
S A M P L E C H A P T E R

Ant in Action
Steve Loughran and Erik Hatcher

 Sample Chapter 2

 Copyright 2007 Manning Publications

vii

brief contents

1 Introducing Ant 5

2 A first Ant build 19

3 Understanding Ant datatypes and properties 47

4 Testing with JUnit 79

5 Packaging projects 110

6 Executing programs 149

7 Distributing our application 179

8 Putting it all together 209

9 Beyond Ant’s core tasks 233

10 Working with big projects 264

11 Managing dependencies 297

12 Developing for the Web 320

13 Working with XML 340

14 Enterprise Java 363

15 Continuous integration 387

16 Deployment 406

17 Writing Ant tasks 443

18 Extending Ant further 483

19

C H A P T E R 2

A first Ant build
2.1 Defining our first project 19
2.2 Step zero: creating the project

directory 20
2.3 Step one: verifying the tools are

in place 20
2.4 Step two: writing your first Ant

build file 21
2.5 Step three: running your

first build 23

2.6 Step four: imposing structure 27
2.7 Step five: running our program 36
2.8 Ant command-line options 39
2.9 Examining the final build file 43
2.10 Running the build under an IDE 44
2.11 Summary 45

Let’s start this gentle introduction to Ant with a demonstration of what it can do. The
first chapter described how Ant views a project: a project contains targets, each of
which is a set of actions—tasks—that perform part of the build. Targets can depend
on other targets, all of which are declared in an XML file, called a build file.

This chapter will show you how to use Ant to compile and run a Java program,
introducing Ant along the way.

2.1 DEFINING OUR FIRST PROJECT

Compiling and running a Java program under Ant will introduce the basic concepts
of Ant—its command line, the structure of a build file, and some of Ant’s tasks.

Table 2.1 shows the steps we will walk though to build and run a program
under Ant.

The program will not be very useful, but it will introduce the basic Ant concepts.
In normal projects, the build file will be a lot smaller than the source, and not the
other way around.

20 CHAPTER 2 A FIRST ANT BUILD

2.2 STEP ZERO: CREATING
THE PROJECT DIRECTORY

Before doing anything else, create an empty directory. Everything will go under here:
source files, created output files, and the build file itself. All new Java/Ant projects
should start this way.

Our new directory, firstbuild, will be the base directory of our first project.
We then create some real Java source to compile. In the new directory, we create a file
called Main.java, containing the following minimal Java program:

public class Main {

 public static void main(String args[]) {
 for(int i=0;i<args.length;i++) {
 System.out.println(args[i]);
 }
 }
}

The fact that this program does nothing but print the argument list is unimportant;
it’s still Java code that we need to build, package, and execute—work we will delegate
to Ant.

2.3 STEP ONE: VERIFYING THE TOOLS
ARE IN PLACE

Ant is a command-line tool that must be on the path to be used. Appendix A describes
how to set up an Ant development system on both Unix and Windows. To compile
Java programs, developers also need a properly installed Java Development Kit.

To test that Ant is installed, at a command prompt type

ant -version

A good response would be something listing a recent version of Ant, version 1.7
or later:

Apache Ant version 1.7 compiled on December 13 2006

Table 2.1 The initial steps to building and running a program

Task Covered in

Step zero: creating the project directory Section 2.2

Step one: verifying the tools are in place Section 2.3

Step two: writing your first Ant build file Section 2.4

Step three: running your first build Section 2.5

Step four: imposing structure Section 2.6

Step five: running our program Section 2.7

STEP TWO: WRITING YOUR FIRST ANT BUILD FILE 21

A bad response would be any error message saying Ant is not a recognized command,
such as this one on a Unix system:

bash: ant: command not found

On Windows, the error contains the same underlying message:

'ant' is not recognized as an internal or external command,
operable program or batch file.

Any such message indicates you have not installed or configured Ant yet, so turn to
Appendix A: Installation, and follow the instructions there on setting up Ant.

2.4 STEP TWO: WRITING YOUR
FIRST ANT BUILD FILE

Now the fun begins. We are going to get Ant to compile the program.
Ant is controlled by providing a text file that tells how to perform all the stages of

building, testing, and deploying a project. These files are build files, and every project
that uses Ant must have at least one. The most minimal build file useful in Java devel-
opment is one that builds all Java source in and below the current directory:

<?xml version="1.0"?>
<project name="firstbuild" default="compile" >
 <target name="compile">
 <javac srcdir="." />
 <echo>compilation complete!</echo>
 </target>
</project>

This is a piece of XML text, which we save to a file called build.xml. It is not actu-
ally a very good build file. We would not recommend you use it in a real project, for
reasons revealed later in this chapter, but it does compile the code.

 It’s almost impossible for a Java developer to be unaware of XML, but editing it
may be a new experience. Don’t worry. While XML may seem a bit hard to read at
first, and it can be an unforgiving language, it isn’t very complex. Readers new to
XML files should look at our brief overview in Appendix B. Now let’s examine the
build file.

2.4.1 Examining the build file

Let’s look at that first build file from the perspective of XML format rules. The
<project> element is always the root element in Ant build files, in this case containing
two attributes, name and default. The <target> element is a child of <project>.
The <target> element contains two child elements: <javac> and <echo>.

This file could be represented as a tree, which is how XML parsers represent XML
content when a program asks the parser for a Document Object Model (DOM) of the
file. Figure 2.1 shows the tree representation.

22 CHAPTER 2 A FIRST ANT BUILD

The graphical view of the XML tree makes it easier to look at a build file, and so the
structure of the build file should become a bit clearer. At the top of the tree is a
<project> element, which has two attributes, name and default. All Ant build
files must contain a single <project> element as the root element. It tells Ant the
name of the project and, optionally, the default target.

Underneath the <project> element is a <target> with the name compile.
A target represents a single stage in the build process. It can be called from the com-
mand line or it can be used internally. A build file can have many targets, each of
which must have a unique name.

