
Dottie
Text Box
Sample Chapter

Handling web requests
This chapter covers
■ Mapping requests to Spring controllers
■ Transparently binding form parameters
■ Validating form submissions
■ Mapping exceptions to views
489

490 CHAPTER 13

Handling web requests
As a JEE developer, you have more than likely developed a web-based application.
In fact, for many Java developers, web-based applications are their primary focus.
If you do have this type of experience, you are well aware of the challenges that
come with these systems. Specifically, state management, workflow, and validation
are all important features that need to be addressed. None of these is made any
easier given the HTTP protocol’s stateless nature.

 Spring’s web framework is designed to help you address these concerns. Based
on the Model-View-Controller (MVC) pattern, Spring MVC helps you build web-
based applications that are as flexible and as loosely coupled as the Spring Frame-
work itself.

 In this chapter and the one that follows, we’ll explore the Spring MVC web
framework. In this chapter, we’ll focus on the parts of Spring MVC that process
requests. You’ll see how to extend Spring’s rich set of controller objects to handle
virtually any web functionality required in your application. You’ll also see how
Spring’s handler mapping makes easy work of associating URL patterns with spe-
cific controller implementations. Chapter 14 will pick up where this chapter
leaves off by showing you how to use Spring MVC views to send a response back to
the user.

 Before we go too deep with the specifics of Spring MVC’s controllers and han-
dler mappings, let’s start with a high-level view of Spring MVC and build our first
complete bit of web functionality.

13.1 Getting started with Spring MVC

Have you ever seen the children’s game Mousetrap? It’s a crazy game. The goal is
to send a small steel ball over a series of wacky contraptions in order to trigger a
mousetrap. The ball goes over all kinds of intricate gadgets, from rolling down a
curvy ramp to getting sprung off a teeter-totter to spinning on a miniature Ferris
wheel to being kicked out of a bucket by a rubber boot. It goes through of all of
this to spring a trap on a poor, unsuspecting plastic mouse.

 At first glance, you may think that Spring’s MVC framework is a lot like Mouse-
trap. Instead of moving a ball around through various ramps, teeter-totters, and
wheels, Spring moves requests around between a dispatcher servlet, handler map-
pings, controllers, and view resolvers.

 But don’t draw too strong of a comparison between Spring MVC and the Rube
Goldberg-esque game of Mousetrap. Each of the components in Spring MVC per-
forms a specific purpose. Let’s start the exploration of Spring MVC by examining
the lifecycle of a typical request.

Getting started with Spring MVC 491
13.1.1 A day in the life of a request

Every time that a user clicks a link or submits a form in their web browser, a
request goes to work. A request’s job description is that of a courier. Just like a
postal carrier or a Federal Express delivery person, a request lives to carry infor-
mation from one place to another.

 The request is a busy fellow. From the time that it leaves the browser until the
time that it returns a response, it will make several stops, each time dropping off a
bit of information and picking up some more. Figure 13.1 shows all the stops that
the request makes.

 When the request leaves the browser, it carries information about what the
user is asking for. At very least, the request will be carrying the requested URL. But
it may also carry additional data such as the information submitted in a form by
the user.

 The first stop in the request’s travels is Spring’s DispatcherServlet B. Like
most Java-based MVC frameworks, Spring MVC funnels requests through a single
front controller servlet. A front controller is a common web-application pattern
where a single servlet delegates responsibility for a request to other components
of an application to perform the actual processing. In the case of Spring MVC,
DispatcherServlet is the front controller.

 The DispatcherServlet’s job is to send the request on to a Spring MVC con-
troller. A controller is a Spring component that processes the request. But a typi-
cal application may have several controllers and DispatcherServlet needs help
deciding which controller to send the request to. So, the DispatcherServlet

Request Dispatcher
Servlet

Handler
Mapping

Controller

View

ModelAndView

ViewResolver

B

C
D

F

G

E

Figure 13.1 A request is dispatched by DispatcherServlet to a
controller (which is chosen through a handler mapping). Once the
controller is finished, the request is then sent to a view (which is
chosen through a ViewResolver) to render output.

492 CHAPTER 13

Handling web requests
consults one or more handler mappings C to figure out where the request’s next
stop will be. The handler mapping will pay particular attention to the URL car-
ried by the request when making its decision.

 Once an appropriate controller has been chosen, DispatcherServlet sends the
request on its merry way to the chosen controller. D At the controller, the request
will drop off its payload (the information submitted by the user) and patiently wait
for the controller to process that information. (Actually, a well-designed Controller
performs little or no processing itself and instead delegates responsibility for the
business logic to one or more service objects.)

 The logic performed by a controller often results in some information that
needs to be carried back to the user and displayed in the browser. This informa-
tion is referred to as the model. But sending raw information back to the user isn’t
sufficient—it needs to be formatted in a user-friendly format, typically HTML. For
that the information needs to be given to a view, typically a JSP.

 So, the last thing that the controller will do is package up the model data and the
name of a view into a ModelAndView object. E It then sends the request, along with
its new ModelAndView parcel, back to the DispatcherServlet. As its name implies,
the ModelAndView object contains both the model data as well as a hint to what view
should render the results.

 So that the controller isn’t coupled to a particular view, the ModelAndView
doesn’t carry a reference to the actual JSP. Instead it only carries a logical name that
will be used to look up the actual view that will produce the resulting HTML. Once
the ModelAndView is delivered to the DispatcherServlet, the DispatcherServlet
asks a view resolver to help find the actual JSP. F

 Now that the DispatcherServlet knows which view will render the results, the
request’s job is almost over. Its final stop is at the view implementation (probably a
JSP) where it delivers the model data. G With the model data delivered to the view,
the request’s job is done. The view will use the model data to render a page that will
be carried back to the browser by the (not-so-hard-working) response object.

 We’ll discuss each of these steps in more detail throughout this and the next
chapter. But first things first—you’ll need to configure DispatcherServlet to use
Spring MVC.

13.1.2 Configuring DispatcherServlet

At the heart of Spring MVC is DispatcherServlet, a servlet that functions as
Spring MVC’s front controller. Like any servlet, DispatcherServlet must be con-
figured in your web application’s web.xml file. Place the following <servlet> dec-
laration in your application’s web.xml file:

Getting started with Spring MVC 493
<servlet>
 <servlet-name>roadrantz</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

The <servlet-name> given to the servlet is significant. By default, when Dis-
patcherServlet is loaded, it will load the Spring application context from an
XML file whose name is based on the name of the servlet. In this case, because the
servlet is named roadrantz, DispatcherServlet will try to load the application
context from a file named roadrantz-servlet.xml.

 Next you must indicate what URLs will be handled by the DispatcherServlet.
Add the following <servlet-mapping> to web.xml to let DispatcherServlet han-
dle all URLs that end in .htm:

<servlet-mapping>
 <servlet-name>roadrantz</servlet-name>
 <url-pattern>*.htm</url-pattern>
</servlet-mapping>

So, you’re probably wondering why we chose this particular URL pattern. It
could be because all of the content produced by our application is HTML. It
could also be because we want to fool our friends into thinking that our entire
application is composed of static HTML files. And it could be that we think .do is
a silly extension.

 But the truth of the matter is that the URL pattern is somewhat arbitrary and
we could’ve chosen any URL pattern for DispatcherServlet. Our main reason
for choosing *.htm is that this pattern is the one used by convention in most
Spring MVC applications that produce HTML content. The reasoning behind this
convention is that the content being produced is HTML and so the URL should
reflect that fact.

 Now that DispatcherServlet is configured in web.xml and given a URL map-
ping, you are ready to start writing the web layer of your application. However,
there’s still one more thing that we recommend you add to web.xml.

Breaking up the application context
As we mentioned earlier, DispatcherServlet will load the Spring application
context from a single XML file whose name is based on its <servlet-name>. But
this doesn’t mean that you can’t split your application context across multiple
XML files. In fact, we recommend that you split your application context across
application layers, as shown in figure 13.2.

494 CHAPTER 13

Handling web requests
As configured, DispatcherServlet already loads roadrantz-servlet.xml. You could
put all of your application’s <bean> definitions in roadrantz-servlet.xml, but even-
tually that file would become quite unwieldy. Splitting it into logical pieces across
application layers can make maintenance easier by keeping each of the Spring
configuration files focused on a single layer of the application. It also makes it
easy to swap out a layer configuration without affecting other layers (swapping out
a roadrantz-data.xml file that uses Hibernate with one that uses iBATIS, for exam-
ple).

 Because DispatcherServlet’s configuration file is roadrantz-servlet.xml, it
makes sense for this file to contain <bean> definitions pertaining to controllers
and other Spring MVC components. As for beans in the service and data layers,
we’d like those beans to be placed in roadrantz-service.xml and roadrantz-
data.xml, respectively.

Configuring a context loader
To ensure that all of these configuration files are loaded, you’ll need to configure
a context loader in your web.xml file. A context loader loads context configura-
tion files in addition to the one that DispatcherServlet loads. The most com-
monly used context loader is a servlet listener called ContextLoaderListener that
is configured in web.xml as follows:

<listener>
 <listener-class>org.springframework.
 web.context.ContextLoaderListener</listener-class>
</listener>

NOTE Some web containers do not initialize servlet listeners before servlets—
which is important when loading Spring context definitions. If your
application is going to be deployed to an older web container that
adheres to Servlet 2.2 or if the web container is a Servlet 2.3 container

Persistence Layer

Service Layer

Web Layer roadrantz-servlet.xml

roadrantz-service.xml

roadrantz-data.xml

Security Layer roadrantz-security.xml

Figure 13.2
Breaking an application into separate tiers helps
to cleanly divide responsibility. Security-layer
code secures the application, web-layer code is
focused on user interaction, service-layer code is
focused on business logic, and persistence-layer
code deals with database concerns.

