

Learn PowerShell Scripting
in a Month of Lunches

by Don Jones
Jeffery Hicks

 Chapter 14

 Copyright 2018 Manning Publications

v

brief contents
PART 1 INTRODUCTION TO SCRIPTING1

1 ■ Before you begin 3

2 ■ Setting up your scripting environment 8

3 ■ WWPD: what would PowerShell do? 19

4 ■ Review: parameter binding and the PowerShell
pipeline 25

5 ■ Scripting language crash course 36

6 ■ The many forms of scripting (and which to use) 48

7 ■ Scripts and security 58

PART 2 BUILDING A POWERSHELL SCRIPT................................67

8 ■ Always design first 69

9 ■ Avoiding bugs: start with a command 80

10 ■ Building a basic function and script module 88

11 ■ Going advanced with your function 99

12 ■ Objects: the best kind of output 111

13 ■ Using all the pipelines 122

BRIEF CONTENTSvi

14 ■ Simple help: making a comment 136

15 ■ Dealing with errors 146

16 ■ Filling out a manifest 158

PART 3 GROWN-UP SCRIPTING ...169

17 ■ Changing your brain when it comes to scripting 171

18 ■ Professional-grade scripting 190

19 ■ An introduction to source control with git 202

20 ■ Pestering your script 221

21 ■ Signing your script 234

22 ■ Publishing your script 244

PART 4 ADVANCED TECHNIQUES ..253

23 ■ Squashing bugs 255

24 ■ Making script output prettier 272

25 ■ Wrapping up the .NET Framework 292

26 ■ Storing data—not in Excel! 302

27 ■ Never the end 314

136

Simple help:
making a comment

One of the things we all love about PowerShell is its help system. Like Linux’s man
pages, PowerShell’s help files can provide a wealth of information, examples,
instructions, and more. So we definitely want to provide help with the tools we cre-
ate—and you should, too. You have two ways of doing so. First, you can write full
PowerShell help that consists of external, XML-formatted Microsoft Assistance
Markup Language (MAML) files, which can even include versions for different lan-
guages. This is an advanced topic that we won’t cover in this book. In fact, with the
advent of modules like PlatyPS, you won’t ever have to learn MAML. For now, we’re
going to use the simpler, single-language, comment-based help that lives right
inside your function.

14.1 Where to put your help
There are three legal places where PowerShell will look for your specially formatted
comments, in order to turn them into help displays:

 Just before your function’s opening function keyword, with no blank lines
between the last comment line and the function. We don’t like this spot,
because we prefer…

 Just inside the function, after the opening function declaration and before
your [CmdletBinding()] or Param parts. We love this spot, because it’s easier
to move your help with the function if you’re copying and pasting your code
someplace else. Your comments will also collapse into the function if you use
an editor that has code-folding features. This is where you’ll find that the
majority of people stick their help.

137Getting started

 As the last thing in your function before the closing }. We’re not fans of this
spot, either, because having your comments at the top of the function helps bet-
ter document the function for someone reading the code.

14.2 Getting started
As you’ll see, there’s nothing especially complicated about any of this. The best way to
understand is to dive in and look at an example.

function Get-MachineInfo {
<#
.SYNOPSIS
Retrieves specific information about one or more computers, using WMI or
CIM.
.DESCRIPTION
This command uses either WMI or CIM to retrieve specific information about
one or more computers. You must run this command as a user who has
permission to remotely query CIM or WMI on the machines involved. You can
specify a starting protocol (CIM by default), and specify that, in the
event of a failure, the other protocol be used on a per-machine basis.
.PARAMETER ComputerName
One or more computer names. When using WMI, this can also be IP addresses.
IP addresses may not work for CIM.
.PARAMETER LogFailuresToPath
A path and filename to write failed computer names to. If omitted, no log
will be written.
.PARAMETER Protocol
Valid values: Wsman (uses CIM) or Dcom (uses WMI). Will be used for all
machines. "Wsman" is the default.
.PARAMETER ProtocolFallback
Specify this to automatically try the other protocol if a machine fails.
.EXAMPLE
Get-MachineInfo -ComputerName ONE,TWO,THREE
This example will query three machines.
.EXAMPLE
Get-ADUser -filter * | Select -Expand Name | Get-MachineInfo
This example will attempt to query all machines in AD.
#>
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,

 [string]$LogFailuresToPath,

 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",

 [switch]$ProtocolFallback
)

Listing 14.1 Comment-based help

138 CHAPTER 14 Simple help: making a comment

 BEGIN {}

 PROCESS {
 foreach ($computer in $computername) {

 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

 Write-Verbose "Connecting to $computer over $protocol"
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option

 Write-Verbose "Querying from $computer"
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params

 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params

 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params

 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1

 Write-Verbose "Closing session to $computer"
 $session | Remove-CimSession

 Write-Verbose "Outputting for $computer"
 $obj = [pscustomobject]@{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 Write-Output $obj

 } #foreach
} #PROCESS

END {}

} #function

139Getting started

The help here reflects what we believe is the bare minimum for inclusion in the race
of Upright Human Beings. Some notes

 You don’t have to use all-uppercase letters, but the period preceding each help
keyword (.SYNOPSIS, .DESCRIPTION) must be in the first column.