The build file’s compile target contains two XML elements, one called
<javac> and one called <echo>. The names of these elements should hint as to
their function: one calls the javac compiler to compile Java source; the other echoes
a message to the screen. These are the tasks that do the work of this build. The com-
pilation task has one attribute, srcdir, which is set to “.” and which tells the task
to look for source files in and under the current directory. The second task, <echo>,
has a text child node that will be printed when the build reaches it.

In this build file, we have configured the <javac> task with attributes of the task:
we have told it to compile files in the current directory. Here, the <echo> task uses
the text inside it. Attributes on an element describe options and settings that can only

Figure 2.1 The XML Representation of a build file is a tree: the

project at the root contains one target, which contains two tasks.

This matches the Ant conceptual model: projects contain targets;

targets contain tasks.

STEP THREE: RUNNING YOUR FIRST BUILD 23

set once in the task. A task can support multiple nested elements, such as a list of files
to delete. The attributes and elements of every built-in task are listed in Ant’s online
documentation. Bookmark your local copy of this documentation, as you will use it
regularly when creating Ant build files. In the documentation, all parameters are XML
attributes, and all parameters specified as nested elements are exactly that: nested XML ele-
ments that configure the task.

Now, let’s get our hands dirty by running the build.

2.5 STEP THREE: RUNNING YOUR FIRST BUILD

We’ve just covered the basic theory of Ant: an XML build file can describe targets to
build and the tasks used to build them. You’ve just created your first build file, so let’s
try it out. With the Java source and build file in the same directory, Ant should be
ready to build the project. At a command prompt in the project directory, type

ant

If the build file has been typed correctly, then you should see the following response:

Buildfile: build.xml

compile:
 [javac] Compiling 1 source file
 [echo] compilation complete!

BUILD SUCCESSFUL

Total time: 2 seconds

There it is. Ant has compiled the single Java source file in the current directory and
printed a success message afterwards. This is the core build step of all Ant projects that
work with Java source. It may seem strange at first to have an XML file telling a tool
how to compile a Java file, but soon it will become familiar. Note that we did not have
to name the source files; Ant just worked it out somehow. We will spend time in chap-
ter 3 covering how Ant decides which files to work on. For now, you just need to
know that the <javac> task will compile all Java files in the current directory and
any subdirectories. If that’s all you need to do, then this build file is adequate for your
project. You can just add more files and Ant will find them and compile them.

Of course, a modern project has to do much more than just compile files, which
is where the rest of Ant’s capabilities, and the rest of this book, come in to play. The
first is Ant’s ability to report problems.

2.5.1 If the build fails

When you’re learning any new computer language, it’s easy to overlook mistakes that
cause the compiler or interpreter to generate error messages that don’t make much
sense. Imagine if somehow the XML was mistyped so that the <javac> task was mis-
spelled, as in

 <javaac srcdir="." />

24 CHAPTER 2 A FIRST ANT BUILD

With this task in the target, the output would look something like

Buildfile: build.xml

compile:

BUILD FAILED
compile:

BUILD FAILED
C:\AntBook\firstbuild\build.xml:4:
 Problem: failed to create task or type javaac
Cause: The name is undefined.
Action: Check the spelling.
Action: Check that any custom tasks/types have been declared
Action: Check that any <presetdef>/<macrodefs> declarations have taken
place

Whenever Ant fails to build, the BUILD FAILED message appears. This message will
eventually become all too familiar. Usually it’s associated with Java source errors or
unit test failures, but build file syntax problems result in the same failure message.

If you do get an error message, don’t worry. Nothing drastic will happen: files
won’t be deleted (not in this example, anyway!), and you can try to correct the error
by looking at the line of XML named and at the lines on either side of the error. If
your editor has good XML support, the editor itself will point out any XML language
errors, leaving the command line to find only Ant-specific errors. Editors that are
Ant-aware will also catch many Ant-specific syntax errors. An XML editor would also
catch the omission of an ending tag from an XML element, such as forgetting to ter-
minate the target element:

<?xml version="1.0"?>
<project name="firstbuild" default="compile" >
 <target name="compile">
 <javac srcdir="." />
 <echo>compilation complete!</echo>
</project>

The error here would come from the XML parser:

C:\AntBook\firstbuild\xml-error.xml:6:
 The element type "target" must be terminated by the matching
 end-tag "</target>".

Well-laid-out build files, formatted for readability, help to make such errors visible,
while XML-aware editors keep you out of trouble in the first place.

One error we still encounter regularly comes from having an attribute that isn’t
valid for that task. Spelling the srcdir attribute as sourcedir is an example
of this:

 <javac sourcedir="." />

STEP THREE: RUNNING YOUR FIRST BUILD 25

If the build file contains that line, you would see this error message:

compile:

BUILD FAILED

C:\AntBook\firstbuild\build.xml:4:
 The <javac> task doesn’t support the "sourcedir" attribute.

This message indicates that the task description contained an invalid attribute. Usu-
ally this means whoever created the build file typed something wrong, but it also
could mean that the file’s author wrote it for a later version of Ant, one with newer
attributes or tasks than the version doing the build. That can be hard to fix without
upgrading; sometimes a workaround isn’t always possible. It’s rare that an upgrade
would be incompatible or detrimental to your existing build file; the Ant team strives
for near-perfect backwards compatibility.

The error you’re likely to see most often in Ant is the build halting after the
compiler failed to compile your code. If, for example, someone forgot the semicolon
after the println call, the compiler error message would appear, followed by the
build failure:

Buildfile: build.xml
compile:
 [javac] Compiling 1 source file
 [javac] /home/ant/firstbuild/Main.java:5: ';' expected
 [javac] System.out.println("hello, world")
 [javac] ^
 [javac] 1 error

BUILD FAILED
/home/ant/firstbuild/build.xml:4: Compile failed, messages
 should have been provided.

Total time: 4 seconds

The build failed on the same line as the error in the previous example, line 4, but this
time it did the correct action. The compiler found something wrong and printed its
messages, and Ant stopped the build. The error includes the name of the Java file and
the location within it, along with the compiler error itself.

The key point to note is that failure of a task will usually result in the build itself
failing. This is essential for a successful build process: there’s no point packaging or
delivering a project if it didn’t compile. In Ant, the build fails if a task fails. Let’s look
at the successful build in more detail.

