
M A N N I N G

Hanumant Deshmukh

Jignesh Malavia

Matthew Scarpino

SCWCD
EXAM STUDY KIT

SECOND EDITION

JAVA WEB

COMPONENT

DEVELOPER

CERTIFICATION

SCE 310-081

SCWCD Study Kit Second Edition
by Matthew Scarpino (Second Edition author)

Hanumant Deshmukh
Jignesh Malavia

with Jacquelyn Carter
 Sample Chapter 17

Copyright 2005 Manning Publications

v

brief contents

Part 1 Getting started 1

1 Understanding Java servlets 3

2 Understanding JavaServer Pages 14

3 Web application and HTTP basics 21

Part 2 Servlets 29

4 The servlet model 31

5 Structure and deployment 67

6 The servlet container model 83

7 Using filters 97

8 Session management 119

9 Developing secure web applications 139

Part 3 JavaServer Pages and design patterns 163

10 The JSP technology model—the basics 165

11 The JSP technology model—advanced topics 188

12 Reusable web components 219

vi BRIEF CONTENTS

13 Creating JSPs with the Expression Language (EL) 236

14 Using JavaBeans 251

15 Using custom tags 285

16 Developing “Classic” custom tag libraries 309

17 Developing “Simple” custom tag libraries 352

18 Design patterns 376

Appendices

A Installing Tomcat 5.0.25 403

B A sample web.xml file 408

C Review Q & A 412

D Exam Quick Prep 475

352

C H A P T E R 1 7

Developing “Simple”
custom tag libraries

17.1 Understanding SimpleTags 353
17.2 Incorporating SimpleTags in JSPs 357
17.3 Creating Java-free libraries with tag files 364
17.4 Summary 371
17.5 Review questions 372

EXAM OBJECTIVES

 10.4 Describe the semantics of the “Simple” custom tag event model when the event
method (doTag) is executed; write a tag handler class; and explain the constraints
on the JSP content within the tag.
(Sections 17.1 and 17.2)

 10.5 Describe the semantics of the Tag File model; describe the web application structure
for tag files; write a tag file; and explain the constraints on the JSP content in the
body of the tag.
(Section 17.3)

UNDERSTANDING SIMPLETAGS 353

So far, you’ve seen the interfaces for classic tag development (Tag, IterationTag,
and BodyTag) and their associated event methods (doStartTag(), doAfter-
Body(), and doEndTag()). These constructs give you a great deal of flexibility in
building custom tag libraries, but coding can be time-consuming and complex. The
JSP 2.0 standard reduces the burden by providing an alternate means of creating your
tag libraries: the simple tag model.

With this new methodology, you only need to keep track of one interface, Simple-
Tag, and a single event method, doTag(). This way, you can concentrate on Java
code instead of directing the web container’s operation. JSP 2.0 also gives you different
options for processing body content and tag attributes.

In addition, the new specification provides a new means of library development
with tag files. Tag file processing is similar to regular JSP tag processing, but doesn’t
use tag library descriptors or tag handlers. Instead, tag files are coded with regular JSP
syntax, and can include script elements. These building blocks simplify the process of
library creation and make it more modular.

In practical web development, you can choose whatever tag library development
method you prefer. But for the SCWCD exam, you need to become familiar with each.
So, having discussed the classic way of building custom tag libraries, let’s explore the
simple method.

17.1 UNDERSTANDING SIMPLETAGS

Building custom tag libraries with SimpleTags is similar to the process we described
in chapter 16. You still need to create a Java tag handler, reference the class in a tag
library descriptor (TLD), and include the TLD in your JSP.

The differences between classic and simple development concern the processing
needed in a Java-based tag handler. SimpleTag classes use fewer methods, interface
differently with body content, and have different implicit objects available. This sec-
tion covers the principles behind SimpleTags and how they reduce the difficulty of
building tag libraries.

17.1.1 A brief example

Before we get into the theory of SimpleTags, you can appreciate how easy they are
to use by looking at example code. Listing 17.1 shows a Java tag handler that sends a
message to the JSP output.

package myTags;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class SimpleTagExample extends SimpleTagSupport
{
 public void doTag() throws JspException, IOException

Listing 17.1 SimpleTagExample.java

354 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

 {
 getJspContext().getOut().print(
 "I can't believe it's so simple!"
);
 }
}

That’s it! There are no concerns with SKIP_BODY, EVAL_BODY, EVAL_PAGE, or
any of the return values associated with classic tags. There’s no need to consider differ-
ent interfaces depending on body content or iterations. Instead, there’s just one
method, doTag(), and a single line of code to send output to the JSP.

The web container can access this class through a tag library descriptor in the same
way as a Tag or BodyTag class. For example, the snippet below matches the Simple-
TagExample class with a tag name called “message”:

<taglib>
 ..
 <tag>
 <name>message</name>
 <tag-class>myTags.SimpleTagExample</tag-class>
 <body-content>empty</body-content>
 <description>Sends a message to the JSP</description>
 </tag>
 ..
</taglib>

Then, the “message” tag can be inserted into a JSP page just as with the classic model.
The superclass of SimpleTagExample, SimpleTagSupport, makes all of

this possible. To see why this is the case, you need to understand both it and its inter-
face, SimpleTag. In particular, we’ll present the methods contained in SimpleTag
and its life cycle.

