Developing your first tags

In this chapter

® JSP custom tags defined

®m Setting up a development environment
= Hello World (the tag way)

® Compiling, deploying, and testing

58

3.1

3.1.1

What ave JSP custom tags?

Thus far we have seen how servlets and JSPs can be used to build a web application.
These technologies go some distance toward making web development easier, but
do not yet facilitate the separation of Java from HTML in a reusable way. Custom
tags make this possible by bundling Java code into concise, HTML-like fragments
recognizable by presentation developers. Custom tags are therefore an attractive
choice for Java-based web applications and in this chapter, we’ll introduce custom
tags and walk through examples of their development and use. We’ll also look at
how to set up a development environment and deploy, test, and troubleshoot tags.

This chapter takes a mountain-top view of custom JSP tags in order to provide a
clear, high-level look at the subject’s landscape. Later chapters will dive deeper and
home in on each of the topics touched upon here. So don’t be concerned if the
finer details are left for later explanation. The goal now is to jumpstart your tag
development and ensure that you’re sufficiently comfortable with the basics so that
you may start building tags on your own.

What are JSP custom tags?

At its most fundamental level, a tag is a group of characters read by a program for
the purpose of instructing the program to perform an action. In the case of HTML
tags, the program reading the tags is a Web browser, and the actions range from
painting words or objects on the screen to creating forms for data collection. Cus-
tom JSP tags are also interpreted by a program; but, unlike HTML, JSP tags are
interpreted on the server side—not client side. The program that interprets custom
JSP tags is the runtime engine in your application server (TomCat, JRun,
WebLogic, etc.). When the JSP engine encounters a custom tag, it executes Java
code that has been specified to go with that tag. Common tasks performed by tag
codes include retrieving database values, formatting text, and returning HTML to a
browser. Since a tag references some Java code to run when it’s encountered, one
way to think of a tag is simply as a shorthand notation for a block of code.

Notice in figure 3.1 that when the JSP runtime encounters the tag, it causes a
block of Java code to execute and return a message to the client’s browser.

Anatomy of a tag

Tags are often structured with a body and /or attributes which are the places where a
page author (the user of the tag) can include more information about how the tag
should do its job. The following snippet shows the general structure of a tag.
<tagname attributename=“attributevalue”
otherattributename="otherattributevalue” >

Tag’s body... can contain about anything.
</tagname>

59

60

3.1.2

CHAPTER 3
Developing your fivst tags

Java Server Page Browser

public int doStart { »| Tag, you're it!

<manning:mytag/> try { »

Y

pageContext.getOut () .print("Tag,
you're it!");
} catch(IOException ioe) {

throw new ...

return SKIP_BODY;

Figure 3.1 A tag in action

This syntax should look familiar, since we see it so often in HTML tags, such as:

Tag, you’'re it!

Tags can also appear without a body, meaning that the start tag does not have a
matching end tag. These “bodyless” tags look like this:

<bodylesstagname attributename=“attributevalue”
otherattributename="otherattributevalue”/>

You’ve probably seen examples of bodyless tags in HTML, such as:
<input type="input" name="body">

Bodyless tags usually represent a certain function, as in the printing of the value of a
database field onto the page. Tags often have bodies in order to perform an opera-
tion on the content in the body, such as formatting, translating, or processing it in
some way.

JSP custom tags are merely Java classes that implement one of two special inter-
faces. Since tags are standard Java classes, they can interact with, delegate to, or
integrate with any other Java code in order to make that functionality available
through a tag. For instance, we might have a library of utility classes we’ve written
for composing and sending email, or for accessing a particular database that we’d
like to make available to HTML developers. We need build only a few tags that col-
lect the necessary information through attributes and pass this information to our
utility classes.

Using a tag in JSP

JSP code that uses email and database tags such as those just mentioned might look
something like this:

3.1.3

What ave JSP custom tags? 61

<html>
I am sending you an email with your account information
<jspx:sendmail server="mail.corp.com”
from="john.doe@corp.com”
to="foo@bar.com”
subject="mail from a tag”>
Look at how easy it is to send an email from a tag... here is
your status.

<jspx:dbaccess>
<jspx:wdbcon id="conl"/>

<jspx:wjitdbquerys>
select reserves from account where id='<%= userid %>'
</jspx:wjitdbquery>
You have <jspx:wdbshow field="reserves "/>$ in your saving account.

