
S A M P L E C H A P T E R

IntelliJ IDEA in Action
by Duane K. Fields
Stephen Saunders
Eugene Belayev

with
Arron Bates

 Sample Chapter 7

Copyright 2006 Manning Publications

vii

1 ■ Getting started with IDEA 1

2 ■ Introducing the IDEA editor 22

3 ■ Using the IDEA editor 63

4 ■ Managing projects 107

5 ■ Building and running applications 142

6 ■ Debugging applications 185

7 ■ Testing applications with JUnit 231

8 ■ Using version control 254

9 ■ Analyzing and refactoring applications 295

10 ■ Developing Swing applications 341

11 ■ Developing J2EE applications 370

12 ■ Customizing IDEA 425

13 ■ Extending IDEA 461

Appendix ■ Getting help with IDEA 481

brief contents

231

Testing applications
with JUnit

In this chapter…
■ Essentials of automated unit testing with JUnit
■ Creating a JUnit file template to quickly build

your own tests
■ Running JUnit tests in the IDE and interpreting

the results

232 CHAPTER 7
Testing applications with JUnit

You could jokingly say that writing software doesn’t create bugs, testing does. But
if you ever intend to have an application used by anyone of consequence (a pay-
ing customer, for example), then the application must undergo some form of test-
ing. Most applications also go through many changes and improvements. Testing
becomes far more difficult the longer an application is in development, because
you’re not just testing new features—you have an obligation to maintain the old
features, as well.

 This area of continuing development is where automated unit testing comes
into its own. Writing tests at the same time as the application code not only con-
firms the proper working of the application in the short term but also provides an
automated means to confirm the application continues to work in the future.

JUnit (an open source project with excellent pedigree) has become a de facto
standard in unit testing, and it’s almost ubiquitous for unit testing in Java. IDEA
has a very high degree of integration with JUnit. This integration provides the
most productive means to write, manage and run unit tests without leaving the
comfort of the IDE.

7.1 Testing applications with JUnit

Thorough, automated suites of unit tests are a cornerstone of the Extreme Pro-
gramming movement and should be part of any large-scale development project.
For the uninitiated, unit tests are used to programmatically verify the operation of
code components, often down to the individual methods. By developing extensive
unit tests for your code and running them often as part of the build and verifica-
tion process, you can help reduce bugs and avoid regressions. IDEA encourages
this practice through its integrated support for JUnit.

JUnit is a free unit-testing framework developed by superstars Kent Beck (of
Extreme Programming fame) and Erich Gamma (master of design patterns). The
package is built around a straightforward API that lets you create tests that verify
your code’s correct operation. You can learn the details of the framework and the
JUnit API at http://www.junit.org. For the brave and impatient, we’ll give a quick
overview to get you started.

7.1.1 Understanding the JUnit philosophy

The benefit of using the JUnit framework is that it lets you write automated unit
tests for your Java code so easily that you can’t reasonably justify not doing so. The
API is simple, readable, and—most important—painless.

Testing applications with JUnit 233

Why you need automated unit tests
Automated unit testing is the easiest way we know to prevent regressions and to
test those code nooks and crannies that are often overlooked during manual inte-
gration testing. As an added bonus, having code built on a solid foundation of
unit tests can give you the confidence to explore design improvements, refactor-
ings, new features, and other changes that you might otherwise deem too risky to
pursue. If you can trust your unit tests, recertifying your code is as simple as
rerunning your tests.

When to write unit tests
Everyone has their own opinion on testing, but most developers share a basic
tenet: the earlier the better. Members of the Extreme Programming camp insist
on having you write your tests first, before you begin coding the classes they’re
being designed to test. This approach has several advantages, such as giving you
an idea of the type of operations that are required of the code and assuring the
testability of your class. Tests are easy to write, but if you don’t get in the habit of
writing unit tests as you go, it’s easy to fall behind. A common suggestion you’ll
hear is “Code a little, test a little.”

 Another good practice is to create a new unit test for each bug that is reported.
Design the test to exploit the bug and reproduce its behavior. The unit test will of
course fail until the bug is resolved, making it easy to know when you’ve fixed it.
Just code until the test passes! This also ensures that the bug will never bite you
again, as long as you continue running your unit tests.

