
M A N N I N G

Bernerd Allmon
Jeremy Anderson

FOREWORD BY JAMES WARD

S A M P L E C H A P T E R

Flex on Java

by Bernerd Allmon
Jeremy Anderson

 Chapter 2

 Copyright 2010 Manning Publications

12

Beginning with Java

We’ll begin by creating a Java application that will expose web services so we can
later connect to them from a Flex client. We have attempted to avoid tying the
book to a specific sample application by focusing more on the concepts and tech-
niques of using various frameworks and tools. This should allow you to pick a topic
in the book that interests you and get rolling on it. We’ll demonstrate many topics
by using an application built in this chapter called FlexBugs. If you want to follow
the samples in the book you can download the full code listings on the book’s web-
site at http://manning.com/allmon. You could also replace the application con-
tents with something that’s more meaningful to you by changing the domain
objects to manage whatever you want, like contacts or movie favorites.

 Throughout the book, especially in this chapter, we leverage a few Java frame-
works that help to lighten the amount of work required to build a fully func-
tional web application. This chapter is a bit mechanical because we need to set up

This chapter covers
■ Generating the application structure with

Maven
■ Building Java server-side domain objects

and services
■ Building a simple JSP UI

13Generating the application structure with Maven

a development environment. A few downloads and installs must take place if you
choose to use our samples. Feel free to browse through this chapter and skip what
you already know.

 The Java frameworks used will help keep development to a minimum while
creating a sample application to work with for integration purposes. This will allow
us to focus on teaching and demonstrating how to build synergy between Flex
and Java.

 We’re building a Java application first as a basis for work in chapter 3, but you
can start with Flex in chapter 3 if you’d like or move around the book as conve-
nient. The Java application comes first because we expect most readers to be refac-
toring existing applications to include a Flex client and this will give you something
to play with quickly.

 We’ll start by generating the project structure with Apache Maven, a convention-
over-configuration project management framework. Maven will build the applica-
tion for us and speed up the development process. After we have a project structure
generated, we’ll start building the server-side components while leveraging MySQL
for the database.

 For the Java server-side pieces, we’ll start with creating plain old Java objects
(POJOs), Data Access Objects (DAOs), and service objects that will be exposed to a
web tier.

 Let’s write a simple Java server-side application using the AppFuse framework.
AppFuse was created by Matt Raible of Raible Designs to simplify the construction of
Java web applications through convention. Using AppFuse on the server side will allow
us to focus on the integration of Flex with Java creating simple domain and service
Java objects.

2.1 Working with AppFuse
Because the layers of architecture and complexity can make approaching the building
of a Java web application a bit daunting, AppFuse is a great technology choice because
it simplifies dealing with the layers and delivering value faster.

 AppFuse allows a Java developer to quickly start focusing on business domain con-
cerns. A typical Java application will be POJO-driven and wired together through
Spring, the open source dependency injection (DI) framework. The DI design pattern
helps to build applications with loosely coupled components making your application
more flexible and testable. In addition, AppFuse comes stocked with Maven integra-
tion to make things even easier. Let’s get things rolling by installing Maven.

2.2 Generating the application structure with Maven
To pigeonhole Maven by calling it a build system doesn’t do it justice. Apache Maven
is a software project management and comprehension tool. What exactly does that
mean? At the core of every Maven project is a project object model, more affec-
tionately known as the POM, and from this POM Maven can build our application,

14 CHAPTER 2 Beginning with Java

generate reports, generate documentation, and more, all from a single description
of the project. To learn more about Maven check out the Apache Maven project site
at http://maven.apache.org or download the free ebook from Sonatype at http://
www.sonatype.com/book.

 Before moving ahead with Maven, be sure you have the Java Development Kit
(JDK) version 1.5 or greater properly installed. You can follow the next section for that
or skip it if you’re ready to go. After you install the JDK, be sure to install the MySQL
database as well. You’ll need MySQL installed before generating the project with the
AppFuse Maven archetype.

2.2.1 Download and install the JDK

To run any Java server-side environment, you must install and configure the JDK.
Download and install JDK 1.5+ from the Sun website at http://java.sun.com/javase/
downloads/index.jsp. Refer to the Java documentation for instructions on how to
install Java on your specific platform. Set up an environment variable for JAVA_HOME
that points to the JDK directory. It’s also helpful to add the JDK’s bin directory to the
path. Open a command prompt and type in the Java version to verify that Java is
installed correctly. The version information of the configured JDK should be pre-
sented as shown in figure 2.1.

 After Java is configured you can move on to setting up the open source
MySQL database.

Figure 2.1 Verify that Java is set up correctly by checking the version

15Generating the application structure with Maven

2.2.2 Download and install MySQL

To demonstrate database integration and persistence you’ll use MySQL, which is an
open source database that is extremely lightweight. Download and install MySQL 5.x
or higher from the MySQL website at http://dev.mysql.com/downloads/mysql.

 Here you’ll set up a database for the FlexBugs sample application. After you have
MySQL installed pull up the command prompt and log in to MySQL using the root
account, then create the flexbugs database as shown in figure 2.2. Using the com-
mand mysql -u root -p will instruct MySQL to log in to the local host instance of
MySQL using the root account. It will ask for the password. Please record the admin
account’s user and password for later reference. Creating the database is as simple as
executing the command create database flexbugs.

 Let’s move on to installing Maven to create the project structure, manage the
dependencies, and build the application.

2.2.3 Download and install Maven

Maven can be downloaded at http://maven.apache.org/download.html. Be sure to
download version 2.0.9 or above. After Maven is downloaded you should set up an
M2_HOME environment variable that points to the directory where Maven was
installed. The M2_HOME/bin directory will need to be set onto the path as well or
exported for any UNIX platform. For more assistance on installing or configuring
Maven refer to the Maven documentation at http://www.sonatype.com/books/
mvnex-books/reference/installation-sect-maven-install.html.

