
S A M P L E C H A P T E R

SQL Server 2005
Reporting Services in Action

by Bret Updegraff
Sample Chapter 11

Copyright 2006 Manning Publications

vii

brief contents

1 Introducing SQL Server 2005 Reporting Services 1

2 Report authoring basics 41

3 Working with data 64

4 Designing reports 104

5 Using expressions and functions 150

6 Using custom code 185

7 Ad hoc reporting with the Report Builder application 215

8 Managing the Reporting Services environment 259

9 Securing Reporting Services 311

10 On-demand report delivery 341

11 Mastering the ReportViewer controls 389

12 Subscribed report delivery 420

13 Extending Reporting Services 453

14 Performance and scalability 497

appendix A Installing SQL Server Reporting Services 524

appendix B Understanding .NET code access security 531

389

C H A P T E R 1 1

Mastering the
ReportViewer controls
11.1 How the .NET ReportViewer

controls work 390
11.2 Using ReportViewer in

remote mode 394
11.3 Using ReportViewer in local

mode 397

11.4 Custom validation with the Report-
Viewer control 406

11.5 Converting report files 411
11.6 Deploying applications that use

ReportViewer controls 416
11.7 Summary 418

ReportViewer controls are part of Visual Studio 2005 and, when used, are guaranteed
to change the way you integrate RS reports into your applications. The ReportViewer
controls are built into the toolbox of Visual Studio 2005 and don’t require any down-
loads or additional installation. When you want to place an RS report in your win-
dows or web application, you can simply drag the control into the design
environment, configure the control with properties for your report, and run your
application. It’s that easy. Why dedicate an entire chapter to these controls if it’s that
easy, you may ask? Let’s just say it can be that easy, but as with any of the .NET con-
trols, there are many ways to configure and tweak them to meet your needs.

In this chapter you learn how these controls work. We examine the different
modes of these controls, and explain when you’ll want to use each mode. You also see
how these controls can be used to integrate the reports that have been deployed to the
Report Server (in remote mode), as well as how these controls can be used to render
reports into your applications without the use of a Report Server (in local mode). In

390 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

addition, we explore how to implement custom validation of your report parameters
and how to convert your Report Server reports so that they can be used in an envi-
ronment that is disconnected from a Report Server. Finally, we discuss deploying
applications that use the ReportViewer controls and what you need to do for your
deployments to be successful.

Let’s get started by learning how these controls work.

11.1 HOW THE .NET REPORTVIEWER
CONTROLS WORK

In chapter 10 we covered the architecture for pulling reports out of the Report Server.
While that information is very important for the report developer, .NET application
developers won’t need this level of understanding to add reports to their applications
using the ReportViewer controls. Because the ReportViewer controls mask the RS
architecture from application developers, developers can add existing reports to their
applications without having a strong background in Reporting Services.

Using these controls should be your method of choice when integrating RS reports
into your Visual Studio 2005 Windows and web applications for two reasons:

• Ease of use

• The ability to completely manage the report properties through these controls

Using the ReportViewer controls allows you to spend more time focusing on the busi-
ness logic of your applications and less time integrating reports into your applications.

Let’s look first at how the ReportViewer controls work for web applications versus
Windows applications.

11.1.1 Controls for web and Windows applications

There is a ReportViewer control for both Windows and web applications. Depend-
ing on the type of application you are working with, the Visual Studio toolbox will
contain the appropriate control. While at first glance these controls seem to be iden-
tical, there are actually a few subtle differences between them. Table 11.1 showcases
these differences.

Table 11.1 Differences between the Windows and web ReportViewer controls

ReportViewer

control feature
Web Windows

Presentation Uses HTML formatting to
display a report.

Uses a Graphical Device Interface (GDI) to
provide a visual experience that is consistent
with Windows user interface styles.

Processing Local report processing can be
configured for asynchronous
processing.

Local report processing is always performed as
an asynchronous process.

continued on next page

HOW THE .NET REPORTVIEWER CONTROLS WORK 391

The ReportViewer controls each have two processing modes: remote and local. Let’s
take a closer look at these modes so that you’ll know when to use each mode and also
understand the differences as well as limitations of each.

11.1.2 Choosing remote or local mode

The ReportViewer controls can process and render a report with or without Report
Server access. If you have server access (and this is more common), you choose remote
mode. Remote mode allows the application developer to select a Report Server and
path to a report as well as control most of the properties and features of RS by chang-
ing properties of this control. We explore these properties in section 11.1.3.

In some cases, you might not want to access the Report Server, or you may not
have access to it, so you choose local mode. Local mode provides some additional
options that take Reporting Services to the next level from its original version. You are
no longer tied to the Report Server, which means that you can create reports that run
from local data sources in a disconnected environment. Local mode also enables you
to use objects and Web services as data sources for your reports. This opens a whole
new world of reporting for you.

Printing Printing reports from the web
server control uses an ActiveX
print control if the report is
processed on a remote server.

If you want to print a locally
processed report from the
web server control, you can
export the report to another
output format before you
print.

Printing reports from the Windows Forms
control uses the print functionality of the
operating system.

Deployment The deployment strategy for
reports hosted in the Web
server control in an ASP.NET
application must take session
state and web farm
configuration into account.

If you are using the web
server control to process a
report on a remote Report
Server, you must consider
how to authenticate
application users to access
the server and any external
data sources that provide data
to reports.

If you are deploying the ReportViewer with a
Windows application, you will need to use the
bootstrap features in Visual Studio to be sure
that ReportViewer is installed on the client
machine along with your application. See
section 11.6 of this chapter for more
information.

Table 11.1 Differences between the Windows and web ReportViewer controls (continued)

ReportViewer

control feature
Web Windows

392 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

Regardless of the processing mode, ReportViewer-generated reports look and
function in a very similar way. To help you better appreciate the differences between
processing modes, table 11.2 lists several ReportViewer features and how these fea-
tures are affected by the mode used.