Getting started with Spring MVC 495
that does not initialize listeners before servlets, you’ll want to use Con-
textLoaderServlet instead of ContextLoaderListener.

With ContextLoaderListener configured, you’ll need to tell it the location of the
Spring configuration file(s) to load. If not specified otherwise, the context
loader will look for a Spring configuration file at /WEB-INF/applicationCon-
text.xml. But this location doesn’t lend itself to breaking up the application con-
text across application layers, so you’ll probably want to override this default.

 You can specify one or more Spring configuration files for the context loader
to load by setting the contextConfigLocation parameter in the servlet context:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/roadrantz-service.xml
 /WEB-INF/roadrantz-data.xml
 /WEB-INF/roadrantz-security.xml
 </param-value>
</context-param>

The contextConfigLocation parameter is specified as a list of paths (relative to
the web application root). As configured here, the context loader will use con-
textConfigLocation to load three context configuration files—one for the secu-
rity layer, one for the service layer, and one for the data layer.

 DispatcherServlet is now configured and ready to dispatch requests to the
web layer of your application. But the web layer hasn’t been built yet! Don’t fret.
We’ll build much of the web layer in this chapter. Let’s start by getting an overview
of how all the pieces of Spring MVC are assembled to produce web functionality.

13.1.3 Spring MVC in a nutshell

Every web application has a homepage. It’s necessary to have a starting point in
the application. It gives the user a place to launch from and a familiar place to
return when they get lost. Otherwise, they would flail around, clicking links, get-
ting frustrated, and probably ending up leaving and going to some other website.

 The RoadRantz application is no exception to the homepage phenomenon.
There’s no better place to start developing the web layer of our application than
with the homepage. In building the homepage, we get a quick introduction to the
nuts and bolts of Spring MVC.

 As you’ll recall from the requirements for RoadRantz, the homepage should
display a list of the most recently entered rants. The following list of steps defines
the bare minimum that you must do to build the homepage in Spring MVC:

496 CHAPTER 13

Handling web requests
1 Write the controller class that performs the logic behind the homepage.
The logic involves using a RantService to retrieve the list of recent rants.

2 Configure the controller in the DispatcherServlet’s context configuration
file (roadrantz-servlet.xml).

3 Configure a view resolver to tie the controller to the JSP.

4 Write the JSP that will render the homepage to the user.

The first step is to build a controller object that will handle the homepage
request. So with no further delay, let’s write our first Spring MVC controller.

Building the controller
When you go out to eat at a nice restaurant, the person you’ll interact with the
most is the waiter or waitress. They’ll take your order, hand it off to the cooks in
the kitchen to prepare, and ultimately bring out your meal. And if they want a
decent tip, they’ll offer a friendly smile and keep the drinks filled. Although you
know that other people are involved in making your meal a pleasant experience,
the waiter or waitress is your interface to the kitchen.

 Similarly, in Spring MVC, a controller is a class that is your interface to the
application’s functionality. As shown in figure 13.3, a controller receives the
request, hands it off to service classes for processing, then ultimately collect the
results in a page that is returned to you in your web browser. In this respect, a con-
troller isn’t much different than an HttpServlet or a Struts Action.

 The homepage controller of the RoadRantz application is relatively simple. It
takes no request parameters and simply produces a list of recently entered rants
for display on the homepage. Listing 13.1 shows HomePageController, a Spring
MVC controller that implements the homepage functionality.

Dispatcher
Servlet

Controller ServiceWeb

Request

Response

Request

Response
doSomething()

Figure 13.3 A controller handles web requests on behalf of the DispatcherServlet. A
well-designed controller doesn’t do all of the work itself—it delegates to a service layer object
for business logic.

Getting started with Spring MVC 497

package com.roadrantz.mvc;
import java.util.List;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.AbstractController;
import com.roadrantz.service.RantService;

public class HomePageController extends AbstractController {
 public HomePageController() {}

 protected ModelAndView handleRequestInternal(
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 List recentRants = rantService.getRecentRants();

 return new ModelAndView("home",
 "rants", recentRants);
 }

 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }
}

Where a Spring MVC controller differs from a servlet or a Struts Action is that it is
configured as just another JavaBean in the Spring application context. This
means you can take full advantage of dependency injection (DI) and Spring AOP
with a controller class just as you would with any other bean.

 In the case of HomePageController, DI is used to wire in a RantService. Home-
PageController delegates responsibility for retrieving the list of recent rants to
the RantService.

Introducing ModelAndView
After the chef has prepared your meal, the waiter/waitress will pick it up and
bring it to your table. On the way out, the last thing that they may do is add some
final garnishments—perhaps a sprig of parsley.

 Once the business logic has been completed by the service objects, it’s time for
the controller to send the results back to the browser. The last thing that handle-
RequestInternal() does is to return a ModelAndView object. The ModelAndView
class represents an important concept in Spring MVC. In fact, every controller

Listing 13.1 HomePageController, which retrieves a list of recent rants for display
on the homepage

Retrieves list of rants

Goes to “home” view

Returns rants in model

Injects
RantService

498 CHAPTER 13

Handling web requests
execution method must return a ModelAndView. So, let’s take a moment to under-
stand how this important class works.

 A ModelAndView object, as its name implies, fully encapsulates the view and
model data that is to be displayed by the view. In the case of HomePageController,
the ModelAndView object is constructed as follows:

 new ModelAndView("home", "rants", recentRants);

The first parameter of this ModelAndView constructor is the logical name of a view
component that will be used to display the output from this controller. Here the
logical name of the view is home. A view resolver will use this name to look up the
actual View object (you’ll learn more about Views and view resolvers later in chap-
ter 14).

 The next two parameters represent the model object that will be passed to the
view. These two parameters act as a name-value pair. The second parameter is the
name of the model object given as the third parameter. In this case, the list of
rants in the recentRants variable will be passed to the view with a name of rants.

Configuring the controller bean
Now that HomePageController has been written, it is time to configure it in the
DispatcherServlet’s context configuration file (which is roadrantz-servlet.xml
for the RoadRantz application). The following chunk of XML declares the Home-
PageController:

<bean name="/home.htm"
 class="com.roadrantz.mvc.HomePageController">
 <property name="rantService" ref="rantService" />
</bean>

As mentioned before, the rantService property is to be injected with an imple-
mentation of the RantService interface. In this <bean> declaration, we’ve wired
the rantService property with a reference to another bean named rantService.
The rantService bean itself is declared elsewhere (in roadrantz-service.xml, to
be precise).

 One thing that may have struck you as odd is that instead of specifying a
bean id for the HomePageController bean, we’ve specified a name. And to make
things even weirder, instead of giving it a real name, we’ve given it a URL pat-
tern of /home.htm. Here the name attribute is serving double duty as both the
name of the bean and a URL pattern for requests that should be handled by this
controller. Because the URL pattern has special characters that are not valid in

Getting started with Spring MVC 499
an XML id attribute—specifically, the slash (/) character—the name attribute
had to be used instead of id.

 When a request comes to DispatcherServlet with a URL that ends with
/home.htm, DispatcherServlet will dispatch the request to HomePageControl-
ler for handling. Note, however, that the only reason that the bean’s name
attribute is used as the URL pattern is because we haven’t configured a handler-
mapping bean. The default handler mapping used by DispatcherServlet is
BeanNameUrlHandlerMapping, which uses the base name as the URL pattern.
Later (in section 13.2), you’ll see how to use some of Spring’s other handler map-
pings that let you decouple a controller’s bean name from its URL pattern.

Declaring a view resolver
On the way back to the web browser, the results of the web operation need to be
presented in a human-friendly format. Just like a waiter may place a sprig of pars-
ley on a plate to make it more presentable, the resulting list of rants needs to be
dressed up a bit before presenting it to the client. For that, we’ll use a JSP page
that will render the results in a user-friendly format.

 But how does Spring know which JSP to use for rendering the results? As you’ll
recall, one of the values returned in the ModelAndView object is a logical view
name. While the logical view name doesn’t directly reference a specific JSP, it can
be used to indirectly deduce which JSP to use.

 To help Spring MVC figure out which JSP to use, you’ll need to declare one
more bean in roadrantz-servlet.xml: a view resolver. Put simply, a view resolver’s job
is to take the view name returned in the ModelAndView and map it to a view. In the
case of HomePageController, we need a view resolver to resolve home (the logical
view name returned in the ModelAndView) to a JSP file that renders the homepage.

 As you’ll see in section 13.4, Spring MVC comes with several view resolvers from
which to choose. But for views that are rendered by JSP, there’s none simpler than
InternalResourceViewResolver:

<bean id="viewResolver"
 class="org.springframework.web.
 ➥ servlet.view.InternalResourceViewResolver">
 <property name="prefix">
 <value>/WEB-INF/jsp/</value>
 </property>
 <property name="suffix">
 <value>.jsp</value>
 </property>
</bean>

500 CHAPTER 13

Handling web requests
InternalResourceViewResolver prefixes the view name returned in the Mode-
lAndView with the value of its prefix property and suffixes it with the value from
its suffix property. Since HomePageController returns a view name of home in
the ModelAndView, InternalResourceViewResolver will find the view at /WEB-
INF/jsp/home.jsp.