When to run unit tests
You should run your unit tests frequently to stop bugs from creeping into your
code. Ideally, every developer should run the full set of unit tests before each
check-in (refer to chapter 8 for information on version control), to ensure that
none of their changes have broken any of the existing code. You should also con-
sider running unit tests on a nightly basis, perhaps as part of a nightly build pro-
cess. Java build tools such as Ant fully integrate with JUnit, allowing you to easily
automate not only the running of tests but the reporting of the results as well.

7.1.2 Exploring the JUnit API
JUnit tests are collections of methods designed to exercise all the possible opera-
tions your code is expected to perform. These testing methods are included in a
Java class that is passed to a JUnit-aware application, which can then put them
through their paces and report the results. A test case is a class that contains the
testing code.

234 CHAPTER 7
Testing applications with JUnit

Test cases and test methods
All JUnit tests stem from the base class junit.framework.TestCase. To create your
own test case, you extend this class. There are no required methods to imple-
ment, and there is no need to modify your existing code. What could be simpler?
However, in order to test something, you must create at least one test method to
exercise a portion of your code. Any test case can contain as many test methods as
you require. Test methods should be fine grained, testing a single operation criti-
cal to the correct operation of your code. They should also be standalone and not
require any special setup or be expected to run in any particular order. Not only
does this make them easy to write, it also makes them easy to use. All that is
required by the framework is that your test methods begin with the name test
and adhere to the following method signature:

public void testSomething()

Test methods can also declare exceptions.
 Beyond starting with the word test, it doesn’t matter what you call your test, but

you should probably name it something meaningful to help indicate its purpose—
this name is used as a label when running and reporting on the results of the test.
You’re free to add other methods to the test class as needed to assist in testing.

How JUnit runs your tests
The reason for the naming restriction is that JUnit relies on Java’s reflection mecha-
nism to locate and run the individual test methods. When passed into an applica-
tion that knows how to run JUnit tests (like IDEA), the test case’s test methods can
be determined on the fly. This means all you have to do to write new tests is create
new methods and add them to a test case. No configuration files, no changes to your
source code, no flaming hoops to jump through. You may notice that the test
method doesn’t return a boolean as you might expect. So how does a test pass? A
test passes as long as it doesn’t fail. And failing tests is the job of assertions.

Assertions
If you’re familiar with JDK 1.4’s assert keyword, be advised that it isn’t used in the
JUnit framework, but the concept is similar. Like the assert keyword, JUnit’s
assertion methods are designed to evaluate boolean pass/fail conditions. For
example, a method may verify that a variable has a certain value, a list isn’t empty,
or that two objects that should be equivalent really are.

 If any assertion fails, the test fails with a failure, an expected or tested-for
condition; if any uncaught exception is thrown, the test fails with an error, an

Testing applications with JUnit 235

unexpected or untested-for condition. That’s all there is to it. You could get by
with a simple boolean test, but to make things easy, there are convenience meth-
ods for testing all sorts of common conditions. There are also methods that
include a message parameter, which is reported back to the user when a failure
occurs. Here are some of the assertion methods you’re likely to use:

■ assertEquals(String message, int expected, int actual)

■ assertTrue(String message, boolean condition)

■ assertNotNull(Object object)

If you look at the JUnit API, you’ll see that there are assertion methods that accept
Objects, Strings, and all the primitives as well. There are also negative equiva-
lents, equality checks, and other combinations that make things simple for you,
the busy developer.

A simple unit test example
Listing 7.1 shows an example test case so you can see these methods used in con-
text. It’s designed to test a simple encryption class with two methods, encrypt()
and decrypt(). Although it isn’t an exhaustive or complicated test case, it illus-
trates the intent of the unit-testing framework.

import junit.framework.*;

public class CryptTest extends TestCase {

 public void testEncrypt() {
 String plainText = "convoy sails for England tonight";
 String crypted = CryptUtil.encryptString(plainText);
 assertFalse("Encrypted value should not be equal to the"+
 " original", crypted.equals(plainText));
 }

 public void testDecrypt() {
 String plainText = "my password is elephant";
 String crypted = CryptUtil.encryptString(plainText);
 String decrypt = CryptUtil.decryptString(crypted);
 assertEquals("Decrypted value should be equal to the"+
 " original", plainText, decrypt);
 }
}

Listing 7.1 An example of a simple unit test

236 CHAPTER 7
Testing applications with JUnit

Test fixtures
The previous example is simple, but not all tests are so straightforward. For
example, if a series of tests requires some amount of setup, you can override the
setUp() method of TestCase. This method is called immediately before each test
method, followed by a call to tearDown(), which can be overridden to perform
any necessary cleanup. This shared setup code is known as a test fixture.