</jspx:dbaccess>

</jspx:sendmail>

</html>

Among the JSP and HTML fragments are special tags prefixed with jspx. Even to
the untrained eye, these tags appear to query a database, present the information in
the content of an email, and send the message. Notice how the attributes help
gather information such as the email sender and subject and the field in the data-
base to display. Also, note how the <jspx:wjitdbquerys> tag contains a Structured
Query Language (SQL) statement within its body that it uses for the database query.
This is a good example of what a JSP using custom tags might look like. Consider
how much messier this JSP would look if we had to include all the Java code neces-
sary for creating classes, setting properties, catching exceptions, and so forth.

The tag library descriptor

An important step in creating tags is specifying how they will be used by the JSP
runtime that executes them. To properly work with a tag, the runtime must know
several things about it, such as what (if any) attributes it has, and whether or not it
has a body. This information is used by the runtime to verify that the tag is properly
employed by a JSP author and to correctly execute the tag during a request. This
crucial information is made available to the runtime engine via a standard XML file
called a tag library descriptor (TLD), a key component of the JSP Specification and
standard across all products that implement it. How to create a TLD is discussed in
section 3.2.4, and covered in greater detail in chapter 5 and appendix B.

62

3.2

CHAPTER 3
Developing your fivst tags

Why tags?

JSP already makes it possible to embed scriptiets (bits of Java code) and JavaBeans in
line with HTML content, so why do we need JSP tags? We need them because tags
were never intended to offer more functionality than scriptlets, just better packag-
ing. JSP tags were created to improve the separation of program logic and presenta-
tion logic; specifically, to abstract Java syntax from HTML.

Scriptlets are not a suitable solution for all web development because most con-
tent developers (art designers, HTML developers, and the like) don’t know Java
and, perhaps, don’t care to. Though much Java code can be encapsulated in beans,
their usage in a JSP still requires the presentation developer to have a basic knowl-
edge of Java syntax and datatypes in order to be productive. JSP tags form a new
“scriptlet-free” and even a completely “Java-free” component model that is adapted
perfectly to the JSP environment with its different developer types. If custom tags
are properly constructed, they can be of enormous use to HTML developers, even
those who have no working knowledge of Java—they won’t even have to know
they’re using it. Tags can reduce or eliminate the number of scriptlets in a JSP appli-
cation in four ways:

= A tag is nothing more than a Java component that takes its arguments from
attribute and body. Since tags can have attributes and body, any necessary param-
eters to the tag can be passed within the tag’s body or as one ofits attributes. No
Java code is needed to initialize or set properties on the component.

= JSP requires a considerable quantity of scriptlets for tasks such as iteration,
setting of initial values, and performing conditional HTML. All of these tasks
can be cleanly abstracted in a few simple tags.

= In many cases, a JavaBean component is configured and activated using
scriptlets. One can develop a set of JSP tags to perform this configuration and
activation without any Java.

= Tags can implement many utility operations, such as sending email and con-
necting to a database, and in this way reduce the number of utility scriptlets
needed inside JSP.

The benefits of custom tags also include the creation of a neat abstraction layer
between logic and presentation. This abstraction creates an interface that allows
Java developers to fix bugs, add features, and change implementation without
requiring any changes to the JSPs that include those tags. In short, JSP tags help
bring you one step closer to the Holy Grail of web development—true abstraction
of presentation and control. For more on the benefits of custom tags, see
chapter 15.

Setting up a development envivonment 63

3.2.1 Comparisons of scriptlets and custom tags

3.3

The differences between scriptlets and custom tags are fairly concrete:

1

Custom tags have simpler syntax. Scriptlets are written in Java and require
the author to be familiar with Java syntax, whereas tags are HTML-like in syn-
tax and require no Java knowledge.

Custom tags are easier to debug and are less error prone than scriptlets, since
omitting a curly bracket, a semicolon, or some other minute character in a
scriptlet can produce errors that are not easy to understand. Custom tag syn-
tax is extraordinarily simple and, with most JSP runtime products, even the
occasional typo in custom tag usage will produce meaningful error messages.

Custom tags are easy to integrate in development environments. Since tags
are a common component of many web technologies, HTML editors have
support for adding tags into the development environment. This allows JSP
authors to continue using their favorite integrated development environ-
ment (IDE) to build tag-based JSPs. Support for JSP scriptlets syntax in
development environments exists, but is only useful to JSP authors well
versed in Java.

Custom tags can eliminate the need for Java in your JSPs. By containing
most of your logic within objects in your scriptlets, you can vastly reduce
the amount of Java code in a JSP; however, custom tags still carry the
advantage of imposing absolutely no Java syntax, something scriptlets can-
not achieve.

For small projects in which all your JSPs will be authored by developers knowledge-
able in Java, scriptlets are a fine solution. For larger projects, where content devel-
opers unfamiliar with Java will be handling most of the presentation, JSP custom
tags provide a real advantage and are a logical choice.