Before you see each processing mode in action, let’s learn about some of the Report-
Viewer properties that you’ll encounter most often.

11.1.3 Managing properties of the ReportViewer controls

Both modes of the ReportViewer controls share a number of common properties that
can be set. For example, you might want to change the color for the links in the tool-
bar (LinkActiveColor and LinkActiveHoverColor) or the height and
width of the ReportViewer (Height and Width). Another common configuration is
to hide or show the toolbar itself by using the ShowToolbar property. We explore
this in more detail in section 11.2.2.

Table 11.3 lists the properties you will use most of the time. Two of the properties
that we cover in our examples later in this chapter are the ShowToolbar and the
ShowContextMenu properties.

Table 11.3 does not contain the complete list of properties; for that, see the SQL
Server Books Online documentation or search for “ReportViewer Controls (Visual
Studio)” in the Visual Studio product documentation. The best way to understand
how these properties affect the ReportViewer controls is through example. In the next
section, we walk you through an example of using the ReportViewer in remote mode,
and we also configure many of the properties that are shown in table 11.3.

Table 11.2 Differences between remote and local modes

ReportViewer

control feature
Remote mode Local mode

RDL Management Report definition (RDL) is supplied and
rendered by the Report Server.

The RDL is supplied by the host
application instead of being
retrieved from a Report Server.

Report Engine Uses the Report Server engine. Uses the same engine as the Report
Server but is embedded into the
application.

DataSet Supplies the data as SQL Server DataSet. Supplies the data as an ADO.NET
DataTable to the report engine.

Export Formats Full Export options (see chapter 1). Only exports to Excel or PDF format.

Report Creation Report Creation is done in the Business
Intelligence Development Studio with the
Reporting Services project.

Report creation is integrated into
the Windows application VS 2005
project instead of having a separate
Reporting Services project.

HOW THE .NET REPORTVIEWER CONTROLS WORK 393

Table 11.3 Commonly used properties of the ReportViewer controls

Member Description

ProcessingMode Gets or sets the processing mode for the control. Possible values
are Remote and Local.

DocumentMapWidth Gets or sets the document map width in pixels.

LinkActiveColor Gets or sets the active color for links in the toolbar. Note that this
does not have any effect on links in your reports.

LinkActiveHoverColor Gets or sets the hover color for links in the toolbar. Note that this
does not have any effect on any links in your reports.

LinkDisabledColor Gets or sets the color for disabled links in the toolbar. Note that
this does not have any effect on any links in your reports.

PromptAreaCollapsed Gets or sets a Boolean value that determines whether the
parameter area is initially collapsed or expanded. You must specify
a default value for all parameters if you are going to set this to
true. If you do not specify default values, you will receive an error
similar to the following: The 'Customer Name’ parameter is
missing a value.

ShowParameterPrompts Gets or sets a Boolean value that determines whether the
parameter area is shown in the control. You must specify a default
value for all parameters if you are going to set this property to
false. If you do not specify default values, you will receive an error
similar to the following: The 'Customer Name’ parameter is
missing a value.

ShowToolbar Gets or sets a Boolean value that enables or disables the HTML
Viewer toolbar. If you are disabling the toolbar as a means to limit
the end user’s functionality for Windows applications, you should
also set the ShowContextMenu to false.

ShowContextMenu Gets or sets a Boolean value that enables or disables the context
menu for the ReportViewer control. This property is only available
in the Windows ReportViewer control. The context menu will
expose many of the features in the toolbar such as print, export,
zoom, and page properties.

ShowProgress Gets or sets a Boolean value that determines whether a progress
animation is shown while waiting for the report to render.

Height and Width These properties allow you to get or set the height and width
properties of the ReportViewer control. For the Windows control
you need to specify this value as number of pixels (without adding
px at the end of the number). For the web control you can use
both pixels or percentages for the width column. While the
width property works well with both pixels and percentages,
the height property does not seem to function well
with percentages.

394 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

11.2 USING REPORTVIEWER IN REMOTE MODE

As we stated earlier, using the ReportViewer controls in remote mode forces you to
pull the reports directly from the Report Server. This means that the reports have
already been created and deployed to the Report Server and you use the ReportViewer
controls in remote mode to get the reports and render them into your applications.

In this section, you see some examples of using the ReportViewer control to pull
data from objects. Also, we cover some of the many properties of the ReportViewer
controls and explore some real-world examples. For these walkthrough examples, we
encourage you to create your own Windows or web projects and use the code pro-
vided with the book as a reference. You’ll find the code samples in the chapter 11
folder in the AWReporterWin and AWReporterWeb projects.

11.2.1 Creating, configuring, and running the control

In this section you learn how to create and configure the ReportViewer controls in
remote mode by doing the following:

• Create a Windows Form and add the ReportViewer to it.
• Configure the properties of the ReportViewer.
• Run the Windows Form and view the Sales By Territory report from part 1 in

the ReportViewer.

Adding the ReportViewer control to a Windows Form

The example code for this section is in the chapter 11 folder of the AWReporterWin
project. We recommend you create your own Windows application project for this
walkthrough. Once you have a project to work with, follow these steps:

Step 1 Create a Windows Form project and name it ReportViewerRemote.cs. If
you created a new project for this walkthrough, you can use the default form
in the project named Form1.cs and rename it to ReportViewerRemote.cs.
You can find the ReportViewer control within the data controls of the tool-
box (see figure 11.1).

Step 2 Drag and drop this control onto the Windows Form.

Figure 11.1

The ReportViewer

Control is shown here

in a Windows Form.

USING REPORTVIEWER IN REMOTE MODE 395

Configuring the ReportViewer control

Now you need to enter all of the required information to integrate an RS report into
a Windows application. Follow these steps:

Step 1 Set the size properties and dock the control to the form. For this example
you want to set the size properties to about 600 pixels wide by 450 pixels
high. When the ReportViewer control is dropped onto the form, the smart
tag window appears. Dock the ReportViewer control to your form by clicking
on the dock to parent form… link in the smart tag window. If you don’t see
the smart tag window, you can get to it by selecting the ReportViewer con-
trol and clicking on the small arrow icon, as shown in figure 11.1.

