(laus Ibsen
Jonathan Anstey

Farewnords by
Gregor Hohpe and lames Strachan

SAMPLE CHAPTER

|'Il MANNING

Camel in Action
Claus Ibsen

Jonathan Anstey

Chapter 4

Copyright 2011 Manning Publications

brief contents

ParRT 1 FIRST STEPS
1

Meeting Camel 3

2 = Routing with Camel 22

PAarT 2 CoORE CAMEL

3

L I O Ot W

Transforming data with Camel 61
Using beans with Camel 93

Error handling 120

Testing with Camel 154
Understanding components 188

Enterprise integration patterns 237

PART 3 OUT IN THE WILD eeuteeeeecescescecessescscescessscessessssessessssescnse 281

9 = Using transactions 283

10
11
12
13
14

Concurrency and scalability 315
Developing Camel projects 359
Management and monitoring 385
Running and deploying Camel 410

Bean routing and remoting 443

vii

Using beans with Camel

This chapter covers

Understanding the Service Activator EIP
How Camel looks up beans using registries
How Camel selects bean methods to invoke

Bean parameter binding with single and
multiple parameters

If you've been developing software for five years or longer, you’ve likely worked
with different component models, such as CORBA, EJB, JBI, SCA, and lately OSGi.
Some of these models, especially the earlier ones, imposed a great deal on the pro-
gramming model, dictating what you could and couldn’t do, and they often
required complex packaging and deployment models. This left the everyday engi-
neer with a lot of concepts to learn and master. In some cases, much more time was
spent working around the restrictive programming and deployment models than
on the business application itself.

Because of this growing complexity and the resulting frustrations, a simpler,
more pragmatic programming model arose from the open source community: the
POJO model. Later this was formalized as the Spring Framework.

The Spring Framework has opened the door to the enterprise, proving
that the POJO programming model and a lightweight container indeed meet the

93

94

4.1

411

CHAPTER 4 Using beans with Camel

expectations of today’s businesses. In fact, the simple programming model and light-
weight container concept proved superior to the heavyweight and over-complex
enterprise application and integration servers that were used before.

So what does this have to do with Camel? Well, Camel doesn’t mandate using a spe-
cific component or programming model. It doesn’t mandate a heavy specification
that you must learn and understand to be productive. Camel doesn’t require you to
repackage any of your existing libraries or require you to use the Camel API to fulfill
your integration needs. Camel is on the same page as the Spring Framework, with
both of them being lightweight containers favoring the POJO programming model.

In fact, Camel recognizes the power of the POJO programming model and goes
great lengths to work with your beans. By using beans, you fulfill an important goal in
the software industry, which is to reduce coupling. Camel not only offers reduced cou-
pling with beans, but you get the same loose coupling with Camel routes. For exam-
ple, three teams can work simultaneously on their own sets of routes, which can easily
be combined into one system.

We’ll start this chapter by showing you how not to use beans with Camel, which will
make it clearer how you should use beans. After that, we’ll take a look at the theory
behind the Service Activator EIP and dive inside Camel to see how this pattern is
implemented. Finally, we’ll look at the bean-binding process, which gives you fine-
grained control over binding information to the parameters on the invoked method
from within Camel and the currently routed message. It may sound confusing at first,
but don’t worry—it will make sense shortly.

Using beans the hard way and the easy way

In this section, we’ll walk through an example that shows how not to use beans with

Camel—the hard way to use beans. Then we’ll look at how to use beans the easy way.
Suppose you have an existing bean that offers an operation (a service) you need to

use in your integration application. For example, HelloBean offers the hello method

as its service:

public class HelloBean {

public String hello(String name) {
return "Hello " + name;
}

}

Let’s look at some different ways you could use this bean in your application.

Invoking a bean from pure Java

By using a Camel Processor, you can invoke a bean from Java code.

Listing 4.1 Using a Processor to invoke the hello method on the HelloBean

public class InvokeWithProcessorRoute extends RouteBuilder

public void configure() throws Exception {

from("direct:hello™") qgf? Uses a
.process (new Processor () ({ processor

4.1.2

Using beans the hard way and the easy way 95

public void process (Exchange exchange) throws Exception {
String name = exchange.getIn() .getBody (String.class) ;

HelloBean hello = new HelloBean() ; Invokes
String answer = hello.hello (name) ; HelloBean
exchange.getOut () .setBody (answer) ;

}
1

}
Listing 4.1 shows a RouteBuilder, which defines the route. You use an inlined Camel
Processor @), which gives you the process method, in which you can work on the
message with Java code. First, you must extract the message body from the input mes-
sage, which is the parameter you’ll use when you invoke the bean later. Then you
need to instantiate the bean and invoke it @. Finally you must set the output from the
bean on the output message.

Now that you’ve done it the hard way using the Java DSL, let’s take a look at using
Spring XML.

Invoking a bean defined in Spring

You’ll often use Spring as a bean container and define beans using its XML files. List-
ings 4.2 and 4.3 show how to revise listing 4.1 to work with a Spring bean this way.

Listing 4.2 Setting up Spring to use a Camel route that uses the HelloBean

<bean id="helloBean" class="camelinaction.HelloBean"/> QAA" Defines HelloBean
<bean id="route" class="camelinaction.InvokeWithProcessorSpringRoute"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<routeBuilder ref="route"/>
</camelContext>

First you define HelloBean in the Spring XML file with the id helloBean @. You still
want to use the Java DSL to build the route, so you need to declare a bean that con-
tains the route. Finally, you define a CamelContext, which is the way you get Spring
and Camel to work together.

Now let’s take a closer look at the route.

Listing 4.3 A Camel route using a Processor to invoke HelloBean

public class InvokeWithProcessorSpringRoute extends RouteBuilder ({

@Autowired Injects
private HelloBean hello; HelloBean

public void configure() throws Exception {
from("direct:hello")
.process (new Processor () {
public void process (Exchange exchange) throws Exception {
String name = exchange.getIn() .getBody (String.class) ;

String answer = hello.hello (name);
exchange.getOut () . setBody (answer) ; Invokes
9 ' Y ’ HelloBean

96

4.1.3

CHAPTER 4 Using beans with Camel

1
)

}

The route in listing 4.3 is nearly identical to the route in listing 4.1. The difference is
that now the bean is injected using the Spring @Autowired annotation @, and instead
of instantiating the bean, you use the injected bean directly @.

You can try these examples on your own; they're in the chapter4/bean directory of
the book’s source code. Run Maven with these goals to try the last two examples:
mvn test -Dtest=InvokeWithProcessorTest
mvn test -Dtest=InvokeWithProcessorSpringTest
So far you’ve seen two examples of using beans with a Camel route, and there’s a bit of
plumbing to get it all to work. Here are some reasons why it’s hard to work with beans:

= You must use Java code to invoke the bean.