2.5.2 Looking at the build in more detail

If the build does actually succeed, then the only evidence of this is the message that com-
pilation was successful. Let’s run the task again, this time in verbose mode, to see what
happens. Ant produces a verbose log when invoked with the -verbose parameter.

26 CHAPTER 2 A FIRST ANT BUILD

This is a very useful feature when figuring out what a build file does. For our simple
build file, it doubles the amount of text printed:

> ant -verbose

Apache Ant version 1.7 compiled on December 19 2006
Buildfile: build.xml
Detected Java version: 1.5 in: /usr/java/jdk1.5.0/jre
Detected OS: Linux
parsing buildfile /home/ant/firstbuild/build.xml with URI = file:////home/
ant/firstbuild/build.xml
Project base dir set to: /home/ant/firstbuild/
Build sequence for target(s) 'compile' is [compile]
Complete build sequence is [compile,]

compile:
 [javac] Main.class skipped - don't know how to handle it
 [javac] Main.java omitted as Main.class is up-to-date.
 [javac] build.xml skipped - don't know how to handle it
 [echo] compilation complete!

BUILD SUCCESSFUL
Total time: 0 seconds

For this build, the most interesting lines are those generated by the <javac> task.
These lines show two things. First, the task did not compile Main.java, because
it felt that the destination class was up-to-date. The task not only compiles all
source files in a directory tree, but it also uses simple timestamp checking to decide
which files are up-to-date. All this is provided in the single line of the build file,
<javac srcdir="." />.

The second finding is that the task explicitly skipped the files build.xml and
Main.class. All files without a .java extension are ignored.

What is the log in verbose mode if Ant compiled the source file? Delete
Main.class then run Ant again to see. The core part of the output provides detail
on the compilation process:

[javac] Main.java added as Main.class doesn't exist.
[javac] build.xml skipped - don't know how to handle it
[javac] Compiling 1 source file
[javac] Using modern compiler
[javac] Compilation arguments:
[javac] '-classpath'
[javac] '/home/ant/ant/lib/ant-launcher.jar:
 /home/ant/ant/lib/ant.jar:
 /home/ant/ant/lib/xml-apis.jar:
 /home/ant/ant/lib/xercesImpl.jar:
 /usr/java/jdk1.5.0/lib/tools.jar'
[javac] '-sourcepath'
[javac] '/home/ant/firstbuild'
[javac] '-g:none'

STEP FOUR: IMPOSING STRUCTURE 27

[javac]
[javac] The ' characters around the executable and arguments are
[javac] not part of the command.
[javac] File to be compiled:
[javac] /home/ant/firstbuild/Main.java
 [echo] compilation complete!

BUILD SUCCESSFUL

This time the <javac> task does compile the source file, a fact it prints to the log. It
still skips the build.xml file, printing this fact out before it actually compiles any
Java source. This provides a bit more insight into the workings of the task: it builds a
list of files to compile, which it passes to the compiler along with Ant’s own classpath.
The Java-based compiler that came with the Java Development Kit (JDK) is used by
default, running inside Ant’s own JVM. This keeps the build fast.

The log also shows that we’re now running on a Unix system, while we started on
a Windows PC. Ant doesn’t care what platform you’re using, as long as it’s one of the
many it supports. A well-written build file can compile, package, test, and deliver the
same source files on whatever platform it’s executed on, which helps unify a develop-
ment team where multiple system types are used for development and deployment.

Don’t worry yet about running the program we compiled. Before actually running
it, we need to get the compilation process under control by imposing some structure
on the build.

2.6 STEP FOUR: IMPOSING STRUCTURE

The build file is now compiling Java files, but the build process is messy. Source files,
output files, and the build file: they’re all in the same directory. If this project gets any
bigger, things will get out of hand. Before that happens, we must impose some struc-
ture. The structure we’re going to impose is quite common with Ant and is driven by
the three changes we want to make to the project.

• We want to automate the cleanup in Ant. If done incorrectly, this could acci-
dentally delete source files. To minimize that risk, you should always separate
source and generated files into different directories.

• We want to place the Java source file into a Java package.

• We want to create a JAR file containing the compiled code. This should be
placed somewhere that also can be cleaned up by Ant.

To add packaging and clean-build support to the build, we have to isolate the source,
intermediate, and final files. Once source and generated files are separated, it’s safe to
clean the latter by deleting the output directory, making clean builds easy. These are
more reliable than are incremental builds as there is no chance of content sneaking
into the output. It’s good to get into the habit of doing clean builds. The first step,
then, is to sort out the source tree.

28 CHAPTER 2 A FIRST ANT BUILD

2.6.1 Laying out the source directories

We like to have a standard directory structure for laying out projects. Ant doesn’t
mandate this, but it helps if everyone uses a similar layout. Table 2.2 shows what we
use, which is fairly similar to that of Ant’s own source tree.

The first directory, src, contains the Java source. The others contain files that are cre-
ated during the build. To clean up these directories, the entire directory trees can be
deleted. The build file also needs to create the directories if they aren’t already present,
so that tasks such as <javac> have a directory to place their output.

We want to move the Java source into the src directory and extend the build file
to create and use the other directories. Before moving the Java file, it needs a package
name, as with all Java classes in a big project. Here we have chosen org.antbook.
welcome. We add this name at the top of the source file in a package declaration:

package org.antbook.welcome;
public class Main {

 public static void main(String args[]) {

 for(int i=0;i<args.length;i++) {
 System.out.println(args[i]);
 }
 }
}

Next, we save the file in a directory tree beneath the source directory that matches
that package hierarchy: src/org/antbook/welcome. The dependency-checking
code in <javac> relies on the source files being laid out this way. When the Java
compiler compiles the files, it always places the output files in a directory tree that
matches the package declaration. The next time the <javac> task runs, its dependency-
checking code looks at the tree of generated class files and compares it to the source
files. It doesn’t look inside the source files to find their package declarations; it relies
on the source tree being laid out to match the destination tree.