Setting up a development environment

Before we can build our first tag, we need to configure our development environ-
ment. This development environment should at least make it possible to:

= Compile the tags with the servlet, JSP, and JSP custom tags APT!

= Test the developed tags

= Browse the JSP custom tags API documentation.

1 We will take a look at the JSP custom tag API in chapter 4.

64

3.3.1

3.3.2

CHAPTER 3
Developing your fivst tags

There are several Java IDEs in today’s market, some of which provide fine support
for servlet and JSP development; however, we are not going to work with any par-
ticular IDE because it is highly unlikely that you would have the same one that we
select. Also, IDEs are notorious for lagging behind the leading edge of the Servlet
and JSP API. Instead we explain how to fetch all the ingredients for a minimal devel-
opment environment and how to set them up so that you may start developing tags
immediately. This development environment will be concentrated around Tomcat,?
the reference implementation of the servlet API, and the JDK1.2.2 or above (as
available to most operating systems).

Installing the JDK

The first step in setting up the development environment is to install JDK1.2.2 (or
higher) on your development system. More than two years since its first appearance,
JDK1.2 can be found in a matured state on most operating systems, and this book
uses many of its new classes and interfaces, such as java.util.Iterator. Although
JDK1.2 is recommended for tag development, a JDKI.1.x version should suffice.
Installing the JDK is an operating system-dependent task and will not be covered
here, so we’ll assume that you have a JDK installed and that you point into the
installation directory with an environment variable named JAVA HOME.

Installing Tomcat

Tomcat is the reference implementation of the Servlet and JSP API. It is easy to use
and install, has a very small footprint (both on the hard drive and in memory), and
is Open Source—all of which makes it a perfect learning tool. Installing Tomcat with
the basic functionality of a stand-alone servlet and JSP container is really a cinch:

1 Extract the Tomcat binary distribution archive® (available as either .Zip or
tar.gz archives).

2 Define an environment variable named TOMCAT HOME to point to Tomcat’s
installation root directory.

3 Make sure that the environment variable Java_HOME is defined and points
to the directory wherein you installed your JDK.

2 Tomcat’s home on the web is at http://www /jakarta.apache.org

3 You can download the binary distribution directly from Tomcat’s web site. The installation directives sup-
plied in this book apply to Tomcat versions 3.1 and 3.2.

Setting up a development envivonment 65

3.3.3 Testing your Tomcat installation

To test-drive Tomcat, change the directory to TOMCAT_HOME and execute the
startup script in Tomcat’s bin directory. Tomcat should start running in the back-
ground and you can test it by issuing an HTTP request (i.e., http://
your.machine.name:8080/). Once Tomcat is running, the installation of the devel-
opment environment is complete and you may start immediately to develop tags;
but first, let’s look at the Tomcat distribution.

serviet.jar

The .jar file is where you find the interfaces and classes constituting the Servlet and
JSP API. This file is named servlet.jar and is located in Tomcat’s Lib directory. When
compiling a servlet or JSP custom tag, you should make sure that this file is in your
compilation CLASSPATH definition.

webapps directory

Where to place your web applications for Tomcat is the next consideration. Tomcat
can generally be configured to take applications from any place you choose, but
why bother configuring individual applications when you can simply drop your
application into a single directory for deployment? The one directory approach will
prove much simpler for your first applications. Under TOMCAT_HOME there is a
subdirectory named webapps; and whenever Tomcat starts to run, it inspects this
subdirectory, searches for web-application archive files (.war), and automatically
deploys them. Moreover, if Tomcat finds subdirectories under webapps, it will
assume that these directories contain web applications. Deployment to this direc-
tory is thus a simple task.

Javadoc documentation
One last thing to consider with Tomcat is the location of the Javadoc documents for
the Servlet and JSP API. These documents are located in an application bundled
with the Tomcat samples. In the webapps directory, there’s a directory named
ROOT, the home of Tomcat default root application. The root application has a
subdirectory path named docs/api where you can find the Javadoc documents for
the Servlet and JSP API (start with the file index.html).*

With the environment configured and a basic understanding of the deployment
picture, it’s time to build our first custom tag.

* You can also browse these documents by starting Tomcat and referring to http://your.ma-
chine.name:8080/docs/api/index.html.

66

3.4

CHAPTER 3
Developing your fivst tags

Hello World example

Our goal in this section is to create a simple tag that may not be particularly reus-
able, but it will introduce most of the concepts needed for building useful tags. This
simplicity is necessary now, as the myriad details involved with constructing even a
Hello World tag can be daunting at first. Later sections in this chapter will present
tags that have more real-world relevance.