Step 2 Set the control properties. First, expose the properties by selecting the con-
trol and viewing the properties window for the control. Let’s set the
ShowZoomControl property to false, as shown in figure 11.2. You can see
that there are a number of items in the toolbar that can be shown or hidden
when the report is rendered. We work with these properties a little later on,
but for now let’s switch our attention to configuring the control to process
the Sales By Territory Interactive report that you created in chapter 4.

Step 3 Configure the control. To view configuration properties, click on the smart
tag icon found in the upper right of the control. Since we are exploring the
remote mode of the ReportViewer, select <Server Report> from the
Choose Report field.

Figure 11.2

You can hide or show toolbar

buttons by modifying properties

of the ReportViewer control.

396 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

NOTE Choosing <Server Report> automatically sets the Processing
Mode property to Remote. We could have simply gone through the prop-
erty settings to configure this control, but the smart tags settings are an eas-
ier way to accomplish our goal.

Step 4 Enter a valid Report Server URL and
report path (shown in figure 11.3). Be
sure to include the full path for the report
starting with a slash (/). Also be sure to
leave the extension off the report name.
For this example, the report path should
be /AWReporter/Sales By Territory.

Running and viewing your report

You are now ready to see the results of your work.
When you run the application, you should see the
report shown in figure 11.4.

Let’s take a look at how you might customize the ReportViewer.

Figure 11.3 The smart tag

window exposes a great starting

point for configuring the

ReportViewer control.

Figure 11.4 In the Sales By Territory report, the Zoom functionality is hidden from

the toolbar.

USING REPORTVIEWER IN LOCAL MODE 397

11.2.2 Additional customizations for

the ReportViewer control

Let’s say you don’t want your end users to see the HTML toolbar. Maybe you have
your own toolbar in your application, or maybe you just don’t want your users to have
the functionality provided in the HTML toolbar. Simply set the ShowToolbar
property to false from the ReportViewer control property window (figure 11.2). The
toolbar is shown right above the report title in figure 11.4.

If you are trying to disable functionality from the end user, hiding the toolbar
won’t enforce this. Users can simply right-click on the rendered report to show the
context menu, which exposes the toolbar functionality. To truly disable all toolbox
functionality, you need to either set both ShowToolbar and ShowContextMenu
to false or set the properties for the functionality that you want to disable.

What if you want to disable some of the functionality, but not all of it? In this
hypothetical situation, you don’t want your users to be able to export or print this
particular report, but you do want them to have the ability to zoom in and out.
Therefore, you need to expose the toolbar, but to disable the export or print function-
ality, you have to set ShowExportButton and ShowPrintButton to false. Not
only will the control hide the buttons, but if users right-click on the control they
won’t see the option to export or print.

Using remote mode allows you to add the reports that you created and deployed
to your Report Server in part 1 of this book. Using this mode is the easiest and quick-
est way to add existing reports to your applications. After reading this section, you
should be armed with the knowledge needed to integrate, configure, and customize
existing reports into your .NET 2.0 applications.

NOTE Even though there are separate controls for Windows applications versus
web applications, it is important to understand that the differences are
minor. If we had demonstrated this in an ASP.NET web application, you
would have seen that all of the steps are virtually the same.

In the next section, we examine the other side of the ReportViewer controls:
local mode.

11.3 USING REPORTVIEWER IN LOCAL MODE

The local mode of the ReportViewer controls provides rich reporting without the use
of a Report Server by embedding the report definition inside the application. This is
a great way to use Reporting Services when you can’t access a Report Server.

To use local mode, you first have to create a report using Visual Studio 2005 from
within your Windows or web application project. This is different from remote
mode, in which you used reports that were created using the Report Designer and
deployed to a Report Server. This means that with local mode you cannot natively use
reports that you have already created and deployed to your Report Server.

398 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

Report Server (remote mode) reports have an .rdl extension whereas local reports
used by the ReportViewer controls use the .rdlc extension. Later in section 11.5.1
you learn how to convert your RDL files for use with local mode.

In this section, you learn how to create the RDLC from your Windows or web
applications by creating local reports from a variety of data sources. Let’s start off by
using the ReportViewer control to get information from a database.

As before, for this walkthrough example you can reference the sample code in the
Chapter 11 folder of the AWReporterWin project.

11.3.1 Creating a local report with a database

as the data source

As stated earlier, in local mode the report file is created as an RDLC file instead of an
RDL file. A second difference is that the report is created from within your application
projects instead of a separate Reporting Services project. For the most part, everything
else will feel the same as it did with remote mode, but there are some minor differ-
ences. We showcase many of these differences in our examples.

For this hypothetical situation, you’ve been asked to make the AWC employee
directory available to field sales agents who don’t typically have access to the AWC
network. Let’s assume that there is a process built that replicates or syncs the data
from the AWC database to a database on the sales agent’s local machine.

NOTE We chose to run this from the same local database that the other examples
run from. In a real-world scenario, the client computer would likely be run-
ning SQL Express and would also not have an exact replica of the original
database. To simplify the code setup for this book, we simply pretend this
is a separate database.

Step 1 Create a new Windows Form and call it ReportViewerLocal.cs. Stretch the
form, add the ReportViewer, and anchor the control just as you did in the
ReportViewer remote example earlier. Instead of choosing <Server
Report> from the Choose Report property of the smart tag window
(figure 11.3), click the design new report link. This creates a new RDLC file
and opens it up in your project. On the left side of your design window you
should see a Data Sources tab; if not, you can add it by selecting Data >
Show Data Sources from the top menu. You can also toggle the Data Sources
view by pressing Shift-Alt-D.

Step 2 Create a data source for your report by right-clicking in the Data Sources
section or by selecting Data > Add New Data Source from the top menu.
This opens the Data Source Configuration Wizard, as shown in figure 11.5.