Figure 2.2 Using the MySQL commands to log into the database instance and create the flexbugs
database

16 CHAPTER 2 Beginning with Java

2.2.4 Create a Maven multimodule project

We’re going to create a Maven multimodule project called FlexBugs. A multimodule
project could be configured manually by creating a top-level super POM, adding proj-
ects under the super POM directory, and editing the super POM to include the mod-
ules with the modules element. We’re going to use a technique that exploits a little
known feature of the archetype:create plugin, and the Maven site archetype to kick-
start the project.

 Creating a multimodule project has many benefits, the two most important being
(1) the ability to build every artifact in a project with a simple mvn compile command
and (2) if you are using either the Maven eclipse:eclipse plugin or the idea:idea
plugin, you can enter this command at the root of the project, and it will generate all
the project files for all of the contained modules.

 First you’ll generate the top-level project using the maven-archetype-site-
simple archetype:

mvn archetype:create
 -DgroupId=org.foj
 -DartifactId=flex-bugs
 -DarchetypeArtifactId=maven-archetype-site-simple

This generates a Maven project with the directory structure as
shown in figure 2.3.

 The project generated is the minimum project setup nec-
essary to generate site documentation. The index.apt file is
the main index page for the site, and is written in the Almost
Plain Text (APT) format, which is a wiki-like format. You can
also generate a more complete site project using the maven-
archetype-site archetype like this:

mvn archetype:create
 -DgroupId=[Java:the project's group id]
 -DartifactId=[Java:the project's artifact id]
 -DarchetypeArtifactId=maven-archetype-site

This will generate a project structure similar to figure 2.4.
 After you have generated the site project, edit the pom.xml created from the site

archetype plugin. Make sure that the packaging type is set to pom. We’ve left sections
out (denoted by ...) to be brief.

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.foj</groupId>
 <artifactId>flex-bugs</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 ...
</project>

Listing 2.1 Packaging of type pom indicates a multimodule project

Figure 2.3 The
generated top-level
Maven project

Artifact type
(jar, war, ear)

 B

17Generating the application structure with Maven

Because you set the packaging type to pom b, any proj-
ects you generate from the root of the project direc-
tory will insert themselves into the project by creating
an entry into the modules section of the pom.xml for
the site.

 AppFuse comes stocked with custom Maven arche-
types, which allow AppFuse to create different flavors of
Java web applications with varying technology stacks.
You’ll use the Struts 2 Basic archetype for the FlexBugs
sample application.

 In the root directory of your project that you created
previously, type the command in listing 2.2.

mvn archetype:create
-DarchetypeGroupId=org.appfuse.archetypes
-DarchetypeArtifactId=appfuse-basic-struts
-DremoteRepositories=http://static.appfuse.org/releases
-DarchetypeVersion=2.0.2
-DgroupId=org.foj.flex-bugs
-DartifactId=flex-bugs-web

The appfuse-basic-struts C archetype isn’t a built-in Maven resource. Instead, it’s
provided through a remote repository D. You provide Maven with coordinates to the
archetype by also providing the archetypeGroupId b and archetypeVersion E
along with the rest of the required details. The groupId F points to the top-level proj-
ect and the artifactId G is the name of the module you are about to create.

 After you’ve executed the command, look inside the top-level pom.xml from
the main project. There should now be an entry toward the bottom of the file like
the following.

...
<modules>
 <module>flex-bugs-web</module>
</modules>
...

Executing the command in listing 2.2 should generate the project structure shown
in figure 2.5. Don’t be concerned with the warnings while creating your project; they
are expected. As long as you see BUILD SUCCESSFUL at the end, your project was
created successfully.

 As you can see from figure 2.5 Maven generated the project structure and added a
couple of files for testing.

Listing 2.2 Create the flex-bugs-web module for the Java server side

Figure 2.4 A fully dressed up
Maven site project

 B
 C D

 E F
 G

18 CHAPTER 2 Beginning with Java

2.2.5 Maven provides a buildable project

If you look in the src/main/java/org/foj package you’ll find a source file
called App.java, and in the src/test/java/org/foj package you’ll find a unit
test called AppTest.java. Remove both files as you will not need them.

 Notice that Maven appears to be building something. In fact, the flex-bugs-web
POM tries to build a deployable Java Web Archive or WAR but will first choke on a con-
figuration issue. If running the mvn jetty:run-war command without changing the
configuration you’ll most likely get this error.

[INFO] --
[ERROR] BUILD ERROR
[INFO] --
[INFO] Error executing database operation: CLEAN_INSERT

Embedded error: Access denied for user 'root'@'localhost' (using password: NO)
[INFO] --
[INFO] For more information, run Maven with the -e switch

Let’s first edit the POM for the flex-bugs-web module. This POM will be located
at the root of that module. There’s a good deal going but we’re going to focus on
the piece we need to change. At the bottom you need to specify your MySQL user
and password with the values we specified when you set up MySQL earlier. Here’s
an example:

Figure 2.5
Generated module structure using the
appfuse-basic-struts archetype

19Generating the application structure with Maven

...
<jdbc.url><![CDATA[jdbc:mysql://localhost/

➥flex_bugs_web?createDatabaseIfNotExist=true&useUnicode=true&

➥characterEncoding=utf-8]]></jdbc.url>
<jdbc.username>root</jdbc.username>
<jdbc.password>java4ever</jdbc.password>
...