= You must use the Camel Processor, which clutters the route, making it harder
to understand what happens (route logic is mixed in with implementation
logic).

= You must extract data from the Camel message and pass it to the bean, and you
must move any response from the bean back into the Camel message.

= You must instantiate the bean yourself, or have it dependency-injected.

Now let’s look at the easy way of doing it.

Using beans the easy way

Suppose you were to define the Camel route in the Spring XML file instead of using a
RouteBuilder class. The following snippet shows how this might be done:

<bean id="helloBean" class="camelinaction.HelloBean"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/s J Insert something
< What goes here » here to use beans
</route>
</camelContext>
First you define the bean as a Spring bean, and then you define the Camel route with
the direct:start input. At @ you want to invoke HelloBean, but you're in trouble—
this is XML, and you can’t add Java code in the XML file.
In Camel, the easy way to use beans is to use the <bean> tag at @:

<bean ref="helloBean" method="hello"/>
That gives you the following route:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>

4.2

The Service Activator pattern 97

<bean ref="helloBean" method="hello"/>
</route>
</camelContext>
Camel offers the same solution when using the Java DSL. You can simplify the route in
listing 4.3 like this:

public void configure() throws Exception {
from("direct:hello") .beanRef ("helloBean", "hello");
}

That’s a staggering reduction from eight lines of code to one. And on top of that, the
one code line is much easier to understand. It’s all high-level abstraction, containing
no low-level code details, which were required when using inlined Processors.

You could even omit the hello method, because the bean only has a single
method:

public void configure() throws Exception {
from("direct:hello") .beanRef ("helloBean") ;
1

Using the <bean> tag is an elegant solution for working with beans. Without using that
tag, you had to use a Camel Processor to invoke the bean, which is a tedious solution.

TIP In the Java DSL, you don’t have to preregister the bean in the registry.
Instead, you can provide the class name of the bean, and Camel will instanti-
ate the bean on startup. The previous example could be written simply as
from("direct:hello") .bean (HelloBean.class) ;.

Now let’s look at how you can work with beans in Camel from the EIP perspective.

The Service Activator pattern

The Service Activator pattern is an enterprise pattern described in Hohpe and Woolf’s
Enterprise Integration Patternsbook (http://www.enterpriseintegrationpatterns.com/). It
describes a service that can be invoked easily from both messaging and non-messaging
services. Figure 4.1 illustrates this principle.

Figure 4.1 shows a service activator component that invokes a service based on an
incoming request and returns an outbound reply. The service activator acts as a medi-

ator between the requester and the POJO service. The requester sends a request to the
service activator @), which is responsible for adapting the request to a format the
POJO service understands (mediating) and passing the request on to the service @.

\ 4

Request Service POJO Figure 4.1 The

activator (3] service service activator

< mediates between
the requestor and
the POJO service.

Requester

http://www.enterpriseintegrationpatterns.com/

98

4.3

CHAPTER 4 Using beans with Camel

The POJO service then returns a reply to the service activator €, which passes it back
(requiring no translation on the way back) to the waiting requester @.

As you can see in figure 4.1, the service is the POJO and the service activator is some-
thing in Camel that can adapt the request and invoke the service. That somethingis the
Camel Bean component, which eventually uses the org.apache.camel.compo-
nent .bean.BeanProcessor to do the work. We’ll look at how this BeanProcessor
works in section 4.4. You should regard the Camel Bean component as the Camel
implementation of the Service Activator pattern.

Compare the Service Activator pattern in figure 4.1 to the Camel route example
we looked at in section 4.1.3, as illustrated in figure 4.2.

Requester reauest Se.rvice POJ-O Figure 4.2
activator service .
‘iu:‘ < Relationship
D between a
Reply Camel route
and the Service
from("direct:hello") bean(HelloBean.class) HelloBean Activator EIP

Figure 4.2 shows how the Camel route maps to the Service Activator EIP. The
requester is the node that comes before the bean—it’s the from("direct:hello") in
our example. The service activator itself is the bean node, which is represented by the
BeanProcessor in Camel. And the POJO service is the HelloBean bean itself.

You now know the theory behind how Camel works with beans—the Service Activa-
tor pattern. But before you can use a bean, you need to know where to look for it. This
is where the registry comes into the picture. Let’s look at how Camel works with differ-
ent registries.

Camel’s bean registries

When Camel works with beans, it looks them up in a registry to locate them. Camel’s
philosophy is to leverage the best of the available frameworks, so it uses a pluggable
registry architecture to integrate them. Spring is one such framework, and figure 4.3
illustrates how the registry works.

[ApplicationContext |
! | |
— lookup ————» (7] | Figure 4.3
(1) :7 getBean > : A requester looks up a bean
, using the Camel registry,

| which then uses the Spring
I ApplicationContext
1
|

< to determine where the

bean resides.

3]

Camel’s bean registries 99

Figure 4.3 shows that the Camel registry is an abstraction that sits between the caller
and the real registry. When a requester needs to look up a bean @, it uses the Camel
Registry. The Camel Registry then does the lookup via the real registry @. The
bean is then returned to the requester €. This structure allows loose coupling but
also a pluggable architecture that integrates with multiple registries. All the requester
needs to know is how to interact with the Camel Registry.

The registry in Camel is merely a Service Provider Interface (SPI) defined in the
org.apache.camel.spi.Registry interface, as follows:

Object lookup (String name) ;
<T> T lookup (String name, Class<T> type)

<T> Map<String, T> lookupByType (Class<T> type)

You’ll most often use one of the first two methods to look up a bean by its name. For
example, to look up the HelloBean, you would do this:

HelloBean hello = (HelloBean) context.getRegistry().lookup("helloBean") ;
To get rid of that ugly typecast, you can use the second method instead:

HelloBean hello = context.getRegistry ()
.lookup ("helloBean", HelloBean.class) ;

NOTE The second method offers typesafe lookups because you provide the
expected class as the second parameter. Under the hood, Camel uses its type-
converter mechanism to convert the bean to the desired type, if necessary.

The last method, lookupByType, is mostly used internally by Camel to support conven-
tion over configuration—it allows Camel to look up beans by type without knowing
the bean name.

The registry itself is an abstraction and thus an interface. Table 4.1 lists the four
implementations shipped with Camel.

Table 4.1 Registry implementations shipped with Camel

Registry Description

SimpleRegistry A simple implementation to be used when unit testing or run-
ning Camel in the Google App engine, where only a limited
number of JDK classes are available.

JndiRegistry An implementation that uses an existing Java Naming and
Directory Interface (JNDI) registry to look up beans.