Step 3 Select Database and click the Next button. The next screen lets you choose
your data connection by either selecting an existing connection or creating a new
connection. Let’s set this data source up for our AdventureWorks database.

USING REPORTVIEWER IN LOCAL MODE 399

Step 4 Once you’ve set up the data connection and clicked the Next button, you’ll see
a screen that prompts you to name your dataset and choose which database
objects you want to include. Figure 11.6 shows the high level of the available
database objects. For this example, name your dataset EmployeeDirectory
and select a database view to retrieve the data. To use the database view, you
must expand the views by clicking on the plus sign and then select the
vEmployee(HumanResources) view. Then click Finish. Figure 11.7
shows the design environment after you’ve created the dataset for your report.
Notice that EmployeeDirectory is created as an XSD file in your project,
which allows you to reuse this dataset in other reports, forms, or code if needed.

Step 5 Because reports are created in the Business Intelligence Development Studio
environment, you should be comfortable creating your report from this
point on. For this report we created a simple table report with six columns:

• Name
• Job Title
• Phone
• Email
• City
• State

Figure 11.5 The Data Source Configuration Wizard allows you to create data

sources from a database, Web service, or an object.

400 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

Figure 11.6

You can add tables,

views, stored

procedures, and

functions to your

dataset for use in

local reports.

Figure 11.7 The dataset EmployeeDirectory shows up in the Data Sources section as

well as in your project code as an XSD file.

USING REPORTVIEWER IN LOCAL MODE 401

NOTE For more information on creating tabular reports, see part 1 of this book.

One problem with creating local reports is that you can’t preview the report
in the Visual Studio IDE as you could if you were designing in a Reporting
Services project. To preview your report you will need to complete step 5.
For now, apply any formatting and save this report.

Step 6 Now we’ll add the report to the form. First,
open the ReportViewerLocal Windows
Form, and in the smart tag window, select
the report that you created to add it to the
form. Figure 11.8 shows the ReportViewer
task’s smart tag window after you’ve created
a local report in your project.

You have now created your first local report, which
you can run without using a Report Server. If you
doubt that this report is completely local, try stopping the SQL Server Reporting Ser-
vices service and rerunning the report.

11.3.2 Creating a local report with an object

as the data source

You are not limited to getting data directly from a database. Using local mode, you
can get data for your reports from your .NET business objects or data objects. In fact,
you may not have to do any special coding to your business objects in order to use
them. Let’s take a look. The chapter 11 folder in the AWReporterWin project con-
tains a sample of a business object that gets all of the products and aggregates the sales
by category and subcategory. First we will go through the objects that have been cre-
ated for this example.

Business object code

The Product.cs file has two classes: Product and ProductInformation.
Listing 11.1 shows the code for the Product class.

namespace AWC.Reporter.Win
{
 public class Product
 {

 private string productName;
 public string ProductName
 {
 get{return productName;}
 set { this.productName = value; }
 }

Figure 11.8 The ReportViewer

lets you choose the local reports.

Listing 11.1 AWC.Reporter.Win product object

402 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

 private string productCategory;
 public string ProductCategory
 {
 get { return productCategory; }
 set { this.productCategory = value; }
 }
 private string productSubCategory;
 public string ProductSubCategory

 {
 get { return productSubCategory; }
 set { this.productSubCategory = value; }
 }

 private decimal productSales;
 public decimal ProductSales
 {
 get { return productSales; }
 set { this.productSales = value; }
 }
 }

The Product class contains four properties: ProductName, CategoryName,
SubCategoryName, and ProductSales. You’ll use this object when you set up
your dataset for your report. Listing 11.2 shows the code for the Product-
Information class.

 public class ProductInformation
 {
 public static List<Product> GetProducts()
 {
 SqlDataReader rdr = null;
 SqlCommand cmd = null;
 SqlConnection conn = new SqlConnection
 (global::AWC.Reporter.Win.Properties.Settings.
 Default.AdventureWorksConnectionString);
 List<Product> ProductList = new List<Product>();
 try
 {
 conn.Open();
 cmd = new SqlCommand("spGetProductSalesByCategory",conn);
 cmd.CommandType = CommandType.StoredProcedure;
 rdr = cmd.ExecuteReader();
 Product prod = null;
 while (rdr.Read())
 {
 prod = new Product();
 prod.ProductName = rdr.GetString
 (rdr.GetOrdinal("ProductName"));

Listing 11.2 The ProductInformation object, which uses .NET generics to return

a list of product objects

Returns generic list
of Product objectsb

➥

Instantiates a new
Generic object c

Puts returned dataset
into SqlDataReaderd

USING REPORTVIEWER IN LOCAL MODE 403

 prod.ProductCategory = rdr.GetString
 (rdr.GetOrdinal("ProductCategory"));
 prod.ProductSubCategory = rdr.GetString
 (rdr.GetOrdinal("ProductSubCategory"));
 prod.ProductSales = rdr.GetDecimal
 (rdr.GetOrdinal("Sales"));
 ProductList.Add(prod);
 }

 }
 catch(SqlException ex)
 {
 throw ex;
 }
 finally
 {
 conn.Close();
 }
 return ProductList;
 }
 }

The code here is pretty straightforward. The ProductImport object has a static
class called GetProducts() b. You’ve created this as a static method so that you
can simply call this method without having to instantiate the object first. Note that
this method returns a new type of object that is available in the 2.0 version of the
.NET Framework. This <List>Product states that you will return a list of objects,
but not just any type of object. The only type of object that you’ll be able to put in
this list is a Product object. This is not a requirement for your objects to work with
Reporting Services, but it does provide a level of safety that was not available by using
an ArrayList, for example. (For more information on .NET generics, see the
“Resources” section at the end of this book.) The first thing this method does is set up
the objects that you’ll use to connect to the database. You also instantiate a new
generic list (ProductList) that contains your product objects c. This Pro-
ductList object is the object that you’ll return to the caller. You open a connection
to the database and put the result set into a SqlDataReader object d. Once you
have your data, you loop through each row of data in your SqlDataReader.
Within this loop you set the properties of your Product object and then add the
Product object to your list e. Once the loop is finished, you simply return your list
to the caller f.