Creating the JSP
We’ve written a controller that will handle the homepage request and have config-
ured it in the Spring application context. It will consult with a RantService bean
to look up the most recently added rants. And when it’s done, it will send the
results on to a JSP. So now we only have to create the JSP that renders the homep-
age. The JSP in listing 13.2 iterates over the list of rants and displays them on the
home page.

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
 <head><title>Rantz</title></head>

 <body>
 <h2>Welcome to RoadRantz!</h2>

 <h3>Recent rantz:</h3>

 <c:forEach items="${rants}" var="rant">
 <c:out value="${rant.vehicle.state}"/> /
 <c:out value="${rant.vehicle.plateNumber}"/> --
 <c:out value="${rant.rantText}"/>

 </c:forEach>

 </body>
</html>

Although we’ve left out any aesthetic elements in home.jsp for brevity’s sake, it
still serves to illustrate how the model data returned in ModelAndView can be used
in the view. In HomePageController, we placed the list of rants in a model prop-
erty named rants. When home.jsp is rendering the homepage, it references the
list of rants as ${rants}.

Listing 13.2 home.jsp, which displays a list of recent rants

Iterates over
list of rants

Getting started with Spring MVC 501
 Be sure to name this JSP home.jsp and to place it in the /WEB-INF/jsp folder in
your web application. That’s where InternalResourceViewResolver will try to
find it.

Putting it all together
The homepage is now complete. You’ve written a controller to handle requests
for the homepage, configured it to rely on BeanNameUrlHandlerMapping to have a
URL pattern of /home.htm, written a simple JSP that represents the homepage,
and configured a view resolver to find the JSP. Now, how does this all fit together?

 Figure 13.4 shows the steps that a request for /home.htm will go through given
the work done so far.

To recap this process:

1 DispatcherServlet receives a request whose URL pattern is /home.htm.

2 DispatcherServlet consults BeanNameUrlHandlerMapping to find a con-
troller whose bean name is /home.htm; it finds the HomePageController
bean.

3 DispatcherServlet dispatches the request to HomePageController for pro-
cessing.

4 HomePageController returns a ModelAndView object with a logical view
name of home and a list of rants in a property called rants.

/home.htm Dispatcher
Servlet

BeanNameUrl
HandlerMapping

HomePageController

View
/WEB-INF/jsp/home.jsp

ModelAndView

InternalResource
ViewResolver

B

C
D

E

F

G

Figure 13.4 A homepage request is sent by DispatcherServlet to the
HomePageController (as directed by BeanNameUrlHandlerMapping).
When finished, InternalResourceViewResolver directs the request to
home.jsp to render the homepage.

502 CHAPTER 13

Handling web requests
5 DispatcherServlet consults its view resolver (configured as InternalRe-
sourceViewResolver) to find a view whose logical name is home. Internal-
ResourceViewResolver returns the path to /WEB-INF/jsp/home.jsp.

6 DispatcherServlet forwards the request to the JSP at /WEB-INF/jsp/
home.jsp to render the homepage to the user.

Now that you’ve seen the big picture of Spring MVC, let’s slow down a bit and take
a closer look at each of the moving parts involved in servicing a request. We’ll start
where it all begins—with handler mappings.

13.2 Mapping requests to controllers

When a courier has a package that is to be delivered to a particular office within a
large office building, they’ll need to know how to find the office. In a large office
building with many tenants, this would be tricky if it weren’t for a building direc-
tory. The building directory is often located near the elevators and helps anyone
unfamiliar with the building locate the floor and suite number of the office
they’re looking for.

 In the same way, when a request arrives at the DispatcherServlet, there
needs to be some directory to help figure out how the request should be dis-
patched. Handler mappings help DispatcherServlet figure out which controller
the request should be sent to. Handler mappings typically map a specific control-
ler bean to a URL pattern. This is similar to how URLs are mapped to servlets
using a <servlet-mapping> element in a web application’s web.xml file or how
Actions in Jakarta Struts are mapped to URLs using the path attribute of
<action> in struts-config.xml.

 In the previous section, we relied on the fact that DispatcherServlet defaults
to use BeanNameUrlHandlerMapping. BeanNameUrlHandlerMapping was fine to get
started, but it may not be suitable in all cases. Fortunately, Spring MVC offers sev-
eral handler-mapping implementations to choose from.

 All of Spring MVC’s handler mappings implement the org.springframe-
work.web.servlet.HandlerMapping interface. Spring comes prepackaged with
four useful implementations of HandlerMapping, as listed in table 13.1.

 You’ve already seen an example of how BeanNameUrlHandlerMapping works (as
the default handler mapping used by DispatcherServlet). Let’s look at how to
use each of the other handler mappings, starting with SimpleUrlHandlerMapping.

Mapping requests to controllers 503
13.2.1 Using SimpleUrlHandlerMapping

SimpleUrlHandlerMapping is probably one of the most straightforward of
Spring’s handler mappings. It lets you map URL patterns directly to controllers
without having to name your beans in a special way.

 For example, consider the following declaration of SimpleUrlHandlerMapping
that associates several of the RoadRantz application’s controllers with their URL
patterns:

<bean id="simpleUrlMapping" class=
 "org.springframework.web.servlet.handler.
 ➥ SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/home.htm">homePageController</prop>
 <prop key="/rantsForVehicle.htm">
 ➥ rantsForVehicleController</prop>
 <prop key="/rantsForVehicle.rss">
 ➥ rantsForVehicleControllerRss</prop>
 <prop key="/rantsForDay.htm">rantsForDayController</prop>
 <prop key="/login.htm">loginController</prop>
 <prop key="/register.htm">registerMotoristController</prop>
 <prop key="/addRant.htm">addRantController</prop>
 </props>
 </property>
</bean>

SimpleUrlHandlerMapping’s mappings property is wired with a java.util.Prop-
erties using <props>. The key attribute of each <prop> element is a URL pattern.

Table 13.1 Handler mappings help DispatcherServlet find the right controller to handle a request.

Handler mapping How it maps requests to controllers

BeanNameUrlHandlerMapping Maps controllers to URLs that are based on the
controllers’ bean name.

SimpleUrlHandlerMapping Maps controllers to URLs using a property collec-
tion defined in the Spring application context.

ControllerClassNameHandlerMapping Maps controllers to URLs by using the control-
ler’s class name as the basis for the URL.

CommonsPathMapHandlerMapping Maps controllers to URLs using source-level
metadata placed in the controller code. The
metadata is defined using Jakarta Commons
Attributes (http://jakarta.apache.org/commons/
attributes).

504 CHAPTER 13

Handling web requests
Just as with BeanNameUrlHandlerMapping, all URL patterns are relative to Dis-
patcherServlet’s <servlet-mapping>. URL. The value of each <prop> is the
bean name of a controller that will handle requests to the URL pattern.

 In case you’re wondering where all of those other controllers came from, just
hang tight. By the time this chapter is done, we’ll have seen most of them. But
first, let’s explore another way to declare controller mappings using the class
names of the controllers.

13.2.2 Using ControllerClassNameHandlerMapping

Oftentimes you’ll find yourself mapping your controllers to URL patterns that are
quite similar to the class names of the controllers. For example, in the RoadRantz
application, we’re mapping rantsForVehicle.htm to RantsForVehicleControl-
ler and rantsForDay.htm to RantsForDayController.

 Notice a pattern? In those cases, the URL pattern is the same as the name of
the controller class, dropping the Controller portion and adding .htm. It seems
that with a pattern like that it would be possible to assume a certain default for the
mappings and not require explicit mappings.

 In fact, that’s roughly what ControllerClassNameHandlerMapping does:

<bean id="urlMapping"
 class="org.springframework.web.servlet.mvc.
 ➥ ControllerClassNameHandlerMapping"/>

By configuring ControllerClassNameHandlerMapping, you are telling Spring’s
DispatcherServlet to map URL patterns to controllers following a simple con-
vention. Instead of explicitly mapping each controller to a URL pattern, Spring
will automatically map controllers to URL patterns that are based on the con-
troller’s class name. Figure 13.5 illustrates how RantsForVehicleController will
be mapped.

 Put simply, to produce the URL pattern, the Controller portion of the con-
troller’s class name is removed (if it exists), the remaining text is lowercased, a
slash (/) is added to the beginning, and ".htm" is added to the end to produce the
URL pattern. Consequently, a controller bean whose class is RantsForVehicle-
Controller will be mapped to /rantsforvehicle.htm. Notice that the entire

/rantsforvehicle.htm

com.roadrantz.mvc.RantsForVehicleController

Figure 13.5
ControllerClassNameHandler-
Mapping maps a request to a controller by
stripping Controller from the end of the
class name and normalizing it to lowercase.

Mapping requests to controllers 505
URL pattern is lowercased, which is slightly different from the convention we were
following with SimpleUrlHandlerMapping.

13.2.3 Using metadata to map controllers

The final handler mapping we’ll look at is CommonsPathMapHandlerMapping.
This handler mapping considers source-level metadata placed in a controller’s
source code to determine the URL mapping. In particular, the metadata is
expected to be an org.springframework.web.servlet.handler.commonsat-
tributes.PathMap attribute compiled into the controller using the Jakarta Com-
mons Attributes compiler.