17.1.2 Exploring SimpleTag and SimpleTagSupport

In the classic method of building custom tag libraries, Java classes implement the
BodyTag interface if body content needs processing, the IterationTag interface
if multiple operations are required, or the Tag interface if neither is necessary. With
the simple model, the SimpleTag interface can be used in all three cases. The rela-
tionship between these interfaces is shown in figure 17.1.

Figure 17.1

JSP tag

interfaces

UNDERSTANDING SIMPLETAGS 355

The JSP 2.0 specification also provides a new adapter class for tag classes. Just as classic
tag handlers extend BodyTagSupport or TagSupport, classes in the simple
model can extend SimpleTagSupport. This class contains all of the methods
needed to implement SimpleTag, and provides additional methods for extracting
information from the web container.

Using the SimpleTag interface—methods and life cycle

Like those of Tag and BodyTag, the methods in the SimpleTag interface serve two
purposes. First, they allow you to transfer information between your Java class and the
JSP. Second, they are invoked by the web container to initialize SimpleTag opera-
tion. Table 17.1 lists these methods with descriptions.

These methods are listed in the order that they are invoked in the SimpleTag life
cycle, which has three main steps.

Step 1 Initialize the information associated with the SimpleTag

After the web container creates an instantiation of the SimpleTag class, it calls the
setJspContext() method. This method returns an instance of the Jsp-
Context class, which is the superclass of PageContext—the object returned by
the setPageContext() method in the Tag or BodyTag interface. Like the
PageContext, the JspContext allows your Java class to access scoped attributes
and implicit variables.

Most of the JspContext methods are similar to those in the PageContext
class, but there are a few different methods that can be very useful. First, as shown in
the example, the getOut() method returns a JspWriter that you can use to send
information to the JSP output stream. Also, there are two methods, getExpression-
Evaluator() and getVariableResolver(), that allow you to access the
Expression Language handling capability of the container. An important thing to
keep in mind is that, while the PageContext relies on J2EE servlet processing, the
JspContext class is meant to be technology-neutral and able to interface with dif-
ferent packages or languages.

After the JspContext has been initialized for the SimpleTag, the web con-
tainer calls setParent(). This method is invoked only if the SimpleTag is

Table 17.1 Methods of the SimpleTag interface

Name Description

setJspContext() Makes the JspContext available for tag processing

setParent() Called by the web container to make the parent tag available

setJspBody() Makes the body content available for tag processing

doTag() Called by the container to begin SimpleTag operation

getParent() Called by the Java class to obtain its parent JspTag

356 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

surrounded by another set of tags. Because setParent() returns a JspTag object,
the returned parent tag can implement the Tag, BodyTag, IterationTag, or the
SimpleTag interface.

Step 2 Make body content available for SimpleTag processing

If there is any JSP code inside the tags, the web container invokes setBody() to
make it available for the Java class. The method’s return type is JspFragment. This
class will be fully discussed later in this chapter, but for now, it is important to under-
stand that a JspFragment contains regular JSP code (HTML, XML, tags, text) with-
out scripts. So you can’t include JSP declarations, expressions, or scriptlets inside
SimpleTags. But EL terms can be added to the JspFragment.

Step 3 Invoke doTag()

The doTag() method of the SimpleTag interface combines the functions of the
Tag’s doStartTag(), doAfterBody(), and doEndTag() methods. It doesn’t
return any values, and when it finishes, the web container returns to its previous pro-
cessing tasks. Instead of calling special methods, you can control all of the iteration and
body processing with regular Java commands.

It is important to understand why the SimpleTag interface is able to streamline
the development of custom tag libraries. The reason has to do with JSP scripts. A great
deal of the extra processing performed by a classic tag occurs because of the need to
keep track of JSP scripts in the page. For example, if the tag body relies on a JSP vari-
able declaration, then the tag processing needs to be able to access that variable.

With SimpleTags, this isn’t an option. When the web container processes
SimpleTags, it doesn’t take JSP scripts into account. This makes for simpler cod-
ing and faster operation, but you need to keep this constraint in mind—both for the
exam and your own web development.

Using SimpleTagSupport

The SimpleTagSupport class allows you to implement the SimpleTag interface
without having to code each of its methods by yourself. Instead, it provides for each of
the methods mentioned above, and three others, which are listed in table 17.2.

These methods are similar to those in the TagSupport and BodyTagSupport
classes, with two exceptions. First, the first two methods return a JspContext and
a JspFragment instead of a PageContext and a BodyContent object. Second,

Table 17.2 Additional methods provided by the SimpleTagSupport class

Name Description

getJspContext() Returns the JspContext for processing in the tag

getJspBody() Returns the JspFragment object for body processing in the tag

findAncestorWithClass() Returns the ancestor tag with the specified class

INCORPORATING SIMPLETAGS IN JSPS 357

SimpleTagSupport leaves out many of the methods in TagSupport and Body-
TagSupport that deal with tag processing, such as release().

Now that you’ve seen how the SimpleTag interface and the SimpleTag-
Support class functions, you can appreciate why Sun included them in the new
JSP specification. In the next section, we will use these data structures to build prac-
tical JSPs.

Quizlet
Q: Which of the following methods aren’t immediately available for a sub-

class of SimpleTagSupport?
a getJspBody();

b getJspContext().getAttribute("name");

c getParent();

d getBodyContent();

A: The answer is option d. The getBodyContent() method is provided
by the BodyTagSupport class, and returns a BodyContent object.
Instead, SimpleTagSupport invokes the getJspBody() method,
which returns a JspFragment.