Adding and configuring the ReportViewer

to use a business object data source

As in our previous examples, begin by creating a new Windows Form and this time
name it ReportViewerLocalObject.cs. Next, stretch the form to an appropriate size
for your report and add a ReportViewer control. From the ReportViewer task smart

Adds product objects to
generic ProductList objecte

Returns list of product
objects to callerf

404 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

tag window, choose Design a New Report. From the Data menu select Add New Data
Source to open the Data Source Configuration Wizard. Select Object as the Data
Source type and click Next.

This brings up a screen that lets you select an object from assemblies on your
machine as well as objects in your project. Expand the AWReporterWin project and
the AWC.Reporter.Win namespace, as shown in figure 11.9.

Once you click Next you see a screen that displays the objects that will be added.
Click Finish to complete the wizard. You should see the new Product object in the
Data Sources Explorer, as shown in figure 11.10.

Now you’re ready for the next step: creating the report.

Creating the report using business object fields

Creating a report using fields from a business object is similar to what you’ve done in
previous chapters using database fields from a dataset. Figure 11.11 shows the report
that we created by simply dragging the dataset fields onto a table entity.

As long as the properties (fields) are at the top level, you will be able to drag them
just as you can with the database datasets. If you have nested objects, you have to set
the path to the property by editing the expression at the field level. We show an exam-
ple of this later on.

You are now ready to add your object-based report to your Windows Form. From
the ReportViewer smart tag window, select the report that you just created. This not

Figure 11.9 The Product object is found in the AWC.Reporter.Win namespace.

USING REPORTVIEWER IN LOCAL MODE 405

only adds the report to the ReportViewer but also adds a BindingSource object to
your code. In the Load event of your ReportViewer on the Windows Form, add one
line of code:

this.ProductBindingSource.DataSource =
 ProductInformation.GetProducts();

This code will set the data source of your BindingSource object to the return
value of the GetProducts() method of your ProductInformation object.
Remember that GetProducts() was a static method—that’s why you can simply
call this method and you don’t need to instantiate the object first. This method
returns a list of Product objects.

NOTE The ProductBindingSource was created when you added the report to
your ReportViewer, and since it is dynamically named, it may not be
named ProductBindingSource.

Assuming you added the color and format to your report, after you run it your report
should look similar to figure 11.12.

You’ve now learned how to build a simple business object and use it to create a
report using the local mode of the ReportViewer control. You can now build on this
example and configure a suite of business objects that makes creating reports a breeze.

Figure 11.10

The Product object appears

in the Data Sources panel.

Figure 11.11 The Product Sales Report is shown here in the Visual Studio Designer.

➥

406 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

Finally, we take a look at an example of implementing custom validation of report
parameters with the ReportViewer controls.

11.4 CUSTOM VALIDATION WITH THE
REPORTVIEWER CONTROL

The ReportViewer control adds a toolbar that provides navigation, search, export,
and print functionality so that you can work with reports in a deployed application.
This toolbar exposes the report parameters that you add to your reports. As you
learned in chapters 3 and 10, you don’t have a lot of control over parameter validation
outside of simple checks. This means that by using the toolbar, you are unable to per-
form advanced validation of your report parameters. Let’s explore one method of
using custom validation of report parameters by hiding the toolbar and creating your
own parameters section.

One common situation that we have run into is having to validate begin and end
dates that feed the report query. Let’s say that you need to make sure that the begin
date is earlier than the end date for your parameters. You can implement this func-
tionality in the following steps:

Figure 11.12 The Product Sales Report appears in the Visual Studio Designer.

CUSTOM VALIDATION WITH THE REPORTVIEWER CONTROL 407

1 Create a parameters section on your WinForm and add some controls to cap-
ture date information.

2 Create event methods.

3 Write validation code.

The code for this section can be found in the ReportViewerRemote.cs file in
the code samples provided with this book.

11.4.1 Creating a parameters section

First you must make room for your new parameters section. In section 11.2 you
added a ReportViewer control to your WinForm. In this WinForm you’ll move the
ReportViewer control down so that you have about an inch available at the top of
the form.

After you create space for the parameters section, you can start dragging labels,
date-time pickers, textboxes, and buttons on the form, as shown in figure 11.3. Use
the information listed in table 11.4 to add eight controls. Be sure to name the con-
trols appropriately to match the source code.

When you are done, the form should look like figure 11.13. Notice that the Begin
Date, End Date, and # of Forecasted Months parameters are located outside of the
ReportViewer control.

Now that you have created the controls, you need to create a couple of event methods.

11.4.2 Creating event methods

The first event method you’ll create is the event for when your Windows Form is invoked.
This event method, ReportViewerRemote_Load(), shown in listing 11.3, pro-
vides you with a place to set the properties of the ReportViewer control at runtime.

Table 11.4 Adding controls for custom parameter validation with the ReportViewer

Name Type Value

lblBeginDate Label Begin Date

lblEndDate Label End Date

lblForcasted Label # of Forecasted Months

dtBeginDate DateTimePicker

dtEndDate DateTimePicker

txtForcasted Textbox

btnRunReport Button Run Report

lblError Label

408 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

private void ReportViewerRemote_Load(object sender, EventArgs e)

{
 lblError.Text = "";
 reportViewer1.ShowParameterPrompts = false;
 reportViewer1.Visible = false;
}

The ReportViewerRemote_Load event method does the following three things:

• It clears the error label to ensure that this label is instantiated as blank.

• It sets the ShowParameterPrompts property to false. This hides the
HTMLViewer parameters section, as you wouldn’t want this exposed to the user.

• It sets the visibility of the ReportViewer control to false. You want to hide the
control until you’ve validated and collected all of the required parameters.