NOTE For Java source file dependency checking to work, you must lay out source
in a directory tree that matches the package declarations in the source.

Table 2.2 An Ant project should split source files, compiled classes files, and

distribution packages into separate directories. This makes them much easier to

manage during the build process.

Directory name Function

src Source files

build All files generated in a build that can be deleted and recreated

build/classes Intermediate output (created; cleanable)

dist Distributable files (created; cleanable)

STEP FOUR: IMPOSING STRUCTURE 29

Only when the source is not in any package can you place it in the base of the source
tree and expect <javac> to track dependencies properly, which is what we’ve been
doing until now. If Ant keeps recompiling your Java files every time you do a build,
it’s probably because you haven’t placed them correctly in the package hierarchy.

It may seem inconvenient having to rearrange your files to suit the build tool, but
the benefits become clear over time. On a large project, such a layout is critical to sep-
arating and organizing classes. If you start with it from the outset, even on a small
project, you can grow more gently from a small project to a larger one. Modern IDEs
also prefer this layout structure, as does the underlying Java compiler.

Be aware that dependency checking of <javac> is simply limited to comparing
the dates on the source and destination files. A regular clean build is a good practice—
do so once a day or after refactoring classes and packages.

With the source tree set up, the output directories follow.

2.6.2 Laying out the build directories

Separate from the source directories are the build and distribution directories. We’ll
configure Ant to put all intermediate files—those files generated by any step in the
build process that aren’t directly deployed—in or under the build directory. We want
to be able to clean up all the generated files simply by deleting the appropriate direc-
tory trees. Keeping the directories separate and out of the control of any Software
Configuration Management (SCM) tool makes cleanup easy but means that we need
to tell Ant to create these directories on demand.

Our project will put the compiled files into a subdirectory of build, a directory
called “classes”. Different intermediate output types can have their own directo-
ries alongside this one.

As we mentioned in section 2.5.2, the Java compiler lays out packaged files into a
directory tree that matches the package declarations in the source files. The compiler
will create the appropriate subdirectories on demand, so we don’t need to create them
by hand. We do need to create the top-level build directory and the classes subdirec-
tory. We do this with the Ant task <mkdir>, which, like the shell command of the
same name, creates a directory. In fact, it creates parent directories, too, if needed:

 <mkdir dir="build/classes">

This call is all that’s needed to create the two levels of intermediate output. To actually
place the output of Ant tasks into the build directory, we need to use each task’s
attribute to identify a destination directory. For the <javac> task, as with many
other Ant tasks, the relevant attribute is destdir.

2.6.3 Laying out the distribution directories

The dist directory contains redistributable artifacts of the project. A common stage
in a build process is to package files, placing the packaged file into the dist directory.
There may be different types of packaging—JAR, Zip, tar, and WAR, for example—
and so a subdirectory is needed to keep all of these files in a place where they can be

30 CHAPTER 2 A FIRST ANT BUILD

identified and deleted for a clean build. To create the distribution directory, we insert
another call to <mkdir>:

 <mkdir dir="dist">

To create the JAR file, we’re going to use an Ant task called, appropriately, <jar>.
We’ve dedicated chapter 5 to this and the other tasks used in the packaging process.
For this introductory tour of Ant, we use the task in its simplest form, when it can be
configured to make a named JAR file out of a directory tree:

<jar destfile="dist/project.jar" basedir="build/classes" />

Doing so shows the advantage of placing intermediate code into the build directory:
you can build a JAR file from it without having to list what files are included. This is
because all files in the directory tree should go in the JAR file, which, conveniently, is
the default behavior of the <jar> task.

With the destination directories defined, we’ve now completed the directory
structure of the project, which looks like the illustration in figure 2.2. When the build

Figure 2.2

The directory layout for our project—

keeping source separate from generated

files. The shaded directories and files are

created during the build.

STEP FOUR: IMPOSING STRUCTURE 31

is executed, a hierarchy of folders will be created in the class directory to match the
source tree, but since these are automatically created we won’t worry about them.

This is going to be the basic structure of all our projects: source under src/, gen-
erated files under build/, with the compiled classes going under build/
classes. Future projects will have a lot more files created than just .class files,
and it’s important to leave space for them. With this structured layout, we can have
a new build file that creates and uses the new directories.

2.6.4 Creating the build file

Now that we have the files in the right places and we know what we want to do, the
build file needs to be rewritten. Rather than glue all the tasks together in one long list
of actions, we’ve broken the separate stages—directory creation, compilation, packag-
ing, and cleanup—into four separate targets inside the build file.

<?xml version="1.0" ?>
<project name="structured" default="archive" >

 <target name="init">
 <mkdir dir="build/classes" />
 <mkdir dir="dist" />
 </target>

 <target name="compile" depends="init" >
 <javac srcdir="src"
 destdir="build/classes"
 />
 </target>

 <target name="archive" depends="compile" >
 <jar destfile="dist/project.jar"
 basedir="build/classes" />
 </target>

 <target name="clean" depends="init">
 <delete dir="build" />
 <delete dir="dist" />
 </target>

</project>

This build file adds an init target to do initialization work, which means creating
directories. We’ve also added two other new targets, clean and archive. The
archive target uses the <jar> task to create the JAR file containing all files in and
below the build/classes directory, which in this case means all .class files cre-
ated by the compile target. The clean target cleans up the output directories by
deleting them. It uses a new task, <delete>. We’ve also changed the default target
to archive, so this will be the target that Ant executes when you run it.

Creates the output
directories

Compiles into the output directories

Creates the archive

Deletes the output
directories

32 CHAPTER 2 A FIRST ANT BUILD

As well as adding more targets, this build file adds another form of complexity.
Some targets need to be executed in order. How do we manage this?

2.6.5 Target dependencies

In our current project, for the archive to be up-to-date, all the source files must be
compiled, which means the archive target must come after the compile target.
Likewise, compile needs the directories created in init, so Ant must execute
compile after the init task. Ant needs to know in what order it should execute targets.