ApplicationContextRegistry | Animplementationthatworks with Springtolook up beansinthe
Spring ApplicationContext. This implementation is auto-
matically used when you’re using Camel in a Spring environment.

OsgiServiceRegistry An implementation capable of looking up beans in the OSGi
service reference registry. This implementation is automati-
cally used when using Camel in an OSGi environment.

100

4.3.1

CHAPTER 4 Using beans with Camel

In the following sections, we’ll go over each of these four registries.

SimpleRegistry
The simpleRegistry is a Map-based registry that’s used for testing or when running
Camel standalone.

For example, if you wanted to unit test the HelloBean example, you could use the
SimpleRegistry to enlist the HelloBean and refer to it from the route.

Listing 4.4 Using SimpleRegistry to unit test a Camel route

public class SimpleRegistryTest extends TestCase {
private CamelContext context;
private ProducerTemplate template;

protected void setUp() throws Exception { " Registers
SimpleRegistry registry = new SimpleRegistry () ; d HelloBean in
registry.put ("helloBean", new HelloBean()) ; SimpleRegistry
context = new DefaultCamelContext (registry) ; Uses SimpleRegistry
template = context.createProducerTemplate () ; with Camel

context.addRoutes (new RouteBuilder() {
public void configure() throws Exception {
from("direct:hello") .beanRef ("helloBean") ;

}
I3

context.start () ;

}

protected void tearDown () throws Exception { 43 C:eans up resources
template.stop () ; after test
context.stop() ;

}

public void testHello() throws Exception {
Object reply = template.requestBody ("direct:hello", "World");
assertEquals ("Hello World", reply);

}

First you create an instance of SimpleRegistry and populate it with HelloBean under
the helloBean name @. Then, to use this registry with Camel, you pass the registry as
a parameter to the DefaultCamelContext constructor @. To aid when testing, you
create a ProducerTemplate, which makes it simple to send messages to Camel, as can
be seen in the test method. Finally, when the test is done, you clean up the resources
by stopping Camel €. In the route, you use the beanRef method to invoke HelloBean
by the helloBean name you gave it when it was enlisted in the registry @.

You can try this test by going to the chapter4/bean directory and running this
Maven goal:

mvn test -Dtest=SimpleRegistryTest

Now let’s look at the next registry: JndiRegistry.

4.3.2

4.3.3

Camel’s bean registries 101

JndiRegistry

The JndiRegistry, as its name implies, integrates with a JNDI-based registry. It was the
first registry that Camel integrated, so it’s also the default registry if you create a
Camel instance without supplying a specific registry, as this code shows:

CamelContext context = new DefaultCamelContext () ;

The JndiRegistry (like the SimpleRegistry) is often used for testing or when run-
ning Camel standalone. Many of the unit tests in Camel use the JndiRegistry
because they were created before the SimpleRegistry was added to Camel.

The JndiRegistry is useful when you use Camel together with a Java EE applica-
tion server that provides a JNDI-based registry out of the box. Suppose you need to
leverage the JNDI registry of a WebSphere Application Server—you would have to set
up the pieces as follows:

Creates Hashtable containing
JNDI configuration

protected CamelContext createCamelContext () throws Exception {

Hashtable env = new Hashtable() ;

env.put (Context .INITIAL CONTEXT FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory") ;

env.put (Context .PROVIDER_URL,
"corbaloc:iiop:myhost.mycompany.com:2809") ;

env.put (Context.SECURITY PRINCIPAL, "username");

env.put (Context .SECURITY CREDENTIALS, "password");

Context ctx = new InitialContext (env) ; Creates
JndiRegistry jndi = new JndiRegistry (ctx) ; JndiRegistry

return new DefaultCamelContext (jndi) ;
}
You need to use a Hashtable @ to store information about the JNDI registry you wish
to use. After this, it’'s a matter of creating the javax.naming.Context that the
JndiRegistry should use @.
Camel also allows you to use the JndiRegistry with Spring XML. All you have to
do is define it as a Spring bean and Camel will automatically pick it up:

<bean id="registry" class="org.apache.camel.impl.JndiRegistry"/>

You can use the usual Spring lingo to pass the Hashtable parameter in the JndiReg-
istry constructor.
The next registry is for when you use Spring together with Camel.

ApplicationContextRegistry

The ApplicationContextRegistry is the default registry when Camel is used with
Spring. More precisely, it’s the default when you set up Camel in the Spring XML, as
this snippet illustrates:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>

102

4.3.4

CHAPTER 4 Using beans with Camel

<bean ref="helloBean" method="hello"/>
</route>
</camelContext>
Defining Camel using the <camelContext> tag will automatically let Camel use the
ApplicationContextRegistry. This registry allows you to define beans in Spring XML
files as you would normally do when using Spring. For example, you could define the
helloBean bean as follows:

<bean id="helloBean" class="camelinaction.HelloBean"/>

It can hardly be simpler than that. When you use Camel with Spring, you can keep on
using Spring beans as you would normally, and Camel will use those beans seamlessly
without any configuration.

The final registry applies when you use Camel with OSGi.

OsgiServiceRegistry

When Camel is used in an OSGi environment, Camel uses a two-step lookup process.
First, it will look up whether a service with the name exists in the OSGi service registry.
If not, Camel will fall back and look up the name in the regular registry, such as the
Spring ApplicationContextRegistry.

Suppose you want to expose HelloBean as an OSGi service. You could do it as
follows:

<osgi:service id="helloService" interface="camelinaction.HelloBean"
ref="helloBean"/>

<bean id="helloBean" class="camelinaction.HelloBean"/>
With help from the osgi:service namespace provided by Spring Dynamic Modules
(Spring DM; http://www.springsource.org/osgi), you export the HelloBean into the

OSGi registry under the name helloService. You can use the HelloBean from a Camel
route the same way you’ve already learned, by referring to its OSG service name:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<bean ref="helloService" method="hello"/>
</route>
</camelContext>

It’s that simple. All you have to remember is the name with which the bean was
exported. Camel will look it up in the OSGi service registry and the Spring bean con-
tainer for you. This is convention over configuration.

NOTE We’lllook at OSGi again when we cover Camel deploymentin chapter 13.

This concludes our tour of registries. Next we’ll focus on how Camel selects which
method to invoke on a given bean.

http://www.springsource.org/osgi

4.4

Selecting bean methods 103

Selecting bean methods

You’ve seen how Camel works with beans from the route perspective. Now it’s time to
dig down and see the moving parts in action. You first need to understand the mecha-
nism Camel uses to selects the method to invoke.

Remember, Camel acts as a service activator using the BeanProcessor, which sits
between the caller and the actual bean. At compile time there are no direct bindings,
and the JVM can’t link the caller to the bean—Camel must resolve this at runtime.

Figure 4.4 illustrates how the BeanProcessor leverages the registry to look up the
bean to invoke.