Our Hello World tag is merely going to print “Hello JSP tag World” out to an
HTML page. Listing 3.1 presents the source code for the Hello World implementation.

Listing 3.1 Source code for the HelloWorldTag handler class

package book.simpletasks;
import java.io.IOException;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;
import javax.servlet.jsp.tagext.TagSupport;

public class HelloWorldTag
extends TagSupport { r/"
public int doStartTag()
throws JspException ’/o
{
try {
pageContext.getOut () .print ("Hello JSP tag World"); G,

} catch(IOException ioe) ({ o
throw new JspTagException ("Error:
IOException while writing to the user");

}

return SKIP_BODY;

TagSupport is an abstract class which is part of the JSP tag APIs Listing 3.1 pre-
sents a Java class that implements a tag handler, but it also contains methods and
objects that are new to you unless you already have a very solid background in serv-
lets and JSPs. We mentioned earlier that tags are Java classes that implement one of
two special interfaces. These interfaces define all the methods the JSP runtime uses
to get at the tag’s functionality. As with many Java interfaces, some utility-only
classes that provide basic implementations of these interfaces are available, making
development easier. In the case of our HelloWorldTag, we extend one such utility
class called TagSupport. TagSupport and the interface it implements, Tag, are both

Hello World example 67

part of the custom JSP tag API. Don’t worry too much over the specifics of this
interface. For now it’s important to know only that we need to implement Tag to
create a tag, and we’ve done so by extending TagSupport.

() JSP runtime calls doStartTag() to execute the tag Here we note that there is no

3.4.1

explicit constructor for this tag, nor is there a main () method for invoking the class.
This is because a tag handler is not a stand-alone class, but is instantiated by the JSP
runtime that invokes its methods. The JSP custom tags API defines a set of methods
tor custom tags (which are included in the two special interfaces previously men-
tioned) that the JSP runtime calls throughout a tag’s life cycle. One of these meth-
ods, doStartTag (), can be seen in our example and is called by the JSP runtime
when it starts executing a tag (more about the Tag methods in chapter 4). The
dostartTag () method is a repository for code that we wish to have executed when-
ever the JSP runtime encounters our tag within the page.5

Tag echoes the hello message to the user In our implementation of doStart-
Tag (), we perform three operations. We print the hello message using an out
object that we got from the PageContext (in chapter 2).

Aborts the execution upon errors We watch out for T0Exceptions that may be
thrown by the response Writer, catch them, and abort the tag’s execution by
throwing a JspTagException. Finally, as required by the method, we return an
integer value which tells the JSP runtime how to proceed after encountering our
tag. A value of skIP_BoDY tells the runtime engine to simply ignore the tag’s body,
if there is one, and go on evaluating the rest of the page. There are, of course, other
valid return values for dostartTag (), which we’ll explore in future chapters.

As listing 3.1 shows, the tag is only a few lines long and, indeed, all it does is write
out to the page, but a few details that will reappear in other tags are already evident.
Now that we have the Java source of our tag, it is time to compile it.

Compiling the tag

Compiling Java source into its class (without an IDE) requires careful setting of the
compilation cLASSPATH (a list of all directories and .jar files that hold the classes ret-
erenced in our source code). Basically, the cLasspaTH for a tag handler must
include the Servlet and JSP APIs; you should also include any additional classes or
libraries that you are using within the tag handler (such as JavaMail and JNDI). In

5 Though this would seem to imply that the runtime evaluates a JSP each time a page is requested, we know
from JSP development that the page is only interpreted and compiled into a servlet once. Tags are no ex-
ception; this is just a convenient way to think about how the tag will behave at runtime.

68

3.4.2

CHAPTER 3
Developing your fivst tags

the case of HelloWorldTag, we are not using any additional libraries, and can settle
with the following Javac command line (assuming that JAVA_HOME and
TOMCAT HOME are both defined and we are compiling the source file into a directory
named classes):

For unix:

$JAVA HOME/bin/javac -d ../classes -classpath $TOMCAT HOME/lib/servlet.jar
book/simpletasks/HelloWorldTag.java

For Windows:

$JAVA HOME%\bin\javac -d ..\classes -classpath $TOMCAT HOME%\lib\servlet.jar
book\simpletasks\HelloWorldTag.java

Both command lines use the TOMCAT HOME environment variable to add the Servlet
and JSP API into the CLASSPATH, and this is actually the only JSP-Tags-specific por-
tion in the compilation command. When the compilation ends, we have our com-
piled tag handler in the classes directory and we are ready to continue to the next
step—creating the tag library descriptor (TLD).