17.2 INCORPORATING SIMPLETAGS IN JSPS

The process of building a SimpleTag library and using its JSP tags is similar to that
for classic tag libraries, but there are important differences between the two. In partic-
ular, SimpleTags process tag attributes and body content differently than Tag,
IterationTag, or BodyTag classes. In this section, we’ll make these characteristics
apparent by building a tag library and JSP for calculating square roots.

Each SimpleTag class performs its main processing inside the doTag()
method, but the structure of the class also depends on attribute tags and body content.
To present these classes, we’ll proceed from the simple to complex. This means start-
ing with an empty SimpleTag.

17.2.1 Coding empty SimpleTags

Empty SimpleTag classes are used to send static information to the JSP. In this case,
we’ll start with a short class that sends a simple mathematical expression to a Jsp-
Writer. This may seem trivial, but we’ll add more as we explore the SimpleTag
interface in greater depth.

Listing 17.2 presents MathTag.java, located in the myTags package.

package myTags;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

Listing 17.2 MathTag.java

358 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

public class MathTag extends SimpleTagSupport
{
 int x = 289;

 public void doTag() throws JspException, IOException
 {
 getJspContext().getOut().print(
 "The square root of " + x +

 " is " + Math.sqrt(x) + "."
);
 }
}

After the web container creates an instance of MathTag, it will make the JspContext
available. Since there are no nested tags or body content, it will then invoke the
doTag() method directly.

A tag library descriptor is needed to tell the web container how to match the
MathTag class with its JSP tag. Listing 17.3 shows MathTag.tld, which also
informs the web container that the MathTag class has no attributes and doesn’t pro-
cess body content.

<!DOCTYPE taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <uri>www.manning.com/scwcd/math</uri>
 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <tag>
 <name>sqrt</name>
 <tag-class>myTags.MathTag</tag-class>
 <body-content>empty</body-content>
 <description>
 Sends a math expression to the JSP
 </description>
 </tag>
</taglib>

In this example, we’ll use the URI specified in the TLD instead of updating the
deployment descriptor. We lose the capability of centralized library referencing, but
the code is simpler and we can create the JSP directly. The JSP itself, shown in
listing 17.4, tells the web container the library’s URI, and then uses the empty tag to
display the math statement.

Listing 17.3 MathTag.tld

INCORPORATING SIMPLETAGS IN JSPS 359

<%@ taglib prefix="math" uri="www.manning.com/scwcd/math" %>
<html><body>
 <math:sqrt />
</body></html>

The result, shown in figure 17.2, shows that the JSP
works as desired.

Now that you’ve seen how to build a basic SimpleTag-
based JSP, we can add more powerful features. Next,
we’ll add dynamic attributes to the SimpleTag.

17.2.2 Adding dynamic attributes to SimpleTags

In the previous chapter, we showed how tags implementing Tag, IterationTag,
and BodyTag process attributes with JSP 1.x. By adding a setter method for the given
attribute (setXYZ() for the XYZ attribute), you can incorporate its value into your
Java class. Then, you need to update the TLD to tell the web container what attributes
it should accept.

This process remains the same using the simple model of tag library creation, but
what if you don’t know the name of the tag’s attributes? What if you don’t know how
many there are? With JSP 1.x, you face serious problems. But JSP 2.0 provides the
DynamicValues interface, which allows you to process multiple, unspecified
attributes with a single method, setDynamicAttribute().

To show how this works, we’re going to add static and dynamic attributes to the
MathTag example. This time, the JSP will display a table of math functions whose
entries are determined by the tag’s attributes. Listing 17.5 updates MathTag.tld to
tell the web container what kind of attributes to expect in the JSP.

<!DOCTYPE taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <uri>www.manning.com/scwcd/math</uri>
 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <tag>
 <name>functions</name>
 <tag-class>myTags.MathTag</tag-class>
 <body-content>empty</body-content>
 <attribute>

 <name>num</name>

Listing 17.4 math.jsp

Figure 17.2 Static output

from an empty SimpleTag

instance

Listing 17.5 MathTag.tld (Updated)

360 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <dynamic-attributes>

 true

 </dynamic-attributes>

 <description>
 Sends a math expression to the JSP

 </description>
 </tag>
</taglib>

The body content remains empty, but there are now two elements for attributes. The
first, <attribute>, tells the web container about a static attribute called num,
which is required and can be dynamically calculated at runtime. The second,
<dynamic-attributes>, tells the web container that the tag may contain other
attributes besides num, and it should create a Map to hold their names and values.