The second event method that you’ll create will be for the action of clicking the Run
Report button that you added to the form, as shown in listing 11.4. This provides you
with a place to manage the validation of your parameter controls.

Figure 11.13 The anchor property of the ReportViewer control allows you to anchor this

control to your form.

Listing 11.3 The ReportViewerRemote_Load method

CUSTOM VALIDATION WITH THE REPORTVIEWER CONTROL 409

private void button1_Click(object sender, EventArgs e)
{
 if (IsValid())
 {
 lblError.Text = "";
 //Set Parameter Values
 ReportParameter param1 = new ReportParameter("StartDate",
 dtBeginDate.Value.ToString());
 ReportParameter param2 = new ReportParameter("EndDate",
 dtEndDate.Value.ToString());
 ReportParameter param3 =

 new ReportParameter("ForecastedMonths", txtForcasted.Text.ToString());
 this.reportViewer1.ServerReport.SetParameters

 (new ReportParameter[] { param1,
 param2, param3 });
 reportViewer1.Visible = true;
 reportViewer1.RefreshReport();
 }
 else
 {
 reportViewer1.Visible = false;
 }
 }

The method shown in listing 11.4 first checks the validity of the entered parameters
by calling the IsValid() method. (We cover the IsValid() method later in this
section.) If the parameters entered on your form are valid, then the code creates and
populates the ReportParameter objects and adds these objects to your Report-
Viewer control. If the user entered parameters that are not valid, you set the visibility
of the ReportViewer control to false.

You can easily create these event methods from the design view of your report by
using one of two techniques. The first approach consists of the following three steps:

1 Go to the property tabs for the form and the button.

2 Click the Event icon in the property toolbar (indicated by arrow 1 in fig-
ure 11.14).

3 Double-click the text area of the Load event for the ReportViewerRemote
form (indicated by arrow 2 in figure 11.14). Do the same for the Click event
of the btnRunReport properties. This will create the event handler bindings
as well as a skeleton method for your code. You can type in (or copy) your code
at this point

The second technique for creating event methods is to copy the code from listings 11.3
and 11.4 into the code-behind page and then choose the pasted methods from the
Load and Click drop-down lists in the property window.

Listing 11.4 The button1_Click() method

Creates and populates
ReportParameter objects

➥

➥

➥

➥
➥ Adds ReportParameters to report

Refreshes
ReportViewer
control

Hides display
of report

410 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

In order for these methods to work, you need to add the Microsoft.Report-
ing.WinForms namespace to the ReportViewerRemote.cs file with the fol-
lowing line of code:

using Microsoft.Reporting.WinForms;

After you’ve created and correctly bound the event methods, the next step is to
create the IsValid() method that will handle your custom validation for the
report parameters.

11.4.3 Write validation code

As you saw earlier, the button_1_Click() method calls the IsValid() method
shown in listing 11.5 to check the validity of the entered parameters.

private bool IsValid()
{
 if (dtBeginDate.Value > dtEndDate.Value)
 {
 lblError.Text = _
"Begin Date must be earlier than the End Date.";
 return false;

Figure 11.14

From the Events mode of the properties

window, you can select existing methods

for various behaviors from the drop-down

list, or create an empty method by double-

clicking on the drop-down itself.

Listing 11.5 The IsValid method

CONVERTING REPORT FILES 411

 }
 if (txtForecasted.Text.Length == 0)
 {
 lblError.Text = _
 "You must enter a value for # of Forecasted Months.";
 return false;
 }
 return true;

}

The IsValid() method returns a Boolean that tells you whether the parameters are
valid. If they are valid, the code in the button1_Click method sets the parameters
by creating three ReportParameter objects: param1, param2, and param3.
The ReportParameter object belongs to the Microsoft.Reporting.Win-
Forms namespace that you added earlier. These three ReportParameter objects
are holders for the valid parameter values and are added to the ReportViewer through
the SetParameters() call.

You then set the visible property of the ReportViewer control to true and
refresh the control. You must call the RefreshReport method to render the report.

This was a simple example of doing custom parameter validation with the Report-
Viewer control. We hope this will give you a jump-start on creating powerful reports
with full control of parameter validation in your Windows applications.

In the next section, you learn how to use this control to add reporting to your
applications when you don’t have access to a Report Server.

11.5 CONVERTING REPORT FILES

As you’ll recall, the local mode of the ReportViewer control uses the .rdlc file exten-
sion when it creates the report definition file. Reporting Services now offers you the
ability to convert a local report file (.rdlc) to a Report Server file (.rdl), and vice
versa. In this section, you’ll see working examples in each direction. But, you may ask,
when would this type of file conversion be necessary?

Let’s say you created a report that was deployed to the Report Server. Now you
have a Windows application that will be working with a local set of the data and will
not be able to access the Report Server. This would be a good time to convert the
Report Server file (.rdl) into a local report file (.rdlc).

NOTE Only SQL Server 2005 RDL files can be converted into RDLC files. If you
want to convert a SQL Server 2000 RDL file, you must first upgrade it to
SQL Server 2005.

Conversely, say you had some local report files that you wanted to deploy to the
Report Server to take advantage of some of the features that are only available with
Report Server reports, such as subscriptions or caching. In this case, you’d convert the
local report file (.rdlc) to a Report Server file (.rdl).

412 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

NOTE Both the ReportViewer control and the Report Server use the same Report
Definition Language schema to generate their respective report files, but
the RDLC file does not contain a <Query> element. Even if it did, the
ReportViewer would ignore it since it gets its data from the dataset defined
from within the ReportViewer.

Let’s explore some examples of converting these files.

11.5.1 Converting RDL files into RDLC files

For this example let’s take the Sales By Territory report (Sales By Territory.rdl)
from chapter 4 and convert it to work in the local mode of the ReportViewer. The sam-
ple project, AWConvertRDLToRDLC, is available with the source code for this book.
In this section we go through the steps listed in table 11.5 to re-create this project.