At runtime, a Camel exchange is routed, and at a given point in the route, it
reaches the BeanProcessor. The BeanProcessor then processes the exchange, per-
forming these general steps:

1 Looks up the bean in the registry

2 Selects the method to invoke on the bean

3 Binds to the parameters of the selected method (for example, using the body of
the input message as a parameter; this is covered in detail in section 4.5)

4 Invokes the method

5 Handles any invocation errors that occur (any exceptions thrown from the
bean will be set on the Camel exchange for further error handling)

6 Sets the method’s reply (if there is one) as the body on the output message on
the Camel exchange

We’ve covered how registry lookups are done in section 4.3. The next two steps
(steps 2 and 3 in the preceding list) are more complex, and we’ll cover them in the
remainder of this chapter. The reason why this is more complex in Camel is because
Camel has to compute which bean and method to invoke at runtime, whereas Java
code is linked at compile time.

Registry

N
Exchange —7

Input message
Request | BeanProcessor

(Service activator)
| Reply
<

Output message Invoke Bean

\ /

Method A
Method B

Figure 4.4 To invoke a bean in Camel, the BeanProcessor looks it up
in the registry, selects and adapts a method, invokes it, and passes the
returned value as the reply to the Camel exchange.

Method Z

104

44.1

CHAPTER 4 Using beans with Camel

Why does Camel need to select a method?

Why is there more than one possible method name when you invoke a method? The
answer is that beans can have overloaded methods, and in some cases the method
name isn't specified either, which means Camel has to pick among all methods on
the bean.

Suppose you have the following methods:

String echo(String s) ;
int echo (int number) ;
void doSomething (String something) ;

There are a total of three methods for Camel to select among. If you explicitly tell Camel
to use the echo method, you're still left with two methods to choose from. We'll look
at how Camel resolves this dilemma.

We'll first take a look at the algorithm Camel uses to select the method. Then we’ll
look at a couple of examples and see what could go wrong and how to avoid problems.

How Camel selects bean methods

Unlike at compile time, when the Java compiler can link method invocations together,
the Camel BeanProcessor has to select the method to invoke at runtime.

Suppose you have the following class:
public class EchoBean {

String echo(String name) {
return name + " " + name;

}

At compile time, you can express your code to invoke the echo method like this:

EchoBean echo = new EchoBean() ;
String reply = echo.echo("Camel") ;
This will ensure that the echo method is invoked at runtime.
On the other hand, suppose you use the EchoBean in Camel in a route as follows:

from("direct:start") .bean (EchoBean.class, "echo").to("log:reply");

When the compiler compiles this code, it can’t see that you want to invoke the echo
method on the EchoBean. From the compiler’s point of view, EchoBean.class and
"echo" are parameters to the bean method. All the compiler can check is that the
EchoBean class exists; if you had misspelled the method name, perhaps typing "ekko",
the compiler could not catch this mistake. The mistake would end up being caught at
runtime, when the BeanProcessor would throw a MethodNotFoundException stating
that the method named ekko does not exists.

Camel also allows you not to explicitly name a method. For example, you could
write the previous route as follows:

Selecting bean methods 105

from("direct:start") .bean (EchoBean.class) .to("log:reply") ;

Regardless of whether the method name is explicitly given or not, Camel has to com-
pute which method to invoke. Let’s look at how Camel chooses.

4.4.2 Camel’s method-selection algorithm

The BeanProcessor uses a complex algorithm to select which method to invoke on a
bean. You won’t need to understand or remember every step in this algorithm—we
simply want to outline what goes on inside Camel to make working with beans as sim-
ple as possible for you.
Figure 4.5 shows the first part of this algorithm, and it’s continued in figure 4.6.
Here’s how the algorithm selects the method to invoke:

1 If the Camel message contains a header with the key CamelBeanMethodName, its
value is used as the explicit method name. Go to step 5.

2 If a method is explicitly defined, Camel uses it, as we mentioned at the start of
this section. Go to step 5.

Start
— Yes Does it have a CamelBeanMethodName header?
No
<+— Yes Is the method name explicitly given?
No

Can message body be converted to a Processor?

Processor

Yes) invoke N .

No
l Is message body a BeanInvocation instance?
invoke
Yes bean .
No
¢ Figure 4.5 How Camel selects which
———»@ Continue to select best method method to invoke (part 1, continued in
figure 4.6)

106 CHAPTER 4 Using beans with Camel

3 If the bean can be converted to a Processor using the Camel type-converter
mechanism, the Processor is used to process the message. This may seem a bit
odd, but it allows Camel to turn any bean into a message-driven bean equiva-
lent. For example, with this technique Camel allows any javax.jms.Message-
Listener bean to be invoked directly by Camel without any integration glue.
This method is rarely used by end users of Camel, but it can be a useful trick.

4 If the body of the Camel message can be converted into an org.apache.
camel . component .bean.BeanInvocation, that’s used to invoke the method and
pass the arguments to the bean. This is also rarely used by end users of Camel.

5 Continued in the second part of the algorithm, shown in figure 4.6.

If an explicit method name was given,
does at least one method exist with that name?

Throw
MethodNotFoundException

No —»|
d

Is there only one metho
marked with @Handler annotation?

— Yes
Is there only one method marked with
other kinds of Camel annotations?
<— Yes 0
Is there only one method
with a single parameter?

«— Yes

10
Find best
matching method

l Is there a single best matching method?

Throw

No AmbigiousMethodCallException

Yes

v

o | Return selected
method

v

Figure 4.6 How Camel selects which method
to invoke (part 2, continued from figure 4.5)

4.4.3

Selecting bean methods 107

Figure 4.6 is a bit more complex, but its main goal is to narrow down the number of
possible methods and select a method if one stands out. Don’t worry if you don’t
entirely understand the algorithm; we’ll look at a couple of examples shortly that

should make it much clearer.
Let’s continue with the algorithm and cover the last steps:

6

10

11

If 2 method name was given and no methods exist with that name, a Method-
NotFoundException exception is thrown.

If only a single method has been marked with the @Handler annotation, it’s
selected.

If only a single method uses any of the other Camel bean parameter-binding
annotations, such as @Body, @Header, and so on, it’s selected. (We’ll look at how
Camel binds to method parameters using annotations in section 4.5.3.)

If, among all the methods on the bean, there’s only one method with exactly
one parameter, that method is selected. For example, this would be the situa-
tion for the EchoBean bean we looked at in section 4.4.1, which has only the
echo method with exactly one parameter. Single parameter methods are pre-
ferred because they map easily with the payload from the Camel exchange.
Now the computation gets a bit complex. There are multiple candidate meth-
ods, and Camel must determine whether there’s a single method that stands
out as the best fit. The strategy is to go over the candidate methods and filters
out methods that don’t fit. Camel does this by trying to match the first parame-
ter of the candidate method; if the parameter isn’t the same type and it’s not
possible to coerce the types, the method is filtered out. In the end, if there is
only a single method left, that method is selected.