These are dependencies that we need to communicate to Ant. We do so by listing
the direct dependencies in the depends attributes of the targets:

<target name="compile" depends="init" >
<target name="archive" depends="compile" >
<target name="clean" depends="init">

If a target directly depends on more than one target, then we list both dependencies,
such as depends="compile,test". In our project, the archive task depends upon
both init and compile, but we don’t bother to state the dependency upon init
because the compile target already depends upon it. If Ant must execute init before
compile and archive depends upon compile, then Ant must run init
before archive. Put formally: dependencies are transitive.

What isn’t important is the order of targets inside the build file. Ant reads the
whole file before it builds the dependency tree and executes targets. There’s no need
to worry about forward references to targets.

If you look at the dependency tree of
targets in the current example, it looks
like figure 2.3. Before Ant executes any
target, it executes all its predecessor tar-
gets. If these predecessors depend on tar-
gets themselves, Ant considers those and
produces an order that satisfies all depen-
dencies. If two targets in this execution
order share a common dependency, then
that predecessor will execute only once.

Experienced users of Unix’s Make tool
will recognize that Ant targets resemble
that tool’s “pseudotargets”—targets in a
makefile that you refer to by name in the
dependencies of other targets. Usually in
Make, you name the source files that a
target depends on, and the build tool
itself works out what to do to create the target file from the source files. In Ant, you
name stages of work as targets, and the tasks inside each target determine for them-
selves what their dependencies are. Ant builds what is known in computer science

Figure 2.3 Once you add dependencies, the

graph of targets gets more complex. Here

clean depends upon init; archive

depends on compile, and, indirectly, init.

All of a target’s dependencies will be executed

ahead of the target itself.

STEP FOUR: IMPOSING STRUCTURE 33

circles as a Directed Acyclic Graph (DAG). A DAG is a graph in which the link
between nodes has a specific direction—here the depends relationship—and in which
there are no circular dependencies.

Interlude: circular dependencies

What happens if a target directly or indirectly depends on itself? Does Ant loop? Let’s
see with a target that depends upon itself:

<?xml version="1.0" ?>
<project name="loop" default="loop" >

 <echo>loop test</echo>

 <target name="loop" depends="loop">
 <echo>looping</echo>
 </target>

</project>

Run this and you get informed of an error:

 [echo] loop test

BUILD FAILED
Circular dependency: loop <- loop

Total time: 0 seconds
Process ant exited with code 1

When Ant parses the build file, it builds up the graph of targets. If there is a cycle any-
where in the graph, Ant halts with the error we’ve just seen.

Any tasks placed in the build files outside of any target will be executed before the
target graph is created and analyzed. In our experiment, we had an <echo> com-
mand outside a target. Ant executes all tasks outside of any target in the order they
appear in the build file, before any target processing begins.

With a loop-free build file written, Ant is ready to run it.

2.6.6 Running the new build file

Now that there are multiple targets in the build file, we need a way of specifying
which to run. You can simply list one or more targets on the command line, so all of
the following are valid:

ant
ant init
ant clean
ant compile
ant archive

Calling Ant with no target is the same as calling the target named in the default
attribute of the <project>. In the following example, it is the archive target:

A
N

T
1
.7

34 CHAPTER 2 A FIRST ANT BUILD

> ant
Buildfile: build.xml

init:
 [mkdir] Created dir: /home/ant/secondbuild/build/classes
 [mkdir] Created dir: /home/ant/secondbuild/dist

compile:

 [javac] Compiling 1 source file to /home/ant/secondbuild/build/classes

archive:
 [jar] Building jar: /home/ant/secondbuild/dist/project.jar

BUILD SUCCESSFUL
Total time: 5 seconds

This example demonstrates that Ant has determined the execution order of the targets.
As both the compile and archive targets depend upon the init target, Ant calls
init before it executes either of those targets. It orders the targets so that first the
directories get created, then the source is compiled, and finally the JAR archive is built.

The build worked—once. What happens when the build is run a second time?

2.6.7 Incremental builds

Let’s look at the log of the build if it’s rerun immediately after the previous run:

init:

compile:

archive:

BUILD SUCCESSFUL

Total time: 1 second

Ant goes through all the targets, but none of the tasks say that they are doing any
work. Here’s why: all of these tasks in the build file check their dependencies, and do
nothing if they do not see a need. The <mkdir> task doesn’t create directories that
already exist, <javac> compiles source files when they’re newer than the corre-
sponding .class file, and the <jar> task compares the time of all files to be added
to the archive with the time of the archive itself. No files have been compiled, and the
JAR is untouched. This is called an incremental build.

If you add the -verbose flag to the command line, you’ll get more detail on what
did or, in this case, did not take place.

> ant -v
Apache Ant version 1.7 compiled on December 13 2006
Buildfile: build.xml
Detected Java version: 1.5 in: /usr/java/jdk1.5.0/jre
Detected OS: Linux

STEP FOUR: IMPOSING STRUCTURE 35

parsing buildfile /home/ant/secondbuild/build.xml with
 URI = file:///home/ant/secondbuild/build.xml
Project base dir set to: /home/ant/secondbuild
Build sequence for target(s) 'archive' is [init, compile, archive]

Complete build sequence is [init, compile, archive, clean]

init:

compile:
[javac] org/antbook/welcome/Main.java omitted as
 org/antbook/welcome/Main.class is up-to-date.

archive:
 [jar] org omitted as org/ is up-to-date.
 [jar] org/antbook omitted as org/antbook/ is up-to-date.
 [jar] org/antbook/welcome omitted as
 org/antbook/welcome/ is up-to-date.
 [jar] org/antbook/welcome/Main.class omitted as
 org/antbook/welcome/Main.class is up-to-date.

BUILD SUCCESSFUL
Total time: 1 second
Process ant exited with code 0

The verbose run provides a lot of information, much of which may seem distracting.
When a build is working well, you don’t need it, but it’s invaluable while developing
that file. Here the build lists the order of target evaluation, which we’ve boldfaced,
and it shows that the <jar> task is also dependency-aware: the JAR file was not mod-
ified since every file inside it was up-to-date. That shows a powerful feature of Ant:
many tasks are dependency-aware, with special logic to handle problems such as
timestamps inside Zip/JAR files or to remote FTP sites.