 The benefit of using test fixtures is best illustrated with an example. Say you’re
testing code responsible for managing a message board or discussion forum.
You’ve determined that a series of tests is required to verify that you can manipu-
late postings appropriately, such as changing the subject or author. Each of these
operations can be tested by a single test method, but they all must act on an exist-
ing message. In this case, a test fixture is the best way to prepare the system for
the test methods. The setUp() method is responsible for creating a new posting,
and the tearDown() method is used to delete the test message from the system fol-
lowing each test method.

Test suites
Related test cases are grouped into logical collections known as test suites. When
running your unit tests, you can run not only individual test cases, but test suites
as well. Generally, you’ll want to have a single test suite that relates all your unit
tests together so you can run them in a single operation. Additional hierarchy is
possible, because test suites can include other test suites. By combining groups of
related tests into suites, you can avoid running the entire test suite if you just want
to test one area of the code. For example, you may group all the security-related
tests separately from your database tests, allowing you to spot test certain areas of
your program.

Test runners
An application that knows how to interpret and run JUnit test cases is a test runner.
Although JUnit ships with its own simple test runner, as does Ant, IDEA includes
an integrated test runner with many more features. We’ll discuss this in detail in
the next section.

7.2 Adding test cases to your project

IDEA doesn’t provide the ability to create new JUnit test case classes explicitly,
but it’s easy to add this capability through IDEA’s file templates feature. As dis-
cussed in chapter 12, file templates allow you to create a starting point for new

Adding test cases to your project 237

files created through the Project window. Using templates, you can start off with
your basic class framework already defined, rather than an empty document.

7.2.1 Creating a test case from a file template

For our example template, we have followed the canonical JUnit test case struc-
ture and the optional constructor, as well as stubbing out the fixture methods.
The complete text of our JUnit file template is shown in listing 7.2. Of course, you
may prefer a slightly different layout, so feel free to customize it to your liking.

#parse("File Header.java")
package ${PACKAGE_NAME};
import junit.framework.TestCase;

public class ${NAME} extends TestCase {
 public ${NAME}(String test) {
 super(test);
 }

 /**
 * The fixture set up called before every test method.
 */
 protected void setUp() throws Exception {
 }

 /**
 * The fixture clean up called after every test method.
 */
 protected void tearDown() throws Exception {
 }

 public void testSomething() throws Exception {
 }
}

As you can see, this template covers all the basic structure required by the JUnit
API. All you have to do now is write your test methods, starting with adding some
logic to the testSomething() stub, which as written doesn’t accomplish a heck of a
lot (but at least it always passes!).

7.2.2 Adding the JUnit library to your Classpath

IDEA ships with the latest version of the JUnit JAR file, but by default it isn’t
included in your project’s Classpath. This causes IDEA to display import failure

Listing 7.2 A file template for producing JUnit tests

238 CHAPTER 7
Testing applications with JUnit

messages in the editor, and your project won’t compile. To correct this, you must
use the Project settings and add either a local copy of junit.jar (or the version at
$IDEA_HOME/lib/junit.jar) to your Classpath. You may want to visit the JUnit
website and download the latest release, its source code, and its API reference in
order to create a reusable library, as described in chapter 4.

WARNING IDEA’s bundled JUnit library is built atop the latest release of JUnit (ver-
sion 3.8.1 at the time of this writing). If you include an older version of
the JUnit APIs in your Classpath, IDEA will be unable to execute tests.

As we mentioned in chapter 4, IDEA modules have two distinct types of source
paths that you can define, one for production sources and one for test sources.
These have distinct output paths as well. If you choose separate output paths,
you’ll be able to package or deploy your application without having to include
your test classes. When you’re running unit tests, IDEA will automatically include
your test case output path in your Classpath.

 From a technical standpoint, it doesn’t matter where your test sources and
classes live. However, we recommend that you always place your tests in their own
source tree, and make use of IDEA’s tests paths.

7.3 Running test cases in IDEA

IDEA’s integration of JUnit makes it easy to run test cases directly from the IDE
and provides a number of convenience features. You can run any test or suite of
tests with a single click. Any resulting failures can be corrected by jumping
straight to the source of the problem, because IDEA provides links in its test
reports back into your source tree. IDEA also lets you debug your tests by stepping
through the execution one line at a time using the debugger.