 We used a block comment (<#....#>); you could also use line-by-line com-
ments—that is, each line preceded by a # character. The block comment looks
nicer and is considered a collapsible region in some scripting editors.

 .SYNOPSIS is meant to be a very short description of what your command does.
 .DESCRIPTION is a longer description, which can be full of details, instructions,

and insights.
 .PARAMETER is followed by the parameter name and then a description of the para-

meter’s use. You don’t need to provide a listing for every single parameter.
 .EXAMPLE should be followed immediately by the example itself; PowerShell will

add a PowerShell prompt in front of this line when the help is displayed. If your
tool takes advantage of different providers such as the registry, you can certainly
insert an appropriate prompt to illustrate your example. Subsequent text can
explain the example.

 You can put blank comment lines between each of these settings to make it all
easier to read in code.

 You normally don’t need to worry about line length. PowerShell will wrap lines
as necessary, depending on the console size of the current host. But if you want
to manually break lines, a width of 80 characters is your best bet:

<#
.SYNOPSIS
Retrieves specific information about one or more computers, using WMI or
CIM.
.DESCRIPTION
This command uses either WMI or CIM to retrieve specific information about
one or more computers. You must run this command as a user who has
permission
to remotely query CIM or WMI on the machines involved. You can
specify a starting protocol (CIM by default), and specify that, in the
event of a failure, the other protocol be used on a per-machine basis.
.PARAMETER ComputerName
One or more computer names. When using WMI, this can also be IP addresses.
IP addresses may not work for CIM.
.PARAMETER LogFailuresToPath
A path and filename to write failed computer names to. If omitted, no log
will be written.
.PARAMETER Protocol
Valid values: Wsman (uses CIM) or Dcom (uses WMI). Will be used for all
machines. "Wsman" is the default.
.PARAMETER ProtocolFallback
Specify this to automatically try the other protocol if a machine fails.
.EXAMPLE
Get-MachineInfo -ComputerName ONE,TWO,THREE
This example will query three machines.

140 CHAPTER 14 Simple help: making a comment

.EXAMPLE
Get-ADUser -filter * | Select -Expand Name | Get-MachineInfo
This example will attempt to query all machines in AD.
#>

As we wrote, these elements are the bare minimum. You can do more. A lot more.

14.3 Going further with comment-based help
You can use an .INPUTS section to list .NET class types, one per line, that your com-
mand accepts as input from the pipeline. This is useful for helping others understand
what kinds of input your command can deal with:

.INPUTS
System.String

Similarly, .OUTPUTS lists the type names that your script outputs. Because ours pres-
ently only outputs a generic PSObject, there’s not much point in listing anything.

 A .NOTES section can list additional information, which is only displayed when the
full help is requested by the user:

.NOTES
version : 1.0.0
last updated: 1 February, 2017

A .LINK heading, followed by a topic name or a URL, appears as a Related Topic in
the help. Use one .LINK keyword for each related topic; don’t put multiples under a
single .LINK:

.LINK
https://powershell.org/forums/
.LINK
Get-CimInstance
.LINK
Get-WmiObject

There’s more, too—read the about_comment_based_help topic in PowerShell for the
full list. We’ll include a few of them in upcoming chapters, as we add functionality that
pertains to those help keywords, so be on the lookout.

14.4 Broken help
PowerShell’s a little picky—okay, a lot picky—about help formatting and syntax. Get
just one thing wrong, and none of the help will work, and you won’t get an error mes-
sage or explanation. So if you’re not getting the help display you expect, go review
your help keyword spelling, period locations, and other details very carefully.

14.5 Beyond comments
Comment-based help has more than a few limitations, but it’s important to under-
stand why it exists. Originally, PowerShell only supported external help, stored in

141Your turn

XML-based files written in a dialect called Microsoft Assistance Markup Language.
MAML is incomprehensible—like, seriously unreadable to a human. But it offers advan-
tages over comment-based help. Although it’s harder to create, it

 Is separated from your code, so it can be updated independently. It’s the basis
of how PowerShell’s Update-Help command works.