If Camel can’t select a method, an AmbigiousMethodCallException exception
is thrown with a list of ambiguous methods.

Clearly Camel goes through alot to select the method to invoke on your bean. Over time
you’ll learn to appreciate all this—it’s convention over configuration to the fullest.

NOTE The algorithm laid out in this book is based on Apache Camel ver-
sion 2.5. This method-selection algorithm may change in the future to
accommodate new features.

Now it’s time to take a look at how this algorithm applies in practice.

Some method-selection examples

To see how this algorithm works, we’ll use the EchoBean from section 4.4.1 as an exam-
ple, but we’ll add another method to it—the bar method—to better explain what hap-
pens when there are multiple candidate methods.

public class EchoBean {

public String echo(String echo) ({

}

return echo + " " + eco;

108

CHAPTER 4 Using beans with Camel

public String bar() {
return "bar";
1

}

And we’ll start with this route:
from("direct:start") .bean (EchoBean.class) .to("log:reply") ;

If you send the String message "Camel" to the Camel route, the reply logger will
surely output "Camel Camel" as expected. Despite the fact that EchoBean has two meth-
ods, echo and bar, only the echo method has a single parameter. This is what step 9 in
figure 4.6 ensures—Camel will pick the method with a single parameter if there is only
one of them.

To make the example a bit more challenging, let’s change the bar method as follows:

public String bar (String name) {
return "bar " + name;
}

What do you expect will happen now? You now have two identical method signatures
with a single method parameter. In this case, Camel can’t pick one over the other,
so it throws an AmbigiousMethodCallException exception, according to step 11 in
figure 4.6.

How can you resolve this? One solution would be to provide the method name in
the route, such as specifying the bar method:

from("direct:start") .bean (EchoBean.class, "bar").to("log:reply");

But there’s another solution that doesn’t involve specifying the method name in the
route. You can use the @Handler annotation to select the method. This solution is
dealt with in step 7 of figure 4.6. The @Handler is a Camel-specific annotation that you
can add to a method. It simply tells Camel to use this method by default.

@Handler

public String bar (String name) {
return "bar " + name;
}

Now the AmbigiousMethodCallException won’t be thrown because the @Handler
annotation tells Camel to select the bar method.

TIP It’s a good idea either to declare the method name in the route or to use
the @Handler annotation. This ensures that Camel picks the method you
want, and you won’t be surprised if Camel chooses another method.

Suppose you change EchoBean to include two methods with different parameter types:

public class EchoBean {

public String echo(String echo) {
return echo + " " + echo;

}

4.4.4

Selecting bean methods 109

public Integer double(Integer num) {
return num.intValue () * num.intValue() ;

}
}
The echo method works with a String, and the double method with an Integer. If
you don’t specify the method name, the BeanProcessor will have to choose between
these two methods at runtime.

Step 10 in figure 4.6 allows Camel to be smart about deciding which method stands
out. It does so by inspecting the message payloads of two or more candidate methods
and comparing those with the message body type, checking whether there is an exact
type match in any of the methods.

Suppose you send in a message to the route that contains a String body with
the word "Camel". It’s not hard to guess that Camel will pick the echo method,
because it works with a String. On the other hand, if you send in a message with the
Integer value of 5, Camel will select the double method, because it uses the Inte-

ger type.

Despite this, things can still go wrong, so let’s go over a couple of common situations.

Potential method-selection problems
There are a few things that can go wrong when invoking beans at runtime:

» Specified method not found—If Camel can’t find any method with the specified
name, a MethodNotFoundException exception is thrown. This only happens
when you have explicitly specified the method name.

» Ambiguous method—If Camel can’t single out a method to call, an Ambigious-
MethodCallException exception is thrown with a list of the ambiguous meth-
ods. This can happen even when an explicit method name was defined because
the method could potentially be overloaded, which means the bean would
have multiple methods with the same name; only the number of parameters
would vary.

= Type conversion failure—Before Camel invokes the selected method, it must con-
vert the message payload to the parameter type required by the method. If this
fails, a NoTypeConversionAvailableException exception is thrown.

Let’s take a look at examples of each of these three situations using the following
EchoBean:

public class EchoBean

public String echo(String name) {
return name + name;

}

public String hello(String name) {
return "Hello " + name;

}

110

CHAPTER 4 Using beans with Camel

First, you could specify a method that doesn’t exist by doing this:
<bean ref="echoBean" method="foo"/>

Here you try to invoke the foo method, but there is no such method, so Camel throws
a MethodNotFoundException exception.
On the other hand, you could omit specifying the method name:

<bean ref="echoBean"/>

In this case, Camel can’t single out a method to use because both the echo and hello
methods are ambiguous. When this happens, Camel throws an AmbigiousMethod-
CallException exception containing a list of the ambiguous methods.

The last situation that could happen is when the message contains a body that
can’t be converted to the type required by the method. Suppose you have the follow-
ing OrderServiceBean:

public class OrderServiceBean {

public String handleXML (Document xml) {

}
}

And suppose you need to use that bean in this route:

from("jms:queue:orders")
.beanRef ("orderService", "handleXML")
.to("jms:queue:handledOrders") ;

The handleXML method requires a parameter to be of type org.w3c.dom.Document,
which is an XML type, but what if the JMS queue contains a javax.jms.TextMessage
not containing any XML data, but just a plain text message, such as "Camel rocks". At
runtime you’ll get the following stracktrace:

Caused by: org.apache.camel.NoTypeConversionAvailableException: No type
converter available to convert from type: java.lang.byte[] to the
required type: org.w3c.dom.Document with value [B@b3elc9

at
org.apache.camel.impl.converter.DefaultTypeConverter.mandatoryConvertTo
(DefaultTypeConverter.java:115)

at
org.apache.camel.impl.MessageSupport.getMandatoryBody (MessageSupport .java
:101)

53 more

Caused by: org.apache.camel.RuntimeCamelException:
org.xml.sax.SAXParseException: Content is not allowed in prolog.

at
org.apache.camel.util.ObjectHelper.invokeMethod (ObjectHelper.java:724)

at
org.apache.camel.impl.converter.InstanceMethodTypeConverter.convertTo
(InstanceMethodTypeConverter.java:58)

at
org.apache.camel.impl.converter.DefaultTypeConverter.doConvertTo

4.5

Bean parameter binding 111

(DefaultTypeConverter.java:158)

at
org.apache.camel.impl.converter.DefaultTypeConverter.mandatoryConvertTo
(DefaultTypeConverter.java:113)

54 more

What happened is that Camel tried to convert the javax.Jjms.TextMessage to a org.
w3c.dom.Document type, but it failed. In this situation, Camel wraps the error and
throws it as a NoTypeConverterException exception.