7.3.1 Creating a Run/Debug configuration for your test

There are a number of different ways to run your test cases from within IDEA, but
the most common method is through the Run menu. As we discussed in
chapter 5, the Run menu and the Run/Debug Configurations dialog are used to
execute applications within IDEA. They’re also used to set up configurations for
unit testing. Here you select test cases (or suites of test cases) to run via the JUnit
tab. The Run/Debug Configurations dialog is shown in figure 7.1.

Running test cases in IDEA 239

Selecting a test case to run
As with the other execution target types, the JUnit tab in the Run/Debug Configu-
rations dialog lets you select a Java class that will become the target of this con-
figuration. In this case, however, you are selecting a test case rather than an
executable class. You can choose any test class in your Classpath—IDEA will even
find classes for you and present an appropriately filtered list. Click the browse but-
ton next to the Class field to select the class by name, or navigate through your
project tree. The list is filtered to include only JUnit tests—only classes that extend
junit.framework.TestCase appear.

 Select the test case you want to run from the class browser. You can name your
test configuration whatever you wish; this is an arbitrary label for use in the Run
menu. You also have the option to expand your selection to include all the test
cases in a particular package or narrow it to a single method of your test. If you
select the Test Method radio button option, an additional field appears, allowing

Figure 7.1 Use the Run/Debug Configurations panel to build one-click
JUnit launch targets.

240 CHAPTER 7
Testing applications with JUnit

you to choose which method to run from the selected test case. To select more
than a single test method from a test case without running all of them, you must
create your own test suite, as described in the JUnit documentation.

Changing the test’s working directory
The Working directory option in the Run/Debug Configurations dialog lets you
change the base directory for all relative file paths. This is useful if your test cases
must read or write data files as part of the testing process. Before executing your
tests, the test runner changes to this directory. By default, this directory is the
same directory your project file is in.

Passing parameters to the VM
The VM parameters field in the Run/Debug Configurations dialog is used to
pass system properties or VM options such as the maximum heap size. Any argu-
ments specified here are passed to the JVM executing your tests, just as they
would be when directly running an application.

Passing parameters to the test runner
IDEA’s test runner application ultimately relies on the test-running application
included with the JUnit framework. As such, you can pass parameters to the
underlying test runner by entering them in the appropriate configuration field.
However, since the other configuration options give you an easier avenue of con-
trolling how the tests are run, there’s not much benefit to be gained through extra
parameters; but this option is provided in the Run/Debug Configurations dialog
for the sake of completeness. Refer to the JUnit documentation for a list of cur-
rent options.

Selecting the appropriate module
As you learned in chapter 4, IDEA manages most source and Classpath informa-
tion at the module level. In the Run/Debug Configurations dialog, you’ll there-
fore need to select the module to which the currently selected test case should run
under if it exists in more than one module. This also determines the JDK used to
execute the tests. An exception to this rule is when you’re running all the tests in a
given package.

Triggering a build automatically
The two checkbox options Display settings before running/debugging and
Make module before running/debugging/reloading in the Run/Debug Config-
urations dialog behave exactly as they do for the other types of execution targets

Running test cases in IDEA 241

discussed in chapter 5. If enabled, the first option displays the setup dialog each
time you run the test, giving you the option of tweaking the settings before exe-
cution. The second option causes IDEA to force a rebuild before running the test.
Enabling this option lets you edit your tests and then run them without having to
explicitly request a new build. On the other hand, you can disable this option if
you’re rerunning tests without code changes. Remember that these options are
global, and they affect all your Run/Debug configurations, not just your unit tests!

7.3.2 Running your unit test configuration

The basic use of Run/Debug configurations was covered in chapter 5. Unlike appli-
cation targets, which execute via their main() method, JUnit configurations pass
the selected test class or classes to a test runner for processing—no main() method
is required. The test runner locates and executes the tests and reports the results.

Running a selected Run/Debug configuration
Once your test target is configured, select it from the Run/Debug drop-down on
the toolbar in the Run/Debug Configurations dialog, or from the Run menu,
and then click the Run icon on the toolbar or press Shift-F10. IDEA understands
that running a JUnit test means launching the test runner, rather than executing
the class directly. JUnit tests can be distinguished from other entries in the Run
list by their icon.

TIP All tests run in the background, and you can execute multiple tests simul-
taneously if you wish. Each test gets its own tab in the Run tool window.