Creating a tag library descriptor (TLD)

The JSP runtime requires your assistance if it is to understand how to use your cus-
tom tag. For example, it has to know what you want to name your tag and any tag
attributes. To do this you need to create a file called a tag library descriptor for your
tag. An in-depth explanation of the exact use of a TLD will be covered in chapter 5,
and its syntax is explained in appendix B, so we needn’t go into great detail on these
now. Instead, if we look at our example for the HelloWorldTag, the ways to use a
TLD will emerge.

The TLD is nothing more than a simple extended markup language (XMLO) file,
a text file including a cluster of tags with some predefined syntax. Since the TLD is
just a text file, you can create it with your preferred editor (Emacs, VI, notepad,
etc.) as long as you keep to some rudimentary guidelines as explained in appendix
B. The TLD created for the HelloWorld tag is presented in listing 3.2.

Listing 3.2 Tag library descriptor for the HelloWorldTag

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary 1 1.dtd">

<taglib>

6 XML is briefly described in appendix A.

3.4.3

Hello World example 69

<tlibversion>1.0</tlibversion>
<jspversion>1l.1l</jspversion>
<shortname>simp</shortname>
<uri> http://www.manning.com/jsptagsbook/simple-taglib </uris>
<info>
A simple sample tag library
</info>

<tag>
<name>hello</name>
<tagclass>book.simpletasks.HelloWorldTag</tagclass>
<bodycontent>empty</bodycontent>
<info>
Say hello.
</info>
</tag>
</taglib>
|

Listing 3.2 defines a tag whose name is “hello,” and whose implementing class is
HelloWorldTag, which we just developed. This means that whenever the JSP run-
time sees the tag <hello/s it should actually execute the methods contained in our
HelloWorldTag.

The portion of listing 3.2 unique to this tag is in bold face and, as it demon-
strates, creating a tag library involves many “overhead lines” that specify such infor-
mation as the desired version of JSP and the like. Normally you can just grab (and
update) these overhead lines from a pre-existing library descriptor and add your
own tags below them.

Let’s assume that we saved the TLD in a file named simpletags.tld. We now have
our tag handler class and the TLD to help the JSP runtime use it. These two files are
all we need to deploy our HelloWorldTag and begin using it in a JSD.

Testing HelloWorldTag

Testing HelloWorldTag involves deploying it to a JSP container and writing a JSP
file to use the tag. To do this:

1 Create a web application for your tags (in our case, HelloWorldTag).
2 Deploy your tags in the application.

3 Write a JSP file that will use HelloworldTag.

4 Execute the JSP file created in step 3 and look at the results.

70

CHAPTER 3
Developing your fivst tags

Creating a web application

What must be done to create a new web application in Tomcat? This can be accom-
plished either by deploying a web application archive or creating an application
directory that follows the WAR structure. We are going to create an application
directory, as follows:

1 Make a directory named testapp in Tomcat’s webapps directory.

2 Under the testapp directory make another directory named WEB-INF, and
inside this create directories named lib and classes.

Create a file named web.xml in the WEB-INF directory and add the content of
listing 3.3 into it; web.xml is going to be your web application deployment descrip-
tor; and listing 3.3 contains an “empty” deployment descriptor content.

Listing 3.3 An empty web application deployment descriptor

<?xml version="1.0" encoding="IS0-8859-1"?>

< !DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app 2.2.dtd">

<web-app>
</web-app>

Deploying a tag
You now have an application structure under the testapp directory into which you
may deploy your tags. Tag deployment takes the following steps:

1 Copy your tag implementation classes or jar files into the application direc-
tory; .jar files should go into the newly created lib directory, .class files
should go into the classes directory. In the present case, we will copy the
compiled class into the classes directory (while preserving the package
directory structure).

2 Copy the TLD into a location in the application’s directory structure (WEB-
INF is a good location). In our example we will copy our TLD from
listing 3.2 (simpletags.tld) into the WEB-INF directory.

3 Add a tag library reference into the web application deployment descriptor.
In our case, edit web.xml and add the content of listing 3.4 into the <web-
app> section (these last two steps set up a reference to the TLD as will be
explained in chapter 5).

Hello World example 71

Listing 3.4 A TLD reference entry for the tags described in simpletags.tid

<taglib>
<taglib-uris>
http://www.manning.com/jsptagsbook/simple-taglib
</taglib-uris>
<taglib-location>
/WEB-INF/simpletags.tld
</taglib-location>
</taglib>
|

The tag was deployed into the web application; all we need to do now is to create a
JSP that uses the tag and verify whether it works.

Creating a JSP file to test HelloWorldTag
Developing a JSP file to test HelloWorldTag is a relatively simple task. All we need
to do is craft a JSP file similar to the one presented in listing 3.5.