 Can be delivered in multiple languages, allowing PowerShell to offer localized
help content to different audiences.

 Is parsed by PowerShell into an object hierarchy, providing additional features
and functionality that can make help content useful across a wider range of sit-
uations.

So if MAML is so cool but so hard to make, what do you do? Back in the day, a bunch
of different folks made tools that let you basically copy and paste content into a GUI
that would then spit out MAML files for you. Easier, but super time-consuming.
Nowadays, all the cool kids are using an open source project called PlatyPS. PlatyPS
lets you write your help content in Markdown, which is a simple markup language.
Markdown is the native markup language of GitHub, meaning your help files can be
easily read and edited right on that website, if you’re hosting a project there. PlatyPS
can then take that Markdown and produce a valid MAML file. Other tools can con-
sume Markdown and produce HTML, if you want to have web-based help for some
reason. Markdown becomes the source format for your help (it’s easy to read and
edit with any text editor—you don’t even need a dedicated Markdown editor,
although VS Code has excellent Markdown plugins you can try), and you produce
everything else from there.

 If you’ve never written help for your code, PlatyPS can examine the code and cre-
ate a framework, or stub, for your Markdown help files. The stub will include all of
your parameters and so forth, with as much data as PlatyPS can figure out already
filled in—like which parameters are mandatory, which ones accept pipeline input,
and so on. PlatyPS can help you maintain your help files, too. Say you add a parameter,
or change one, or whatever. It can look at your code, figure that out, and update your
existing help files with stubs, which you can then fill in to fully document whatever’s
new and changed in your code.

 We love PlatyPS and Markdown. Although they’re bigger topics than we were ready
to tackle for this book, we wanted to give you some directions for future exploration.

14.6 Your turn
Time to add some comment-based help to your function.

14.6.1 Start here

Here’s where we left off after chapter 13. You can use this as a starting point, or use
your own result from that chapter.

142 CHAPTER 14 Simple help: making a comment

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 Write-Verbose "Connect to $computer on WS-MAN"
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }

 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params

 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }

 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

Listing 14.2 Set-TMServiceLogon

143Your turn

 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession

 } #foreach
} #PROCESS

END{}

} #function

14.6.2 Your task

Add, at a minimum, the following to your tool:

 Synopsis
 Description
 Parameter descriptions
 Two examples, including descriptions

Import your module, and test your help (Help Set-TMServiceLogon -ShowWindow, for
example) to make sure it works.

14.6.3 Our take

Here’s the help we came up with. As always, you’ll find this in the code downloads at
www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches, under this
chapter’s folder.

function Set-TMServiceLogon {
<#
.SYNOPSIS
Sets service login name and password.
.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name, for a service, which can be running on
one or more remote machines. You must run this command
as a user who has permission to perform this task,
remotely, on the computers involved.
.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.
.PARAMETER ComputerName
One or more computer names. Using IP addresses will
fail with CIM; they will work with WMI. CIM is always
attempted first.
.PARAMETER NewPassword
A plain-text string of the new password.
.PARAMETER NewUser
Optional; the new logon user name, in DOMAIN\USER
format.
.PARAMETER ErrorLogFilePath

Listing 14.3 Our solution

144 CHAPTER 14 Simple help: making a comment

If provided, this is a path and filename of a text
file where failed computer names will be logged.
#>
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,

 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

 [string]$ErrorLogFilePath
)

BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {

 Write-Verbose "Connect to $computer on WS-MAN"
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer

 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }

 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params

 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }

 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

145Your turn

 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession

 } #foreach
} #PROCESS

END{}

} #function

Adding comment-based help doesn’t have to be a tedious chore. Use the snippets fea-
ture of your scripting editor to create a template. In the PowerShell ISE, if you press
Ctrl-J to access the built-in snippets, the one for Cmdlet (Advanced Function) will
have most of what you need.

 And before we sign off, here’s a quick pro tip: Comment-based help is tolerant of
extra whitespace. So instead of this

.SYNOPSIS
Sets service login name and password.
.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name, for a service, which can be running on
one or more remote machines. You must run this command
as a user who has permission to perform this task,
remotely, on the computers involved.
.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.

you could do this:

.SYNOPSIS
Sets service login name and password.

.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name, for a service, which can be running on
one or more remote machines. You must run this command
as a user who has permission to perform this task,
remotely, on the computers involved.

.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.

Those extra blank lines go a long way toward making your code more readable, and
they don’t affect the help-file displays that PowerShell creates from your comments.