TIP If ever you are unsure why a build is not behaving as expected, add the -v
or -verbose option to get lots more information.

Now that the build file has multiple targets, another question arises. Can we ask for
more than one target on the command line?

2.6.8 Running multiple targets on the command line

Developers can run multiple targets in a single build, by listing the targets one after
the other on the command line. But what happens when you type ant compile
archive at the command line? Many people would expect Ant to pick an order that
executes each target and its dependencies once only: [init, compile, archive].
Unix Make would certainly do that, but Ant does not. Instead, it executes each target
and dependents in turn, so the actual sequence is init, compile, then init,
compile, archive:

> ant compile archive
Buildfile: build.xml

36 CHAPTER 2 A FIRST ANT BUILD

init:
 [mkdir] Created dir: /home/ant/secondbuild/build/classes
 [mkdir] Created dir: /home/ant/secondbuild/dist

compile:
 [javac] Compiling 1 source file to
 /home/ant/secondbuild/build/classes

init:

compile:

archive:
 [jar] Building jar: /home/ant/secondbuild/dist/project.jar

BUILD SUCCESSFUL
Total time: 4 seconds

This behavior is a historical accident that nobody dares change. However, if you
look closely, the second time Ant executes the compile target it does no work; the
tasks get executed but their dependency checking prevents existing outputs from
being rebuilt.

The final question is this: when a target lists multiple dependencies, does Ant exe-
cute them in the order listed? The answer is “yes, unless other dependencies prevent
it.” Imagine if we modified the archive target with the dependency attribute
depends="compile,init". A simple left-to-right execution order would run the
compile target before it was initialized. Ant would try to execute the targets in this
order, but because the compile target depends upon init, Ant will call init first.
This subtle detail can catch you off guard. If you try to control the execution order
by listing targets in order, you may not get the results you expect since explicit depen-
dencies always take priority.

Being able to run multiple targets on the command line lets developers type a
sequence of operations such as ant clean execute to clean the output directory,
rebuild everything, and run the program. Of course, before they can do that, Ant has
to be able to run the program.

2.7 STEP FIVE: RUNNING OUR PROGRAM

We now have a structured build process that creates the JAR file from the Java source.
At this point the next steps could be to run tests on the code, distribute it, or deploy
it. We shall cover those later. For now, we just want to run the program.

2.7.1 Why execute from inside Ant?

We could just call our program from the command line, stating the classpath, the
name of the entry point, and the arguments:

STEP FIVE: RUNNING OUR PROGRAM 37

>java -cp build/classes org.antbook.welcome.Main a b .
a
b
.

Calling Java programs from the command line isn’t hard, just fiddly. If we run our
program from the build file, we get some immediate benefits:

• A target to run the program can depend upon the compilation target, so we
know we’re always running the latest version of the code.

• It’s easy to pass complex arguments to the program.

• It’s easy to set up the classpath.

• The program can run inside Ant’s own JVM.

• You can halt a build if the return code of the program isn’t zero.

Integrating compiling with running a program lets you use Ant to build an applica-
tion on demand, passing parameters down, including information extracted from
other programs run in earlier targets. Running programs under Ant is both conve-
nient and powerful.

2.7.2 Adding an "execute" target

To run the program, we add a new target, execute, which depends upon compile.
It contains one task, <java>, that runs our class Main.class using the interim
build/classes directory tree as our classpath:

<target name="execute" depends="compile">
 <java
 classname="org.antbook.welcome.Main"
 classpath="build/classes">
 <arg value="a"/>
 <arg value="b"/>
 <arg file="."/>
 </java>
</target>

We have three <arg> tags inside the <java> task; each tag contains one of the argu-
ments to the program: "a", "b", and ".", as with the command-line version. Note,
however, that the final argument, <arg file="."/>, is different from the other
two. The first two arguments use the value attribute of the <arg> tag, which
passes the value straight down to the program. The final argument uses the file
attribute, which tells Ant to resolve that attribute to an absolute file location before
calling the program.

Interlude: what can the name of a target be?

All languages have rules about the naming of things. In Java, classes and methods can-
not begin with a number. What are Ant’s rules about target names?

38 CHAPTER 2 A FIRST ANT BUILD

Ant targets can be called almost anything you want—their names are just strings.
However, for the sake of IDEs and Ant itself, here are some rules to follow:

• Don’t call targets "" or "," because you won’t be able to use them.

• Don’t use spaces in target names.

• Targets beginning with a minus sign cannot be called from the command line.
This means a target name "-hidden" could be invoked only by other tasks,
not directly by users. IDEs may still allow access to the task.

Ant’s convention is to use a minus sign (-) as a separator between words in targets,
leading to names such as "build-install-lite" or "functional-tests".
We would advise against using dots in names, such as "build.install", for rea-
sons we won’t get into until the second section of the book entitled, “Applying Ant.”

With the execute target written, we can compile and run our program under
Ant. Let’s try it out.

2.7.3 Running the new target

What does the output of the run look like? First, let’s run it on Windows:

C:\AntBook\secondbuild>ant execute
Buildfile: build.xml

init:

compile:

execute:
 [java] a
 [java] b
 [java] C:\AntBook\secondbuild

The compile task didn’t need to do any recompilation, and the execute task called
our program. Ant has prefixed every line of output with the name of the task currently
running, showing here that this is the output of an invoked Java application. The first
two arguments went straight to our application, while the third argument was resolved
to the current directory; Ant turned “.” into an absolute file reference. Next, let’s try
the same program on Linux:

[secondbuild]> ant execute
Buildfile: build.xml

init:

compile:

execute:
 [java] a
 [java] b
 [java] /home/ant/secondbuild

ANT COMMAND-LINE OPTIONS 39

Everything is identical, apart from the final argument, which has been resolved to a
different location, the current directory in the Unix path syntax, rather than the DOS
one. This shows another benefit of starting programs from Ant rather than from any
batch file or shell script: a single build file can start the same program on multiple
platforms, transforming filenames and file paths into the appropriate values for the
target platform.