Listing 17.6 updates the MathTag.java code to reflect the new attribute pro-
cessing. This class creates a String called output that is updated by the set-
DynamicAttribute() method. The web container calls this method each time it
encounters an attribute not mentioned in the TLD. Once it finishes reading the
attributes, it invokes doTag(), which sends the String to the JSP for display.

package myTags;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class MathTag extends SimpleTagSupport
 implements DynamicAttributes

{

 double num = 0;

 String output = "";

 public void setNum(double num)

 {

 this.num = num;

 }

 public void setDynamicAttribute(String uri, String localName,

 Object value) throws JspException
 {
 double val = Double.parseDouble((String)value);
 if (localName == "min")
 {
 output = output + "<tr><td>The minimum of "+num+" and "+
 val + "</td><td>" + Math.min(num, val) + "</td></tr>";

Listing 17.6 MathTag.java (Updated)

INCORPORATING SIMPLETAGS IN JSPS 361

 }
 else if (localName == "max")
 {
 output = output + "<tr><td>The maximum of "+num+" and "+
 val + "</td><td>" + Math.max(num, val) + "</td></tr>";
 }
 else if (localName == "pow")
 {

 output = output + "<tr><td>"+num+" raised to the "+val+
 " power"+"</td><td>"+Math.pow(num, val)+"</td></tr>";
 }
 }

 public void doTag() throws JspException, IOException
 {
 getJspContext().getOut().print(output);
 }
}

After the web container initializes the JspContext and parent tag (if necessary), it
processes the tag’s attributes. If the attribute is static, such as num, it calls the setter
method with the name of the attribute—setNum() in our example. If the attribute
isn’t mentioned in the TLD, then it is dynamic, and the container invokes set-
DynamicAttribute().

Since this method does most of the work in the example, it’s important to learn
how it functions. It provides three items of information: a URI String representing
the attribute’s namespace, a String containing its name, and the Object contain-
ing its value. After converting the value into a double, MathTag continues processing
according to the attribute’s name. If the name is min, max, or pow, then output is
updated with a new table row.

Listing 17.7 shows how this tag is coded in the JSP. Note that the static attribute,
num, needs to be included first. This way, its value will be available when the rest of
the attributes are processed.

<%@ taglib prefix="math" uri="www.manning.com/scwcd/math" %>
<html><body>
 Math Functions:<p>

 <table border="1">

 <math:functions num="${3*2}" pow="2" min="4" max="8"/>

 </table>

</body></html>

The use of HTML tables and EL may seem unnecessary. But in the exam, Sun will
make the JSP code as complicated as possible. So make sure you have a solid grasp of
both topics.

Listing 17.7 MathTag.jsp (Updated)

362 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

We can specify the num attribute with EL because
the TLD sets its <rtexprvalue> tag to true.
But the dynamic attributes don’t have this option.
If you try to use EL to set the values of pow, min,
and max, you’ll get an error.

Figure 17.3 shows the JSP’s output.
Although the DynamicAttributes inter-

face is new, you can still extend its usage to the
classic Tag, IterationTag, and BodyTag
classes. But as we’ve shown, building Simple-
Tags requires less code and complexity. Let’s fin-
ish our discussion on this topic by looking at how
SimpleTags process body content.

17.2.3 Processing body content inside SimpleTags

In the classic model, BodyTag classes acquire the text and code inside their JSP tags
by invoking getBodyContent(). This returns a BodyContent object that can be
converted into a String or a Reader. This means that you can parse through the
body and alter it if needed.

These options aren’t available with SimpleTags. If you want to access the body,
the getJspBody() method will return a JspFragment. This object only has two
methods. The first, getJspContext(), returns the JspContext associated with
the fragment. The second, invoke(), executes the JSP code and directs its output
to the JspWriter. Neither method allows you to access and manipulate the body’s
contents as you can in the classic model.

Further, a SimpleTag’s body must not contain scripts—no declarations, expres-
sions, or scriptlets. So it is invalid for a SimpleTag’s tag library descriptor to specify
its <body-content> as JSP. Therefore, if you want to process a SimpleTag’s
body, you need to set its <body-content> to tagdependent or scriptless.
This is an important constraint to remember.

Because SimpleTag development doesn’t add any new capabilities for processing
body content, we will present code snippets instead of a new example. The code below
shows how the doTag() method acquires the SimpleTag’s body and directs it to
the JSP for display:

public void doTag() throws JspException, IOException
{
 getJspContext().getOut().print(output);
 getJspBody().invoke(null);
}

Figure 17.3 Dynamic output from

a SimpleTag implementing

DynamicAttributes

INCORPORATING SIMPLETAGS IN JSPS 363

Note that the invoke() method requires an argument specifying the JspWriter
that will receive the JspFragment’s output. In this case, the null argument directs
the output to the JspWriter returned by getJspContext().getOut().

As shown here, the only change required in the TLD is the <body-content>.
Since JSP is invalid and empty is erroneous, we’ll set the value to tagdependent:

<tag>

 <name>functions</name>
 <tag-class>myTags.MathTag</tag-class>
 <body-content>tagdependent</body-content>
 …
</tag>

For the JSP, we’ll add a new row to the table by including it as body content. This is
shown in the code that follows. Because the SimpleTag executes the JspFragment
last, this will be the last row of the table.

<math:functions num="${3*2}" pow="2" min="4" max="8">
 <td>This is the body of the SimpleTag.</td>

</math:functions>

Figure 17.4 shows the output of the new JSP.
Although the SimpleTag class reduces

the amount of Java needed to create custom
tag libraries, it still requires building and
compiling Java classes. To the creators of
the JSP 2.0 specification, this is still too
much work. So they came up with an even
simpler way of building tag libraries. With
tag files, you don’t need TLDs or Java at all!
In the next section, we’ll see how this new
method works.

Quizlet

Q: What is the main difference between a TLD for SimpleTags and a
TLD for a classic Tag?

A: SimpleTag TLDs cannot set their <body-value> elements equal to
JSP. This is because a SimpleTag cannot process script elements in
body content.