Defining temporary test targets
IDEA provides a convenient shortcut for creating and running test targets. When
you select a package, class, or method in the project or structure windows, the
right-click pop-up menu provides an option for running test cases for that selec-
tion, if there are any. If you’ve created a testing Run/Debug configuration, it’s
used. If not, a temporary target is created and added to the list of test configura-
tions, and the test executes. Temporary targets are particularly handy when
you’re trying to debug a single test method. You can create a temporary target to
run the method, using it until you correct the problem.

 This shortcut works from the editor as well. Right-click inside the body of a
test method from the editor, and select the Run option to run the test (or press
Ctrl+Shift+F10). Clicking anywhere else inside the file allows you to execute the
entire test case. See figure 7.2.

242 CHAPTER 7
Testing applications with JUnit

A Run/Debug configuration created in this manner is considered temporary, as
described in chapter 5. It appears ghosted in the selection menu. To save it, select
the corresponding Save option from the list under the Run/Debug drop-down.
Even if you don’t save it, you’ll be able to tweak its behavior by selecting its entry
in the Run/Debug Configurations dialog.

WARNING IDEA allows only a single temporary target to exist per project. If you
create a second one, it will replace the first.

Debugging test cases
Not only does IDEA help you run your test cases, but it also helps you debug
them. If you click the Debug icon instead of the Run icon in the toolbar in the
Run/Debug Configurations dialog, your test cases execute in the debugger. This
lets you set breakpoints and step through your code during execution, as
described in chapter 6. You can set breakpoints in the test cases or in the applica-
tion code the test cases call. Either way, this is a great technique to figure out why
a test that ran fine last week suddenly blows up!

7.4 Working with IDEA’s JUnit test runner

Each time you activate the Run or Debug command for your tests, IDEA
invokes its test runner and opens a devoted tab in the Run tool window. IDEA’s

Figure 7.2
You can run temporary JUnit targets
from the editor’s context menu.

Working with IDEA’s JUnit test runner 243

test running can show you much more than just which tests passed and which
failed. Through IDEA’s JUnit test runner, you can also view any output or error
messages your test cases produced, as well as how long they took to run and
how much memory they used.

7.4.1 Exploring the JUnit tool window

When you run unit tests in IDEA, the test runner interface appears in a tab of the
Run window, which pops up automatically when you begin the testing session. A
typical example is shown in figure 7.3. Note that running applications and unit
tests share the same tool window, but each target appears in its own tab.

The test runner toolbar
The JUnit tool window has a number of toolbar options. We’ll discuss each of
these in turn, and for your reference, they’re shown in table 7.1.

Table 7.1 The JUnit toolbar affords you complete control over your JUnit execution.

Icon Shortcut Function

Ctrl+F5 Rerun Test

Hide Passed Tests

Track Running Tests

continued on next page

Figure 7.3 IDEA’s JUnit test runner gives you complete access to test results and statistics.

244 CHAPTER 7
Testing applications with JUnit

The test tree structure
The left pane of the test runner window includes a tree structure that represents all
the tests present in the current test configu-
ration. The root—the topmost element of the
tree—represents the entry point you selected
to run; this may be a package, a test suite, or
test case. If you’re running an individual
method, an implicit test suite is created for you.
If you’ve nested suites of tests together, then
additional levels of hierarchy are present.
Because you’re free to create suites of suites
and so on, there is no limit to the levels of hier-
archy you can create. In all cases, the innermost
elements (the leaf nodes) are the individual
tests, which come from your test methods.
Each test is represented by an icon, which rep-
resents its current state. The meanings of
these icons are summarized in table 7.2.

Ctrl+Numpad(+)/Ctrl+Numpad(-) Collapse All/Expand All

Ctrl+Alt+Down, Ctrl+Alt+Up Previous, Next Failed Test

Select First Failed Test When Execution Finished

Scroll to Stacktrace

Auto Scroll to Source

Open Source at Exception

Ctrl+Break Dump Threads

Ctrl+F2 Stop

Ctrl+Shift+F4 Close

Table 7.1 The JUnit toolbar affords you complete control over your JUnit execution. (continued)

Icon Shortcut Function

Table 7.2 The test tree keeps track of
the state of all your tests.