This is a very brief demonstration of how and why to call programs from inside
Ant, enough to round off this little project. Chapter 6 will focus on the topic of call-
ing Java and native programs from Ant during a build process.

We’ve nearly finished our quick introduction to Ant, but we have one more topic
to cover: how to start Ant.

2.8 ANT COMMAND-LINE OPTIONS

We’ve already shown that Ant is a command-line program and that you can specify
multiple targets as parameters. We’ve also introduced the -verbose option, which
allows you to get more information on a build. We want to do some more to run our
program. First, we want to remove the [java] prefixes, and then we want to run the
build without any output unless something goes wrong. Ant’s command-line options
enable this.

Ant can take a number of options, which it lists if you ask for them with ant
-help. The current set of options is listed in table 2.3. This list can expand with
every version of Ant, though some of the options aren’t available or relevant in
IDE-hosted versions of the program. Note also that some of the launcher scripts, par-
ticularly the Unix shell script, provide extra features, features that the ant -help
command will list.

Table 2.3 Ant command-line options

Option Meaning

-autoproxy Bind Ant’s proxy configuration to that of the underlying OS.

-buildfile file Use the named buildfile, use -f as a shortcut.

-debug, -d Print debugging information.

-diagnostics Print information that might be helpful to diagnose or report
problems.

-Dproperty=value Set a property to a value.

-emacs Produce logging information without adornments.

-find file Search for the named buildfile up the tree. The shortcut is -s.

-help, -h List the options Ant supports and exit.

-inputhandler classname The name of a class to respond to <input> requests.

-keep-going, -k When one target on the command line fails, still run other targets.

continued on next page

40 CHAPTER 2 A FIRST ANT BUILD

Some options require more explanation of Ant before they make sense. In particular,
the options related to properties aren’t relevant until we explore Ant’s properties in
chapter 3. Let’s look at the most important options first.

2.8.1 Specifying which build file to run

Probably the most important Ant option is -buildfile. This option lets you con-
trol which build file Ant uses, allowing you to divide the targets of a project into mul-
tiple files and select the appropriate build file depending on your actions. A shortcut
to -buildfile is -f. To invoke our existing project, we just name it immediately
after the -f or -buildfile argument:

 ant -buildfile build.xml compile

This is exactly equivalent to calling ant compile with no file specified. If for some
reason the current directory was somewhere in the source tree, which is sometimes the
case when you are editing text from a console application such as vi, emacs, or even
edit, then you can refer to a build file by passing in the appropriate relative filename
for your platform, such as ../../../build.xml or ..\..\..\build.xml. It’s
easier to use the -find option, which must be followed by the name of a build file.
This variant does something very special: it searches the directory tree to find the first
build file in a parent directory of that name, and invokes it. With this option, when
you are deep into the source tree editing files, you can easily invoke the project build
with the simple command:

ant -find build.xml

-listener classname Add a project listener.

-logfile file Save the log to the named file.

-logger classname Name a different logger.

-main classname Provide the name of an alternate main class for Ant.

-nice <number> Run Ant at a lower or higher priority.

-noclasspath Discard the CLASSPATH environment variable when running Ant.

-nouserlib Run Ant without using the jar files from .ant/lib under the User’s
home directory.

-projecthelp Print information about the current project.

-propertyfile file Load properties from file; -D definitions take priority.

-quiet, -q Run a quiet build: only print errors.

-verbose, -v Print verbose output for better debugging.

-version Print the version information and exit.

Table 2.3 Ant command-line options (continued)

Option Meaning

ANT COMMAND-LINE OPTIONS 41

Note that it can be a bit dangerous to have a build file at the root of the file system, as
the -find command may find and run it. Most other command-line options are less
risky, such as those that control the log level of the program.

2.8.2 Controlling the amount of information provided

We stated that we want to reduce the amount of information provided when we
invoke Ant. Getting rid of the [java] prefix is easy: we run the build file with the
-emacs option. This omits the task-name prefix from all lines printed. The option is
called -emacs because the output is now in the emacs format for invoked tools,
which enables that and other editors to locate the lines on which errors occurred.

For our exercise, we only want to change the presentation from the command line,
which is simple enough:

> ant -emacs execute
Buildfile: build.xml

init:

compile:

execute:
 a
 b
 /home/ant/secondbuild

BUILD SUCCESSFUL
Total time: 2 seconds.

This leaves the next half of the problem—hiding all the output. Three of the Ant
options control how much information is output when Ant runs. Two of these
(-verbose and -debug) progressively increase the amount. The -verbose option
is useful when you’re curious about how Ant works or why a build isn’t behaving. The
-debug option includes all the normal and verbose output and much more low-level
information, primarily only of interest to Ant developers. To see nothing but errors or
a final build failed/success message, use -quiet:

> ant -quiet execute

BUILD SUCCESSFUL
Total time: 2 seconds

In quiet runs, not even <echo> statements appear. One of the attributes of <echo> is
the level attribute, which takes five values: error, warning, info, verbose, and
debug control the amount of information that appears. The default value info ensures
that messages appear in normal builds and in -verbose and -debug runs. By insert-
ing an <echo> statement into our execute target with the level set to warning,
we ensure that the message appears even when the build is running as -quiet:

 <echo level="warning" message="running" />

42 CHAPTER 2 A FIRST ANT BUILD

Such an <echo> at the warning level always appears:

>ant -q
 [echo] running

To eliminate the [echo] prefix, we add the -emacs option again, calling

>ant -q -emacs

to get the following output:

running

BUILD SUCCESSFUL
Total time: 2 seconds.

Asking for -quiet builds is good when things are working; asking for -verbose is
good when they are not. Using <echo> to log things at level="verbose" can
provide extra trace information when things start going wrong. The other way to han-
dle failure is to use the -keep-going option.

2.8.3 Coping with failure

The -keep-going option tells Ant to try to recover from a failure. If you supply more
than one target on the command line, Ant normally stops the moment any of these
targets—or any they depend upon—fail. The -keep-going option instructs Ant to
continue running any target on the command line that doesn’t depend upon the target
that fails. This lets you run a reporting target even if the main build didn’t complete.