 To use CommonsPathMapHandlerMapping, simply declare it as a <bean> in your
context configuration file as follows:

<bean id="urlMapping" class="org.springframework.web.
 servlet.handler.metadata.CommonsPathMapHandlerMapping"/>

Then tag each of your controllers with a PathMap attribute to declare the URL pat-
tern for the controller. For example, to map HomePageController to /home.htm,
tag HomePageController as follows:

/**
 * @@org.springframework.web.servlet.handler.
 ➥ commonsattributes.PathMap("/home.htm")
 */
public class HomePageController
 extends AbstractController {
…
}

Finally, you’ll need to set up your build to include the Commons Attributes com-
piler so that the attributes will be compiled into your application code. We refer
you to the Commons Attributes homepage (http://jakarta.apache.org/com-
mons/attributes) for details on how to set up the Commons Attributes compiler
in either Ant or Maven.

13.2.4 Working with multiple handler mappings

As you’ve seen, Spring comes with several useful handler mappings. But what if
you can’t decide which to use? For instance, suppose your application has been
simple and you’ve been using BeanNameUrlHandlerMapping. But it is starting to
grow and you’d like to start using SimpleUrlHandlerMapping going forward. How
can you mix-’n’-match handler mappings during the transition?

506 CHAPTER 13

Handling web requests
 As it turns out, all of the handler mapping classes implement Spring’s Ordered
interface. This means that you can declare multiple handler mappings in your
application and set their order properties to indicate which has precedence with
relation to the others.

 For example, suppose you want to use both BeanNameUrlHandlerMapping and
SimpleUrlHandlerMapping alongside each other in the same application. You’d
need to declare the handler mapping beans as follows:

<bean id="beanNameUrlMapping" class="org.springframework.web.
 ➥ servlet.handler.BeanNameUrlHandlerMapping">
 <property name="order"><value>1</value></property>
</bean>
<bean id="simpleUrlMapping" class="org.springframework.web.
 ➥ servlet.handler.SimpleUrlHandlerMapping">
 <property name="order"><value>0</value></property>
 <property name="mappings">
…
 </property>
</bean>

Note that the lower the value of the order property, the higher the priority. In this
case, SimpleUrlHandlerMapping’s order is lower than that of BeanNameUrlHan-
dlerMapping. This means that DispatcherServlet will consult SimpleUrlHan-
dlerMapping first when trying to map a URL to a controller.
BeanNameUrlHandlerMapping will only be consulted if SimpleUrlHandlerMapping
turns up no results.

 Spring’s handler mappings help DispatcherServlet know which controller a
request should be directed to. After DispatcherServlet has figured out where to
send the request, it’s up to a controller to process it. Next up, let’s have a look at
how to create controllers in Spring MVC.

13.3 Handling requests with controllers

If DispatcherServlet is the heart of Spring MVC then controllers are the brains.
When implementing the behavior of your Spring MVC application, you extend
one of Spring’s controller classes. The controller receives requests from Dispatch-
erServlet and performs some business functionality on behalf of the user.

 If you’re familiar with other web frameworks such as Struts or WebWork, you
may recognize controllers as being roughly equivalent in purpose to a Struts or
WebWork action. One huge difference between Spring controllers and Struts/
WebWork actions, however, is that Spring provides a rich controller hierarchy (as

http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html
http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html
http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html

Handling requests with controllers 507
shown in figure 13.6) in contrast to the rather flat action hierarchy of Struts or
WebWork.

 At first glance, figure 13.6 may seem somewhat daunting. Indeed, when com-
pared to other MVC frameworks such as Jakarta Struts or WebWork, there’s a lot
more to swallow with Spring’s controller hierarchy. In reality, however, this per-
ceived complexity is actually quite simple and flexible.

 At the top of the controller hierarchy is the Controller interface. Any class
implementing this interface can be used to handle requests through the Spring

View Controllers

Command Controllers

Form Controllers

Wizard Controllers

Throwaway Controllers

Multiaction Controllers

Core Controllers

Controller

AbstractController

BaseCommandController

AbstractCommandController AbstractFormController

SimpleFormController AbstractWizardFormController

MultiActionController

ThrowawayController

Parameterizable
ViewController

UrlFilename
ViewController

Figure 13.6 Spring MVC’s controller hierarchy includes controllers for every occasion—from
the simplest requests to more complex form processing.

http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html
http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html

508 CHAPTER 13

Handling web requests
MVC framework. To create your own controller, all you must do is write a class that
implements this interface.

 While you could write a class that directly implements the Controller inter-
face, you’re more likely to extend one of the classes lower in the hierarchy.
Whereas the Controller interface defines the basic contract between a controller
and Spring MVC, the various controller classes provide additional functionality
beyond the basics.

 The wide selection of controller classes is both a blessing and a curse.
Unlike other frameworks that force you to work with a single type of controller
object (such as Struts’s Action class), Spring lets you choose the controller that
is most appropriate for your needs. However, with so many controller classes to
choose from, many developers find themselves overwhelmed and don’t know
how to decide.

 To help you decide which controller class to extend for your application’s
controllers, consider table 13.2. As you can see, Spring’s controller classes can be
grouped into six categories that provide more functionality (and introduce
more complexity) as you progress down the table. You may also notice from fig-
ure 13.5 that (with the exception of ThrowawayController) as you move down
the controller hierarchy, each controller builds on the functionality of the con-
trollers above it.

Table 13.2 Spring MVC’s selection of controller classes.

Controller type Classes Useful when…

View ParameterizableViewController
UrlFilenameViewController

Your controller only needs to dis-
play a static view—no processing
or data retrieval is needed.

Simple Controller (interface)
AbstractController

Your controller is extremely simple,
requiring little more functionality
than is afforded by basic Java serv-
lets.

Throwaway ThrowawayController You want a simple way to handle
requests as commands (in a man-
ner similar to WebWork
Actions).

Multiaction MultiActionController Your application has several
actions that perform similar or
related logic.

Handling requests with controllers 509
You’ve already seen an example of a simple controller that extends Abstract-
Controller. In listing 13.1, HomePageController extends AbstractController
and retrieves a list of the most recent rants for display on the home page.
AbstractController is a perfect choice because the homepage is so simple and
takes no input.

 Basing your controller on AbstractController is fine when you don’t need a
lot of power. Most controllers, however, are going to be more interesting, taking
parameters and requiring validation of those parameters. In the sections that fol-
low, we’re going to build several controllers that define the web layer of the
RoadRantz application by extending the other implementations of the Control-
ler classes in figure 13.6, starting with command controllers.

13.3.1 Processing commands

It’s common for a web request to take one or more parameters that are used to
determine the results. For instance, one of the requirements for the RoadRantz
application is to display a list of rants for a particular vehicle.

 Of course, you could extend AbstractController and retrieve the parameters
your controller needs from the HttpServletRequest. But you would also have to
write the logic that binds the parameters to business objects and you’d have to put
validation logic in the controller itself. Binding and validation logic really don’t
belong in the controller.

 In the event that your controller will need to perform work based on parame-
ters, your controller class should extend a command controller class such as

Command BaseCommandController
AbstractCommandController

Your controller will accept one or
more parameters from the request
and bind them to an object. Also
capable of performing parameter
validation.

Form AbstractFormController
SimpleFormController

You need to display an entry form
to the user and also process the
data entered into the form.

Wizard AbstractWizardFormController You want to walk your user through
a complex, multipage entry form
that ultimately gets processed as
a single form.

Table 13.2 Spring MVC’s selection of controller classes. (continued)

Controller type Classes Useful when…

510 CHAPTER 13

Handling web requests
AbstractCommandController. As shown in figure 13.7, command controllers
automatically bind request parameters to a command object. They can also be
wired to plug in validators to ensure that the parameters are valid.

 Listing 13.3 shows RantsForVehicleController, a command controller that is
used to display a list of rants that have been entered for a specific vehicle.

package com.roadrantz.mvc;
import java.util.List;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.springframework.validation.BindException;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.
 ➥ AbstractCommandController;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class RantsForVehicleController
 extends AbstractCommandController {

 public RantsForVehicleController() {
 setCommandClass(Vehicle.class);
 setCommandName("vehicle");
 }

 protected ModelAndView handle(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException errors) throws Exception {

 Vehicle vehicle = (Vehicle) command;

 List vehicleRants =
 rantService.getRantsForVehicle(vehicle));

 Map model = errors.getModel();
 model.put("rants",4
 rantService.getRantsForVehicle(vehicle));
 model.put("vehicle", vehicle);

 return new ModelAndView("vehicleRants", model);
 }

Listing 13.3 RantsForVehicleController, which lists all rants for a particular
vehicle

Command
Controller

Command
Object

HTTP Request
Parameters Binds to

Figure 13.7
Command controllers relieve you from
the hassle of dealing with request
parameters directly. They bind the
request parameters to a command object
that you’ll work with instead.

Sets command
class, name

Casts command
object to Vehicle

Uses RantService
to retrieve
list of rants

Creates the
model

Returns
model

Handling requests with controllers 511
 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }
}

The handle() method of RantsForVehicleController is the main execution
method for AbstractCommandController. This method is a bit more interesting
than the handleRequestInternal() method from AbstractController. In addi-
tion to an HttpServletRequest and an HttpServletResponse, handle() takes an
Object that is the controller’s command.