Listing 3.5 A JSP file to drive HelloWorldTag

<%@ taglib
uri="http://www.manning.com/jsptagsbook/simple-taglib" %/"
prefix="jspx" %>

<html>

<title><jspx:hello/></title> t)

<body>

Executing your first custom tag... <jspx:hello/> t)

</body>

</html>

© Declares that the JSP file uses the library referenced by the URI and that the library’s
tags are referenced by jspx Listing 3.5 is elementary, yet it illustrates a few impor-
tant points about tags. The first is the taglib directive at the beginning of the JSP
file. The taglib directive is further discussed in chapter 5, but for now we need to
note that it indicates to the JSP runtime where the tag library lives and the prefix by
which we’ll refer to tags in this library. With this directive in place, the JSP runtime
will recognize any usage of our tag throughout the JSP, as long as we precede our
tag name with the prefix “jspx.”

@ Uses the hello tag through the JSP file We also see how the custom tag can be used
through the JSP file. We use the HelloWorldTag twice, and we could, of course, have
used it as much as we wanted. All that’s needed is to add it to the JSP content. Note
that our tag is bodyless, necessitating the use of the trailing backslash.

72

3.4.4

3.4.5

CHAPTER 3
Developing your fivst tags

-3 Hello 1SP tag World - Microsoft Internet Ex I -0l x|
J File Edit ‘iew Favorites Tools Help H Liriks ”E

Executing vour first custom tag... Hello JSP tag World

|
|@ Darne ’_ l_ Local inkranet S

Figure 3.2 Output generated using the hello tag driver JSP

Figure 3.2 shows the results achieved by executing the JSP file in listing 3.5. Observe
that wherever we had the <hellos tag, we now have the content generated by it.

Executing HelloWorldTag
Once we’ve created a web application, deployed the tag, and created and deployed
a JSP to use it, all that’s left is to view the page in a browser.

Did it work?

If your tag didn’t work properly there is always some recourse. The error messages
you see will vary, depending on which JSP runtime engine you’ve chosen. If, how-
ever, the messages you’re seeing aren’t helpful, here are a couple of suggestions:

= Make sure there are no spelling errors in the URL that you specified for the
browser when asking for the JSP file (it should look like http://
www.host.name /appname /jspfile.jsp).

= Make sure there are no spelling errors in your TLD file and that you’ve spec-
ified the fully qualified class name for your tag—package names and all.

= Verify that your TLD file is in a location where the JSP engine will be seeking
it, such as the WEB-INF directory in your web application.

= Make sure the taglib directive has been properly placed at the top of the JSP.
Without this, the engine doesn’t know where to find the code for your tags
and will just ignore them. When that happens, you’ll actually see the tag in
the HTML source.

A tag with attributes

Our HelloWorldTag is predictable; in fact, it always does exactly the same thing.
In the dynamic world of web development, that is seldom the case, so let’s look at
a tag that behaves realistically, based on some user-specified attributes.

Hello World example

A web page might, for instance, need to display the value stored in a cookie such
as a user name. Rather than forcing the page author to learn Java to access that value,
we’ll build a simple tag that does this for him. The tag should be flexible enough
to be used in retrieving the value of any accessible cookie, so we’ll create a tag
attribute called cookieName to allow this. The first step in supporting this new
attribute is to modify our tag handler class to receive and make use of this new
attribute(listing 3.6):

Listing 3.6 Source code for the CookieValueTag handler class

package book.simpletasks;
import java.io.IOException;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;
import javax.servlet.jsp.tagext.TagSupport;
import javax.servlet.http.*;

public class CookieValueTag extends TagSupport {

String cookieName; "
public int doStartTag()
throws JspException

try {

Cookie[] cookies =

((HttpServletRequest)pageContext.getRequest ()) .getCookies () ;

if (cookies != null) {

for (int i=0; 1 < cookies.length; i++) {
if (cookies[i] .getName () .equalsIgnoreCase(cookieName)) {

pageContext .getOut () .print (cookies[i] .getValue()); t)
break;

}
}
}

} catch(IOException ioe) ({
throw new JspTagException ("Error: IOException while writing to the user") ;

}

return SKIP BODY; (3)
public void setCookiename (String value)
cookieName = value;

}
}

@ The field that will get set by the attribute.

73

CHAPTER 3
Developing your fivst tags

@ Prints the value of the cookie to the response.
© Returns SKIP BODY to tell the JSP runtime to skip the body if one exists.
O Invokes the set method when the JSP runtime encounters this attribute.