By further looking into this stacktrace, you may notice that the cause of this prob-
lem is that the XML parser couldn’t parse the data to XML. It reports, “Content is not
allowed in prolog,” which is a common error indicating that the XML declaration
(<?xml version="1.0"?>) is missing.

You may wonder what would happen if such a situation occurred at runtime. In
this case, the Camel error-handling system would kick in and handle it. Error han-
dling is covered thoroughly in chapter 5.

That’s all you need to know about how Camel selects methods at runtime. Now we
need to look at the bean parameter-binding process, which happens after Camel has
selected the method.

Bean parameter binding

In the last section, we covered the process thatselects which method to invoke on a bean.
This section covers what happens next—how Camel adapts to the parameters on the
method signature. Any bean method can have multiple parameters and Camel must
somehow pass in meaningful values. This process is known as bean parameter binding.

We’ve already seen parameter binding in action in the many examples so far in
this chapter. What those examples had in common was using a single parameter to
which Camel bound the input message body. Figure 4.7 illustrates this using Echo-
Bean as an example.

BeanProcessor 9 EchoBean
(Service activator) String echo(String name)
Invoke
e
0 Use Bound to
; - @
Exchange
Input message

Output message Figure 4.7 How BeanProcessor binds

the input message to the first parameter

_ W of the method being invoked

112

4.5.1

CHAPTER 4 Using beans with Camel

The BeanProcessor uses the input message @ to bind its body to the first parameter
of the method @, which happens to be the String name parameter. Camel does this
by creating an expression that type-converts the input message body to the String
type. This ensures that when Camel invokes the echo method @), the parameter
matches the expected type.

This is important to understand, because most beans have methods with a single
parameter. The first parameter is expected to be the input message body, and Camel
will automatically convert the body to the same type as the parameter.

So what happens when a method has multiple parameters? That’s what we’ll look
atin the remainder of the chapter.

Binding with multiple parameters

Figure 4.8 illustrates the principle of bean parameter binding when multiple parame-
ters are used.

At first, figure 4.8 may seem a bit overwhelming. Many new types come into play
when you deal with multiple parameters. The big box entitled “Bean parameter bind-
ings” contains the following four boxes:

EchoBean

BeanProcessor

(Service activator) String echo(String name,

TypeConverter converter,
Invoke @Header ("foo") Integer foo)

Use /'
\ Bound to
ya

- - 0 0 4 . . -
| Bean parameter bindings |
N & N & N
| Camel built-in types Exchange Camel annotations |
| @Body |
| @Headers |
| \ 2|
| TypeConverter Output message |
e N
| \) Camel language |
| annotations |
@Bean |
| @XPath
| Registry |
@Groovy |
| @Ognl
[5 W, _ J |
_________________________ |

Figure 4.8 Parameter binding with multiple parameters involves a lot more options than with
single parameters.

4.5.2

Bean parameter binding 113

Camel built-in types—Camel provides special bindings for a series of Camel con-
cepts. We'll cover them in section 4.5.2.

Exchange—This is the Camel exchange, which allows binding to the input mes-
sage, such as its body and headers. The Camel exchange is the source of the val-
ues that must be bound to the method parameters. It will be covered in the
sections to come.

Camel annotations—When dealing with multiple parameters, you use annota-
tions to distinguish them. This is covered in section 4.5.3.

Camel language annotations—This is a less commonly used feature that allows
you to bind parameters to languages. It’s ideal when working with XML mes-
sages that allow you to bind parameters to XPath expressions. This is covered in
section 4.5.4.

Working with multiple parameters
Using multiple parameters is more complex than using single parameters. It’s gener-
ally a good idea to follow these rules of thumb:

m Use the first parameter as the message body, which may or may not use the
@Body annotation.

= Use either a built-in type or add Camel annotations for subsequent parameters.
In our experience, it becomes complicated when multiple parameters don’t follow

these guidelines, but Camel will make its best attempt to adapt the parameters to
the method signature.

Let’s start by looking at using the Camel built-in types.

Binding using built-in types

Camel provides a set of fixed types that are always bound. All you have to do is declare
a parameter of one of the types listed in table 4.2.

Table 4.2 Parameter types that Camel automatically binds

Type Description

Exchange The Camel exchange. This contains the values that will be bound to the method
parameters.
Message The Camel input message. It contains the body that is often bound to the first

method parameter.

CamelContext The CamelContext. This can be used in special circumstances when you need

access to all Camel’s moving parts.

TypeConverter | The Camel type-converter mechanism. This can be used when you need to convert

types. We covered the type-converter mechanism in section 3.6.

114

4.5.3

CHAPTER 4 Using beans with Camel

Table 4.2 Parameter types that Camel automatically binds (continued)

Description
Registry The bean registry. This allows you to look up beans in the registry.
Exception An exception, if one was thrown. Camel will only bind to this if the exchange has

failed and contains an exception. This allows you to use beans to handle errors.

Let’s look at a couple of examples using the types from table 4.2. First, suppose you
add a second parameter that’s one of the built-in types to the echo method:

public string echo(String echo, CamelContext context)

In this example, you bind the CamelContext, which gives you access to all the moving
parts of Camel.
Or you could bind the registry, in case you need to look up some beans:

public string echo(String echo, Registry registry) {
OtherBean other = registry.lookup("other", OtherBean.class);

}

You aren’t restricted to having only one additional parameter; you can have as many
as you like. For example, you could bind both the CamelContext and the registry:

public string echo(String echo, CamelContext context, Registry registry)

So far, you’ve always bound to the message body; how would you bind to a message
header? The next section will explain that.

Binding using Camel annotations

Camel provides a range of annotations to help bind from the exchange to bean
parameters. You should use these annotations when you want more control over the
bindings. For example, without these annotations, Camel will always try to bind the
method body to the first parameter, but with the @Body annotation you can bind the
body to any parameter in the method.

Suppose you have the following bean method:

public String orderStatus (Integer customerId, Integer orderId)
And you have a Camel message that contains the following data:

= Body, with the order ID, as a String type

= Header with the customer ID as an Integer type

With the help of Camel annotations, you can bind the Exchange to the method signa-
ture as follows:
public String orderStatus (@Header ("customerId") Integer customerId,
@Body Integer orderId)
Notice how you can use the @Header annotation to bind the message header to the
first parameter and @Body to bind the message body to the second parameter.
Table 4.3 lists all the Camel parameter-binding annotations.