Figure 17.4 Output updated with

SimpleTag body content

364 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

17.3 CREATING JAVA-FREE LIBRARIES
WITH TAG FILES

JSTL and EL reduce the amount of Java in a JSP and SimpleTags reduce the
amount of Java in a tag handler. But tag files remove the need for Java programming
altogether. As long as you understand the JSP syntax, you can now build custom tags
for your pages.

We’ll begin our discussion of tag files with a simple example. Next, we’ll cover the
directives that enable you to communicate information to the web container. Finally,
we’ll look at fragments and how they are processed with tag file actions.

17.3.1 Introducing tag files

At its simplest, a tag file is a file made up of JSP code that has a .tag or .tagx exten-
sion. It can include EL expressions, directives, and custom and standard tags. Unlike
SimpleTag JSPs, tag files can also contain script elements. In fact, the only JSP ele-
ments that can’t be used in tag files are page attributes.

To see how tag files work, let’s start with a simple example. Listing 17.8 presents
example.tag, which displays a sequence of six numbers.

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<c:forTokens items="0 1 1 2 3 5" delims=" " var="fibNum">
 <c:out value="${fibNum}"/>
</c:forTokens>

Listing 17.8 contains just regular JSP code using the JSTL forTokens action and an
EL expression. The JSP presented in listing 17.9 accesses this tag and displays its output.

<%@ taglib prefix="ex" tagdir="/WEB-INF/tags" %>
<html><body>
 The first six numbers in the Fibonacci sequence are:
 <ex:example/>
</body></html>

The code may look trivial, but this new capability is important. The key is simplicity.
You don’t need a background in Java to create custom tags with tag files. You don’t have
to compile Java classes and keep track of their packages. You don’t even need tag library
descriptors. Thanks to the JSP 2.0 specification, any developer of presentation logic
can now create a custom tag library.

The new specification also makes it simple to integrate tag files within a JSP. There
are only two steps:

Listing 17.8 example.tag

Listing 17.9 example.jsp

CREATING JAVA-FREE LIBRARIES WITH TAG FILES 365

1 Add a taglib directive to the JSP with a prefix attribute and the tagdir
attribute equal to /WEB-INF/tags.

2 Place a tag containing the prefix and the name of the tag file (without the exten-
sion) wherever you want the file’s JSP code invoked.

This brings up an important question. If Java-based tags need TLDs to locate their
classes, how do these tags locate their tag files? To answer this, we need to look at how
the web container accesses and processes tag files.

17.3.2 Tag files and TLDs

In the example JSP above, the tagdir attribute is set to /WEB-INF/tags. This is
necessary since the web container automatically looks there for tag files. Then, the
container builds an implicit tag library and TLD for this directory and each subdirec-
tory beneath it. The good news is that you don’t have to create TLDs for tag files. The
bad news is that your tag files must be in /WEB-INF/tags/ or a subdirectory.

But if you deploy your tag files inside a JAR, the situation changes. In this case, you
need to create a tag library descriptor for your files. This TLD is similar to regular
TLDs, but instead of matching tags to tag handlers, it matches names of tag files to
their paths.

To make this possible, tag file TLDs use <tag-file> elements in place of <tag>
elements. The definition of a <tag-file> element is as follows:

 <!ELEMENT tag-file (description?, display-name?,
 icon?, name, path, example?, tag-extension?) >

The only necessary subelements are <name>, which specifies the tag file name without
its suffix, and <path>, which specifies the file’s path from the archive’s root. There-
fore, <path> must begin with /META-INF/tags. Here is an example TLD for an
archived tag file:

<taglib>
 …
 <uri>www.manning.com/scwcd/example</uri>
 <tag-file>
 <name>example</name>
 <path>/META-INF/tags/example.tag</path>
 </tag-file>
</taglib>

This TLD must be located in the META-INF directory and the tag file(s) must be
placed in META-INF/tags or a subdirectory. An example directory structure is
shown here:

META-INF/
example.tld
tags/
example.tag

366 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

Since the tag file isn’t located in or under /WEB-INF/tags, you can’t use the
tagdir attribute in the taglib directive. Instead, you need to specify the TLD’s
URI (www.manning.com/scwcd/example) using the URI attribute. For this
example, the following JSP directive will tell the web container where to find the tag
file’s TLD:

<%@ taglib prefix="ex" uri="www.manning.com/scwcd/example" %>

Other important differences between tag file TLDs and tag TLDs concern the
<attribute> and <body-content> elements. Tags furnish this information in
their TLDs, but tag files can’t. Instead, tag files use a special set of directives. They tell
the web container how to process the tag file, and it is important to understand how
they work.

17.3.3 Controlling tag processing with tag file directives

JSPs contain three different kinds of directives: page, taglib, and include. Tag
files remove the page directive and add three more. The first, variable, creates
and initializes a variable for use in tag processing. The second, tag, tells the web con-
tainer how to process the tag file. The third, attribute, describes the attributes
that can be used in the tag. We’ll investigate each of these, and provide snippets of
example code.

Creating JSP variables with the variable directive

In the previous chapter, we showed how to declare JSP variables in tag library descrip-
tors by adding <variable> elements. Then, you can assign and display the variable
with JSTL actions and EL expressions.