Icon Description

Test Error

Test Failed

Test in Progress (animated)

Test Passed

Test Paused

Test Terminated

Test Not Run

Working with IDEA’s JUnit test runner 245

Navigating through the test tree
As with other tool windows, the Collapse All and Expand All icons control the
appearance of the test tree. Expanding all the entries lets you get to all the tests,
whereas collapsing them limits the list to your top-level test cases or suites. These
options are unavailable if only a single test case is involved, because there is only
one level of hierarchy to deal with. Otherwise, you can use the tree controls to
expand and contract individual nodes of the tree as desired.

 You can achieve a similar navigation through the keyboard via the left and
right arrow keys. Pressing the left arrow collapses the current node, and the right
arrow expands it. You can visit each node in the tree by continually pressing the
right arrow key until you’ve traversed all the entries. The up and down arrows
similarly allow you to move between the individual tests, test cases, and test suites.

7.4.2 Monitoring testing progress

Once you begin testing, a message at the top of the JUnit window appears, show-
ing the total number of tests being run in this session. After the tests have been
run, the message indicates the number of failures (if any) and the total amount of
time elapsed. All tests are run sequentially, one after the other. Tests are never run
in parallel, ensuring that your tests don’t interfere with each other. Keep in mind
that the order in which tests are run is never guaranteed.

Tracking completion with the testing progress bar
The testing progress bar at the top of the JUnit window shows the percentage of
tests that have been executed so far. This bar updates continuously through the
testing process, as each test is completed, and represents the relative percentage
of completion. The color of the bar indicates the current pass/fail status of your
testing session. The bar’s segments appear green if all your tests have completed
successfully so far or red if any errors or failures were encountered.

 This bar tracks progress across all the tests being run in this session, not just
those that belong to the current test case or test suite. Also note that the test
progress bar indicates the relative number of tests remaining, but not necessar-
ily the amount of time left, because each test will take a different amount of time
to complete.

Watching the currently running test
If you enable the Track Running Test option in the toolbar in the JUnit window,
the test runner selects each test case as it’s running, allowing you to monitor its
output or runtime statistics as they’re generated. When one test completes, the
test runner automatically selects the next one.

246 CHAPTER 7
Testing applications with JUnit

7.4.3 Managing the testing session

IDEA lets you manage the currently running test session, just as it does when run-
ning other applications. You can stop or rerun tests if necessary. If you take no
action, the test runner runs along happily on its own until all the tests have fin-
ished running.

Aborting a test in progress
You can end your testing session at any time by clicking the Stop button in the
JUnit window (or pressing Ctrl+F2). Doing so shuts down the VM immediately,
terminating any tests that are currently in progress. The icons of the tests tell you
which tests completed, which were terminated, and which were never run, as
shown in table 7.2. Note, however, that clicking Stop stops the entire testing ses-
sion, not just the currently running test.

Running your tests again
You can easily rerun your testing session without having to leave the JUnit win-
dow. If you click the Rerun icon (Ctrl+F5), all the current tests are run again
using the same settings as in the initial run. If enabled in your test configuration
setup, your project is recompiled as needed before the tests are run. The new test
results replace the old results unless you’ve locked down the current tab by select-
ing the Pin Tab option on the Tab context menu.

Dumping thread information to the output window
As in the debugger, while a test is running, you can ask the VM to give you some
insight into thread activity. Clicking the Dump Threads icon in the JUnit window
outputs the state of all your threads to the JUnit output stream. This operation
doesn’t affect your running tests and doesn’t stop the testing process. You can
view the results in the Output tab (along with the rest of your test output) by
selecting the topmost test from the test tree.

7.4.4 Analyzing test results

When it’s all said and done, you’ll want to review the results of your tests and, if
there were any failures, find out why they happened. When your tests have been
run, a message at the top of the window summarizes the number of failures, if
any, as well as the number of tests run.

Working with IDEA’s JUnit test runner 247

Difference between errors and failures
As far as JUnit is concerned, encountering a runtime error or throwing an
uncaught exception inside a test is enough to fail a test. IDEA, however, differen-
tiates between these types of errors and a test method failing an assertion check.
As shown in table 7.2, different icons are assigned to differentiate these two dis-
tinct conditions and highlight the errors. Errors include runtime exceptions,
declared exceptions, and other problems: for instance, if a test case’s class can’t be
found or can’t execute for some reason. In figure 7.4, you see a number of failed
test cases. In the Output window, it’s easy to spot the problem—the rate returned
by the fixed rate service wasn’t the rate that was expected.