The Maven archetype we used, brought to us by AppFuse, made it extremely easy to
get to this point—far easier than starting from scratch.

2.2.6 Running the FlexBugs web application

Maven equips a developer with the ability to use the application immediately without
manually deploying it anywhere. Executing the Maven jetty:run-war goal from the
flex-bugs-web module will gather all the resources, compile all the code and tests,
execute the unit tests, generate test reports, build a deployable WAR file, and launch
the WAR file in an embedded instance of the popular and lightweight Jetty servlet
container. Using the appfuse-basic-struts archetype will also generate the default
database for us and add configuration files to allow developers to quickly begin devel-
oping features.

 After you’ve run the jetty:run-war command, you can go to http://localhost:
8080/flex-bugs-1.0-SNAPSHOT and log in from there. By default, you can log in to the
application using admin for both the username and password. After logging in, you
are redirected to the administration panel as seen in figure 2.6. From there you can
do basic things like editing your user profile and managing users.

Figure 2.6 AppFuse default application

20 CHAPTER 2 Beginning with Java

The application shows nothing glamorous at this point although everything you see
and can do has required a minor setup effort. AppFuse does much under the cov-
ers for us from a framework and technology perspective. It’s possible that getting a
project together with help from Maven saved us a week or more of typical Java
development time.

 Before we start development of the FlexBugs sample application download the
source code at https://flexonjava.googlecode.com/svn/flex-bugs/trunk.

2.3 Build the model objects
A model object is a POJO that is persistable and mapped to the database. In our exam-
ple we’re using AppFuse with the Spring framework and Hibernate to manage per-
forming database operations for objects that are mapped to a database.

 Let’s start with Issue.java as seen in listing 2.3. For the FlexBugs application you
need something to store issues and comments. An issue describes something that
needs fixing to meet a requirement. This could be a bug, a new feature, a refactor, or
an optimization. A single issue can have many comments so a relationship is built
between the issue and comment objects.

package org.foj.model;

import org.apache.commons.lang.builder.EqualsBuilder;
...

@Entity
public class Issue extends BaseObject implements Serializable {

 private Long id;
 private String project;
 private String description;
 private String type;
 private String severity;
 private String status;
 private String details;
 private String reportedBy;
 private Date reportedOn;
 private String assignedTo;
 private Double estimatedHours;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 ...

Listing 2.3 The Issue model object

Model Java package B

Import declarations C
Java persistence
framework

 D

Class instance
variables F

Issue extends
AppFuse BaseObject E

Declares
database pk
relationship

 G
Indicates
how to
generate Id

 H

“getter” method
returns Id I

“setter” method
sets Id J

21Build the model objects

 @Override
 public int hashCode() {
 return new HashCodeBuilder(11, 37).append(id).toHashCode();
 }

 @Override
 public boolean equals(Object o) {
 if (null == o) return false;
 if (!(o instanceof Issue)) return false;
 if (this == o) return true;

 Issue input = (Issue) o;
 return new EqualsBuilder()
 .append(this.getId(), input.getId())
 .isEquals();

 }

 @Override
 public String toString() {
 return new ToStringBuilder(this, ToStringStyle.MULTI_LINE_STYLE)
 .append(id)
 .append(project)
 .append(description)
 .toString();
 }
}

You’ll be storing the model objects in the org.foj.model Java package b and will use
the AppFuse framework in conjunction with the Spring Framework and Hibernate to
simplify our application development. Spring provides DI and more while Hibernate
is a database persistence framework that enables object relational mapping framework

D. The Id G and GeneratedValue H annotation help to facilitate the persistence by
designating a field as a database primary key.

 The Issue object is a subclass of the AppFuse BaseObject E and contains the
instance variables F you need to describe an issue. All of the instance variables or
fields have the getters I and setters J required by the JavaBean specification.

NOTE Extending BaseObject requires us to override the toString ,
equals , and hashCode methods because they’re defined as abstract in
the BaseObject class. To implement these methods we’re leveraging the
Apache Commons Builder package C for creating the elements for these
methods. Whenever you’re implementing the Serializable interface, it’s a
good idea to also implement the equals and hashCode methods and provide
a serialVersionUID member.

Next you’ll create a model object for a comment. The Comment will be another persis-
table object. There can be many comments to a single issue. For the remainder of the
code snippets in this chapter we’ll use “...” for trivial things like imports and getters
and setters of similar objects.

hashCode 1)

equals 1 !

toString provides
object info

 1 @

1 @
1 ! 1)

22 CHAPTER 2 Beginning with Java

...

@Entity
public class Comment extends BaseObject implements Serializable {

 private Long id;
 private Issue issue;
 private String author;
 private Date createdDate;
 private String commentText;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 @ManyToOne(fetch = FetchType.EAGER)
 public Issue getIssue() {
 return issue;
 }

 public void setIssue(Issue issue) {
 this.issue = issue;
 }

...

 @Override
 public int hashCode() {
 return new HashCodeBuilder(11, 37).append(id).toHashCode();
 }

 @Override
 public boolean equals(Object o) {
 if (null == o) return false;
 if (!(o instanceof Issue)) return false;
 if (this == o) return true;

 Issue input = (Issue) o;
 return new EqualsBuilder()
 .append(this.getId(), input.getId())
 .isEquals();

 }

 @Override
 public String toString() {
 return new ToStringBuilder(this, ToStringStyle.MULTI_LINE_STYLE)
 .append(id)
 .toString();
 }

}

Listing 2.4 The comment model object

Comment
declaration B

Comment has many-to-one
relationship with Issue

 C

23Build the DAOs

There’s not much difference between an Issue and a Comment b. The class fields are
related to comments and there is a many-to-one relationship C with Issue. We’ve also
told Hibernate that we’d like it to eagerly fetch the Issue when returning the
Comment. In typical Java web development you would keep the session open to lazily
load the Issue object only when it’s referred to at runtime, but because your Flex
application runs external to the JVM you cannot take advantage of this luxury.