 A command object is a bean that is meant to hold request parameters for easy
access. If you are familiar with Jakarta Struts, you may recognize a command
object as being similar to a Struts ActionForm. The key difference is that unlike a
Struts form bean that must extend ActionForm, a Spring command object is a POJO
that doesn’t need to extend any Spring-specific classes.

 In this case, the command object is an instance of Vehicle, as set in the con-
troller’s constructor. You may recognize Vehicle as the domain class that
describes a vehicle from chapter 5. Although command classes don’t have to be
instances of domain classes, it is sure handy when they are. Vehicle already
defines the same data needed by RantsForVehicleController. Conveniently, it’s
also the exact same type needed by the getRantsForVehicle() method of Rant-
Service. This makes it a perfect choice for a command class.

 Before the handle() method is called, Spring will attempt to match any
parameters passed in the request to properties in the command object. Vehicle
has two properties: state and plateNumber. If the request has parameters with
these names, the parameter values will automatically be bound to the Vehicle’s
properties.

 As with HomePageController, you’ll also need to register RantsForVehicle-
Controller in roadrantz-servlet.xml:

<bean id="rantsForVehicleController"
 class="com.roadrantz.mvc.RantsForVehicleController">
 <property name="rantService" ref="rantService" />
</bean>

Command controllers make it easy to handle requests with request parameters by
binding the request parameters to command objects. The request parameters
could be given as URL parameters (as is likely the case with RantsForVehicleCon-
troller) or as fields from a web-based form. Although command controllers can
process input from a form, Spring provides another type of controller with better
support for form handling. Let’s have a look at Spring’s form controllers next.

512 CHAPTER 13

Handling web requests
13.3.2 Processing form submissions

In a typical web-based application, you’re likely to encounter at least one form
that you must fill out. When you submit that form, the data that you enter is sent
to the server for processing, and once the processing is completed, you are either
presented with a success page or are given the form page with errors in your sub-
mission that you must correct.

 The core functionality of the RoadRantz application is the ability to enter a
rant about a particular vehicle. In the application, the user will be presented with
a form to enter their rant. Upon submission of that form, the expectation is that
the rant will be saved to the database for later viewing.

 When implementing the rant submission process, you might be tempted to
extend AbstractController to display the form and to extend AbstractCommand-
Controller to process the form. This could certainly work, but would end up
being more difficult than necessary. You would have to maintain two different
controllers that work in tandem to process rant submissions. Wouldn’t it be sim-
pler to have a single controller handle both form display and form processing?

 What you’ll need in this case is a form controller. Form controllers take the
concept of command controllers a step further, as shown in figure 13.8, by adding
functionality to display a form when an HTTP GET request is received and process
the form when an HTTP POST is received. Furthermore, if any errors occur in pro-
cessing the form, the controller will know to redisplay the form so that the user
can correct the errors and resubmit.

 To illustrate how form controllers work, consider AddRantFormController in
listing 13.4.

Form
Controller

Form
Page

HTTP GET

Returns

Form
Controller

Success
Page

HTTP POST

Returns

Service

Figure 13.8
On an HTTP GET request, form
controllers display a form to
collect user input. Upon
submitting the form with an HTTP
POST, the form controller
processes the input and returns a
success page.

Handling requests with controllers 513

package com.roadrantz.mvc;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import org.springframework.validation.BindException;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.SimpleFormController;
import com.roadrantz.domain.Rant;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class AddRantFormController extends SimpleFormController {
 private static final String[] ALL_STATES = {
 "AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DE", "DC", "FL",
 "GA", "HI", "ID", "IL", "IN", "IA", "KS", "KY", "LA", "ME",
 "MD", "MA", "MI", "MN", "MS", "MO", "MT", "NE", "NV", "NH",
 "NJ", "NM", "NY", "NC", "ND", "OH", "OK", "OR", "PA", "RI",
 "SC", "SD", "TN", "TX", "UT", "VA", "VT", "WA", "WV", "WI",
 "WY"
 };

 public AddRantFormController() {
 setCommandClass(Rant.class);
 setCommandName("rant");
 }

 protected Object formBackingObject(HttpServletRequest request)
 throws Exception {
 Rant rantForm = (Rant) super.formBackingObject(request);
 rantForm.setVehicle(new Vehicle());
 return rantForm;
 }

 protected Map referenceData(HttpServletRequest request)
 throws Exception {
 Map referenceData = new HashMap();
 referenceData.put("states", ALL_STATES);
 return referenceData;
 }

 protected ModelAndView onSubmit(Object command,
 BindException bindException) throws Exception {

 Rant rant = (Rant) command;

 rantService.addRant(rant);

 return new ModelAndView(getSuccessView());
 }

 private RantService rantService;
 public void setRantService(RantService rantService) {

Listing 13.4 A controller for adding new rants

Sets command
class, name

Sets up Rant command
with blank Vehicle

Provides list of
states for form

Adds new rant

514 CHAPTER 13

Handling web requests
 this.rantService = rantService;
 }
}

Although it may not be obvious, AddRantFormController is responsible for both
displaying a rant entry form and processing the results of that form. When this
controller receives an HTTP GET request, it will direct the request to the form
view. And when it receives an HTTP POST request, the onSubmit() method will
process the form submission.

 The referenceData() method is optional, but is handy when you need to pro-
vide any additional information for displaying the form. In this case, our form will
need a list of states that will be displayed (presumably in a drop-down selection
list). So, the referenceData() method of AddRantFormController adds an array
of Strings that contains all 50 U.S. states as well as the District of Columbia.

 Under normal circumstances, the command object that backs the form is sim-
ply an instance of the command class. In the case of AddRantFormController,
however, a simple Rant instance will not do. The form is going to use the nested
Vehicle property within a Rant as part of the form-backing object. Therefore, it
was necessary to override the formBackingObject() method to set the vehicle
property. Otherwise, a NullPointerException would be thrown when the con-
troller attempts to bind the state and plateNumber properties.

 The onSubmit() method handles the form submission (an HTTP POST
request) by passing the command object (which is an instance of Rant) to the
addRant() method of the injected RantService reference.

 What’s not clear from listing 13.4 is how this controller knows to display the
rant entry form. It’s also not clear where the user will be taken after the rant has
been successfully added. The only hint is that the result of a call to getSuccess-
View() is given to the ModelAndView. But where does the success view come from?

 SimpleFormController is designed to keep view details out of the controller’s
Java code as much as possible. Instead of hard-coding a ModelAndView object, you
configure the form controller in the context configuration file as follows:

<bean id="addRantController"
 class="com.roadrantz.mvc.AddRantFormController">
 <property name="formView" value="addRant" />
 <property name="successView" value="rantAdded" />
 <property name="rantService" ref="rantService" />
</bean>

Handling requests with controllers 515
Just as with the other controllers, the addRantController bean is wired with any
services that it may need (e.g., rantService). But here you also specify a
formView property and a successView property. The formView property is the
logical name of a view to display when the controller receives an HTTP GET
request or when any errors are encountered. Likewise, the successView is the log-
ical name of a view to display when the form has been submitted successfully. A
view resolver (see section 13.4) will use these values to locate the View object that
will render the output to the user.

Validating form input
When AddRantFormController calls addRant(), it’s important to ensure that all
of the data in the Rant command is valid and complete. You don’t want to let
users enter only a state and no plate number (or vice versa). Likewise, what’s the
point in specifying a state and plate number but not providing any text in the
rant? And it’s important that the user not enter a plate number that isn’t valid.

 The org.springframework.validation.Validator interface accommodates
validation for Spring MVC. It is defined as follows:

public interface Validator {
 void validate(Object obj, Errors errors);
 boolean supports(Class clazz);
}

Implementations of this interface should examine the fields of the object passed
into the validate() method and reject any invalid values via the Errors object.
The supports() method is used to help Spring determine whether the validator
can be used for a given class.

 RantValidator (listing 13.5) is a Validator implementation used to validate a
Rant object.

package com.roadrantz.mvc;
import org.apache.oro.text.perl.Perl5Util;
import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;
import com.roadrantz.domain.Rant;

public class RantValidator implements Validator {
 public boolean supports(Class clazz) {
 return clazz.equals(Rant.class);
 }

 public void validate(Object command, Errors errors) {

Listing 13.5 Validating a Rant entry

516 CHAPTER 13

Handling web requests
 Rant rant = (Rant) command;

 ValidationUtils.rejectIfEmpty(
 errors, "vehicle.state", "required.state",
 "State is required.");

 ValidationUtils.rejectIfEmpty(
 errors, "vehicle.plateNumber", "required.plateNumber",
 "The license plate number is required.");

 ValidationUtils.rejectIfEmptyOrWhitespace(
 errors, "rantText", "required.rantText",
 "You must enter some rant text.");

 validatePlateNumber(
 rant.getVehicle().getPlateNumber(), errors);
 }

 private static final String PLATE_REGEXP =
 "/[a-z0-9]{2,6}/i";

 private void validatePlateNumber(
 String plateNumber, Errors errors) {
 Perl5Util perl5Util = new Perl5Util();
 if(!perl5Util.match(PLATE_REGEXP, plateNumber)) {
 errors.reject("invalid.plateNumber",
 "Invalid license plate number.");
 }
 }
}

The only other thing to do is to configure AddRantFormController to use
RantValidator. You can do this by wiring a RantValidator bean into the
AddRantFormController bean (shown here as an inner bean):

<bean id="addRantController"
 class="com.roadrantz.mvc.AddRantFormController">
 <property name="formView" value="addRant" />
 <property name="successView" value="rantAdded" />
 <property name="rantService" ref="rantService" />
 <property name="validator">
 <bean class="com.roadrantz.mvc.RantValidator" />
 </property>
</bean>

When a rant is entered, if all of the required properties are set and if the plate
number passes validation, AddRantFormController’s onSubmit() will be called
and the rant will be added. However, if RantValidator rejects any of the fields,
the user will be returned to the form view to correct the mistakes.