2.8.4 Getting information about a project

The final option of immediate relevance is -projecthelp. It lists the main targets
in a project and is invaluable whenever you need to know what targets a build file pro-
vides. Ant lists only those targets containing the optional description attribute, as
these are the targets intended for public consumption.

>ant -projecthelp
Buildfile: build.xml
Main targets:

Other targets:

 archive
 clean
 compile
 execute
 init
Default target: archive

This isn’t very informative, which is our fault for not documenting the file. If we add
a description attribute to each target, such as description="Compiles the
source code" for the compile target, and a <description> tag right after the

EXAMINING THE FINAL BUILD FILE 43

project declaration, then the target listing includes these descriptions, marks all the
described targets as “main targets,” and hides all other targets from view:

> ant -p
Buildfile: build.xml
Compiles and runs a simple program
Main targets:

 archive Creates the JAR file
 clean Removes the temporary directories used
 compile Compiles the source code
 execute Runs the program

Default target: archive

To see both main and sub targets in a project, you must call Ant with the options
-projecthelp and -verbose. The more complex a project is, the more useful
the -projecthelp feature becomes. We strongly recommend providing description
strings for every target intended to act as an entry point to external callers, and a line
or two at the top of each build file describing what it does.

Having looked at the options, especially the value of the -projecthelp com-
mand, let’s return to the build file and add some descriptions.

2.9 EXAMINING THE FINAL BUILD FILE

Listing 2.1 shows the complete listing of the final build file. In addition to adding the
description tags, we decided to make the default target run the program. We’ve
marked the major changes in bold, to show where this build file differs from the build
files and build file fragments shown earlier.

<?xml version="1.0" ?>
<project name="secondbuild" default="execute" >
<description>Compiles and runs a simple program</description>

 <target name="init">
 <mkdir dir="build/classes" />
 <mkdir dir="dist" />
 </target>

 <target name="compile" depends="init"
 description="Compiles the source code">
 <javac srcdir="src"
 destdir="build/classes"
 />
 </target>

 <target name="archive" depends="compile"
 description="Creates the JAR file">

Listing 2.1 Our first complete build file, including packaging and executing

a Java program

44 CHAPTER 2 A FIRST ANT BUILD

 <jar destfile="dist/project.jar"
 basedir="build/classes"
 />
 </target>

 <target name="clean" depends="init"
 description="Removes the temporary directories used">
 <delete dir="build" />

 <delete dir="dist" />
 </target>

 <target name="execute" depends="compile"
 description="Runs the program">
 <echo level="warning" message="running" />
 <java
 classname="org.antbook.welcome.Main"
 classpath="build/classes">
 <arg value="a"/>
 <arg value="b"/>
 <arg file="."/>
 </java>
 </target>

</project>

That’s forty-plus lines of Ant XML to compile ten lines of Java, but think of what
those lines of XML do: they compile the program, package it, run it, and can even
clean up afterwards. More importantly, if we added a second Java file to the program,
how many lines of code need to change in the build file? Zero. As long as the build
process doesn’t change, you can now add Java classes and packages to the source tree
to build a larger JAR file and perform more useful work on the execution parameters,
yet you don’t have to make any changes to the build file itself. That is one of the nice
features of Ant: you don’t need to modify your build files whenever a new source file
is added to the build process. It all just works. It even works under an IDE.

2.10 RUNNING THE BUILD UNDER AN IDE

Most modern Java IDEs integrate with Ant. One, NetBeans, is built entirely around
Ant. Others, including Eclipse and IntelliJ IDEA, let you add build files to a project
and run them from within the GUI.

To show that you can run this Ant under an IDE, figure 2.4 shows a small picture
of the "execute" target running under Eclipse.

Appendix C covers IDE integration. All the examples in this book were run from
the command line for better readability. However, most of the build files were written
in IDEs and often were tested there first. Don’t think that adopting Ant means aban-
doning IDE tools; instead you get a build that works everywhere.

SUMMARY 45

2.11 SUMMARY

Ant is told what to build by an XML file, a build file. This file describes all the actions
to build an application, such as creating directories, compiling the source, and deter-
mining what to do afterwards; the actions include making a JAR file and running
the program.

The build file is in XML, with the root <project> element representing a Ant
project. This project contains targets, each of which represents a stage of the project.
A target can depend on other targets, which is stated by listing the dependencies in
the depends attributes of the target. Ant uses this information to determine which
targets to execute, and in what order.

 The actual work of the build is performed by Ant tasks. These tasks implement
their own dependency checking, so they only do work if it is needed.

Some of the basic Ant tasks are <echo> to print a message, <delete> to delete
files and directories, <mkdir> to create directories, <javac> to compile Java source,

Figure 2.4 Our build file hosted under Eclipse. Consult Appendix C for the steps needed to do this.

46 CHAPTER 2 A FIRST ANT BUILD

and <jar> to create an archive file. The first three of these tasks look like XML ver-
sions of shell commands, but the latter two demonstrate the power of Ant. They con-
tain dependency logic, so that <javac> will compile only those source files for
which the destination binary is missing or out of date, and <jar> will create a JAR
file only if its input files are newer than the output.

Running Ant is called building; a build either succeeds or fails. Builds fail when
there’s an error in the build file, or when a task fails by throwing an exception. In
either case, Ant lists the line of the build file where the error occurred. Ant can build
from the command line, or from within Java IDEs. The command line has many
options to control the build and what output gets displayed. Rerunning a build with
the -verbose option provides more detail as to what is happening. Alternatively,
the -quiet option runs a build nearly silently. The most important argument to the
command line is the name of the targets to run—Ant executes each of these targets
and all its dependencies.

After this quick introduction, you’re ready to start using Ant in simple projects. If
you want to do this or if you have deadlines that insist on it, go right ahead. The next
two chapters will show you how to configure and control Ant with its properties and
datatypes, and how to run unit tests under it. If your project needs these features, then
please put off coding a bit longer, and keep reading.