Tag files provide a similar capability with the variable directive. The attributes
of this directive are the same as the <variable> subelements, using scope to define
the variable’s visibility, and name-given and name-from-attribute to provide
the variable’s name. The only difference is the alias attribute, which provides a local
name for the variable when its real name is determined by an attribute value (using
name-from-attribute).

As an example, if the tag file contains the directive

<%@ variable name-given="x" %>

then the JSP can set the variable’s value with the JSTL action

<c:set var="x">
 Hooray!
</c:set>

and display this value inside the JSP with ${x}.
The important point about the variable directive is that you don’t need to

rely on script declarations to declare variables in a JSP. But this is a minor function.
The tag directive accomplishes much more.

CREATING JAVA-FREE LIBRARIES WITH TAG FILES 367

Using the tag directive in tag files

The first new directive, tag, works like the page directive in a JSP. It provides the web
container with settings that apply to the entire file. Table 17.3 describes the attributes
that can be specified within a tag file’s tag directive.

One attribute that has no JSP counterpart is dynamic-attributes. This works
like the TLD <dynamic-attributes> subelement, but instead of directing
attributes to a Java method, the web container updates a local variable specified by
the directive. For example, the tag file that follows uses the tag directive to send
dynamic attribute data to attrib. This data is then displayed using the JSTL
forEach action.

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<%@ tag dynamic-attributes="attrib" %>
<c:forEach items="${attrib}" var="att">
 ${att.value}

</c:forEach>

The JSP code shown next accesses this tag file (dynatt.tag) and sets the names
and values of the tag’s attributes. When the JSP is invoked, it will display a list of
these values.

<%@ taglib prefix="dyn" tagdir="/WEB-INF/tags" %>
<html><body>
 <dyn:dynatt first="first" second="second" third="third"/>
</body></html>

Table 17.3 Tag file attributes within the tag directive

Name Description

body-content Similar to the TLD sublelement—can be empty, tagdependent, or
scriptless. Set to scriptless by default.

description Optional String statement describing the tag file.

display-name String used by XML tools. Set to the name of the tag file (without the
extension by default.

dynamic-attributes Tells the container to create a named Map to hold unspecified attributes
and their values.

example String providing an instance of the tag’s usage.

import Adds a class, interface, or package to the tag processing.

isELIgnored Specifies whether EL constructs will be ignored.

language Sets the programming language used in the tag file. “Java” by default.

large-icon Path to the large image representing the tag.

page-encoding Specifies the character encoding of the tag file.

small-icon Path to the small image representing the tag.

368 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

Now that you’ve learned how to specify dynamic attributes in tag files, it’s important
to understand how to add static attributes. This requires the attribute directive.

Adding static attributes with the attribute directive

Dynamic attributes provide flexibility, but if you already know your tag’s attributes,
you can inform the web container in advance with static attributes. Traditional tags
have <attribute> subelements in TLDs for this purpose. But to set attributes in tag
files, you need attribute directives.

The attributes associated with the attribute directive are similar to the sub-
elements of the TLD’s <tag> element. The name attribute provides identifica-
tion, required informs the web container whether the attribute must be present,
and rtexprvalue tells the container that the attribute’s value can be deter-
mined at runtime.

A brief example will show how attribute directives are used in tag files. The
following tag file snippet sends output to the JSP according to the value of x.

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<%@ attribute name="x" required="true" %>
<c:choose>
 <c:when test='${x == "yes"}'>
 Yippee!
 </c:when>
 <c:otherwise>
 Rats!
 </c:otherwise>
</c:choose>

Then, the following JSP snippet uses the tag file and sets its attribute:

<%@ taglib prefix="attr" tagdir="/WEB-INF/tags" %>
<html><body>
 <attr:statatt x="yes" />
</body></html>

The attribute directive also allows you to insert JSP code into static attributes by
setting its fragment attribute equal to true. However, to process this fragment, you
need to look outside tag file directives, and concern yourself with standard actions.

17.3.4 Processing fragments and body content

with tag file actions

JSPs provide a set of standard actions to direct the web container’s processing of the
page. Tag files can use all of these, and provide two more. The first, jsp:invoke,
makes use of the fragment declared in the attribute directive. The second,
jsp:doBody, processes the tag’s body content.

CREATING JAVA-FREE LIBRARIES WITH TAG FILES 369

Manipulating fragments with the jsp:invoke action

SimpleTag classes retrieve body content by calling getJspBody(), which returns
a JspFragment. Then, to direct the fragment’s output to a JspWriter, the tag
handler calls the fragment’s invoke() method. This method’s argument determines
which JspWriter object will receive the fragment’s output.

The jsp:invoke action performs essentially the same function as invoke(),
but is used for attributes declared as fragments, not for body content. Also, this action
can do more with the JspFragment than just directing it to a JspWriter. It can
convert the fragment to a String or a Reader object. However, just as with
SimpleTags, tag files cannot process script elements (declarations, expressions,
scriptlets) inside body content.

Table 17.4 lists and describes the attributes needed to configure this action in
tag files.

Of these attributes, only fragment is required in the jsp:invoke action. If neither
var nor varReader is set, then the JspFragment will be directed to the default
JspWriter. If one of var or varReader is set, but scope isn’t, then the frag-
ment’s scope will be set to page.

Listing 17.10 presents an example tag file that uses the jsp:invoke action. First,
it specifies a required attribute named frag, whose value will be contained in a Jsp-
Fragment. Then, depending to the value of proc, it returns the fragment to the JSP
as a String variable.

