0, height=50, anchor=S,
rely=0.0, y=-4, bordermode='outside')

The entries in the information window are placed programmatically.

5.5 Summary
Mastering the geometry managers is an important step in developing the ability to produce
attractive and effective GUIs. When starting out with Tkinter, most readers will find grid
and pack to be easy to use and capable of producing the best results when a window is resized.
For very precise placement of widgets, place is a better choice. However, this does take quite
a bit more effort.

You will see many examples of using the three managers throughout the book. Remember
that it is often appropriate to combine geometry managers within a single window. If you do,
you must be careful to follow some rules; if things are just not working out, then you have
probably broken one of those rules!

�

�

�

�

�

�

