e

N

SNy

w;;aaﬂ.;?.?ﬁ...ﬁ/ S

=2 T ——m %
S . Leauwaatnay

o

S

SAMPLE
CHAPTER
iq Walls

/III MANNING

FOURTH EDITION

(ra

Dottie
Text Box
SAMPLE CHAPTER

Spring in Action
by Craig Walls

Chapter 21

Copyright 2014 Manning Publications

brief contents

PART 1 CORE SPRING ..eeeeerereecerereececesessscecessssssesssssssssssscssessssssns 1

1 = Springing into action 3

2 = Wiring beans 32

3 = Advanced wiring 64

4 = Aspectoriented Spring 97

PART 2 SPRING ON THE WEB....ccctteteetereereerercercecescesessescescscene 129

5 = Building Spring web applications 131
6 = Rendering web views 164

7 = Advanced Spring MVC 194

8 = Working with Spring Web Flow 219
9 = Securing web applications 244

PART 3 SPRING IN THE BACK END ..eeeeereecercessescscescescscessessscese 279

10 = Hitting the database with Spring and J]DBC 281
11 = Persisting data with object-relational mapping 305
12 = Working with NoSQL databases 327

13 = C(Caching data 362

14 = Securing methods 379

vi BRIEF CONTENTS

PART 4 INTEGRATING SPRING..cccccecteceecescessocassecascessecsssessocasne

15 = Working with remote services 393

16 = Creating REST APIs with Spring MVC 416

17 = Messaging in Spring 452

18 = Messaging with WebSocket and STOMP 485

19 = Sending email with Spring 511

20 = Managing Spring beans with JMX 523

21 = Simplifying Spring development with Spring Boot 540

Simplifying
Spring development
with Spring Boot

This chapter covers

= Adding project dependencies with Spring Boot
starters

= Automatic bean configuration
= Groovy and the Spring Boot CLI
= The Spring Boot Actuator

I recall the first few days of my first calculus course where we learned about deriva-
tives of functions. We performed some rather hairy computations using limits to
arrive at the derivatives of several functions. Even though the functions were sim-
ple, the work involved in calculating the derivatives was nightmarish.

After several homework assignments, study groups, and an exam, most everyone
in the class was able to do the work. But the tedium of it was nearly unbearable. If
this was the first thing we’d learn in a class named “Calculus I,” then what monstros-
ity of mathematics awaited us mid-semester in “Calculus II"?

Then the instructor clued us in on a trick. Applying a simple formula made
quick work of calculating derivatives (if you’ve ever taken calculus, you’ll know what

540

21.1

21.11

Introducing Spring Boot 541

I’'m talking about). With this newfound trick, we were able to compute derivatives for
dozens of functions in the time it would’ve previously taken for a single function.

At this point, one of my classmates spoke up and said what the rest of us were
thinking: “Why didn’t you show us this on the first day?!?!”

The instructor replied that the hard way helped us appreciate the derivatives for
what they mean, told us it built character, and said something about putting hair on
our chests.

Now that we’ve gone through an entire book on Spring, I find myself in the same
position as that calculus instructor. Although Spring’s chief benefit is to make Java
development easy, this chapter will show you how Spring Boot can make it even easier.
Spring Boot is arguably the most exciting thing to happen to Spring since the Spring
Framework was first created. It layers a completely new development model on top of
Spring, taking away much of the tedium of developing applications with Spring.

We’ll get started with an overview of the tricks that Spring Boot employs to simplify
Spring. Before this chapter concludes, you’ll have developed a complete (albeit sim-
ple) application using Spring Boot.

Introducing Spring Boot

Spring Boot is an exciting (dare I say “game-changing”?) new project in the Spring
family. It offers four main features that will change the way you develop Spring appli-
cations:

= Spring Boot starters—Spring Boot starters aggregate common groupings of
dependencies into single dependencies that can be added to a project’s Maven
or Gradle build.

= Autoconfiguration—Spring Boot’s autoconfiguration feature leverages Spring 4’s
support for conditional configuration to make reasonable guesses about the
beans your application needs and automatically configure them.

= Command-line interface (CLI)—Spring Boot’s CLI takes advantage of the Groovy
programming language along with autoconfiguration to further simplify Spring
application development.

= Actuator—The Spring Boot Actuator adds certain management features to a
Spring Boot application.

Throughout this chapter, you’ll build a small application using all of these features of
Spring Boot. But first, let’s take a quick look at each to get a better feel for how they
contribute to a simpler Spring programming model.

Adding starter dependencies

There are two ways to bake a cake. The ambitious baker will mix flour, eggs, sugar,
baking powder, salt, butter, vanilla, and milk into a batter. Or you can buy a prepack-
aged box of cake mix that includes most of the ingredients you’ll need and only mix
in a few wet ingredients like water, eggs, and vegetable oil.

542

CHAPTER 21 Simplifying Spring development with Spring Boot

Much as a prepackaged cake mix aggregates many of the ingredients of a cake rec-
ipe into a single ingredient, Spring Boot starters aggregate the various dependencies
of an application into a single dependency.

To illustrate, let’s suppose you're starting a new Spring project from scratch. This
will be a web project, so you’ll need Spring MVC. There will also be a REST API, expos-
ing resources as JSON, so you’ll need the Jackson JSON library in your build.

Because your application will use JDBC to store and fetch data from a relational
database, you’ll want to be sure to include Spring’s JDBC module (for JdbcTemplate)
and Spring’s transaction module (for declarative transaction support). As for the data-
base itself, the H2 database will do fine.

And, oh yeah, you want to use Thymeleaf for Spring MVC views.

If you’re building your project with Gradle, you’ll need (at least) the following
dependencies in build.gradle:

dependencies {
compile ("org.springframework:spring-web:4.0.6.RELEASE")

compile ("org.springframework:spring-webmvc:4.0.6.RELEASE")
compile("com. fasterxml.jackson.core:jackson-databind:2.2.2")
compile ("org.springframework:spring-jdbc:4.0.6.RELEASE")
compile("org.springframework:spring-tx:4.0.6.RELEASE")
compile("com.h2database:h2:1.3.174")
compile("org.thymeleaf:thymeleaf-spring4:2.1.2.RELEASE")

}

Fortunately, Gradle makes it possible to express dependencies succinctly. (For the
sake of brevity, I won’t bother showing you what this list of dependencies would look
like in a Maven pom.xml file.) Even so, a lot of work went into creating this list, and
more will go into maintaining it. How can you know if these dependencies will play
well together? As the application grows and evolves, dependency management will
become even more challenging.

But if you're using the prepackaged dependencies from Spring Boot starters, the
Gradle dependency list can be a little shorter:

dependencies {
compile ("org.springframework.boot:spring-boot-starter-web:
1.1.4.RELEASE")
compile ("org.springframework.boot:spring-boot-starter-jdbc:
1.1.4.RELEASE")
compile ("com.h2database:h2:1.3.174")
compile ("org.thymeleaf:thymeleaf-spring4:2.1.2.RELEASE")
}

As you can see, Spring Boot’s web and JDBC starters replaced several of the finer-
grained dependencies. You still need to include the H2 and Thymeleaf dependencies,
but the other dependencies are rolled up into the starter dependencies. Aside from
making the dependency list shorter, you can feel confident that the versions of depen-
dencies provided by the starters are compatible with each other.

Introducing Spring Boot 543

The web and JDBC starters are just two of the starters that Spring Boot has to offer.
Table 21.1 lists all of the starters available at the time I was writing this chapter.

Table 21.1 Spring Boot starter dependencies aggregate commonly needed dependency groupings into
single project dependencies.

Starter Provides

spring-boot-starter-actuator

spring-boot-starter-amgp

spring-boot-starter-aop

spring-boot-starter-batch

spring-boot-starter-elasticsearch

spring-boot-starter-gemfire

spring-boot-starter-data-jpa

spring-boot-starter-data-mongodb

spring-boot-starter-data-rest

spring-boot-starter-data-solr

spring-boot-starter-freemarker

spring-boot-starter-groovy-templates

spring-boot-starter-hornetqg

spring-boot-starter, spring-boot-
actuator, spring-core

spring-boot-starter, spring-boot-
rabbit, spring-core, spring-tx

spring-boot-starter, spring-aop,
Aspect) Runtime, Aspect) Weaver, spring-
core

spring-boot-starter, HSQLDB, spring-
jdbc, spring-batch-core, spring-core

spring-boot-starter, spring-data-
elasticsearch, spring-core, spring-tx

spring-boot-starter, Gemfire, spring-
core, spring-tx, spring-context,
spring-context-support, spring-data-
gemfire

spring-boot-starter, spring-boot-
starter-jdbc, spring-boot-starter-
aop, spring-core, Hibernate EntityManager,
spring-orm, spring-data-jpa, spring-
aspects

spring-boot-starter, MongoDB Java driver,
spring-core, spring-tx, spring-data-
mongodb

spring-boot-starter, spring-boot-
starter-web, Jackson annotations, Jackson
databind, spring-core, spring-tx,
spring-data-rest-webmvc

spring-boot-starter, Solfj, spring-core
spring-tx, spring-data-solr, Apache
HTTP Mime

spring-boot-starter, spring-boot-
starter-web, Freemarker, spring-core,
spring-context-support

spring-boot-starter, spring-boot-
starter-web, Groovy, Groovy Templates
spring-core

spring-boot-starter, spring-core,
spring-jms, Hornet JMS Client

544 CHAPTER 21 Simplifying Spring development with Spring Boot

Table 21.1 Spring Boot starter dependencies aggregate commonly needed dependency groupings into
single project dependencies. (continued)

Starter Provides

spring-boot-starter-integration spring-boot-starter, spring-aop,
spring-tx, spring-web, spring-webmvc
spring-integration-core,
spring-integration-file,
spring-integration-http,
spring-integration-ip,
spring-integration-stream

spring-boot-starter-jdbc spring-boot-starter, spring-jdbc,
tomcat-jdbc, spring-tx

spring-boot-starter-jetty jetty-webapp, jetty-jsp

spring-boot-starter-logdj jecl-over-slfdj, jul-to-slfdj,
slfdj-logdjl2, logdj

spring-boot-starter-logging jcl-over-slfdj, jul-to-slfdj,
log4j-over-slfdj, logback-classic

spring-boot-starter-mobile spring-boot-starter,
spring-boot-starter-web,
spring-mobile-device

spring-boot-starter-redis spring-boot-starter,
spring-data-redis, lettuce

spring-boot-starter-remote-shell spring-boot-starter-actuator,
spring-context, org.crashub. **

spring-boot-starter-security spring-boot-starter,
spring-security-config,
spring-security-web,
spring-aop, spring-beans,
spring-context, spring-core
spring-expression, spring-web

spring-boot-starter-social-facebook spring-boot-starter,
spring-boot-starter-web, spring-core
spring-social-config,
spring-social-core,
spring-social-web,
spring-social-facebook

spring-boot-starter-social-twitter spring-boot-starter,
spring-boot-starter-web, spring-core
spring-social-config,
spring-social-core,
spring-social-web,
spring-social-twitter

Introducing Spring Boot 545

Table 21.1 Spring Boot starter dependencies aggregate commonly needed dependency groupings into

single project dependencies. (continued)

Starter Provides

spring-boot-starter-social-linkedin

spring-boot-starter

spring-boot-starter-test

spring-boot-starter-thymeleaf

spring-boot-starter-tomcat

spring-boot-starter-web

spring-boot-starter-websocket

spring-boot-starter-ws

spring-boot-starter,
spring-boot-starter-web, spring-core
spring-social-config,
spring-social-core
spring-social-web,
spring-social-linkedin

spring-boot,
spring-boot-autoconfigure
spring-boot-starter-logging

spring-boot-starter-logging,
spring-boot, junit, mockito-core
hamcrest-library, spring-test

spring-boot-starter,
spring-boot-starter-web, spring-core
thymeleaf-spring4,
thymeleaf-layout-dialect

tomcat-embed-core
tomcat-embed-logging-juli

spring-boot-starter,
spring-boot-starter-tomcat,
jackson-databind, spring-web,
spring-webmvc

spring-boot-starter-web,
spring-websocket, tomcat-embed-core
tomcat-embed-logging-juli

spring-boot-starter,
spring-boot-starter-web, spring-core
spring-jms, spring-oxm,
spring-ws-core, spring-ws-support

If you were to look under the covers of these starter dependencies, you’d realize that

there’s not much mystery to how the starters work. Taking advantage of Maven’s and

Gradle’s transitive dependency resolution, the starters declare several dependencies

in their own pom.xml file. When you add one of these starter dependencies to your

Maven or Gradle build, the starter’s dependencies are resolved transitively. And those
dependencies may have dependencies of their own. A single starter could transitively

pull in dozens of other dependencies.

Notice that many of the starters reference other starters. The mobile starter, for

instance, references the web starter, which in turn references the Tomcat starter. And

most of the starters reference spring-boot-starter, which is essentially a base starter

(although it references the logging starter). The dependencies are transitively

546

21.1.2

21.1.3

CHAPTER 21 Simplifying Spring development with Spring Boot

applied; adding the mobile starter as a dependency will effectively add dependencies
from all of the starters down the line.

Autoconfiguration

Whereas Spring Boot starters cut down the size of your build’s dependency list, Spring
Boot autoconfiguration cuts down on the amount of Spring configuration. It does this
by considering other factors in your application and making assumptions about what
Spring configuration you’ll need.

As an example, recall from chapter 6 (listing 6.4) that you’ll need at least three
beans to enable Thymeleaf templates as views in Spring MVC: a ThymeleafView-
Resolver, a SpringTemplateEngine, and a TemplateResolver. With Spring Boot auto-
configuration, however, all you need to do is add Thymeleaf to the project’s classpath.
When Spring Boot detects that Thymeleaf is on the classpath, it will assume that you
want to use Thymeleaf for Spring MVC views and will automatically configure those
three beans.

Spring Boot starters can trigger autoconfiguration. For instance, all you need to do
to use Spring MVC in your Spring Boot application is to add the web starter as a
dependency in the build. When you add the web starter to your project’s build, it will
transitively pull in Spring MVC dependencies. When Spring Boot’s web autoconfigura-
tion detects Spring MVC in the classpath, it will automatically configure several beans
to support Spring MVC, including view resolvers, resource handlers, and message con-
verters (among others). All that’s left for you to do is write the controller classes to
handle the requests.

The Spring Boot CLI

The Spring Boot CLI takes the magic provided by Spring Boot starters and autoconfig-
uration and spices it up a little with Groovy. It reduces the Spring development pro-
cess to the point where you can run one or more Groovy scripts through a CLI and see
it run. In the course of running the application, the CLI will also automatically import
Spring types and resolve dependencies.

One of the most interesting examples used to illustrate Spring Boot CLI is con-
tained in the following Groovy script:

@RestController
class Hi {
@RequestMapping ("/")
String hi() {
"Hil"
}
}

Believe it or not, that is a complete (albeit simple) Spring application that can be exe-
cuted through the Spring Boot CLI. Including whitespace, it’s 82 characters in length.
You can paste it into your Twitter client and tweet it to your friends.

21.14

21.2

Building an application with Spring Boot 547

Eliminate the unnecessary whitespace and you get this 64-character one-liner:
@RestController class Hi{@RequestMapping("/")String hi () {"Hi!"}}

This version is so brief that you can paste it twice into a single tweet on Twitter. But it’s
still a complete and runnable (if feature-poor) Spring application. If you have the
Spring Boot CLI installed, you can run it with the following command line:

$ spring run Hi.groovy

Although it’s fun to show off a tweetable example of Spring Boot CLI's capabilities,
there’s much more to it than meets the eye. In section 21.3 we’ll look at how you can
build a more complete application with Groovy and the CLI

The Actuator

The Spring Boot Actuator brings a handful of useful features to a Spring Boot project,
including

= Management endpoints
= Sensible error handling and a default mapping for an /error endpoint
= An /info endpoint that can communicate information about an application

= An audit events framework when Spring Security is in play

All of these features are useful, but the management endpoints are the most immedi-
ately useful and interesting features of the Actuator. In section 21.4 we’ll look at a few
examples of how Spring Boot’s Actuator opens a window into the inner workings of
your application.

Now that you’ve had a glimpse of each of the four main features of Spring Boot,
let’s put them to work and build a small but complete application.

Building an application with Spring Boot

Throughout the rest of this chapter, I aim to show you how to build complete, real-
world applications using Spring Boot. Of course, the qualities that define a “real-
world” application are subject to debate and would likely exceed the space and scope
of this chapter. Therefore, rather than build a real-world application here, we’ll scale
it back a little and develop something a little less real-world, but representative of the
kinds of bigger applications you might build with Spring Boot.

Our application will be a simple contact-list application. It will allow a user to enter
contact information (name, phone number, email address) and to list all of the con-
tacts that the user has previously entered.

You have the choice of building your application with either Maven or Gradle. I
prefer Gradle, but I’ll show you what’s needed for Maven in case that’s your prefer-
ence. The following listing shows the starter build.gradle file. The dependencies block
is empty to start, but we’ll fill it in with dependencies along the way.

548

CHAPTER 21 Simplifying Spring development with Spring Boot

Listing 21.1 The Gradle build file for the Contacts application

buildscript {
repositories ({
mavenLocal ()
}
dependencies {
classpath("org.springframework.boot:spring-boot-gradle-plugin:
1.1.4.RELEASE")

}

apply plugin: 'java' Usethes?ﬁng
apply plugin: 'spring-boot' Boot plugin
jar { <— Build a JAR file

baseName = 'contacts'

version = '0.1.0°'

}

repositories {
mavenCentral ()

}

dependencies { <— Dependencies will go here

}

task wrapper (type: Wrapper) {
gradleVersion = '1.8"'

}

Notice that the build includes a buildscript dependency on the Spring Boot Gradle
plugin. As you’ll see later, this will help produce an executable uber-JAR file that con-
tains all of the application’s dependencies.

Alternatively, if you prefer Maven, the following listing shows the complete
pom.xml file.

Listing 21.2 The Maven build file for the Contacts application

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>com.habuma</groupId>
<artifactId>contacts</artifactId>
<version>0.1.0</version>

<packaging>jar</packaging> <— Build a JAR file

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>

<] Inherit from
Spring Boot
starter parent

Building an application with Spring Boot 549

<version>1.1.4 .RELEASE</version>
</parent>

<dependencies> <— Dependencies will go here

</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

<+— Use the Spring Boot plugin

</project>

Similar to the Gradle build, this Maven pom.xml file makes use of the Spring Boot
Maven plugin. This plugin is the Maven counterpart to the Gradle plugin and enables
the build to produce an executable uber-JAR file.

Also notice that unlike the Gradle build, this Maven build has a parent project. By
basing your project’s Maven build on the Spring Boot starter parent, you get the bene-
fit of Maven dependency management, and you won’t have to explicitly declare ver-
sion numbers for many of your project dependencies. The versions will be inherited
from the parent.

Following the standard project structure for Maven- and Gradle-based projects, the
project will be structured like this when you’re finished:

$ tree

— build.gradle

F—— pom.xml

| L— contacts
| — Application.java

| F—— Contact.java

| F—— ContactController.java
| L contactRepository.java
L resources

F—— schema.sqgl

— static

| L style.css
L templates
L — home.html

Don’t worry about those missing Java files and other resource files. You’ll create those
over the next few sections as we develop the Contacts application. In fact, we’ll start
right now by developing the web layer of the application.

550

CHAPTER 21 Simplifying Spring development with Spring Boot

21.2.1 Handling requests

Since you’re going to develop the web layer of the application with Spring MVC,
you’re going to need to add Spring MVC as a dependency in your build. As we’ve
already discussed, Spring Boot’s web starter is the one-stop-shop for adding everything
needed for Spring MVC to a build. This is the Gradle dependency you’ll need:

compile ("org.springframework.boot:spring-boot-starter-web")
If you’re using Maven to do the build, those dependencies will look like this:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
Note that because the Spring Boot parent project specifies the version for the web
starter dependency, there’s no need to explicitly specify it in the project’s build.gradle
or pom.xml.

With the web starter dependency in place, all of the dependencies you’ll need to
work with Spring MVC will be available to your project. Now you’re ready to write a
controller class for the application.

The controller will be relatively simple, presenting a contact form for an HTTP GET
request and processing the form submission for a POST request. It won’t do any of the
real work itself, but will delegate to a ContactRepository (which you’ll create soon)
for persisting contacts. The ContactController class in listing 21.3 captures these
requirements.

Listing 21.3 ContactController handles basic web requests for the Contacts application

package contacts;

import java.util.List;

import java.util.Map;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller

@RequestMapping ("/")

public class ContactController {
private ContactRepository contactRepo;

Inject

@Autowired ContactRepository
public ContactController (ContactRepository contactRepo) {

this.contactRepo = contactRepo;
}
@RequestMapping (method=RequestMethod.GET) <+— Handle GET /
public String home (Map<String,Object> model) {

List<Contact> contacts = contactRepo.findAll();

model .put ("contacts", contacts);
return "home";

Building an application with Spring Boot 551

@RequestMapping (method=RequestMethod.POST) <— Handle POST /
public String submit (Contact contact) {

contactRepo.save (contact) ;

return "redirect:/";

}

The first thing you should notice about ContactController is thatit’s a typical Spring
MVC controller. Although Spring Boot gets involved when it comes to managing build
dependencies and minimizing Spring configuration, the programming model is the
same when it comes to writing much of your application logic.

In this case, ContactController follows the typical pattern for a Spring MVC con-
troller that displays and handles form submission. The home() method uses the
injected ContactRepository to retrieve a list of all Contact objects, placing them into
the model before handing the request off to the home view. That view will render the
list of contacts along with a form to add a new Contact. The submit () method will
handle the POST request resulting from the form submission, save the Contact, and
redirect to the home page.

And because ContactController is annotated with @Controller, it’s subject to
component scanning. Therefore, you won’t have to explicitly configure it as a bean in
the Spring application context.

As for the Contact model type, it’s just a simple POJO with a handful of properties
and accessor methods, as shown in the following listing.

Listing 21.4 Contact is a simple domain type.

package contacts;

public class Contact {
private Long id; <— Properties
private String firstName;
private String lastName;
private String phoneNumber;
private String emailAddress;

public void setId(Long id) { <+— Accessor methods
this.id = id;
}

public Long getId() {
return id;

}

public void setFirstName (String firstName) {
this.firstName = firstName;
}

public String getFirstName() {
return firstName;

}

public void setLastName (String lastName) {
this.lastName = lastName;
}

552

21.2.2

CHAPTER 21 Simplifying Spring development with Spring Boot

public String getLastName () {
return lastName;

}

public void setPhoneNumber (String phoneNumber) {
this.phoneNumber = phoneNumber;
}

public String getPhoneNumber () {
return phoneNumber;

}

public void setEmailAddress (String emailAddress) {
this.emailAddress = emailAddress;
}

public String getEmailAddress () {
return emailAddress;
}
}
The web layer of your application is almost finished. All that’s left is to create a
Thymeleaf template that defines the home view.

Creating the view

Traditionally, Java web applications use JSP as the view-layer technology. But as we dis-
cussed in chapter 6, there’s a new kid in town. Thymeleaf’s natural templates are
much more pleasant to work with than JSP, and they make it possible for you to write
your templates as HTML. Because of that, we’re going to use Thymeleaf to define the
home view for the Contacts application.

First, you need to add Thymeleaf to your project’s build. In this example I’'m work-
ing with Spring 4, so I need to add Thymeleaf’s Spring 4 module to the build. In Gra-
dle, the dependency would look like this:

compile ("org.thymeleaf:thymeleaf-spring4")
If you’re using Maven, this is the dependency you’ll need:

<dependency>
<groupId>org.thymeleaf</groupId>
<artifactId>thymeleaf-springd</artifactId>
</dependency>

Keep in mind that by simply adding Thymeleaf to the project’s classpath, you’re set-
ting Spring Boot autoconfiguration in motion. When the application is run, Spring
Boot will detect that Thymeleaf'is in the classpath and will automatically configure the
view resolver, template resolver, and template engine beans necessary to use Thyme-
leaf with Spring MVC. Therefore, there’s no explicit Spring configuration required to
use Thymeleaf in your application.

Building an application with Spring Boot 553

Aside from adding the Thymeleaf dependency to the build, the only thing you
need to do is define the view template. Listing 21.5 shows home.html, a Thymeleaf
template that defines the home view.

Listing 21.5 The home view renders a form to create new contacts and to list contacts

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">

<head>

<title>Spring Boot Contacts</title>

<link rel="stylesheet" th:href="@{/style.css}" /> < Loadstyhsheet
</head>
<body>

<h2>Spring Boot Contacts</h2>

<form method="POST"> <— New contact form
<label for="firstName">First Name:</label>

<input type="text" name="firstName"></input>

<label for="lastName">Last Name:</label>
<input type="text" name="lastName"></input>

<label for="phoneNumber">Phone #:</label>
<input type="text" name="phoneNumber"></input>

<label for="emailAddress">Email:</label>
<input type="text" name="emailAddress"></input>

<input type="submit"></input>
</form>
<ul th:each="contact : ${contacts}"> <— Render list of contacts
<1li>
First
Last
phoneNumber,
emailAddress
</1i>

</body>
</html>
This is a fairly basic Thymeleaf template. It has two parts: a form and then a list of con-
tacts. The form will POST data back to the submit () method of ContactController to
create a new Contact. The list cycles through the list of Contact objects in the model.
In order for this template to be used, you need to be careful to name and place it
correctly in your project. Because the logical view name returned from the home ()
method in ContactController is home, the template file should be named
home.html. And because the autoconfigured template resolver will look for Thyme-
leaf templates under a directory named templates relative to the root of the classpath,
you’ll need to place home.html in the Maven or Gradle project at src/main/
resources/templates.
There’s only one loose end that needs to be tied up with regard to this Thymeleaf
template. The HTML it produces will reference a stylesheet named style.css. There-
fore, you need to add that stylesheet to the project.

554

CHAPTER 21 Simplifying Spring development with Spring Boot

21.2.3 Adding static artifacts

Normally, stylesheets and images are things that I avoid discussing in the context of
writing Spring applications. Certainly, those kind of artifacts go a long way toward
making any application (including Spring applications) more aesthetically pleasing to
a user. But static artifacts aren’t critical to the discussion of writing server-side Spring
code.

In the case of Spring Boot, however, it’s worth mentioning how Spring Boot deals
with static content. When Spring Boot’s web autoconfiguration is automatically con-
figuring beans for Spring MVC, those beans include a resource handler that maps /**
to several resource locations. Those resource locations include (relative to the root of
the classpath) the following:

= /META-INF/resources/
= /resources/

= /static/

= /public/

In a conventional Maven/Gradle-built application, you’d typically put static content at
src/main/webapp so that it would be placed at the root of the WAR file that the build
produces. When building a WAR file with Spring Boot, that’s still an option. But you
also have the option of placing static content at one of the four locations mapped to
the resource handler.

So, in order to satisfy the Thymeleaf template’s reference to /style.css, you need to
create a file named style.css at one of the following locations:

/META-INF/resources/ style.css
= /resources/style.css

= /static/style.css

= /public/style.css

The choice is up to you. I tend to put static content in /public, but each of those four
choices works equally well.

Although the content of style.css isn’t relevant to our discussion, here’s a simple
stylesheet that will give your application a slightly cleaner look:

body {
background-color: #eeeeee;
font-family: sans-serif;

}

label {
display: inline-block;
width: 120px;
text-align: right;

}

21.2.4

Building an application with Spring Boot 555

Believe it or not, you're more than halfway finished building your simple Contacts
application! The web layer is completely finished. Now you need to create the
ContactRepository to handle persistence of Contact objects.

Persisting the data

You have a lot of options when it comes to working with databases in Spring. You
could use JPA or Hibernate to map objects to tables and columns in a relational data-
base. Or you could abandon the relational database model altogether and use a differ-
ent kind of database, such as Mongo or Neo4;.

For the purposes of the Contacts application, a relational database is a fine choice.
We’ll use the H2 database and JDBC (using Spring’s JdbcTemplate) to keep things
simple.

These choices naturally lead to the necessity of adding a few dependencies to the
build. The JDBC starter dependency will pull in everything you need to work with
Spring’s JdbcTemplate. But you’ll need to add the H2 dependency along with it to use
the H2 database. In Gradle, the following two lines in the dependencies block will do
the trick:

compile ("org.springframework.boot:spring-boot-starter-jdbc")
compile("com.h2database:h2")

For Maven builds, you’ll need these two <dependency> blocks:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jdbc</artifactId>

</dependency>

<dependency>
<groupIld>com.h2database</groupId>
<artifactId>h2</artifactId>

</dependency>

With these two dependencies in the build, you can now write your repository class.
ContactRepository in the following listing works with an injected JdbcTemplate to
read and write Contact objects from the database.

Listing 21.6 ContactRepository saves and fetches Contacts from the database.

package contacts;

import java.util.List;

import java.sgl.ResultSet;

import java.sgl.SQLException;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.jdbc.core.RowMapper;

import org.springframework.stereotype.Repository;

@QRepository
public class ContactRepository {
private JdbcTemplate jdbc;

556

CHAPTER 21 Simplifying Spring development with Spring Boot

@Autowired

public ContactRepository(JdbcTemplate jdbc) { <— Inject JdbcTemplate
this.jdbc = jdbc;

}

public List<Contact> findall() { J Query for contacts
return jdbc.query (<
"select id, firstName, lastName, phoneNumber, emailAddress " +
"from contacts order by lastName",
new RowMapper<Contact>() {

public Contact mapRow (ResultSet rs, int rowNum)
throws SQLException {
Contact contact = new Contact();
contact.setId(rs.getLong(l));
contact.setFirstName (rs.getString (2
contact.setLastName (rs.getString (3)

)

)
)
contact.setPhoneNumber (rs.getString(4)) ;
contact.setEmailAddress (rs.getString(5));

return contact;

)
}

public void save(Contact contact) {

jdbc.update (<— Insert a contact
"insert into contacts " +
"(firstName, lastName, phoneNumber, emailAddress) " +
"values (2, 2, 2, ?)",
contact.getFirstName (), contact.getLastName(),
contact.getPhoneNumber (), contact.getEmailAddress()) ;

}

Like ContactController, this repository class is rather straightforward. It looks no dif-
ferent from how it might look in a traditional Spring application. There’s nothing
about its implementation that suggests that it’s part of a Spring Boot—enabled applica-
tion. The £indall () method uses the injected JdbcTemplate to fetch Contact objects
from the database. The save() method uses JdbcTemplate to save a new Contact
object. And because ContactRepository is annotated with @Repository, it will auto-
matically be picked up by component-scanning and created as a bean in the Spring
application context.

But what about JdbcTemplate? Don’t you need to declare a JdbcTemplate bean in
the Spring application context? For that matter, don’t you need to declare an H2
DataSource bean?

The short answer to both of those questions is “no.” When Spring Boot detects that
Spring’s JDBC module and H2 are on the classpath, autoconfiguration kicks in and
automatically configures a JdbcTemplate bean and an H2 DataSource bean. Once
again, Spring Boot handles all of the Spring configuration for you.

But what about the database schema? Certainly you must define the schema that
creates the contacts table, right?

21.2.5

Building an application with Spring Boot 557

That’s absolutely right. There’s no way that Spring Boot can guess what the
contacts should look like. So you’ll need to define a schema, such as this:

create table contacts (

id identity,

firstName varchar(30) not null,

lastName varchar (50) not null,

phoneNumber varchar (13),

emailAddress varchar (30)
)i
Now you just need some way to load this create table SQL and execute it against the
H2 database. Fortunately, Spring Boot has this covered, too. If you name this SQL file
as schema.sql and place it at the root of the classpath (that is, in src/main/resources
in the Maven or Gradle project), it will be found and loaded when the application
starts up.

Try it out

The Contacts application is rather simple, but it does qualify as a realistic Spring appli-
cation. It has a web layer defined by a Spring MVC controller and a Thymeleaf tem-
plate. And it has a persistence layer defined by a repository and Spring’s
JdbcTemplate.

At this point you’ve written all of the application code necessary for the Contacts
application. One thing you haven’t written, however, is any form of configuration. You
haven’t yet written any Spring configuration, nor have you configured Dispatcher-
Servlet in a web.xml file or servlet initializer class.

Would you believe me if I said that you don’t have to write any configuration?

That can’t be right. After all, according to Spring’s critics, Spring is all about con-
figuration. Certainly there’s an XML file or Java configuration class we’ve overlooked.
You can’t possibly write a Spring application without any configuration...can you?

Generally speaking, Spring Boot’s autoconfiguration feature eliminates most or all
of the configuration. Therefore, it’s entirely possible to write an entire Spring applica-
tion and not write a single line of configuration code. Of course, autoconfiguration
doesn’t cover all scenarios, so a typical Spring Boot application will still include some
configuration.

For the Contacts application specifically, there’s no need for any configuration.
Spring’s autoconfiguration took care of all of your configuration needs.

You do, however, need a special class that bootstraps the Spring Boot application.
On its own, Spring doesn’t know anything about autoconfiguration. The Application
class in listing 21.7 is a typical example of a Spring Boot bootstrap class.

Listing 21.7 A simple bootstrapper class to initiate Spring Boot autoconfiguration

package contacts;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.boot.SpringApplication;

558

CHAPTER 21 Simplifying Spring development with Spring Boot

import org.springframework.context.annotation.ComponentScan;

@ComponentScan
@EnableAutoConfiguration <— Enable autoconfiguration

public class Application {
public static void main(String[] args) {

SpringApplication.run(Application.class, args); <— Run the application

}
}
Okay, I'll admit that Application has a tiny bit of configuration. It’s annotated with
@ComponentScan to enable component scanning. And it’s annotated with @EnableAuto-
Configuration, which turns on Spring Boot’s autoconfiguration feature. But that’s it!
There’s no more configuration in the Contacts application than those two lines.

What’s especially interesting about Application is that it has amain () method. As
you’ll see in a moment, Spring Boot applications can be run in a unique way, and the
main() method here makes that possible. Within the main () method, there’s a single
line that tells Spring Boot (via the SpringApplication class) to run using the configu-
ration in Application itself and any arguments that were given on the command line.

You’re almost ready to run the application. All you need to do now is build it. If
you’re using Gradle, then the following command line will build the project into
build/libs/contacts-0.1.0 jar:

$ gradle build
If you’re a Maven fan, you’ll need to build the project like this:
$ mvn package

After running the Maven build, you’ll find the build artifact in the target folder.

Now you’re ready to run it. Traditionally, this would mean deploying the applica-
tion WAR file to a servlet container such as Tomcat or WebSphere. But you don’t even
have a WAR file—the build gives you a JAR file.

No problem. You can run it from the command line like this (referencing the
Gradle-built JAR file):

$ java -jar build/libs/contacts-0.1.0.jar

After only a few seconds, the application should start up and be ready to go. Point
your browser at http://localhost:8080 and you should be ready to start entering con-
tacts. After entering a few contacts, your browser might look a little something like
figure 21.1.

You’re probably thinking that this isn’t how you should run a web application. It’s
neat and convenient to be able to run it from the command line like this, but that’s
not reality. Where you work, web applications are deployed as WAR files to a web con-
tainer. The deployment police at your company won'’t like it if you don’t give them a
WAR file.

Okay, fine.

Building an application with Spring Boot 559

enon Spring Boot Contacts
{2]| + | rocalhost:8080 ¢ | Reader || a2 ||OY)

Spring Boot Contacts

First Name:

Last Name:

Phone #:

Email:

Submit
+ Jack Diamond : 312-123-4984, jdiamond @knowjack.com
+ Shelby Mayer : 310-873-4394, shelby @howdareyou.com
« Percivel Peabody : 415-555-1200, peabody@hollywoodpd.gov

» Evie Starlight : 714-338-7248, evie@sparkle.net

Figure 21.1 The Spring Boot Contacts application

Even though running the application from the command line is a valid option, even
for production applications, I understand that you probably need to work within the
parameters of your company’s deployment procedures. And that probably means
building and deploying WAR files.

Fortunately, you won’t need to abandon the simplicity of Spring Boot if it’s a WAR
file that’s required. All that’s needed is a small tweak to the build. In the Gradle build,
you’ll need to add the following line to apply the “war” plugin:

apply plugin: 'war'

Additionally, you’ll need to change the “jar” configuration to a “war” configuration.

(7331}

This essentially comes down to replacing a “j” with a “w”:

war {
baseName = 'contacts'
version = '0.1.0°'

}

In the case of a Maven-built project, it’s even easier. Simply change the packaging
from “jar” to “war”:

<packaging>war</packaging>

Now you can rebuild the project and find contacts-0.1.0.war in the build directory.
That WAR file is deployable to any web container that supports Servlet 3.0. What’s
more, you can still run the application from the command line like this:

$ java -jar build/libs/contacts-0.1.0.war

That’s right: an executable WAR file! It’s the best of both worlds!

560

21.3

21.3.1

CHAPTER 21 Simplifying Spring development with Spring Boot

As you can see, Spring Boot goes a long way to make developing Spring applica-
tions in Java as simple as possible. Spring Boot starters simplify project build depen-
dencies, and autoconfiguration eliminates the need for most explicit Spring
configuration. But as you’ll see next, if you add Groovy to the mix, it gets even easier.

Going Groovy with the Spring Boot CLI

Groovy is a much simpler programming language than Java. The syntax allows for
shortcuts such as leaving off semicolons and the public keyword. Also, the properties
of a Groovy class don’t require setter and getter methods as in Java. And that’s without
mentioning the other features of Groovy that eliminate much of the ceremony that
goes into Java coding.

If you’re willing to write your application code in Groovy and run it through
Spring Boot’s CLI, then Spring Boot can take advantage of Groovy’s simplicity to fur-
ther simplify Spring development. To illustrate this point, let’s rewrite the Contacts
application in Groovy.

Why not? There were only a few small Java classes in the original version of the
application, so there’s not much to rewrite in Groovy. You can reuse the same Thyme-
leaf template and schema.sql file. And if my claims about Groovy simplifying Spring
further are true, then rewriting the application won’t be a big deal.

Along the way, you can get rid of a few files, too. The Spring Boot CLI is its own
bootstrapper, so you won’t need the Application class you created before. The Maven
and Gradle build files can go away too, since you’ll be running uncompiled Groovy
files through the CLI. And without Maven and Gradle, the entire project structure can
be flattened. The new project structure will look a little like this:

S tree

F—— Contact.groovy

F—— ContactController.groovy
F—— ContactRepository.groovy
F—— schema.sqgl

F—— static

| L— style.css
L— templates

L— home.html
Although the schema.sq]l, style.css, and home.html files will remain unchanged, you’ll
need to convert the three Java classes to Groovy. We’ll start with the web layer in
Groovy.

Writing a Groovy controller

As mentioned before, Groovy doesn’t have nearly as much ceremony built into the
language as Java. This means that you can write Groovy code without things like

= Semicolons

= Modifiers such as public and private

Going Groovy with the Spring Boot CLI 561

= Setter and getter methods for properties
= The return keyword to return values from methods

Taking advantage of Groovy’s relaxed syntax (as well as some Spring Boot magic), you
can rewrite the ContactController class in Groovy, as shown in listing 21.8.

Listing 21.8 ContactController is simpler in Groovy than in Java.

@Grab ("thymeleaf-springd")

Grab Thymeleaf
@Controller dependency
@RequestMapping ("/")
class ContactController {
@Autowired
ContactRepository contactRepo <+— Inject ContactRepository
@QRequestMapping (method=RequestMethod.GET) <+— Handle GET /
String home (Map<String,Object> model) {
List<Contact> contacts = contactRepo.findAll ()
model .putAll ([contacts: contacts])
"home"
}
@QRequestMapping (method=RequestMethod.POST) <— Handle POST /

String submit (Contact contact) {
contactRepo.save (contact)
"redirect:/"

}

As you can see, this version of ContactController is much simpler than its Java coun-
terpart. By ditching all of the things that Groovy doesn’t need, ContactController is
shorter and arguably easier to read.

There’s also something else missing from listing 21.8. You may have noticed that
there are no import lines, as is typical in a Java class. Groovy imports a number of
packages and classes by default, including the following:

= java.io.*

= java.lang.*

= java.math.BigDecimal

= java.math.BigInteger

" java.net.*

" java.util.*

= groovy.lang.*

" groovy.util.*

Thanks to these default imports, the List class doesn’t need to be imported by
ContactController. It’s in the java.util package, so it’s among the default imports.

But what about Spring types such as @Controller, @RequestMapping, @Autowired,
and @RequestMethod? Those aren’t in any of the default imports, so how can you get
away with leaving their import line out?

562

CHAPTER 21 Simplifying Spring development with Spring Boot

Later when you run the application, the Spring Boot CLI will try to compile these
Groovy classes using the Groovy compiler. And because those types aren’t imported, it
will fail.

But the Spring Boot CLI doesn’t give up that easily. This is where the CLI takes
autoconfiguration to a whole new level. The CLI will recognize that the failures were
due to missing Spring types, and it will take two steps to fix that problem. It will first
fetch the Spring Boot web starter dependency and transitively all of its dependencies
and add them to the classpath. (That’s right, it will download and add JARs to the
classpath.) Then it will add the necessary packages to the Groovy compiler’s list of
default imports and try to compile the code again.

As a consequence of this auto-dependency/auto-import feature of the CLI, your
controller class doesn’t need any imports. And you won’t need to resolve the Spring
libraries manually or by using Maven or Gradle. Spring Boot CLI has you covered.

Now let’s take a step back and consider what’s going on here. By simply using a
Spring MVC type such as @Controller or @RequestMapping in your code, the CLI will
automatically resolve the Spring Boot web starter. With the web starter’s dependencies
also being added transitively to the classpath, Spring Boot’s autoconfiguration will
kick in and automatically configure the beans necessary to support Spring MVC. But
again, all you had to do was use those types. Spring Boot took care of everything else.

Naturally, there are some limits to the CLI's capabilities. Although it knows how to
resolve many Spring dependencies and automatically add imports for many Spring
types (as well as a handful of other libraries), it won’t automatically resolve and import
everything. The choice to use Thymeleaf templates, for example, is an opt-in choice.
So you must explicitly ask for it with an @Grab annotation in the code.

Note that for many dependencies, it's unnecessary to specify the group ID or ver-
sion number. Spring Boot plugs itself into the dependency resolution behind @Grab
and fills in the missing group ID and version for you.

Also, by adding the @Grab annotation and asking for Thymeleaf, you triggered
autoconfiguration to configure the beans necessary to support Thymeleaf templates
in Spring MVC.

Although it has little to do with Spring Boot, it’s worth showing the Contact class
in Groovy for the sake of a complete example:

class Contact {
long id
String firstName
String lastName
String phoneNumber
String emailAddress

}
As you can see, Contact is also much simpler without semicolons, accessor methods,
and modifiers like public and private. This is owed fully to Groovy’s uncomplicated

syntax. Spring Boot had absolutely no part in simplifying the Contact class.
Now let’s see how to simplify the repository class with Spring Boot CLI and Groovy.

Going Groovy with the Spring Boot CLI 563

21.3.2 Persisting with a Groovy repository

All of the Groovy and Spring Boot CLI tricks you applied to ContactController can
also be applied to ContactRepository. The following listing shows the new Groovy
version of ContactRepository.

Listing 21.9 When written in Groovy, ContactRepository is much more succinct.

@Grab("h2") <7 Grab H2 database
import java.sqgl.ResultSet dependency

class ContactRepository {

@Autowired

JdbcTemplate jdbc <+ Inject JdbcTemplate

List<Contact> findAll() { <— Query for contacts
jdbc.query (

"select id, firstName, lastName, phoneNumber, emailAddress " +
"from contacts order by lastName",
new RowMapper<Contact>() {
Contact mapRow(ResultSet rs, int rowNum) {
new Contact (id: rs.getLong(l), firstName: rs.getString(2),
lastName: rs.getString(3), phoneNumber: rs.getString(4),
emailAddress: rs.getString(5))
}
1)
}

void save (Contact contact) { <— Save a contact
jdbc.update (
"insert into contacts " +
"(firstName, lastName, phoneNumber, emailAddress) " +

"values (?, ?, ?, ?)",
contact.firstName, contact.lastName,
contact.phoneNumber, contact.emailAddress)

}

Aside from the obvious improvements from Groovy syntax, this new Contact-
Repository class takes advantage of Spring Boot CLI’s auto-import feature to automat-
ically import JdbcTemplate and RowMapper. Moreover, the JDBC starter dependency is
automatically resolved when the CLI sees that you’re using those types.

There are only a couple of things that the CLI’s auto-import and auto-resolution
couldn’t help you with. As you can see, you still had to import ResultSet. And
because Spring Boot doesn’t know which database you want to use, you must use
@Grab to ask for the H2 database.

You've converted all of the Java classes to Groovy and took advantage of Spring
Boot magic along the way. Now you’re ready to run the application.

564

CHAPTER 21 Simplifying Spring development with Spring Boot

21.3.3 Running the Spring Boot CLI

After compiling the Java application, you had two choices for running it. You could
either run it as an executable JAR or WAR file from the command line, or you could
deploy a WAR file to a servlet container. Spring Boot’s CLI offers a third option.

As you might guess from its name, running applications through the Spring Boot
CLI is a way to run the application from the command line. But with the CLI, there’s
no need to build the application into a JAR or WAR file first. You can run the applica-
tion directly by passing the Groovy source code through the CLI

INSTALLING THE CLI
In order to use the Spring Boot CLI, you’ll need to install it. You have several options
to choose from, including

= The Groovy Environment Manager (GVM)
= Homebrew
= Manual installation

To install Spring Boot CLI using GVM, enter this command:
$ gvm install springboot
If you’re on OS X, you can use Homebrew to install Spring Boot CLI:

$ brew tap pivotal/tap
S brew install springboot

If you’d rather install Spring Boot manually, you can download it using the instruc-
tions at http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/.

Once you have the CLI installed, you can check the installation and which version
you’re using with the following command line:

$ spring --version
Assuming everything installs well, you’re ready to run the Contacts application.

RUNNING THE CONTACTS APPLICATION WITH THE CLI

To run an application with the Spring Boot CLI, you type spring run in the command
line, followed by one or more Groovy files that should be run through the CLI. For
example, if your application only has a single Groovy class, you can run it like this:

$ spring run Hello.groovy

This runs a single Groovy class named Hello.groovy through the CLI.
If your application has several Groovy class files, you can run them using wildcards
like this:

S spring run *.groovy

Or, if those Groovy class files are in one or more subdirectories, you can use Ant-style
wildcards to recursively seek for Groovy classes:

S spring run **/*.groovy

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

21.4

Gaining application insight with the Actuator 565

Because the Contacts application has three Groovy classes to be read, and because
they’re all at the project root, either of the last two options will work. After running
the application, you should be able to point your browser to http://localhost:8080
and see essentially the same Contacts application that you created earlier.

At this point, you've created a Spring Boot application twice: once in Java and
another time in Groovy. In both cases, Spring Boot applied a great deal of magic to
minimize the boilerplate configuration and build dependencies. Spring Boot has one
more trick up its sleeves, though. Let’s see how you can use the Spring Boot Actuator
to introduce management endpoints to a web application.

Gaining application insight with the Actuator

The main thing that the Spring Boot Actuator does is add several helpful manage-
ment endpoints to a Spring Boot-based application. These endpoints include

= GET /autoconfig—Explains the decisions made by Spring Boot when applying
autoconfiguration

= GET /beans—~Catalogs the beans that are configured for the running application

= GET /configprops—Lists all properties available for configuring the properties
of beans in the application with their current values

= GET /dump—Lists application threads, including a stack trace for each thread

= GET /env—TLists all environment and system property variables available to the
application context

= GET /env/{name}—Displays the value for a specific environment or property
variable

= GET /health—Displays the current application health

= GET /info—Displays application-specific information

= GET /metrics—Lists metrics concerning the application, including running
counts of requests against certain endpoints

= GET /metrics/{name}—Displays metrics for a specific application metric key

= POST /shutdown—Forcibly shuts down the application

= GET /trace—Lists metadata concerning recent requests served through the
application, including request and response headers

To enable the actuator, you simply add the actuator starter dependency to your proj-
ect. If you're writing your application in Groovy and running through the Spring Boot
CLI, you can add the actuator starter with @Grab, like this:

@Grab ("spring-boot-starter-actuator")

If you’re building a Java application using Gradle, you can add the following depen-
dency to the dependencies block in build.gradle:

compile ("org.springframework.boot:spring-boot-starter-actuator")

Or in your project’s Maven pom.xml file, you can add the following <dependency>:

566 CHAPTER 21 Simplifying Spring development with Spring Boot

<dependency>
<groupId> org.springframework.boot</groupId>
<artifactId>spring-boot-actuator</carlsbad>
</dependency>

After adding the Spring Boot Actuator, you can rebuild and restart your application
and then point your browser to any of those management endpoints for more infor-
mation. For example, if you want to see all of the beans that are in the Spring applica-
tion context, you can make a request for http://localhost:8080/beans. Using the curl
command-line tool, the result might look something like this (reformatted and
abridged for readability):

$ curl http://localhost:8080/beans
[

"beans": [
{
"bean": "contactController",
"dependencies": [

"contactRepository"
1,

"resource": "null",
"scope": "singleton",
"type": "ContactController"
}
{
"bean": "contactRepository",
"dependencies": [
"jdbcTemplate"
1,
"resource": "null",
"scope": "singleton",
"type": "ContactRepository"
}
{
"bean": "jdbcTemplate",
"dependencies": [],
"resource": "class path resource [...]",
"scope": "singleton",
"type": "org.springframework.jdbc.core.JdbcTemplate"

]

From this, you can see that there’s a bean whose ID is contactController that depends
on another bean named contactRepository. In turn, the contactRepository
depends on the jdbcTemplate bean.

Gaining application insight with the Actuator 567

Because I abridged the output, there are dozens of other beans not shown that
you’d otherwise see in the JSON produced from the /beans endpoint. This offers some
insight into the otherwise mysterious outcome of autowiring and autoconfiguration.

Another endpoint that lends some insight into how Spring Boot’s autoconfigura-
tion works is the /autoconfig endpoint. The JSON produced by this endpoint lays bare
the decisions that Spring Boot made when autoconfiguring beans. For example,

here’s the abridged (and reformatted) JSON received from the /autoconfig endpoint
when fetched from the Contacts application:

S curl http://localhost:8080/autoconfig
{
"negativeMatches": {
"AopAutoConfiguration": [
{
"condition": "OnClassCondition",
"message": "required @ConditionalOnClass classes not found:
org.aspectj.lang.annotation.Aspect,
org.aspectj.lang.reflect.Advice"
}
1,
"BatchAutoConfiguration": [

{

"condition": "OnClassCondition",
"message": "required @ConditionalOnClass classes not found:
org.springframework.batch.core.launch.JobLauncher"
}
1,
T,
"positiveMatches": {

"ThymeleafAutoConfiguration": [
{
"condition": "OnClassCondition",
"message": "@ConditionalOnClass classes found:
org.thymeleaf.spring4.SpringTemplateEngine"
}
1,
"ThymeleafAutoConfiguration.DefaultTemplateResolverConfiguration": [
{
"condition": "OnBeanCondition",
"message": "@QConditionalOnMissingBean

(names: defaultTemplateResolver; SearchStrategy: all)
found no beans"

}
1,
"ThymeleafAutoConfiguration.ThymeleafDefaultConfiguration": [
{
"condition": "OnBeanCondition",
"message": "@ConditionalOnMissingBean (types:
org.thymeleaf.spring4.SpringTemplateEngine;
SearchStrategy: all) found no beans"

568

21.5

CHAPTER 21 Simplifying Spring development with Spring Boot

1,
"ThymeleafAutoConfiguration.ThymeleafViewResolverConfiguration": [
{
"condition": "OnClassCondition",
"message": "@ConditionalOnClass classes found:
javax.servlet.Servlet"
}
1,
"ThymeleafAutoConfiguration.ThymeleafViewResolverConfiguration
#thymeleafvViewResolver": [
{
"condition": "OnBeanCondition",
"message": "@ConditionalOnMissingBean (names:
thymeleafViewResolver; SearchStrategy: all)
found no beans"

}

}

As you can see, the report has two sections: one for negative matches and one for pos-
itive matches. The negative matches section shown here indicates that the AOP and
Spring Batch autoconfiguration weren’t applied because the requisite classes weren’t
found on the classpath. Under the positive matches section, you can see that as a
result of SpringTemplateEngine being found on the classpath, the Thymeleaf auto-
configuration goes into effect. You can also see that the default template resolver, view
resolver, and template engine beans will be autoconfigured unless you have already
explicitly configured those beans. Moreover, the default view resolver bean will only
be autoconfigured if the Servlet class is found on the classpath.

The /beans and /autoconfig endpoints are just two examples of the kind of
insight that Spring Boot’s Actuator makes available. There isn’t enough space in this
chapter to discuss all of the endpoints in detail, but I encourage you to try them out
for yourself to see what the Actuator can tell you about your application.

Summary

Spring Boot is an exciting new addition to the Spring family of projects. Where
Spring aims to make Java development simpler, Spring Boot aims to make Spring
itself simpler.

Spring Boot employs two main tricks to eliminate boilerplate configuration in a
Spring project: Spring Boot starters and automatic configuration.

A single Spring Boot starter dependency can replace several common dependen-
cies in a Maven or Gradle build. For example, adding only Spring Boot’s web starter as
a dependency in a project pulls in Spring’s web and Spring MVC modules as well as
the Jackson 2 databind module.

Summary 569

Automatic configuration takes full advantage of Spring 4.0’s conditional configura-
tion feature to automatically configure certain Spring beans to enable a certain fea-
ture. For example, Spring Boot can detect that Thymeleaf is in the application
classpath and automatically configure the beans required to enable Thymeleaf tem-
plates as Spring MVC views.

Spring Boot’s command-line interface (CLI) further simplifies Spring projects with
Groovy. By simply referencing a Spring component in Groovy code, you can trigger
the CLI to automatically add the necessary starter dependency (which may, in turn,
trigger automatic configuration). Moreover, many Spring types don’t require explicit
import statements in Groovy code run via the Spring Boot CLL

Finally, the Spring Boot Actuator adds some common management features to a
Spring Boot—developed web application, including insight into thread dumps, web
request history, and the beans in the Spring application context.

After reading this chapter, you may be wondering why I saved such a helpful topic
like Spring Boot until the end of the book. You might even be thinking that had I
introduced Spring Boot earlier in the book, that much of what you learned would’ve
been even easier. Indeed, Spring Boot layers a very compelling programming model
on top of Spring, and once you’ve used it, it’s hard to imagine writing a Spring appli-
cation without it.

I could say that by saving Spring Boot for last, my intentions were to give you a
deeper appreciation for Spring (and perhaps build character and sprout hair on your
chest). While that could be true, the real reason is that most of this book had already
been written by the time Spring Boot came along. So I slid it in at the only place I
could without shuffling the entire book: at the end.

Who knows? Maybe the next edition of this book will start off using Spring Boot.

JAVA

Spring IN ACTION rourTw epiTION
(raig Walls

esigned in 2003 as a lighter approach to J2EE development,

Spring Framework has since become a standard choice for

building enterprise applications and required knowledge
for Java developers. Spring 4, the latest major version, provides
full Java 8 integration along with key upgrades like new annota-
tions for the IoC container, improvements to Spring Expression
Language, and much-needed support for REST. Whether you're
just discovering Spring or you want to absorb the new features,
there’s no better way to master Spring than with this book.

is a hands-on guide to the Spring
Framework. It covers Spring core, along with the latest updates
to Spring MVC, Security, Web Flow, and more. You'll move
between short snippets and an ongoing example as you learn to
build simple and efficient JEE applications. Author Craig Walls
has a special knack for crisp and entertaining examples that
zoom in on the features and techniques you really need.

e Updated for Spring 4

e Spring Data for NoSQL

e Simplify configuration with annotations
and definition profiles

* Working with RESTful resources

Nearly 100,000 developers have used this book to learn Spring!

It requires a working knowledge of Java.

is a software developer at Pivotal. He’s a popular
author and a frequent speaker at user groups and conferences.
Craiglives in Cross Roads, Texas.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/SpringinActionFourthEdition

$49.99 / Can $52.99 [INCLUDING eBOOK]

€C'The best book for Spring—
updated and revised.??
— Gregor Zurowski, Sotheby’s

€C The classic, remastered and
full of awesomeness.
— Mario Arias, Cake Solutions Ltd

€CInformative, accurate
and insightful!33
—Jeelani Shaik, D3Banking.com

€C After ten years, this is
still the clearest and most
comprehensive introduction
to the core concepts of the
Spring platform.33
— James Wright, Sword-Apak

ISBN 13: 978-1-E517291-20-3
ISBN 10: 1-b61729-120-X

“ ‘H 5‘4 | 9“9
IMN7816171291203