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<%@ attribute name="frag" required="true" fragment="true"%>
<%@ attribute name="proc" required="true" %>
<c:if test='${proc == "yes"}'>
 <jsp:invoke fragment="frag"/>
</c:if>

Table 17.4 Tag file attributes within the tag directive

Name Description

fragment Identifies the JspFragment for processing.

var Name of the String used to contain the JspFragment Cannot be used
with varReader.

varReader Name of the Reader used to contain the JspFragment. Cannot be used with var.

scope Scope of the stored JspFragment. Must be page, request, session,
or application.

Listing 17.10 invokeaction.tag

370 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

Listing 17.11 presents the JSP needed to test this tag file. First, it incorporates the tag
and sets its proc attribute to yes. Then, using the <jsp:attribute> action, it
specifies a line of JSP code to serve as the value of the frag attribute.

<%@ taglib prefix="inv" tagdir="/WEB-INF/tags" %>
<html><body>
 <inv:invokeaction proc="yes">
 <jsp:attribute name="frag">
 Two + two = ${2+2}
 </jsp:attribute>
 </inv:invokeaction >
</body></html>

So far, you’ve seen all there is to know about setting and processing tag file attributes.
Now, let’s see how tag files make use of the information between the tags. To enable
you to process this body content, tag files provide the <jsp:doBody> action.

Processing body content with the jsp:doBody action

The jsp:doBody action works like jsp:invoke, but it receives the tag’s body
instead of a fragment attribute. It contains the same attributes as jsp:invoke,
except fragment. So, when a tag file receives body content, it can manipulate it in
three ways: display it with the default JspWriter, send it to a variable with the var
attribute, or store it as a Reader object with the varReader attribute.

The tag file in listing 17.12 processes the tag’s body content according to the att
attribute. When att equals “var,” it will be stored within a variable, and when att equals
“reader,” it will be stored in a Reader object. If att isn’t specified, the default Jsp-
Writer will display its output.

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<%@ attribute name="att" required="true" %>
<c:choose>
 <c:when test='${att == "var"}'>
 <jsp:doBody var="bodyvar" scope="application"/>
 </c:when>
 <c:when test='${att == "reader"}'>
 <jsp:doBody varReader="bodyReader" />
 </c:when>
 <c:otherwise >
 <jsp:doBody />
 </c:otherwise>
</c:choose>

Listing 17.11 invokeaction.jsp

Listing 17.12 bodyaction.tag

SUMMARY 371

The JSP in listing 17.13 performs two tasks. First, it accesses the tag file and sets the
att attribute to “var.” Then, using EL, it displays the variable containing the tag’s
body content.

<%@ taglib prefix="bod" tagdir="/WEB-INF/tags" %>
<html><body>
 <bod:bodyaction att="var">
 This is the tag body.
 </bod:bodyaction >
 ${bodyvar}
</body></html>

In an earlier chapter, we showed how JSPs (*.jsp) can be converted into JSP
documents (*.jspx) by using well-formed XML. The process of creating tag file doc-
uments (*.tagx) is very similar. The main task involves replacing tag file directives,
such as <%@ attribute … %>, with XML statements, such as <jsp:directive.
attribute … />.

This discussion ends our treatment of JSPs in general and tag library development
in particular. As you can see, there are many different methods of creating tag libraries.
If you are familiar with Java, you may want to use the simple model, but if you need
to incorporate scripts, the classic method may be best. But if you prefer building tags
with JSP code, you can’t do better than to use the tag files described here.

Quizlet
Q: In what directory should you place unarchived tag files? What directory

for archived tag files?
A: All unarchived tag files should be placed in /WEB-INF/tags or a sub-

directory underneath. All archived tag files should be placed in /META-
INF/tags or a subdirectory.

17.4 SUMMARY

One of Sun’s primary goals in releasing JSP 2.0 was to simplify JSP development. To
reduce the amount of Java in JSPs, they created Expression Language. To reduce the
amount of code in tag handlers, they came up with the SimpleTag interface. Finally,
to remove the need for tag handlers and TLDs altogether, they introduced tag files.

 The advantages of SimpleTags over Tags, BodyTags, and IterationTags
stem from their less-complex life cycles. With SimpleTags, there are no elaborate
flowcharts or multiple event-based tag handler methods. After the web container per-
forms its initialization, it only invokes one method, doBody(), which performs all
of the SimpleTag’s processing. JSP 2.0 also provides the SimpleTagSupport
adapter class for additional capabilities.

Listing 17.13 bodyaction.jsp

372 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

The drawback to SimpleTag operation involves its processing of body content.
The body content is encapsulated in a JspFragment object, which cannot con-
tain script elements such as declarations, expressions, or scriptlets. Further, Jsp-
Fragments have no built-in mechanisms for converting body content into Strings
or Readers.

Tag files are a fascinating addition to the traditional methods of tag library devel-
opment. By specifying a precise directory for tag file location, the new JSP specification
removes the need for tag library descriptors. Tag files still provide all of the informa-
tion normally contained in TLDs, but they use directives and actions instead. The tag
directive resembles the JSP’s page directive, and attribute and variable resem-
ble their corresponding TLD elements. Finally, the jsp:doBody and jsp:invoke
actions allow you to process JSP code in the tag body and tag attributes, respectively.