 Now that you have your model objects built you can create a set of DAOs. You’ll
need a DAO for issue and comment.

2.4 Build the DAOs
AppFuse provides generic implementations for DAOs that you can leverage if your
DAOs do nothing more than the basic create, retrieve, update, delete (CRUD) opera-
tions. Because your IssueDao will do only basic operations, there is no need to define
a concrete IssueDao. You can instead use the GenericHibernateDao which you’ll see
later when you wire the beans in the application context. The CommentDao needs to
implement a couple of operations that go beyond the basic CRUD operations so you’ll
first create an interface for the CommentDao.

...

public interface CommentDao extends GenericDao<Comment, Long> {

 List<Comment> getCommentsByIssueId(Long issueId);

 void deleteAllCommentsForIssueId(Long issueId);

}

The CommentDao has two simple methods, one that returns a list of Comment objects by
passing in the issueId argument, and another to delete all of the Comment objects for
an issue. The second method facilitates the deleting of Issue objects. Because
Comment has a foreign key relationship with Issue, you cannot delete an Issue if any
Comments refer to it.

NOTE We defined the relationship between Comment and Issue by annotat-
ing the field with a @OneToOne annotation, and could have also defined the
reverse of that relationship in the Issue class by including a Set of Comment
objects belonging to an Issue. Because we could not lazy load those objects, it
would have forced us to eager load the Comment objects into the Set, which
would force those Comment objects to eager load their Issue objects. This
forces the Issue objects to eager load their Comments, and so on. This usually
results in a stack overflow because you’ve effectively got a circular reference
that causes an infinite loop of eager fetching.

Now let’s implement the CommentDaoImpl.

Listing 2.5 The CommentDao.java

24 CHAPTER 2 Beginning with Java

...

public class CommentDaoImpl extends GenericDaoHibernate<Comment, Long>
 implements CommentDao {

 public CommentDaoImpl() {
 super(Comment.class);
 }

 @Override
 @SuppressWarnings("unchecked")
 public List<Comment> getCommentsByIssueId(Long issueId) {
 return getHibernateTemplate().find
 ➥("from Comment where issue_id = ?", issueId);
 }
}

Much like the IssueDaoImpl, CommentDaoImpl extends GenericDaoHibernate but
implements CommentDao. The only interesting thing happening here is that you have a
method that returns a list of Comment objects by leveraging the Hibernate template
and a query. Spring and Hibernate are a wonderful combination and make for clean
and intuitive DAOs.

 Now that you’ve constructed the DAOs you can build services.

2.5 Build the services
Now you need to expose services to the web tier. You’ll be able to take advantage of
these services for the Flex client you’ll be building. Again you’ll start with interfaces
like IssueManager in listing 2.7.

package org.foj.service;

import org.foj.model.Issue;
import javax.jws.WebService;
import java.util.List;

@WebService
public interface IssueManager {

 List<Issue> getAll();
 Issue get(Long id);
 Issue save(Issue issue);
 void remove(Long id);

}

You define the IssueManager as a web service by annotating it using @WebService

b. IssueManager contains methods defining your basic CRUD operations for read-
ing C and D, creating and updating E, and deleting F. Now let’s take a look at
the CommentManager.

Listing 2.6 The CommentDaoImpl.java

Listing 2.7 The IssueManager.java

IssueManager interface
declaration with
WebService annotation

 B

Return all
issues

 C
Get specific
issue by its ID

 D

Save issue E
Delete issue F

25Build the services

package org.foj.service;

import org.foj.model.Comment;
import javax.jws.WebService;
import java.util.List;

@WebService
public interface CommentManager {

 List<Comment> findCommentsByIssueId(Long issueId);
 void deleteAllCommentsForIssueId(Long issueId);
 Comment get(Long id);
 Comment save(Comment comment);
 void remove(Long id);

}

CommentManager is also a web service b by virtue of it having the @WebService anno-
tation just as with the IssueManager. It contains a method to return a list of Comment
objects by providing an issueId C, a method for deleting all comments for an issue
id D, a method for saving a comment E and a method for deleting a comment F.
Now let’s provide implementation for the services like IssueManagerImpl.

package org.foj.service.impl;

import org.AppFuse.dao.GenericDao;
import org.foj.model.Issue;
import org.foj.service.IssueManager;
import org.foj.service.CommentManager;
import java.util.List;
import javax.jws.WebService;

@WebService(serviceName = "IssueService",
 endpointInterface = "org.foj.service.IssueManager")
public class IssueManagerImpl implements IssueManager {

 private GenericDao<Issue, Long> issueDao;
 private CommentManager commentManager;

 public IssueManagerImpl() {
 }

 public IssueManagerImpl(GenericDao<Issue, Long> issueDao,
 CommentManager commentManager) {
 this.issueDao = issueDao;
 this.commentManager = commentManager;
 }

 public List<Issue> getAll() {
 return issueDao.getAll();
 }

Listing 2.8 The CommentManager.java

Listing 2.9 The IssueManagerImpl.java

CommentManager
interface declaration
with WebService
annotation

 B

Get comments
for issue Id

 C

Delete all
comments
for issue DSave

comment ERemove
comment F

IssueManagerImpl
declaration with
WebService
annotation

 B

Default no arg
constructor

 C

Constructor D

Method that
returns all Issues E

26 CHAPTER 2 Beginning with Java

 public Issue get(Long id) {
 return issueDao.get(id);
 }

 public Issue save(Issue issue) {
 return issueDao.save(issue);
 }

 public void remove(Long id) {
 commentManager.deleteAllCommentsForIssueId(id);
 issueDao.remove(id);
 }