4.5.4

Bean parameter binding 115

Table 4.3 Parameter-binding annotations provided by Camel

Annotation Description

@Attachments Binds the parameter to the message attachments. The parameter must be a
java.util.Map type.

@Body Binds the parameter to the message body.
@Header (name) Binds the parameter to the given message header.
@Headers Binds the parameter to all the input headers. The parameter must be a

java.util.Map type.

@OutHeaders Binds the parameter to the output headers. The parameter must be a java.
util.Map type. This allows you to add headers to the output message.

@Property (name) | Binds the parameter to the given exchange property.

@Properties Binds the parameter to all the exchange properties. The parameter must be a
java.util.Map type.

You'’ve already seen the first two types in action, so let’s try a couple of examples with
the other annotations. For example, you could use @Headers to bind the input head-
ers to a Map type:

public String orderStatus (@Body Integer orderId, @Headers Map headers) ({

Integer customerId = (Integer) headers.get ("customerId") ;
String customerType = (String) headers.get ("customerType") ;

}

You would use this when you have many headers, so you don’t have to add a parame-
ter for every single header.

The @outHeaders annotation is used when you’re working with request-response
messaging (also identified as the InOut Message Exchange pattern). @utHeaders
provides direct access to the output message headers, which means you can manipu-
late these headers directly from the bean. Here’s an example:

public String orderStatus (@Body Integer orderId, @OutHeaders Map headers) ({

headers.put ("status", "APPROVED") ;
headers.put ("confirmId", "444556");
return "OK";

}
Notice that you use @outHeaders as the second parameter. Unlike @Headers, @out -
Headers is empty when the method is invoked. The idea is that you put the headers
that you want to preserve in the output message into this map.

Finally, let’s look at Camel’s language annotations, which bind parameters to a
language.

Binding using Camel language annotations

Camel provides additional annotations that allow you to use other languages as
parameters. This may sound a bit strange, but it will become clearer with an example.

116

CHAPTER 4 Using beans with Camel

The most common language to use is XPath, which allows you to evaluate XPath
expressions on the message body. For example, suppose the message contains the fol-
lowing XML document:
<order customerId="123">

<status>in progress</status>
</order>
By using XPath expressions, you can extract parts of the document and bind them to
parameters, like this:
public void updateStatus (@XPath("/order/@customerId") Integer customerId,

@XPath("/order/status/text ()") String status)

You can bind as many parameters as you like—the preceding example binds two
parameters using the @XPath annotations. You can also mix and match annotations, so
you can use @XPath for one parameter and @Header for another.

Table 4.4 lists the language annotations provided in Camel 2.5. In the future, we
may add additional languages to Camel, which often also means that a corresponding
annotation for bean parameter binding is added as well.

Table 4.4 Camel’s language-based bean binding annotations

Annotation Description Dependency
@Bean Invokes a method on a bean camel-core
@BeanShell Evaluates a bean shell script camel-script
@EL Evaluates an EL script (unified JSP and JSF scripts) camel-juel
@Groovy Evaluates a Groovy script camel-script
@JavaScript | Evaluates a JavaScript script camel-script
@MVEL Evaluates a MVEL script camel-mvel
@OGNL Evaluates an OGNL script camel-ognl
@PHP Evaluates a PHP script camel-script
@Python Evaluates a Python script camel-script
@Ruby Evaluates a Ruby script camel-script
@Simple Evaluates a Simple expression (Simple is a built-in language | camel-core

provided with Camel; see appendix A for more details)
@XPath Evaluates an XPath expression camel-core
@XQuery Evaluates an XQuery expression camel -saxon

It may seem a bit magical that you can use a @Bean annotation when invoking a method,
because the @Bean annotation itself also invokes a method. Let’s try out an example.

Suppose you already have a service that must be used to stamp unique order IDs on
incoming orders. The service is implemented as follows.

Bean parameter binding 117

Listing 4.5 A service that stamps an order ID on an XML document

public Document handleIncomingOrder (Document xml, int customerId,
int orderid) ({
Attr attr = xml.createAttribute ("orderId") ; Creates orderld
attr.setvalue ("" + orderId); attribute

Node node = xml.getElementsByTagName ("order") .item(0) ;
node.getAttributes () .setNamedItem(attr) ; Adds orderld attribute

to order node
return xml;

}
As you can see, the service creates a new XML attribute with the value of the given
order ID @. Then it inserts this attribute in the XML document @ using the rather
clumsy XML API from Java @.
To generate the unique order ID, you have the following class:
public final class GuidGenerator {
public static int generate()

Random ran = new Random() ;
return ran.nextInt (10000000) ;

}

(In a real system, you’d generate unique order IDs based on another scheme.)
In Camel, you have the following route that listens for new order files and invokes
the service before sending the orders to a JMS destination for further processing:

<bean id="xmlOrderService" class="camelinaction.XmlOrderService"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="file://riderautoparts/order/inbox"/>
<bean ref="xmlOrderService"/>
<to uri="jms:queue:order"/>
</routes
</camelContext>
Whatis missing is the step that generates a unique ID and provides thatID in the handle-
IncomingOrder method (shown in listing 4.5). To do this, you need to declare a bean

in the spring XML file with the ID generator, as follows:
<bean id="guid" class="camelinaction.GuidGenerator"/>

Now you’re ready to connect the last pieces of the puzzle. You need to tell Camel that
it should invoke the generate method on the guid bean when it invokes the hand-
leIncomingOrder method from listing 4.5. To do this, you use the @Bean annotation
and change the method signature to the following:
public Document handleIncomingOrder (@Body Document xml,

@XPath ("/order/@customerId") int customerId,

@Bean (ref = "guid", method="generate") int orderId);
We’ve prepared a unit test you can use to run this example. Use the following Maven
goal from the chapter4/bean directory:

mvn test -Dtest=XmlOrderTest

118

CHAPTER 4 Using beans with Camel

When it’s running, you should see two log lines that output the XML order before and
after the service has stamped the order ID. Here’s an example:

2009-10-28 16:18:58,485 [: FileComponent] INFO before

Exchange [BodyType:org.apache.camel.component.file.GenericFile,

Body:<order customerId="4444"><item>Camel in action</item></order>]

2009-10-28 16:18:58,564 [: FileComponent] INFO after

Exchange [BodyType:com.sun.org.apache.xerces.internal.dom.
DeferredDocumentImpl, Body:<order customerId="4444"
orderId="7303381"><item>Camel in action</items</orders]

Here you can see that the second log line has an orderId attribute with the value
of 7303381, whereas the first doesn’t. If you run it again, you’ll see a different order ID
because it’s a random value. You can experiment with this example, perhaps changing
how the order ID is generated.