 This distinction between errors and failures can be important when you’re
designing test cases. To take advantage of it, we suggest that you design your test
cases such that exceptions are thrown only when a problem that prevents run-
ning of the test is encountered, and that a legitimate failure is the result of
unsuccessful assertion. This strategy will allow you to more easily spot tests that
can’t run properly due to configuration problems or other issues rather than a
true bug in your code.

Hiding the results of successful tests
Enabling the Hide Passed Tests option on the toolbar in the JUnit window alters
the test tree to show only the tests that failed or encountered errors, thus allowing
you to concentrate on the problems. This button is a toggle; you can toggle the

Figure 7.4 The JUnit tool window shows you the output from tests encountering both failures and
errors as you select them. Failures are distinguished from errors by their icons in the test tree.

248 CHAPTER 7
Testing applications with JUnit

view of passed test cases on or off at any time. If a test case or suite contained no
failing tests, it’s hidden as well.

Navigating through the failed tests
Doubtless you’ll encounter failed tests. Using the Previous and Next Failure
arrows (or Ctrl+Alt+Up and Ctrl+Alt+Down, respectively) you can easily navi-
gate through these failures. Each time you move forward or backward through
the list, the next failed test is selected in the test tree. To automatically select the
first failure upon completion of your tests, enable the Select First Failed Test
option from the JUnit window’s toolbar. You may also determine your starting
point by clicking any test in the tree.

Reviewing test cases
In order to learn why a test failed, you need to understand the steps it was taking
by reviewing the source code behind it. Double-clicking any test case in the tree
(failed or not) takes you straight to that test’s source code in the editor window. By
backtracking into the source code behind the test as you review the test output
messages, you should be able to spot the problem.

TIP Don’t overlook the possibility that your bug might be in the test itself,
rather than in the code you’re testing!

Similarly, you can right-click a test in the tree and select either the Jump to
Source (F4) or Show Source (Ctrl+Enter) option to review the test’s source code.
The difference between the two options is that Jump to Source moves your focus
to the editor window, while Show Source leaves you in the JUnit window. You can
also use the Autoscroll to Source toolbar button to keep the source window
matching the current selection in the JUnit tool window.

Rerunning failed tests
You also have the option of running an individual test again by right-clicking its
entry in the test tree and selecting the appropriate run option. Suites and test
cases can also be run this way and will execute all the tests below them as well. If
you run a test in this manner, it clears the current set of results unless you’ve
locked down the results tab by right-clicking it and selecting the Pin Tab option.

 Unfortunately, you’re limited to running individual tests, test cases, or suites.
It isn’t possible to run ad hoc collections of tests (for example, all the failing tests)
without manually defining a test suite using the JUnit API.

Working with IDEA’s JUnit test runner 249

Examining test error messages and output
In the Output tab of the JUnit window, you can examine the runtime output gen-
erated by each test. This includes any output sent to the standard output stream
as well as standard error (which is displayed in red text). If any exceptions were
thrown, or if a test failed an assertion, this output is displayed here as well. This
tab is also active while the tests are running, allowing you to monitor your tests’
progress. If you have a stack trace in your test’s output, any reachable source code
reference is hot-linked to your editor, allowing you to quickly view or edit the
source code. In the case of an assertion failure where a message was specified in
the test, this message is shown along with a stack trace.

IDEA conveniently isolates each test’s output. Clicking an individual test in the
tree shows only the output stemming from the selected test. As you might expect,
selecting any node in the test hierarchy includes the output of all the tests below it.

Tracking the time and memory usage of each test
The Statistics tab in the JUnit window shows how much time it took to run each
test case and how much memory was consumed during its run. You can view test
statistics summarized up to the suite or test case level by selecting the appropriate
level of hierarchy in the test case tree. Here’s what the columns mean:

■ Time elapsed—The number of seconds it took to run this test.
■ Usage Delta—The amount of memory apparently consumed during this test.
■ Usage Before—The amount of memory in use at the start of the test.
■ Usage After—The amount of memory in use after the test has been com-

pleted.
■ Results—A summary of test results. For individual tests, this column shows

a pass or fail; but for suites and test cases, it shows the number of passed
and failed tests.

Take these statistics with a grain of salt—the timing and memory usage data are
collected only to give you an approximate gauge of test case performance. Many
things can affect the accuracy of this data; for example, if the garbage collector
runs during a test case execution, the amount of memory shown in the statistics is
wrong. Nevertheless, the Statistics view is a good way to keep an eye on the gen-
eral state of things, as shown in figure 7.5. For example, if your unit tests now take
twice as long, you may want to investigate. Perhaps there are just more tests than
before, but a recent change may have drastically affected system performance.