As you’ll see, the conversion process is pretty straightforward.

Setting up the RDLC file

The first step in converting your file is renaming it. Find the Sales By
Territory.rdl file, copy it into a temporary location, and rename it to Sales By
Territory.rdlc. You’ll come back to this file a little later in the process.

Creating a new project

To keep the deployment simple, create a new project for this conversion. Open Visual
Studio 2005, and select File > New > Project. Create a new Windows Form applica-
tion and give it a name. When the project opens, you’ll be presented with the default
form (Form1.cs). For this example, let’s keep this name (of course, in the real world
you’d provide a more meaningful name).

Creating the dataset for your project

This step is where the “trick” comes in. In order for our RDLC file to work properly
without having to modify the report code, you need to be sure that the dataset

Table 11.5 Steps to convert RDL files into RDLC files

Task Description

1 Set up the RDLC file.

2 Create a new project.

3 Create a DataSet for your project.

4 Add a ReportViewer control to your form.

5 Add an RDLC file to the project.

6 Choose the report and data source for your report.

7 Configure additional properties.

CONVERTING REPORT FILES 413

matches the dataset that was specified for the Report Server version of the file. To do
this, create a dataset and use the same SQL query that you used originally. The steps
to create a dataset are as follows:

Step 1 Choose Project > Add New Item to open a screen similar to the one shown in
figure 11.15. Name this new dataset SalesByTerritory and click Add.

Step 2 With the SalesByTerritory.xsd file open in Visual Studio, drag a
TableAdapter from the toolbox and drop it in right on the page. Doing this
launches the TableAdapter Configuration Wizard.

Step 3 In the first wizard screen, set up a proper connection string and click Next.

Step 4 The second screen prompts you to name the connection. For this example
keep the default.

Step 5 The next screen offers some choices for configuring how the TableAdapter
will access the database. For this example, you want to use a SQL statement,
so select that option and click Next.

Step 6 On the next screen (figure 11.16), enter the exact SQL statement that you
used in the original report, and then click Next.

You can find this SQL statement in the example project; it’s titled
SalesByTerritory.sql. Or, you could copy this statement from the
original project code. Copy and paste the SQL statement into the available
space and click Next.

Figure 11.15 Create a dataset for a local ReportViewer report.

414 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

Step 7 On the next screen, Choose Methods to Generate, keep the defaults and
click Finish.

You have now finished creating your dataset. Let’s move on and add the RDLC file to
your project.

Adding the RDLC file to your project

From the Project menu, select Add Existing Item. Browse to the Sales By
Territory.rdlc file that you created earlier and add it to your project.

Adding a ReportViewer control to your form

Next, open the Form1.cs file and stretch the form out so that there is room for your
ReportViewer control. For this report, 530 pixels wide by 432 pixels high should be
fine. Next, drag a ReportViewer control onto the form.

Figure 11.16 Using the same SQL statement (or stored procedure) helps keep

the conversion simple.

CONVERTING REPORT FILES 415

Choosing the report and data source

In the smart tag window, select the report that you
added to your project and then click the Choose
Data Sources link. Open the Data Source Instance
drop-down list and you should see something simi-
lar to figure 11.17.

It is very important that you navigate all the way
down to and click on DataTable1. If you choose
SalesByTerritory you won’t get an error, but you’ll
find that your report won’t render. At this point for
many report conversions, you would be done. How-
ever, we selected this report to work with in order to
show you some additional properties that you’ll
need to set in certain circumstances.

Configuring additional properties

The Sales By Territory report uses an external image for the logo. Therefore, you need
to modify two properties:

• EnableExternalImages—Set this property to true.

• EnforceConstraints—Set this property of the dataset to false.

If you don’t modify these properties the report won’t render in the ReportViewer con-
trol. Listing 11.6 shows these properties set in the Form1_load method.

private void Form1_Load(object sender, EventArgs e)

 {
 salesByTerritory.EnforceConstraints = false;
 reportViewer1.LocalReport.EnableExternalImages = true;
 this.dataTable1TableAdapter.Fill(
 this.salesByTerritory.DataTable1);
 this.reportViewer1.RefreshReport();
 }

You are now ready to see the finished product. Simply run the application and the
ReportViewer will show you your newly converted report. To prove that this local
report is not dependent on the Report Server, try stopping the ReportServer service
(ReportingServicesService.exe) and running the application.

11.5.2 Converting RDLC files into RDL files

You may find yourself wanting to convert a local client report file (.rdlc) into an
.rdl file so that you can deploy it to the Report Server and take advantage of server

Figure 11.17 Once you have

created a matching data source,

you can add this to your local

report

Listing 11.6 The Load event of the form

➥

416 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

features such as caching, scheduling, or snapshots. Let’s take the report that you cre-
ated in section 11.3.1 and convert it into a format that you can deploy to the Report
Server. This is a simple three-step process.

Step 1 Copy the RDLC file from the file system into a temporary directory and
rename it with an .rdl extension. If you didn’t rename the RDLC file from
the example earlier, it is called Report1.rdlc.

Step 2 From an RS Project in Visual Studio, add the file from step 1 to the project
by right-clicking on the Project menu, selecting Add Existing Item, and nav-
igating to and adding the file you renamed in step 1.

Step 3 When the file has been imported, open it in the designer, select the Data tab,
and click the Edit (…) button, as shown in figure 11.18. Update the connec-
tion information to point to the database that you want (AdventureWorks)
and you are done. You can now click the Run (!) button and verify that the
dataset can be retrieved.

You’ve now converted a local report file (.rdlc) to a Report Server file (.rdl) and
vice versa. There are pros and cons for using local mode or remote mode with the
ReportViewer. After absorbing the content in this section, switching between modes
will seem simple.

You’re now ready to investigate what you need to do to successfully deploy appli-
cations that use the ReportViewer controls.