Validates
required

fields

Validates plate
numbers

Handling requests with controllers 517
 By implementing the Validator interface, you are able to programmatically
take full control over the validation of your application’s command objects. This
may be perfect if your validation needs are complex and require special logic.

 However, in simple cases such as ensuring required fields and basic formatting,
writing our own implementation of the Validator interface is a bit too involved.
It’d be nice if we could write validation rules declaratively instead of having to
write validation rules in Java code. Let’s have a look at how to use declarative vali-
dation with Spring MVC.

Validating with Commons Validator
One complaint that we’ve heard about Spring MVC is that validation with the Val-
idator interface doesn’t even compare to the kind of validation possible with
Jakarta Struts. We can’t argue with that complaint. Jakarta Struts has a very nice
facility for declaring validation rules outside of Java code. The good news is that
we can do declarative validation with Spring MVC, too.

 But before you go digging around in Spring’s JavaDoc for a declarative Vali-
dator implementation, you should know that Spring doesn’t come with such a val-
idator. In fact, Spring doesn’t come with any implementations of the Validator
interface and leaves it up to you to write your own.

 However, you don’t have to go very far to find an implementation of Valida-
tor that supports declarative validation. The Spring Modules project (https://
springmodules.dev.java.net) is a sister project of Spring that provides several
extensions to Spring whose scope exceeds that of the main Spring project. One
of those extensions is a validation module that makes use of Jakarta Commons
Validator (http://jakarta.apache.org/commons/validator) to provide declara-
tive validation.

 To use the validation module in your application, you start by making the
springmodules-validator.jar file available in the application’s classpath. If you’re
using Ant to do your builds, you’ll need to download the Spring Modules distribu-
tion (I’m using version 0.6) and find the spring-modules-0.6.jar file in the dist
directory. Add this JAR to the <war> task’s <lib> to ensure that it gets placed in
the WEB-INF/lib directory of the application’s WAR file.

 If you’re using Maven 2 to do your build (as I’m doing), you’ll need to add the
following <dependency> to pom.xml:

<dependency>
 <groupId>org.springmodules</groupId>
 <artifactId>springmodules-validation</artifactId>
 <version>0.6</version>

518 CHAPTER 13

Handling web requests
 <scope>compile</scope>
</dependency>

You’ll also need to add the Jakarta Commons Validator JAR to your application’s
classpath. In Maven 2, it will look like this:

<dependency>
 <groupId>commons-validator</groupId>
 <artifactId>commons-validator</artifactId>
 <version>1.1.4</version>
 <scope>compile</scope>
</dependency>

Spring Modules provides an implementation of Validator called DefaultBean-
Validator. DefaultBeanValidator is configured in roadrantz-servlet.xml as fol-
lows:

<bean id="beanValidator" class=
 "org.springmodules.commons.validator.DefaultBeanValidator">
 <property name="validatorFactory" ref="validatorFactory" />
</bean>

 DefaultBeanValidator doesn’t do any actual validation work. Instead, it dele-
gates to Commons Validator to validate field values. As you can see, DefaultBean-
Validator has a validatorFactory property that is wired with a reference to a
validatorFactory bean. The validatorFactory bean is declared using the fol-
lowing XML:

<bean id="validatorFactory" class=
 "org.springmodules.commons.validator.DefaultValidatorFactory">
 <property name="validationConfigLocations">
 <list>
 <value>WEB-INF/validator-rules.xml</value>
 <value>WEB-INF/validation.xml</value>
 </list>
 </property>
</bean>

DefaultValidatorFactory is a class that loads the Commons Validator configura-
tion on behalf of DefaultBeanValidator. The validationConfigLocations
property takes a list of one or more validation configurations. Here we’ve asked it
to load two configurations: validator-rules.xml and validation.xml.

 The validator-rules.xml file contains a set of predefined validation rules for
common validation needs such as email and credit card numbers. This file comes
with the Commons Validator distribution, so you won’t have to write it yourself—
simply add it to the WEB-INF directory of your application. Table 13.3 lists all of
the validation rules that come in validator-rules.xml.

Handling requests with controllers 519
The other file, validation.xml, defines application-specific validation rules that
apply directly to the RoadRantz application. Listing 13.6 shows the contents of val-
idation.xml as applied to RoadRantz.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE form-validation PUBLIC
 "-//Apache Software Foundation//DTD
 Commons Validator Rules Configuration 1.1//EN"
 "http://jakarta.apache.org/commons/dtds/validator_1_1.dtd">

<form-validation>
 <formset>
 <form name="rant">
 <field property="rantText" depends="required">

Table 13.3 The validation rules available in Commons Validator’s validator-rules.xml.

Validation rule What it validates

byte That the field contains a value that is assignable to byte

creditCard That the field contains a String that passes a LUHN check and thus
is a valid credit card number

date That the field contains a value that fits a Date format

double That the field contains a value that is assignable to double

email That the field contains a String that appears to be an email address

float That the field contains a value that is assignable to float

floatRange That the field contains a value that falls within a range of float values

intRange That the field contains a value that falls within a range of int values

integer That the field contains a value that is assignable to int

long That the field contains a value that is assignable to long

mask That the field contains a String value that matches a given mask

maxlength That the field has no more than a specified number of characters

minlength That the field has at least a specific number of characters

required That the field is not empty

requiredif That the field is not empty, but only if another criterion is met

short That the field contains a value that is assignable to short

Listing 13.6 Declaring validations in RoadRantz

Requires rant text

520 CHAPTER 13

Handling web requests
 <arg0 key="required.rantText" />
 </field>
 <field property="vehicle.state" depends="required">
 <arg0 key="required.state" />
 </field>
 <field property="vehicle.plateNumber"
 depends="required,mask">
 <arg0 key="invalid.plateNumber" />
 <var>
 <var-name>mask</var-name>
 <var-value>^[0-9A-Za-z]{2,6}$</var-value>
 </var>
 </field>
 </form>
 </formset>
</form-validation>

If the contents of validation.xml look strangely familiar to you, it’s probably
because Struts uses the same validation file XML. Under the covers, Struts is using
Commons Validator to do its validation. Now Spring Modules brings the same
declarative validation to Spring.

 One last thing to do is change the controller’s declaration to wire in the new
declarative implementation of Validator:

<bean id="addRantController"
 class="com.roadrantz.mvc.AddRantFormController">
 <property name="formView" value="addRant" />
 <property name="successView" value="rantAdded" />
 <property name="rantService" ref="rantService" />
 <property name="validator" ref="beanValidator" />
</bean>

A basic assumption with SimpleFormController is that a form is a single page.
That may be fine when you’re doing something simple such as adding a rant. But
what if your forms are complex, requiring the user to answer several questions? In
that case, it may make sense to break the form into several subsections and walk
users through using a wizard. Let’s see how Spring MVC can help you construct
wizard forms.

13.3.3 Processing complex forms with wizards

Another feature of RoadRantz is that anyone can register as a user (known as a
motorist in RoadRantz’s terms) and be notified if any rants are entered for their
vehicles. We developed the rant notification email in chapter 12. But we also need
to provide a means for users to register themselves and their vehicles.

Requires
vehicle
state

Requires and masks
plate number

Handling requests with controllers 521
 We could put the entire motorist registration form into a single JSP and extend
SimpleFormController to process and save the data. However, we don’t know
how many vehicles the user will be registering and it gets tricky to ask the user for
an unknown number of vehicle data in a single form.

 Instead of creating one form, let’s break motorist registration into several sub-
sections and walk the user through the form using a wizard. Suppose that we par-
tition the registration process questions into three pages:

■ General user information such as first name, last name, password, and
email address

■ Vehicle information (state and plate number)

■ Confirmation (for the user to review before committing their information)

 Fortunately, Spring MVC provides AbstractWizardFormController to help
out. AbstractWizardFormController is the most powerful of the controllers that
come with Spring. As illustrated in figure 13.9, a wizard form controller is a spe-
cial type of form controller that collects form data from multiple pages into a sin-
gle command object for processing.

 Let’s see how to build a multipage registration form using AbstractWizard-
FormController.

Building a basic wizard controller
To construct a wizard controller, you must extend the AbstractWizardFormCon-
troller class. MotoristRegistrationController (listing 13.7) shows a minimal
wizard controller to be used for registering a user in RoadRantz.

Form
Page 1

Form
Page 2

Form
Page 3

Wizard
Controller

Command
Object

Form Data

Form Data

Form Data

Populates
Figure 13.9
A wizard form controller is a special form controller
that helps to split long and complex forms across
multiple pages.

522 CHAPTER 13

Handling web requests

package com.roadrantz.mvc;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.springframework.validation.BindException;
import org.springframework.validation.Errors;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.
 ➥ AbstractWizardFormController;
import com.roadrantz.domain.Motorist;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class MotoristRegistrationController
 extends AbstractWizardFormController {
 public MotoristRegistrationController() {
 setCommandClass(Motorist.class);
 setCommandName("motorist");
 }

 protected Object formBackingObject(HttpServletRequest request)
 throws Exception {
 Motorist formMotorist = new Motorist();
 List<Vehicle> vehicles = new ArrayList<Vehicle>();
 vehicles.add(new Vehicle());
 formMotorist.setVehicles(vehicles);
 return formMotorist;
 }

 protected Map referenceData(HttpServletRequest request,
 Object command, Errors errors, int page) throws Exception {

 Motorist motorist = (motorist) command;
 Map refData = new HashMap();

 if(page == 1 && request.getParameter("_target1") != null) {
 refData.put("nextVehicle",
 motorist.getVehicles().size() - 1);
 }

 return refData;
 }

 protected void postProcessPage(HttpServletRequest request,
 Object command, Errors errors, int page) throws Exception {

 Motorist motorist = (Motorist) command;

Listing 13.7 Registering motorists through a wizard

Sets command
class, name

Creates form
backing object

Increments next
vehicle pointer

Handling requests with controllers 523
 if(page == 1 && request.getParameter("_target1") != null) {
 motorist.getVehicles().add(new Vehicle());
 }
 }

 protected ModelAndView processFinish(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException errors)
 throws Exception {

 Motorist motorist = (motorist) command;

 // the last vehicle is always blank...remove it
 motorist.getVehicles().remove(
 motorist.getVehicles().size() - 1);

 rantService.addMotorist(motorist);

 return new ModelAndView(getSuccessView(),
 "motorist", motorist);
 }

 // injected
 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }

 // returns the last page as the success view
 private String getSuccessView() {
 return getPages()[getPages().length-1];
 }
}

Just as with any command controller, you must set the command class when using
a wizard controller. Here MotoristRegistrationController has been set to use
Motorist as the command class. But because the motorist will also be registering
one or more vehicles, the formBackingObject() method is overridden to set the
vehicles property with a list of Vehicle objects. The list is also started with a
blank Vehicle object for the form to populate.

 Since the user can register any number of vehicles and since the vehicles list
will grow with each vehicle added, the form view needs a way of knowing which
entry in the list is the next entry. So, referenceData() is overridden to make the
index of the next vehicle available to the form.

 The only compulsory method of AbstractWizardFormController is process-
Finish(). This method is called to finalize the form when the user has finished
completing it (presumably by clicking a Finish button). In MotoristRegistra-

Adds new
blank vehicle

Adds motorist

524 CHAPTER 13

Handling web requests
tionController, processFinish() sends the data in the Motorist object to
addMotorist() on the injected RantService object.

 Notice there’s nothing in MotoristRegistrationController that gives any
indication of what pages make up the form or in what order the pages appear.
That’s because AbstractWizardFormController handles most of the work
involved to manage the workflow of the wizard under the covers. But how does
AbstractWizardFormController know what pages make up the form?

 Some of this may become more apparent when you see how MotoristRegis-
trationController is declared in roadrantz-servlet.xml:

<bean id="registerMotoristController"
 class="com.roadrantz.mvc.MotoristRegistrationController">
 <property name="rantService" ref="rantService" />
 <property name="pages">
 <list>
 <value>motoristDetailForm</value>
 <value>motoristVehicleForm</value>
 <value>motoristConfirmation</value>
 <value>redirect:home.htm</value>
 </list>
 </property>
</bean>

So that the wizard knows which pages make up the form, a list of logical view
names is given to the pages property. These names will ultimately be resolved into
a View object by a view resolver (see section 13.4). But for now, just assume that
these names will be resolved into the base filename of a JSP.

 While this clears up how MotoristRegistrationController knows which
pages to show, it doesn’t tell us how it knows what order to show them in.

Stepping through form pages
The first page to be shown in any wizard controller will be the first page in the list
given to the pages property. In the case of the motorist registration wizard, the
first page shown will be the motoristDetailForm page.

 To determine which page to go to next, AbstractWizardFormController con-
sults its getTargetPage() method. This method returns an int, which is an index
into the zero-based list of pages given to the pages property.

 The default implementation of getTargetPage() determines which page to go
to next based on a parameter in the request whose name begins with _target and
ends with a number. getTargetPage() removes the _target prefix from the
parameter and uses the remaining number as an index into the pages list. For

Handling requests with controllers 525
example, if the request has a parameter whose name is _target2, the user will be
taken to the page rendered by the motoristConfirmation view.

 Knowing how getTargetPage() works helps you to know how to construct
your Next and Back buttons in your wizard’s HTML pages. For example, suppose
that your user is on the motoristVehicleForm page (index = 1). To create Next
and Back buttons on the page, all you must do is create submit buttons that are
appropriately named with the _target prefix:

<form method="POST" action="feedback.htm">
…
 <input type="submit" value="Back" name="_target0">
 <input type="submit" value="Next" name="_target2">
</form>

When the Back button is clicked, a parameter with its name, _target0, is placed
into the request back to MotoristRegistrationController. The getTar-

getPage() method will process this parameter’s name and send the user to the
motoristDetailForm page (index = 0). Likewise, if the Next button is clicked,
getTargetPage() will process a parameter named _target2 and decide to send
the user to the motoristConfirmation page (index = 2).

 The default behavior of getTargetPage() is sufficient for most projects. How-
ever, if you would like to define a custom workflow for your wizard, you may over-
ride this method.

Finishing the wizard
That explains how to step back and forth through a wizard form. But how can you
tell the controller that you have finished and that the processFinish() method
should be called?

 There’s another special request parameter called _finish that indicates to
AbstractWizardFormController that the user has finished filling out the form
and wants to submit the information for processing. Just like the _targetX param-
eters, _finish can be used to create a Finish button on the page:

<form method="POST" action="feedback.htm">
…
 <input type="submit" value="Finish" name="_finish">
</form>

When AbstractWizardFormController sees the _finish parameter in the
request, it will pass control to the processFinish() method for final processing
of the form.

526 CHAPTER 13

Handling web requests
 Unlike other form controllers, AbstractWizardFormController doesn’t pro-
vide a means for setting the success view page. So, we’ve added a getSuccess-
View() method in MotoristRegistrationController to return the last page in
the pages list. So, when the form has been submitted as finished, the process-
Finish() method returns a ModelAndView with the last view in the pages list as
the view.

Canceling the wizard
What if your user is partially through with registration and decides that they don’t
want to complete it at this time? How can they abandon their input without finish-
ing the form?

 Aside from the obvious answer—they could close their browser—you can add a
Cancel button to the form:

<form method="POST" action="feedback.htm">
…
 <input type="submit" value="Cancel" name="_cancel">
</form>

As you can see, a Cancel button should have _cancel as its name so that, when
clicked, the browser will place a parameter into the request called _cancel. When
AbstractWizardFormController receives this parameter, it will pass control to
the processCancel() method.

 By default, processCancel() throws an exception indicating that the cancel
operation is not supported. So, you’ll need to override this method so that it (at a
minimum) sends the user to whatever page you’d like them to go to when they
click Cancel. The following implementation of processCancel() sends the user
to the success view:

protected ModelAndView processCancel(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException bindException) throws Exception {

 return new ModelAndView(getSucessView());
}

If there is any cleanup work to perform upon a cancel, you could also place that
code in the processCancel() method before the ModelAndView is returned.

Validating a wizard form a page at a time
As with any command controller, the data in a wizard controller’s command
object can be validated using a Validator object. However, there’s a slight twist.

Handling requests with controllers 527
 With other command controllers, the command object is completely popu-
lated at once. But with wizard controllers, the command object is populated a bit
at a time as the user steps through the wizard’s pages. With a wizard, it doesn’t
make much sense to validate all at once because if you validate too early, you will
probably find validation problems that stem from the fact that the user isn’t fin-
ished with the wizard. Conversely, it is too late to validate when the Finish button
is clicked because any errors found may span multiple pages (which form page
should the user go back to?).

 Instead of validating the command object all at once, wizard controllers vali-
date the command object a page at a time. This is done every time that a page
transition occurs by calling the validatePage() method. The default implemen-
tation of validatePage() is empty (i.e., no validation), but you can override it to
do your bidding.

 To illustrate, on the motoristDetailForm page you ask the user for their email
address. This field is optional, but if it is entered, it should be in a valid email
address format. The following validatePage() method shows how to validate the
email address when the user transitions away from the motoristDetailForm page:

protected void validatePage(Object command, Errors errors,
 int page) {

 Motorist motorist = (Motorist) command;
 MotoristValidator validator =
 (MotoristValidator) getValidator();

 if(page == 0) {
 validator.validateEmail(motorist.getEmail(), errors);
 }
}

When the user transitions from the motoristDetailForm page (index = 0), the
validatePage() method will be called with 0 passed in to the page argument.
The first thing validatePage() does is get a reference to the Motorist command
object and a reference to the MotoristValidator object. Because there’s no need
to do email validation from any other page, validatePage() checks to see that
the user is coming from page 0.

 At this point, you could perform the email validation directly in the vali-
datePage() method. However, a typical wizard will have several fields that will
need to be validated. As such, the validatePage() method can become quite
unwieldy. We recommend that you delegate responsibility for validation to a fine-
grained field-level validation method in the controller’s Validator object, as
we’ve done here with the call to MotoristValidator’s validateEmail() method.