250 CHAPTER 7
Testing applications with JUnit

Running tests with other test runners
The test runner built into IDEA is powerful and flexible. However, if you’re nos-
talgic, you can use the classic test runners included with the JUnit framework.
(Note, however, that you’ll lose many of IDEA’s JUnit integration features.) To do
so, add a main() method, as shown in the following code, and run the class as a
normal Run/Debug configuration target instead of a JUnit configuration:

public static void main(String[] args) {
 TestRunner testRunner = TestRunner();
 testRunner.run(StringUtilsTest.class);
}

Two test runners are included with the standard JUnit distribution: one in the
junit.swingui package that creates a graphical interface, and another, text-only
version in junit.textui. Import the appropriate version into your code. You can
also use this technique to run other, third-party test runners if you wish.

 The text-only version runs your JUnit tests in a standard IDEA Run window. A
simple test summary report is shown in figure 7.6, along with a list of failures and
their accompanying stack traces. Any errors are hot-linked back to the source of
the failure inside your test case. In this example, you can see that a failure
occurred inside the testFixedRate() method. Any output produced by the test
cases is also displayed in this window, as are your assert failure messages.

 The graphical test runner, shown in figure 7.7, is a little fancier than the text
version, providing an alternate view of your test execution results. As shown, you

Figure 7.5 The Statistics tabs can show you how much memory was consumed by each test as well
as how long it took to run each one.

Working with IDEA’s JUnit test runner 251

can browse the list of test executions and failures as well as review summary infor-
mation. All this information and more is available through IDEA’s test runner,
however, with better integration with the editor.

Figure 7.6 The textual test runner included with JUnit is simple, fast, and efficient.

Figure 7.7
The graphical test runner included
with the JUnit framework offers
only basic options and no direct
integration with IDEA.

252 CHAPTER 7
Testing applications with JUnit

Running unit tests through Ant
If your project calls JUnit through Ant, you should be able to run the same unit
tests with IDEA. However, it’s also possible to run your test cases through Ant
directly, because it includes its own JUnit test runner (part of Ant’s optional pack-
age, but included with IDEA).

 When you execute test cases through Ant, the results are displayed in the Ant
output window along with other build output. Any source code references present
in the test output are hot-linked to the editor, but you won’t get the GUI or other
features of the IDEA test runner when running this way. Refer to the Ant docu-
mentation for details on creating JUnit targets in Ant.

7.5 Improving the quality of the ACME project

In the last chapter, you used IDEA’s debugging features to identify a flaw in the
ACME project. By implementing unit tests (and running them regularly), you can
ensure that bugs like those don’t creep in. Listing 7.3 shows a sample JUnit test,
just for illustration, that can be added to your module and used to make sure the
fixed-rate currency exchange service always returns the expected rate. Try adding
it and running it with IDEA using the steps explained in this chapter.

package com.acme.conversion.currency.service;

import junit.framework.TestCase;

public class FixedRateTest extends TestCase {
 /**
 * To test the fixed rate, we need to do the following:
 * 1) Get an instance of the FixedRateCurrencyExchangeService
 * 2) From it, request its rate
 * 3) Compare that rate with the expected value, which is 1.5
 */
 public void testFixedRate() {
 FixedRateCurrencyExchangeService service =
 new FixedRateCurrencyExchangeService();

 assertEquals("Fixed rate was not returned at " +
 "expected value",
 1.5d, service.getRate(), 0.01d);
 }
}

Listing 7.3 JUnit test case that ensures FixedRateCurrencyExchangeService
returns the correct rate

Summary 253

7.6 Summary

IDEA has very close and natural support for JUnit, a technology for automated
unit testing that’s quickly and pervasively being adopted by the industry. Auto-
mated unit testing is a common-sense practice to ensure software quality, and it’s
a cornerstone practice that underpins the agile software development movement
and the goal of continuous integration. Continuous integration invites many
changes early and often. Unit testing with IDEA and its JUnit support provides
the easiest means for you to write, manage, and run these unit tests, and to inter-
pret the results of their output so that bugs are identified and fixed. As an appli-
cation moves forward, this is the easiest way to keep abreast of continual changes.

BRIEF CONTENTS ix