17.5 REVIEW QUESTIONS

1. What method should you use in a SimpleTag tag handler to access dyna-
mic variables?

a doTag()

b setDynamicAttribute()

c getParent()

d setDynamicParameter()

2. Which object does a SimpleTag tag handler use to access implicit variables?

a PageContext

b BodyContent

c JspContext

d SimpleTagSupport

3. Consider the following TLD excerpt:

 <body-content>
 empty
 </body-content>
 <attribute>
 <name>color</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <dynamic-attributes>
 true
 </dynamic-attributes>

If the name of the tag is tagname and its prefix is pre, which of the following
JSP statements is valid?

a <pre:tagname color="yellow" size=${sizenum} />

b <pre:tagname size="18" color="red"> </pre:tagname>

REVIEW QUESTIONS 373

c <pre:tagname color="${colorname}" size="22" font="verdana"></

pre:tagname>

d <pre:tagname color="green" size="30">font="Times New Roman"</

pre:tagname>

e <pre:tagname color="${colorname}" size="18"></pre>

4. If placed inside the body of a simple tag, which of the following statements
won’t produce “9”? (Select one)

a ${3 + 3 + 3}

b "9"

c <c:out value="9">

d <%= 27/3 %>

5. Which of the following methods need to be invoked in a SimpleTag to pro-
vide iterative processing? (Select one)

a setDynamicAttribute()

b getParent()

c getJspBody()

d doTag()

e getJspContext()

6. Which of the following values is invalid inside a SimpleTag’s <body-
content> subelement? (Select one)

a JSP

b scriptless

c tagdependent

d empty

7. Which of the following is a valid return value for the SimpleTag’s doTag()
method? (Select one)

a EVAL_BODY_INCLUDE

b SKIP_BODY

c void

d EVAL_PAGE

e SKIP_PAGE

8. Which tag file directive makes it possible to process dynamic attributes?

a taglib

b page

c tag

d attribute

374 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

9. Which of the following statements can’t be used to access a tag file from a JSP?
(Select one)

a <%@ taglib prefix="pre" uri="www.mysite.com/dir/" %>

b <%@ taglib prefix="pre" tagdir="/WEB-INF/tags" %>

c <%@ taglib prefix="pre" tagdir="/WEB-INF/tagfiles" %>

d <%@ taglib prefix="pre" tagdir="/WEB-INF/tags/myDirectory" %>

10. Which tag file action processes JspFragments in tag attributes?

a taglib

b jsp:invoke

c tag

d jsp:doBody

e attribute

11. Which JspFragment method is used to process body content in a SimpleTag?
(Select one)

a invoke()
b getOut()
c getJspContext()
d getBodyContent()

12. Which class provides an implementation of the doTag() method? (Select one)

a TagSupport

b BodyTagSupport

c SimpleTagSupport

d IterationTagSupport

e JspTagSupport

13. In what directory shouldn’t you place tag files? (Select one)

a /META-INF/tags/tagfiles
b /WEB-INF/
c /WEB-INF/tags/tagfiles/tagdir/taglocation
d /META-INF/tags/

14. Which type of object is returned by JspContext.getOut()? (Select one)

a ServletOutputStream

b HttpServletOutputStream

c JspWriter

d BodyContent

REVIEW QUESTIONS 375

15. Which of the following methods does the web container call first to initiate a
SimpleTag’s life cycle?

a setJspContext()
b setParent()
c getJspContext()
d getJspBody ()

e getParent()

M A N N I N G $49.95 US/$67.95 Canada

,!7IB9D2-djedic!:p;O;T;t;p
ISBN 1-932394-38-9

JAVA CERTIFICATION

SCWCD Exam Study Kit SECOND EDITION

Java Web Component Developer Certification

H. Deshmukh • J. Malavia • M. Scarpino

W ith the tremendous penetration of J2EE in the enterprise, passing the
Sun Certified Web Component Developer exam has become an important

qualification for Java and J2EE developers. To pass the SCWCD exam (Number:
310-081) you need to answer 69 questions in 135 minutes and get 62% of them
right. You also need $150 and this (completely updated and newly revised) book.

In its first edition, the SCWCD Exam Study Kit was the most popular book used to
pass this most desirable web development certification exam. The new edition will
help you learn the concepts—large and small—that you need to know. It covers the
newest version of the exam and not a single topic is missed.

The SCWCD exam is for Sun Certified Java Programmers who have a certain
amount of experience with Servlets and JSPs, but for those who do not, the book
starts with three introductory chapters on these topics. Although the SCWCD Exam
Study Kit has one purpose, to help you get certified, you will find yourself returning
to it as a reference after passing the exam.

What’s Inside
n Expression Language
n JSP Standard Tag Library (JSTL 1.1)
n Custom tags—‘Classic’ and ‘Simple’
n Session management
n Security
n Design patterns
n Filters
n Example code and the Tomcat servlet container
n All exam objectives, carefully explained
n Review questions and quizlets
n Quick Prep section for last-minute cramming

The authors, Deshmukh, Malavia, and Scarpino, are Sun Certified
Web Component Developers who have written a focused and
practical book thanks to their extensive background in Java/J2EE
design and development. They live, respectively, in Iselin, New
Jersey, Ardsley, New York, and Austin, Texas.

www.manning.com/deshmukh2

Ask the Authors Ebook edition

AUTHOR
4

ONLINE

4

www.manning.com/deshmukh2