528 CHAPTER 13

Handling web requests
 All of this implies that you’ll need to set the validator property when you con-
figure the controller:

<bean id="registerMotoristController"
 class="com.roadrantz.mvc.MotoristRegistrationController">
 <property name="rantService" ref="rantService" />
 <property name="pages">
 <list>
 <value>motoristDetailForm</value>
 <value>motoristVehicleForm</value>
 <value>motoristConfirmation</value>
 <value>redirect:home.htm</value>
 </list>
 </property>
 <property name="validator">
 <bean class="com.roadrantz.mvc.MotoristValidator" />
 </property>
</bean>

It’s important to be aware that unlike the other command controllers, wizard con-
trollers never call the standard validate() method of their Validator object.
That’s because the validate() method validates the entire command object as a
whole, whereas it is understood that the command objects in a wizard will be vali-
dated a page at a time.

 The controllers you’ve seen up until now are all part of the same hierarchy
that is rooted with the Controller interface. Even though the controllers all get a
bit more complex (and more powerful) as you move down the hierarchy, all of
the controllers that implement the Controller interface are somewhat similar.
But before we end our discussion of controllers, let’s have a look at another con-
troller that’s very different than the others—the throwaway controller.

13.3.4 Working with throwaway controllers

One last controller that you may find useful is a throwaway controller. Despite the
dubious name, throwaway controllers can be quite useful and easy to use. Throw-
away controllers are significantly simpler than the other controllers, as evidenced
by the ThrowawayController interface:

public interface ThrowawayController {
 ModelAndView execute() throws Exception;
}

To create your own throwaway controller, all you must do is implement this inter-
face and place the program logic in the execute() method. Quite simple, isn’t it?

 But hold on. How are parameters passed to the controller? The execution
methods of the other controllers are given HttpServletRequest and command

Handling requests with controllers 529
objects from which to pull the parameters. If the execute() method doesn’t take
any arguments, how can your controller process user input?

 You may have noticed in figure 13.5 that the ThrowawayController interface is
not even in the same hierarchy as the Controller interface. This is because
throwaway controllers are very different from the other controllers. Instead of
being given parameters through an HttpServletRequest or a command object,
throwaway controllers act as their own command object. If you have ever worked
with WebWork, this may seem quite natural because WebWork actions behave in a
similar way.

 From the requirements for RoadRantz, we know that we’ll need to display a list
of rants for a given month, day, and year. We could implement this using a com-
mand controller, as we did with RantsForVehicleController (listing 13.3).
Unfortunately, no domain object exists that takes a month, day, and year. This
means we’d need to create a special command class to carry this data. It wouldn’t
be so hard to create such a POJO, but maybe there’s a better way.

 Instead of implementing RantsForDayController as a command controller,
let’s implement it as a ThrowawayController, as shown in listing 13.8.

package com.roadrantz.mvc;
import java.util.Date;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.throwaway.
 ➥ ThrowawayController;
import com.roadrantz.service.RantService;

public class RantsForDayController implements ThrowawayController {
 private Date day;

 public ModelAndView execute() throws Exception {
 List<Rant> dayRants = rantService.getRantsForDay(day);

 return new ModelAndView("dayRants", "rants", dayRants);
 }

 public void setDay(Date day) {
 this.day = day;
 }

 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }
}

Listing 13.8 A throwaway controller that produces a list of rants for a given day

Gets list
of rants
for day

Binds day to
request

530 CHAPTER 13

Handling web requests
Before RantsForDayController handles the request, Spring will call the set-
Day() method, passing in the value of the day request parameter. Once in the
execute() method, RantsForDayController simply passes day to rantSer-
vice.getRantsForDay() to retrieve the list of rants for that day. One thing that
remains the same as the other controllers is that the execute() method must
return a ModelAndView object when it has finished.

 Just as with any controller, you also must declare throwaway controllers in the
DispatcherServlet’s context configuration file. There’s only one small differ-
ence, as you can see in this configuration of RantsForDayController:

<bean id="rantsForDayController"
 class="com.roadrantz.mvc.RantsForDayController"
 scope="prototype">
 <property name="rantService" ref="rantService" />
</bean>

Notice that the scope attribute has been set to prototype. This is where throw-
away controllers get their name. By default all beans are singletons, and so unless
you set scope to prototype, RantsForDayController will end up being recycled
between requests. This means its properties (which should reflect the request
parameter values) may also be reused. Setting scope to prototype tells Spring to
throw the controller away after it has been used and to instantiate a fresh instance
for each request.

 There’s just one more thing to be done before we can use our throwaway con-
troller. DispatcherServlet knows how to dispatch requests to controllers by
using a handler adapter. The concept of handler adapters is something that you
usually don’t need to worry about because DispatcherServlet uses a default han-
dler adapter that dispatches to controllers in the Controller interface hierarchy.

 But because ThrowawayController isn’t in the same hierarchy as Controller,
DispatcherServlet doesn’t know how to talk to ThrowawayController. To make
it work, you must tell DispatcherServlet to use a different handler adapter. Spe-
cifically, you must configure ThrowawayControllerHandlerAdapter as follows:

<bean id="throwawayHandler" class="org.springframework.web.
 ➥ servlet.mvc.throwaway.ThrowawayControllerHandlerAdapter"/>

By just declaring this bean, you are telling DispatcherServlet to replace its
default handler adapter with ThrowawayControllerHandlerAdapter.

 This is fine if your application is made up of nothing but throwaway control-
lers. But the RoadRantz application will use both throwaway and regular control-
lers alongside each other in the same application. Consequently, you still need

Handling exceptions 531
DispatcherServlet to use its regular handler adapter as well. Thus, you should
also declare SimpleControllerHandlerAdapter as follows:

<bean id="simpleHandler" class="org.springframework.web.
 ➥ servlet.mvc.SimpleControllerHandlerAdapter"/>

Declaring both handler adapters lets you mix both types of controllers in the
same application.

 Regardless of what functionality your controllers perform, ultimately they’ll
need to return some results to the user. The result pages are rendered by views,
which are selected by their logical name when creating a ModelAndView object.
But there needs to be a mechanism to map logical view names to the actual view
that will render the response. We’ll see that in chapter 14 when we turn our atten-
tion to Spring’s view resolvers.

 But first, did you notice that all of Spring MVC’s controllers have method signa-
tures that throw exceptions? It’s possible that things could go awry as a controller
processes a request. If an exception is thrown from a controller, what will the user
see? Let’s find out how to control the behavior of errant controllers with an
exception resolver.

13.4 Handling exceptions

There’s a bumper sticker that says “Failure is not an option: it comes with the soft-
ware.” Behind the humor of this message is a universal truth. Things don’t always
go well in software. When an error happens (and it inevitably will happen), do
you want your application’s users to see a stack trace or a friendlier message? How
can you gracefully communicate the error to your users?

 SimpleMappingExceptionResolver comes to the rescue when an exception is
thrown from a controller. Use the following <bean> definition to configure Sim-
pleMappingExceptionResolver to gracefully handle any java.lang.Exceptions
thrown from Spring MVC controllers:

<bean id="exceptionResolver" class="org.springframework.web.
 ➥ servlet.handler.SimpleMappingExceptionResolver">
 <property name="exceptionMappings">
 <props>
 <prop key="java.lang.Exception">friendlyError</prop>
 </props>
 </property>
</bean>

The exceptionMappings property takes a java.util.Properties that contains a
mapping of fully qualified exception class names to logical view names. In this

532 CHAPTER 13

Handling web requests
case, the base Exception class is mapped to the View whose logical name is
friendlyError so that if any errors are thrown, users won’t have to see an ugly
stack trace in their browser.

 When a controller throws an Exception, SimpleMappingExceptionResolver
will resolve it to friendlyError, which in turn will be resolved to a View using
whatever view resolver(s) are configured. If the InternalResourceViewResolver
from section 13.4.1 is configured then perhaps the user will be sent to the page
defined in /WEB-INF/jsp/friendlyError.jsp.

13.5 Summary

The Spring Framework comes with a powerful and flexible web framework that
is itself based on Spring’s tenets of loose coupling, dependency injection, and
extensibility.

 At the beginning of a request, Spring offers a variety of handler mappings that
help to choose a controller to process the request. You are given a choice to map
URLs to controllers based on the controller bean’s name, a simple URL-to-control-
ler mapping, the controller class’s name, or source-level metadata.

 To process a request, Spring provides a wide selection of controller classes with
complexity ranging from the very simple Controller interface all the way to the
very powerful wizard controller and several layers in between, letting you choose a
controller with an appropriate amount of power (and no more complexity than
required). This sets Spring apart from other MVC web frameworks such as Struts
and WebWork, where your choices are limited to only one or two Action classes.

 All in all, Spring MVC maintains a loose coupling between how a controller is
chosen to handle a request and how a view is chosen to display output. This is a
powerful concept, allowing you to mix-’n’-match different Spring MVC parts to
build a web layer most appropriate to your application.

 In this chapter, you’ve been taken on a whirlwind tour of how Spring MVC han-
dles requests. Along the way, you’ve also seen how most of the web layer of the
RoadRantz application is constructed.

 Regardless of what functionality is provided by a controller, you’ll ultimately
want the results of the controller to be presented to the user. So, in the next chap-
ter, we’ll build on Spring MVC by creating the view layer of the RoadRantz applica-
tion. In addition to JSP, you’ll learn how to use alternate template languages such
as Velocity and FreeMarker. And you’ll also learn how to dynamically produce
non-HTML output such as Excel spreadsheets, PDF documents, and RSS feeds.