}

The IssueManagerImpl also uses the @WebService annotation just as in the interface,
but provides the serviceName and endpointInterface attributes b. You provide a
default no args constructor C as well as one that will be used by Spring to inject the
IssueDao and CommentManager D. Next implement the methods for returning the list
of Issue objects E, returning a specific Issue F, and saving an Issue G by delegat-
ing the calls to those methods to the IssueDao. The implementation for removing an
issue H first deletes any comments for the issue by calling the CommentManager, then
removes the issue by calling the remove method on the IssueDao. Now let’s look at
the CommentManager.

package org.foj.service.impl;

import org.foj.dao.CommentDao;
import org.foj.model.Comment;
import org.foj.service.CommentManager;
import java.util.List;
import javax.jws.WebService;

@WebService(serviceName = "CommentService",
 endpointInterface = "org.foj.service.CommentManager")
public class CommentManagerImpl implements CommentManager {

 private CommentDao commentDao;

 public CommentManagerImpl() {
 }

 public CommentManagerImpl(CommentDao commentDao) {
 this.commentDao = commentDao;
 }

 public List<Comment> findCommentsByIssueId(Long issueId) {
 return commentDao.getCommentsByIssueId(issueId);
 }

 public void deleteAllCommentsForIssueId(Long issueId) {
 commentDao.deleteAllCommentsForIssueId(issueId);
 }

Listing 2.10 The CommentManagerImpl.java

Get specific issue F

Save issue G

Remove an issue H

CommentManagerImpl
declaration with

WebService annotation

 B

Default no args
constructor

 C
Constructor sets
injected CommentDao
instance to use

 D

Find all
comments
for issue

 E

Delete all
comments
for issue F

27Wiring things together with Spring

 public Comment get(Long id) {
 return commentDao.get(id);
 }

 public Comment save(Comment comment) {
 return commentDao.save(comment);
 }

 public void remove(Long id) {
 commentDao.remove(id);
 }

}

Like IssueManagerImpl, CommentManagerImpl declares itself to be a WebService b.
Next using the @WebService annotation and defines its endpoint interface and
service name you create a default no args constructor C as well as one that will be
used by Spring to inject your CommentDao D. You implement the methods to get the
Comment objects for an issue E, deleting all the Comment objects for an issue F, get-
ting a specific Comment G, saving a Comment H, and deleting a Comment I by delegat-
ing to the CommentDAO.

NOTE AppFuse provides GenericManager implementation base classes just as
it does for DAOs, but we chose not to use them here because certain Web-
Service consumers such as Flex have difficulty dealing with web services that
return objects such as ArrayOfAnyType, which is what AppFuse will return if
we leverage the GenericManagers. To work around this issue you’ll be defin-
ing and implementing your CRUD operations for the web services explicitly.

We’re now officially done with the server-side objects and can wire things together
with the Spring configuration and work on the web tier components.

2.6 Wiring things together with Spring
Spring enables developers to easily connect objects while keeping application compo-
nents loosely coupled and testable. Notice how we’ve wired the model, DAO, and ser-
vice objects together in the following listing. The applicationContext.xml is located in
the src\main\webapp\WEB-INF directory, with other configuration files.

...

 <!-- Add new DAOs here -->
 <bean id="issueDao" class=
 ➥"org.AppFuse.dao.hibernate.GenericDaoHibernate">
 <constructor-arg value="org.foj.model.Issue"/>
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>

 <bean id="commentDao" class="org.foj.dao.impl.CommentDaoImpl">
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>

Listing 2.11 The applicationContext.xml

Get specific
comment G

Save comment H

Delete comment I

issueDao B

commentDao C

28 CHAPTER 2 Beginning with Java

 <!-- Add new Managers here -->
 <bean id="issueManager" class="org.foj.service.impl.IssueManagerImpl">
 <constructor-arg ref="issueDao"/>
 </bean>

 <bean id="commentManager" class=
 ➥"org.foj.service.impl.CommentManagerImpl">
 <constructor-arg ref="commentDao"/>
 </bean>

...

The first bean you define is GenericDao for the issueDao b. The commentDao C is
defined with your concrete implementation. Next, you create Spring beans for issue-
Manager D and commentManager E. The constructor-arg element is used to inject
the dependencies into the service class constructor.

 Now that we’ve wired things up with Spring let’s construct the web tier starting
with Struts 2 framework action classes.

2.7 Constructing the web tier
Struts 2 applications implement the Model-View-Controller (MVC) design pattern,
which is not to be confused with the MVP design pattern used to develop the Flex
application. The pattern encourages separation between the data model, view ele-
ments, and controllers that sit between them. The MVC pattern, widely adopted in the
Java community, has made its way into other languages and frameworks, like Flex.

2.7.1 Building Struts 2 action classes

You’ll start by building controller or action classes first, like IssueAction.

package org.foj.action;

import org.AppFuse.webapp.action.BaseAction;
...

public class IssueAction extends BaseAction {

 private IssueManager issueManager;
 private CommentManager commentManager;
 private List<Issue> issues;
 private List<Comment> comments;
 private Issue issue;
 private Long id;

 public void setIssueManager(IssueManager issueManager) {
 this.issueManager = issueManager;
 }

 public void setCommentManager(CommentManager commentManager) {
 this.commentManager = commentManager;
 }

 ...