All we needed to do was add a set method called setCookieName () and assign a
variable within it. The value of that variable is examined within our tag handler’s
dostartTag () to decide which cookie value to return. Now we need to inform the
JSP runtime of this new tag and its attribute. Recall that the TLD is where we spec-
ity this kind of information, so we need to modity our previous TLD to support
CookieValueTag. The tag declaration in our TLD file (listing 3.7) now looks like
the following:

Listing 3.7 The new TLD file with our CookieValueTag

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary 1 1.dtd">

<taglib>
<tlibversion>1.0</tlibversion>
<jspversion>1l.1l</jspversion>
<shortname>simp</shortname>
<uris> http://www.manning.com/jsptagsbook/simple-taglib </uris>
<info>
A simple sample tag library
</info>

<tag>
<name>hello</name>
<tagclass>book.simpletasks.HelloWorldTag</tagclass>
<bodycontent>empty</bodycontent >
<info>
Say hello.
</info>
</tag>
<tag>
<name>cookievalue</name>
<tagclass>book.simpletasks.CookieValueTag</tagclass>
<bodycontent>empty</bodycontent>
<info>
Get a cookie's value.
</info>

<attribute> ’/o
<name>cookiename</name>

<required>true</required> e)
</attribute>
</tag>
</taglib>

Hello World example 75

O This tag will have an attribute called cookiename.

(2] Specifies that this attribute is always required for this tag.

3.4.6

The tag definition itself should look familiar, since it is very similar to our Hello-
WorldTag. The important difference is, of course, the attribute we’ve included.
Note that the name of an attribute, in our case cookiename, is used by the JSP run-
time to find setCookieName () to use in the tag handler; therefore, these need to
match exactly for the tag to function.

To use this attribute within a JSP, syntax such as in listing 3.8 works well:

Listing 3.8 A JSP file to drive HelloWorldTag

<%@ taglib
uri="http://www.manning.com/jsptagsbook/simple-taglib" k/"
prefix="jspx" %>

<html>

<title>C is for Cookie</titles>

<body>

Welcome back, <jspx:cookievalue cookiename="username'> t)

</body>

</html>

Declares that the JSP file uses the library referenced by the URI and that the library’s
tags are referenced by jspx.

Uses the cookeivalue tag to retrieve a cookie called "username”.

. , . .

Assuming we’ve used“thls tag 1{71 a case AC is for Cookie - Microsaft ... Mil=] 3

where a cookie named “username” will be

accessible, we’ll see a message like that | Fle Edt Yew Favoites I”

shown in figure 3.3. &= -Q ¢ & |[REES >
Adding attributes to your tags makes =]

them much more flexible and useful to the Welcome back, Adam!

web pages where they are used. We

explore the use of tag attributes in further

detail in chapters 4 and 6.

A\

Packaging tags for shipment @] [[MyUompuler

Once the tags have been tested to your Figure 3.3 CookieValueTag in action.
satisfaction, it’s time to package them in a
standard deployable manner. Packaging

76

3.5

CHAPTER 3
Developing your fivst tags

tags means putting the implementation classes along with the library descriptor in a
Jar file following a convention that further instructs you to:

= Put your tag class files inside the .jar archive while maintaining their package
structure.

= Put your TLD in the .jar file in a directory called META-INF.

For example, packaging our lone HelloWorldTag will require the following .jar
file structure:

/book/simpletasks/HelloWorldTag.class
/META-INF/simpletags.tld

This .jar packaging need not be complicated; all that’s required is to create the
desired directory structure on your file system and use the jar command (bundled
with the JDK) to archive this structure into the .jar file. The command to place our
class and TLD in a jar called hello.jar looks like this:

jar cf hello.jar META-INF book

Now you can distribute your tag.

A tag with a body

Remember that tags can have a body or be bodyless. Our HelloWorldTag was an
example of a tag without a body, so let’s see an example of a tag with one. We create
them whenever we want to take a block of content (typically HTML) and modify it
or include it in the server’s response. Think back to the HTML tag. The
body of the is where you put text to which you wish to apply a particular
font. Tags with bodies are great for translating content (from, say, HTML to WML),
applying formatting, or indicating that a grouping of content should be treated in a
special way, as is the case with the HTML <form> tag.

Here is an extremely simplified example that illustrates how a tag with a body
works. Suppose we need to create a tag that will change a block of text from capital
letters to lower case. We’ll be creative and call this tag LowerCaseTag. Our new tag
will have a lot in common with HelloWorldTag, but there are a few differences. The
first is that LowerCaseTag doesn’t extend from TagSupport, rather from BodyTag-
Support. The formula is elementary: if your custom tag doesn’t have a body or will
include just its body verbatim, it should either implement the Tag interface or extend
its utility class, TagSupport. If, however, your tag will modify or control its body, it
needs to implement BodyTag or extend its utility class called BodyTagSupport. We’ll
cover several additional examples of both types in the next chapters.