11.6 DEPLOYING APPLICATIONS THAT USE
REPORTVIEWER CONTROLS

Deployment requirements vary depending on what type of control (web or Windows)
you are working with and what mode (remote or local) you use. Quite simply, you
need to run the ReportViewer redistributable file (ReportViewer.exe) in the
environment where the ReportViewer will execute. This section discusses the Report-
Viewer-specific requirements for deploying your web and Windows applications.

11.6.1 Redistributing the ReportViewer controls

Microsoft has provided a redistributable, self-extracting component called Report-
Viewer.exe that includes an MSI file along with other files required for a proper
installation. This redistributable file can be found at C:\Program Files\
Microsoft Visual Studio 8\SDK\v2.0\BootStrapper\Packages\
ReportViewer\ReportViewer.exe.

Figure 11.18

You will need to configure

the dataset connection

when converting RDLC

files to RDL files.

DEPLOYING APPLICATIONS THAT USE REPORTVIEWER CONTROLS 417

When you run this redistributable component, the files listed in table 11.6 are
copied to the Global Assembly Cache folder on the deployment computer.

11.6.2 ReportViewer deployment for Windows applications

For Windows applications, be sure to include the controls as application prerequisites
so that they can be automatically installed with your application.

You choose prerequisites in the Prerequisites dialog box. To open this dialog box:

1 Select your Windows project in the Solution Explorer and then select Properties.

2 From the Properties window, select the Publish tab to open the Publish page.

3 From the Publish page, select Prerequisites.

Figure 11.19 shows the Prerequisites dialog box.
Simply select the Microsoft Visual Studio 2005 ReportViewer check box and click

OK. Now when your application is installed, a check is performed by the installation

Table 11.6 Files installed by the ReportViewer redistributable component

File Description

Microsoft.ReportViewer.
WebForms

ReportViewer control for ASP.NET pages.

Microsoft.ReportViewer.
WinForms

ReportViewer control for Windows applications.

Microsoft.ReportViewer.
Common

Both the Windows forms and Web server control use this for the
main reporting functionality that is common in these controls.

Microsoft.ReportViewer.
ProcessingObjectModel

This exposes the report object model to allow expressions in the
report definition and access it programmatically at runtime.

Figure 11.19

Setting the

ReportViewer

redistributable

component will allow

the bootstrapping

application to

automate the

installation of the

ReportViewer controls

for Windows

applications.

418 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

to see if the ReportViewer is already installed. If it is not installed, the Setup program
installs it.

11.6.3 ReportViewer deployment for web applications

If you are using the ReportViewer controls in a web application, be sure that the web
server has the ReportViewer controls loaded. If you have installed Visual Studio on
your web server, you won’t need to take any further action. Typically, though, Visual
Studio is not installed on a web server unless it is a development server. In most
cases, then, you have to run the redistributable file (ReportViewer.exe) on your
web server.

11.6.4 Using the ReportViewer web server control

in a web farm

You must take some additional steps if you’re deploying an ASP.NET application in a
web farm to ensure that view state is maintained across the farm. You’ll have to mod-
ify your web application’s Web.config file by setting the machineKey element.
Setting the machineKey element forces all nodes in the web farm to use the same
process identity. This is an important step to ensure that the interactive features such
as drill-through will work properly.

For more information on setting the machineKey element, see the Microsoft
.NET Framework 2.0 documentation.

11.7 SUMMARY

We covered a lot of material in this chapter and hope you have realized that your life
has been made much easier with the ReportViewer control. No more adding browser
controls to your Windows applications; no more adding iFrames to your web pages...

We started out with an overview of the ReportViewer control and how it works.
We learned that the ReportViewer is a very handy control available with the 2.0 ver-
sion of the .NET framework. The nice thing is that there is a ReportViewer control
for both Windows and web applications. While there are two different controls for
the two types of applications, the design UI, properties, and look and feel are virtually
identical. This makes it easy for developers to switch between Windows and web
applications with ease when it comes to adding Reporting Services reports. We spent
a little time comparing the differences between the two controls.

We also learned that each of the controls has two processing modes: remote and
local. The remote mode is used to pull reports from a Report Server and integrate
them into the .NET 2.0 applications. This allows you to take advantage of the server
features such as subscriptions, history, and centralized management. This works great
for your applications where you have a dedicated access to a Report Server. If you do
not have access to a Report Server, you can use the local mode of the ReportViewer.
This means you can “unplug” yourself from the Report Server and create reports that
access data from databases, business objects, and even Web services. We compared the

SUMMARY 419

difference between these two modes by looking at how several features of the Report-
Viewer are affected by each mode. We rounded out our overview by looking at many
of the properties available with the ReportViewer, and you saw when and why you
might want to modify these properties.

We walked through an example of how to do custom validation with the report
parameters by using the ReportViewer control. This works for both the Windows and
web control and also works for both modes of these controls. Specifically, we showed
you how to hide the parameters section and create your own parameter so that you
can have full control of the validation and placement of your parameter controls. We
modified our application to validate two date fields and ensure that the first date was
chronological before the second date.

You learned in the first chapters of this book that Report Server reports that are
deployed to the Report Server use the .rdl file extension for the report files. In this
chapter we introduced a new type of report file: the local (client) report file, which
uses the .rdlc extension. The .rdlc file extension is used by the local mode of the
ReportViewer. You learned that both of these files hold XML defined by the same
RDL schema. Since there will certainly be a need for some organizations to share
reports between these formats, we found it worthwhile to spend some time showing
how you can convert one format into the other.

Finally, we looked at the deployment of applications that use the ReportViewer
control. You must be sure that the environment that the ReportViewer will execute
in has been prepared before running the ReportViewer. You can accomplish this
with a redistributable file called ReportViewer.exe. This is pretty simple for
web applications. We covered the details of how to include the redistributable file
with the application prerequisites so that they will be automatically installed with
your application.

It is our hope that you learned enough from this chapter to start using the Report-
Viewer control in your .NET 2.0 applications. You’ll see that using these controls is
very simple and will save you and your organization a lot of time in integrating
reports into your code.