Listing 2.12 The IssueAction.java

issueManager D

commentManager E

IssueAction extends
AppFuse BaseAction

 B

Setters for
IssueManager and
CommentManager

 C

29Constructing the web tier

 public String list() {
 issues = issueManager.getAll();
 return SUCCESS;
 }

 public String delete() {
 issueManager.remove(issue.getId());
 saveMessage(getText("issue.deleted"));

 return SUCCESS;
 }

 public String edit() {
 if (id != null) {
 issue = issueManager.get(id);
 } else {
 issue = new Issue();
 }

 comments = commentManager.findCommentsByIssueId(issue.getId());

 return SUCCESS;
 }

 public String save() throws Exception {
 if (cancel != null) {
 return CANCEL;
 }

 if (delete != null) {
 return delete();
 }

 boolean isNew = (issue.getId() == null);

 issue = issueManager.save(issue);

 String key = isNew ? "issue.added" : "issue.updated";
 saveMessage(getText(key));

 if (!isNew) {
 return INPUT;
 } else {
 return SUCCESS;
 }

 }

}

IssueAction extends the AppFuse BaseAction b that contains many common meth-
ods that actions rely on. IssueAction has setters for the service objects C. These set-
ters will be called by Spring, and their instances will be injected into the action class
during runtime. IssueAction facilitates controlling communications to the server
side from the web tier. It contains the methods for the view pages to list D, delete E,
edit F or, most importantly, save Issue objects G.

 The CommentAction object serves the same purpose for the Comment object as the
IssueAction object does for the Issue object. All the methods on CommentAction are

Returns list of
Issue objects D

Deletes Issue E

Edits by IssueId F

Saves Issue G

30 CHAPTER 2 Beginning with Java

facilitating CRUD for the Comment POJO by calling the commentManager service. The
CommentAction class can be downloaded from the website if needed.

 Now that the actions are in place, let’s work on JSP files to create a simple UI for
managing issues.

2.7.2 Editing the issue menu item

First you have to modify the menu.jsp to get to the issues list.

...
 <menu:displayMenu name="MainMenu"/>
 <menu:displayMenu name="UserMenu"/>
 <menu:displayMenu name="IssueMenu"/>
 <menu:displayMenu name="AdminMenu"/>
 <menu:displayMenu name="Logout"/>
...

The menu JSP file reads in the menu xml data. To add the Issue menu item you
need only add a single line b to this file that is located in the flex-bugs-web/src/
main/webapp/common directory. In the following listing you’ll provide the xml
data for that menu item.

...
 <Menu name="IssueMenu" title="menu.issue"
 ➥description="Issues Menu"
 roles="ROLE_ADMIN,ROLE_USER" page="/issues.html">
 <Item name="ViewIssues" title="menu.viewIssues" page="/issues.html"/>
 </Menu>
...

By adding to the existing AppFuse plumbing that creates menu items b, you quickly
gain access to new features. Let’s create the IssueList.jsp that will be displayed when
you click the issues menu item.

2.7.3 Adding JSP resources

The issueList.jsp will display a list of issues and allow you to add or modify existing
issues. The issue and comment JSP files will reside in the ../src/main/webapp/WEB-
INF/pages directory.

<%@ include file="/common/taglibs.jsp" %>

<head>
 <title><fmt:message key="issueList.title"/></title>
 <meta content="<fmt:message key='issueList.heading'/>" name="heading"/>
</head>

Listing 2.13 The menu.jsp

Listing 2.14 The menu-config.xml

Listing 2.15 The issueList.jsp

Adding IssueMenu item
to the JSP view file

 B

Add Issue menu item
to menu data xml file

 B

Essential tag
libraries bundle B

31Constructing the web tier

<c:set var="buttons">
 <input type="button" style="margin-right: 5px"
 onclick="location.href='<c:url value="editIssue.html"/>'"
 value="<fmt:message key="button.add"/>"/>
 <input type="button" onclick="location.href=
 ➥'<c:url value="/mainMenu.html"/>'"
 value="<fmt:message key="button.done"/>"/>
</c:set>

<c:out value="${buttons}" escapeXml="false"/>

<s:set name="issues" value="issues" scope="request"/>

<display:table name="issues" class="table" requestURI="" id="issueList"
 export="false" pagesize="25">
 <display:column property="id" sortable="true" href="editIssue.html"
 paramId="id" paramProperty="id" titleKey="issue.id"/>
 <display:column property="project" sortable="true"

titleKey="issue.project"/>
 <display:column property="description" sortable="false"

titleKey="issue.description"/>

 <display:setProperty name="paging.banner.item_name" value="issue"/>
 <display:setProperty name="paging.banner.items_name" value="issues"/>

</display:table>

<c:out value="${buttons}" escapeXml="false"/>

<script type="text/javascript">
 highlightTableRows("issueList");
</script>

To make life easier, you include a JSP that in turn includes a bundle of tag libraries b
that are useful for the web application. You have button data that will be stored in a
variable C and a Java Standard Tag Library (JSTL) tag D that will print the buttons.
You create a variable that will hold a list of issues E from the request scope and an
HTML table that is formatted using the included display tag library F. A little
JavaScript is used to highlight rows of data G. Now let’s have a look at the issue-
Form.jsp.