3.5.1

00 ® o0

A tag with a body ‘ 77

LowerCaseTag handler

Here is the code for our LowerCaseTag handler class:

Listing 3.9 Source code for the LowerCaseTag handler class

package book.simpletasks;

import java.io.StringWriter;
import java.io.PrintWriter;
import java.io.IOException;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class LowerCaseTag extends BodyTagSupport { o

public int doAfterBody () ’/0

throws JspException

try {
BodyContent body = getBodyContent () ; e
JspWriter writer = body.getEnclosingWriter () ; Q

String bodyString = body.getString() ;
if (bodyString != null) {
writer.print (bodyString.toLowerCase()) ; o

} catch(IOException ioe) ({
throw new JspException ("Error: IOException while writing to the user") ;

}

return SKIP_ BODY; (6]

BodyTagSupport is an abstract class which is part of the JSP tag APls.

The method doAfterBody () is executed by the JSP runtime, once it has read in the
tag’s body.

Retrieves the body that was just read in by the JSP runtime.

Gets JspWriter to output the lowercase content.

Writes the body out to the user in lowercase.

Returns SKIP_BODY is returned to tell the JSP runtime to continue processing the rest
of the page.

With the tag handler class written, the next step is, once again, to create a TLD.
This time our tag entry looks like this:

78

CHAPTER 3
Developing your fivst tags

Listing 3.10 Tag entry for LowerCaseTag

<tag>
<name>lowercase</name>
<tagclass>book.simpletasks.LowerCaseTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>
Put body in lowercase.
</info>
</tag>
|

The only difference in this listing is that the <bodycontents field is no longer
empty but now must be JSP. This is the way to indicate to the runtime that Lower-
CaseTag will have a body, unlike our HellowWworldTag that did not. There will be
much more about bodycontent and other TLD fields in chapters 5 and 6.

We have returned to the stage where we need to use this new tag in a JSP file.
Our JSP looks like this:

Listing 3.11 A JSP file to drive the LowerCaseTag

<%@ taglib

uri="http://www.manning.com/jsptagsbook/simple-taglib" k/"
prefix="jspx" %>

<html>

<title>LowerCaseTag </title>

<body>

<jspx:lowercase>

I’'ve got friends in low places.</jspx:lowercase> t)

</body>

</html>

|

Declares that the JSP file uses the library referenced by the URI and that the library’s
tags are referenced by jspx.

Uses the lowercase tag to change its body to lowercase.

Now we add our tag to our deployment directory, pull up the JSP in our browser
(figure 3.4), and voila!

This tag doesn’t do anything especially useful, however it is always possible to
modity it to do something worthwhile with the body. Some examples might include
the body as the message of an email, translating the body from one markup lan-
guage to another, or parsing the body of XML and outputting certain nodes or
attributes. In the next chapters, we’ll see how the body of a custom tag can include
other custom tags to allow cooperation with very powerful results.

3.6

Summary ‘ 79

Summary

What are custom tags? Why use them? A LowerCaseTag M=
Custom tags are unique JSP compo-
nents that make it easy to integrate
portions of Java logic into a JSP file in
an easy-to-use, well-recognized for-
mat. Custom tags also answer to well-
known API and life cycle definitions
(to be discussed in chapter 4) that
make it clear how tags behave in any
development or runtime environment. |

Why use custom tags? Custom tags Figure 3.4 Output generated using the
represent a great way to separate the lowercase tag driver JSP
business logic and presentation, thus
enhancing manageability and reducing overall maintenance costs. Another benefit is
their ease of use. By using tag syntax, many of the scriptlets and other portions of
Java code associated with the classic JSP programming are no longer needed, and the
JSP development can be opened to content (commonly, HTML) developers.

We also discussed the mechanics related to tag development, and saw that it is
not so difficult to develop simple, but useful, tags.

This chapter provided a solid foundation for you to start developing custom JSP
tags. It presented four important tools that you will use in your daily tag development:

inle Edit View Favorites Tools >

-

i've got friends in low places

= How to configure a simple (and free) development environment with which
you can compile and test your tags.

= How to develop, compile, and test simple tags using this development
environment.
= How to write a TLD file to describe your tag’s runtime behavior and attributes.

= How to package your tag library in a distributable .jar file.

If you have a lot of questions at this point, that’s good. We’ve only lightly touched
on many of the nuances of tag development in order to help you get started right
away. In the next chapters, we will dive in and explore more fully each of the topics
presented here.