USING NAMESPACES WITH @XPATH
In the preceding example the XML order did not include a namespace. When using

namespaces the bean parameter binding must include the namespace(s) in the
method signature as highlighted:

public Document handleIncomingOrder (
@Body Document xml,

@XPath (
value = "/c:order/@customerId",
namespaces = @NamespacePrefix(
prefix = "c",
uri = "http://camelinaction.com/order")) int customerId,
@Bean (ref = "guid", method = "generate") int orderId) ;

The namespace is defined using the @NamespacePrefix annotation embedded in the
@XPathannotation. Notice the XPath expression value must use the prefix, which means
the expression is changed from /order/@customerId to /c:order/@customerId.

The prefix value isn’t required to be a certain value; instead of ¢ you can use any
value you like.

The source code for the book contains this example in the chapter4/bean direc-
tory; you can try using the following Maven goal:

mvn test -Dtest=XmlOrderNamespaceTest

If your XML document includes multiple namespaces, you can define those as well in
the @XPath annotation as it accepts an array of @NamespacePrefix.

Bean binding summary
Camel’s rules for bean parameter binding can be summarized as follows:

= All parameters having a Camel annotation will be bound (table 4.3 and 4.4)

= All parameters of a Camel built-in type will be bound (table 4.2)

m The first parameter is assumed to be the message IN body (if not already bound)
= All remaining parameters will be unbound, and Camel will pass in empty values

4.6

Summary and best practices 119

You’ve seen all there is to bean binding. Camel has a flexible mechanism that adapts
to your existing beans, and when you have multiple parameters, Camel provides anno-
tations to bind the parameters properly.

Summary and best practices

We’ve now covered another cornerstone of using beans with Camel. It’s important
that end users of Camel can use the POJO programming model and have Camel easily
leverage those beans (POJOs). Beans are just Java code, which is a language you’re
likely to feel comfortable using. If you hit a problem that you can’t work around or fig-
ure out how to resolve using Camel and EIPs, you can always resort to using a bean
and letting Camel invoke it.

We unlocked the algorithm used by Camel to select which method to invoke on a
bean. You learned why this is needed—Camel must resolve method selection at run-
time, whereas regular Java code can link method invocations at compile time.

We also covered what bean parameter binding is and how you can bind a Camel
exchange to any bean method and its parameters. You learned how to use annota-
tions to provide fine-grained control over the bindings, and even how Camel can
help bind XPath expressions to parameters, which is a great feature when working
with XML messages.

Let’s pull out some of the key practices you should take away from this chapter:

m Use beans. Beans are Java code and they give you all the horsepower of Java.

= Use loose coupling. Prefer using beans that don’t have a strong dependency on the
Camel API. Camel is capable of adapting to existing bean method signatures, so
you can leverage any existing API you may have, even if it has no dependency on
the Camel API. Unit testing is also easier because your beans don’t depend on any
Camel API. You can even have developers with no Camel experience develop the
beans, and then have developers with Camel experience use those beans.

m Prefer simple method signatures. Camel bean binding is much simpler when
method signatures have as few parameters as possible.

» Specify method names. Tell Camel which method you intend to invoke, so Camel
doesn’t have to figure this out itself. You can also use @Handler in the bean to
tell Camel which method it should pick and use.

m Use bean parameter annotations. Use the powers that the various Camel bean
parameter annotations offer.

We’ve now covered three crucial features of integration Kkits: routing, transformations,
and using beans. We’ll now take a leap into another world, one that’s often tackled as
an afterthought in integration projects: how to handle situations when things go wrong.
We’ve devoted an entire chapter to Camel’s extensive support for error handling.

EMTERPRISE JAWA,

Camel in AcTion

(lavs Ibsen and Jonathan Anstey
Forewords by Gregor Hohpe and James Strachan

pache Camel is a Java framework thar lets you implement

the standard enterprise integration patterns in a few lines

of code. With a concise but sophisticated DSL vou snap
integration logic into your app. Lego-siyle, using Java, XML, or
Scala. Camvel supports over B0 common transparts such as HTTT
REST, JM5, and Web Services.

Carrered frr Aerrosr 15 2 Camel ruvorial full of small |:.~:.|I|'||'l|-'."~ :-.h11'|'.'al:l.5
||1.l'.'.' L1} '--.l.:lli-. -.\i.lit I!|||.' il:ll-i."r'_rﬂl.ll.bll |l.||ll.'|m-. h LTS g K '-".il.l:l T
concepts like sending, receiving, rouring, and rransforming dara.
It then shows you the entire lifecycle and goes in depth on how o
ICAl, -..‘|i::| '|'.'il|1 [l i 'u..1||.'. |.|-;."r1|l.:l'.. .ar|1.| CVETI INAOTNLLOF Yodin .||lp—
details vou can find only in the Camel code sl Written by
the 1]-'.".-.'|:1|1-:|:*~ of Camel, this book disalls their CXpCrcnoe anid

I.H.I'\..Ill..dl ii'.‘\-la.:lll::'\- S0k !]1.|I Wikl LA l.Jn.'Ll-'.' j1t!l:l:|r.|.l:|||1 r.|.~l-:.=. |i|-:i: F | |'ln.l.

What's Inside
Valuable examples in Java and XML
]'.:\.I.:-IH.II.IEILHL'\. ol -..|.l:m|1|l."-. |:l.||l|.'r|:h

Error handling. iening, deploying, mansging,

.II:ILI ﬂlrl-l1i|'|? ':. :.1II'|I.']

Accessible o beginners, usehal to experts

About the Authors

(laus lbsen is project lead on Camel and an integration specialis.
lonathan Anstey is Camel commitrer and engineer specializing in
enterprise integration. Both work for FuseSource Corporarion.

For online oooess to the outhors ond o free ebook for cwners
of this book, go ko mnnning comCamalinAchon

| | VYT

54999 [Can §57.99

yree chaogy

SEE IMSERT

"| hirj'l_'. I|.'|;_|1|:|'||'|'|rl'n;i r!:i-. h-|:|||!nc.
It kicks ass!”

—Jarmex Sarachan, Cobmnder
al Apache Camel

“rrikes the nght balance berween
core concepts and running code.”

i ;r.1:||I | !|||||H.'. Cmarithior ol
|rr|'I|‘|l|".'.u: |'l|.'rl\-,:rJ|'m.'J Fererrri

“Comprehensive guide to enter-
prise integration with Camel.”

Gordon Deckens
Claarior Sedutions

“A deep book ...
examples”

with grear

—Jermen Tenckhiuijaen
Aros ';.:lliFiH

"Cireat content from the
source developers.”

Lhomingo Suarer [arres
Synerpy]

"._I'. MLsE- |1.I N, 3

—Ti 1% Radertakers, Abos € l|||_'||'\.

IEEN- 1-135142-3h-k
IiBk- .3 -1 -135082- I8

| ‘I L

PEFEIWES