<%@ include file="/common/taglibs.jsp" %>

<head>
 <title><fmt:message key="issueDetail.title"/></title>
 <meta content="<fmt:message key='issueDetail.heading'/>"/>
</head>

<s:form id="issueForm" action="saveIssue" method="post" validate="true">
 <s:hidden name="issue.id" value="%{issue.id}"/>

 <s:textfield key="issue.project" required=
 ➥"true" cssClass="text medium"/>
 <s:textfield key="issue.description" required="true"
 ➥cssClass="text medium"/>

Listing 2.16 The issueForm.jsp

Variable holds button data C

Prints
button data
for display

 D

Variable
represents
issues list

 E

Displays nicely
formatted table F

JavaScript highlights
table rows

 G

“s” Struts 2
form tag in

action

 B

Form text
input fields

 C

32 CHAPTER 2 Beginning with Java

 <s:textfield key="issue.type" required="true" cssClass="text medium"/>
 <s:textfield key="issue.severity" required="true" cssClass="text medium"/>
 <s:textfield key="issue.status" required="true" cssClass="text medium"/>
 <s:textarea key="issue.details" required="true" cssClass="text medium"/>

 <li class="buttonBar bottom">
 <s:submit cssClass="button" method="save"
 ➥key="button.save" theme="simple"/>
 <c:if test="${not empty issue.id}">
 <s:submit cssClass="button" method="delete"
 ➥key="button.delete" onclick="return confirmDelete('issue')"
 theme="simple"/>
 </c:if>
 <s:submit cssClass="button" method="cancel"
 ➥key="button.cancel" theme="simple"/>

</s:form>

<c:if test="${not empty issue.id}">

 <s:form id="commentsForm" action="editComment"
 ➥method="post" validate="true">

 <s:set name="comments" value="comments" scope="request"/>
 <s:hidden name="issue.id" value="%{issue.id}"/>

 <display:table name="comments" class="table"
 ➥requestURI="" id="commentList" export="false" pagesize="25">
 <display:column property="id" sortable="true" href="editComment.html"
 paramId="id" paramProperty="id" titleKey="comment.id"/>
 <display:column property="author"
 ➥sortable="true" titleKey="comment.author"/>
 <display:column property="commentText"
 ➥sortable="false" titleKey="comment.commentText"/>

 <display:setProperty name="paging.banner.item_name" value="comment"/>
 <display:setProperty name="paging.banner.items_name" value="comments"/>

 </display:table>

 <s:submit cssClass="button" key="button.add" theme="simple"/>

 </s:form>

</c:if>

<script type="text/javascript">
 highlightTableRows("commentList");
</script>

<script type="text/javascript">
 Form.focusFirstElement($("issueForm"));

</script>

Obviously, the issueForm.jsp will allow a user to add or edit an issue. If you peek into
the included src/main/webapp/common/taglibs.jsp you’ll notice that the Struts 2 tag
libraries are included and the letter “s” was used for the tag prefix b. The Struts 2
textfield elements C map to an Issue object. The button bar created will contain

CRUD Button bar D

Comments
Struts 2 form

JavaScript
assigns focus

33Constructing the web tier

Save, Delete, and Cancel buttons D. The Delete button will display only if the issue has
an id or already exists. Let’s keep moving and build the commentForm.jsp.

<%@ include file="/common/taglibs.jsp" %>

<head>
 <title><fmt:message key="commentDetail.title"/></title>
 <meta content="<fmt:message key='commentDetail.heading'/>"/>
</head>

<s:form id="commentForm" action="saveComment" method="post" validate="true">
 <s:hidden name="comment.id" value="%{comment.id}"/>
 <s:hidden name="issue.id" value="%{issue.id}"/>
 <s:textfield key="comment.author" required="true" cssClass="text medium"/>
 <s:textfield key="comment.createdDate" required="false"
 ➥cssClass="text medium"/>
 <s:textarea key="comment.commentText" required="false"
 ➥cssClass="text medium"/>

 <li class="buttonBar bottom">
 <s:submit cssClass="button" method="save"
 ➥key="button.save" theme="simple"/>
 <c:if test="${not empty comment.id}">
 <s:submit cssClass="button" method="delete"
 ➥key="button.delete" onclick="return confirmDelete('comment')"
 theme="simple"/>
 </c:if>
 <s:submit cssClass="button" method="cancel"
 ➥key="button.cancel" theme="simple"/>

</s:form>

As the name suggests, the commentForm.jsp provides a Struts 2 form for updating
new or existing comments. When submitted, the form will call the comment man-
ager’s saveComment method. Now that you have the JSP files in place we’ll need to add
those properties so that they have real values.

2.7.4 Adding property resources

For the application’s messages to be localized, we’ve leveraged the Java resource bun-
dle framework. Add the properties shown in the following listing to the Application-
Resources.properties file located in the flex-bugs-web/src/main/resources directory.

-- menu/link messages --
menu.issue=Issues
menu.viewIssues=View Issues

-- issue form --
issue.id=Id

Listing 2.17 The commentForm.jsp

Listing 2.18 The ApplicationResources.properties

34 CHAPTER 2 Beginning with Java

issue.project=Project
issue.description=Description
issue.added=Issue has been added successfully.
issue.updated=Issue has been updated successfully.
issue.deleted=Issue has been deleted successfully.

-- issue list page --
issueList.title=Issue List
issueList.heading=Issues

-- issue detail page --
issueDetail.title=Issue Detail
issueDetail.heading=Issue Information

-- comment form --
comment.id=Id
comment.author=Author
comment.issueId=Issue Id
comment.createdDate=Created Date
comment.commentText=Details
comment.added=Comment has been added successfully.
comment.updated=Comment has been updated successfully.
comment.deleted=Comment has been deleted successfully.

-- issue list page --
commentList.title=Comment List
commentList.heading=Comments

-- issue detail page --
commentDetail.title=Comment Detail
commentDetail.heading=Comment Information

If more language support is needed, add the same properties with the respective
translation to the appropriate properties file in the same directory. Now let’s wire up
the view components with Struts 2.

2.7.5 Configuring the struts.xml

To wire up the JSP view components to the controller objects, you can use the
struts.xml located in the src/main/resources directory. This listing demonstrates
the wiring you need for the issues management.

<package>
 ...
 <!-- Add additional actions here -->
 <action name="issues"
 ➥class="org.foj.action.IssueAction" method="list">
 <result>/WEB-INF/pages/issueList.jsp</result>
 </action>

 <action name="editIssue"
 ➥class="org.foj.action.IssueAction" method="edit">
 <result>/WEB-INF/pages/issueForm.jsp</result>

Listing 2.19 The struts.xml

issues action loads
issueList.jsp

 B

editIssue loads
issueForm.jsp

 C

35Constructing the web tier

 <result name="error">/WEB-INF/pages/issueList.jsp</result>
 </action>

 <action name="saveIssue"
 ➥class="org.foj.action.IssueAction" method="save">
 <result name="input">/WEB-INF/pages/issueForm.jsp</result>
 <result name="cancel" type="redirect-action">issues</result>
 <result name="delete" type="redirect-action">issues</result>
 <result name="success" type="redirect-action">
 <param name="actionName">editIssue</param>
 <param name="id">${issue.id}</param>
 </result>
 </action>

 <action name="comments" class="org.foj.action.CommentAction"
 ➥method="list">
 <result>/WEB-INF/pages/commentList.jsp</result>
 </action>

 <action name="editComment" class="org.foj.action.CommentAction"
 ➥method="edit">
 <result>/WEB-INF/pages/commentForm.jsp</result>
 <result name="error">/WEB-INF/pages/commentList.jsp</result>
 </action>

 <action name="saveComment" class="org.foj.action.CommentAction"
 ➥method="save">
 <result name="input">/WEB-INF/pages/commentForm.jsp</result>
 <result name="cancel" type="redirect-action">
 <param name="actionName">editIssue</param>
 <param name="id">${issue.id}</param>
 </result>
 <result name="delete" type="redirect-action">
 <param name="actionName">editIssue</param>
 <param name="id">${issue.id}</param>
 </result>
 <result name="success" type="redirect-action">
 <param name="actionName">editIssue</param>
 <param name="id">${issue.id}</param>
 </result>
 </action>

 </package>

Struts 2 makes it simple to wire up the view components quickly and make changes.
As you can see, the issues action b will load the issueList.jsp whenever the
list() method is invoked. In the same way, editIssue C will load the issue-
Form.jsp when the edit() method is called and if that doesn’t work, it will go back to
the list page. The saveIssue action D will persist an issue by taking the input from
the issueForm.jsp.

 The remainder of the IssueAction is more of the same but pertains to issue
comments.

saveIssue loads
issueForm

 D

36 CHAPTER 2 Beginning with Java

2.7.6 Configuring Hibernate

The final step is to configure the POJOs with the Hibernate session factory. That way
when the app is loaded into memory, Hibernate recognizes these objects. You do
this through the hibernate.cfg.xml located in the src/main/resources directory.

<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate

➥Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
 <session-factory>
 <mapping class="org.AppFuse.model.User"/>
 <mapping class="org.AppFuse.model.Role"/>
 <mapping class="org.foj.model.Issue"/>
 <mapping class="org.foj.model.Comment"/>
 </session-factory>
</hibernate-configuration>

In this simple configuration, you create a class mapping b for each of the model
objects, Issue and Comment. Rebuild the application with the mvn jetty:run-war
command, then refresh your browser. The Issues button should be available as seen in
figure 2.7.

Listing 2.20 The hibernate.cfg.xml

Adding issue
and comment

 B

Figure 2.7 The issues list page with the integrated Issues menu button

37Summary

2.8 Summary
In this chapter we set up a Java web application using the AppFuse framework. App-
Fuse simplified the plumbing involved in building a typical Java web application by
using many popular frameworks, for example Struts 2, Spring, and Hibernate.

 In the next chapter we’ll start building the rich interface for the sample applica-
tion in Flex. In the following chapters we’ll begin to connect the Flex front end to the
Java application using web services and BlazeDS.

T
ogether, Flex and Java make a powerful web development
platform—they blend the strengths of Java on the server
with the richness of Flex on the frontend. Flex on Java

is a unique book that teaches you how to work with Flex
in concert with the full array of Java technologies: Spring,
POJOs, JMS, and other standard tools. You also learn how
to integrate Flex with server-side Java via BlazeDS remoting.
Almost all the carefully annotated examples use free or open
source soft ware.

What’s Inside
Build rich Flex 4 clients over Java backend systems
Detailed examples using standard Java components
Unit testing, charting, personalization, and other
real-world techniques

Th is book is written for Java developers—no prior Flex
experience is assumed.

BJ Allmon is a soft ware craft sman, a polyglot developer, and
team coach for Pillar Technology Group, an agile business
and technology consulting fi rm. Jeremy Anderson is a Java
developer and agile consultant with a passion for Groovy,
Grails, and... Flex.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/FlexonJava

$39.99 / Can $45.99 [INCLUDING eBOOK]

FLEX ON JAVA

WEB/JAVA

Bernerd Allmon Jeremy Anderson

“Teaches a holistic approach
 to building great soft ware.”
 —From the Foreword by
 James Ward, Flex Evangelist
 at Adobe

“Go from novice to expert
 with just this one book!”
 —Peter Pavlovich
 Kronos Incorporated

“A veritable tour de force.”
 —John S. Griffi n, coauthor of
 Hibernate Search in Action

“Leverages your existing Java
 knowledge... a must-read.
 —Brian Curnow
 Gordon Food Service.

“Fantastic... extremely
 focused... packed with
 practical examples.”
 —Doug Warren
 Java Web Services

M A N N I N G

SEE INSERT

