

MEAP Edition
Manning Early Access Program

Flink in Action
Version 2

Copyright 2016 Manning Publications

For more information on this and other Manning titles go to
www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

http://www.manning.com/
https://forums.manning.com/forums/flink-in-action

welcome
Thank you for purchasing the MEAP for Flink in Action. We are excited to deliver this book as
large-scale stream processing using Flink and Google Data Flow is fast gaining in popularity.
Stream processing is much more than just processing records one at a time as they arrive.
True stream processing needs support for concepts such as event time processing to ensure
stream processing systems are just as accurate as the batch processing system. There is a
need for one system the performs both stream and batch processing. Apache Flink is that
system.

As we started exploring Apache Flink, we discovered the subtle challenges that are
inherent in stream processing. These challenges are intrinsic to how stream processing is
performed. Unlike batch processing, where all data is available when processing begins,
stream processing must be able to handle incomplete data, late arrivals, and out-of-order
arrivals—without compromising performance or accuracy—and be resilient to failure. We
tackle all these challenges in this book.

Writing this book has been a challenge, partly because the technology is changing rapidly
as we write and partly because we want to make this complex topic of streaming easy to
understand in the context of everyday use cases. We believe that eventually streaming
systems will become the norm, because the real world operates in the streaming mode. Real-
world events occur and are captured continuously in transaction systems. The reporting
systems that aggregate these transactions into reports operate in batch-processing mode due
to technology limitations. These limitations are now being addressed by systems such as
Apache Flink. We hope this book helps you develop a strong foundation in the concepts and
the challenges of implementing streaming systems capable of handling high-velocity and high-
volume streaming data.

Please be sure to post any questions, comments, or suggestions you have about the book
in the Author Online forum. Your feedback is essential in developing the best book possible.

— Sameer B. Wadkar and Hari Rajaram

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

https://forums.manning.com/forums/flink-in-action

brief contents
PART 1: STREAM PROCESSING USING FLINK

 1 Introducing Apache Flink

 2 Getting started with Flink

 3 Batch processing using the DataSet API

 4 Stream processing using the DataStream API

 5 Basics of event time processing

PART 2: ADVANCED STREAM PROCESSING USING FLINK

 6 Session windows and custom windows

 7 Using the Flink API in practice

 8 Using Kafka with Flink

 9 Fault tolerance in Flink

PART 3: OUT IN THE WILD

10 Domain-specific libraries in Flink – CEP and Streaming SQL

11 Apache Beam and Flink

APPENDIXES:

A Setting up your local Flink environment

B Installing Apache Kafka

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

https://forums.manning.com/forums/flink-in-action

1
Introducing Apache Flink

This chapter covers

• Why stream processing is important
• What is Apache Flink
• Apache Flink in the context of a real world example

This book is about handling streaming data with Apache Flink. Every business is composed of
a series of events. Imagine a large retail store or public news site that is serving customers all
over the world; events are constantly being generated. What distinguishes a streaming system
from a batch system is that the event stream is unbounded or infinite from a system
perspective. Decision-makers need to analyze these streaming events together to make
business decisions. For example:

• A retail store chain is constantly selling products in various locations. People making
decisions need to know how the various products are selling. Most current systems do
this via nightly extract, transform, and load (ETL) processing, which is common in
enterprise environments, requires decision makers to wait an entire day before reports
become available. Ideally these decision makers would like to be able to inquire in near
real-time the performance of sales across the stores and regions.

• A popular news website is constantly serving user requests. Each request/response can
be considered an event. The stream of events need to be analyzed in near real-time to
understand how the news articles are performing with respect to page-views and to
determine which advertisements should be displayed to the readers as they are
browsing the website.

• Near real-time systems are especially valuable in fraud detection systems. Determining
that a credit card transaction was a fraud within moments of performing it is crucial in

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

1

https://forums.manning.com/forums/flink-in-action

preventing as well as minimizing the cost of fraud.

In this book we will discuss the main challenges of stream processing at scale. We will discuss
the features of Flink that provide solutions to these challenges.

If you are reading this book, it’s likely that you have prior Big Data experience working
with Apache Hadoop or Apache Spark. Both are used predominantly in the batch-processing
domain, although Spark has a streaming module. We will draw comparisons between these
systems and Flink when we describe key features of streaming applications.

Understanding the basics of streaming systems
The following articles by Tyler Akidau, one of the key members of the Google Cloud DataFlow team, provide an
excellent introduction to capabilities required of a stream processing system:

 • World beyond batch: Streaming 101 - https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
 • World beyond batch: Streaming 102 - https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

1.1 Stream event processing
First let us understand what is an event and its relationship to streams. From a business
perspective an event is business transaction:

• A customer buying a product in a store (online or physical).
• A mobile device emitting the current geographic location.
• Clicking a link on news website.
• Buying or selling stocks via an online brokerage site.
• Every action during online gaming.
• Messaging on social media.

Typically, the information in an event can be broadly classified into the following four
categories:

• When – The time the event occurred
• Where – The location associated with an event
• Who – The agent (user or machine) associated with the event
• What – Business information captured by the event

Examples of event information are:

• For a buy event in a store this information is, the transaction time, the store identifier
which identifies the location (for online purchases the IP address of the customer
identifies the same information, customer, the product identifier, number of items
purchased, cost per unit and the transaction id associated with all the products
purchased as part of this transaction.

• If a user is accessing a News website and clicks on a link to read a news item, an event

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

2

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://forums.manning.com/forums/flink-in-action

can be considered to be a combination of the following pieces of information: the time
the response was generated and sent to the reader, duration of page access, IP
address of the reader which identifies the location, the page URL, topic and keywords
associated with the page.

Figure 1.1 shows the information content of an event processing system such as transaction
event associated with buying an item in a store or information content of the clickstream
event associated with the user of a news website clicking and reading a news item.

Figure 1.1. The content of a product purchase event by a customer in a retail store along the
dimensions of when, where, who and what.

These events need to be analyzed and presented as reports to decision makers. Consider a
typical use case of generating aggregate information. For example:

• What were the sales of a product at various intervals (every 5 minutes, 15 minutes, 30
minutes, 1 hour, 24 hours, etc.)?

• Did the sales for a product increase in the day following the introduction of a promotion
scheme?

• How many hits did the page generate in the first 1 hour of being published?
• What are the key words associated with the user activity on our news website in the

last 5 seconds? Which ads do we show to this user based on this information?

The most common method of implementing such solutions is to collect the daily transactions
in a staging database and perform aggregations and other analytics operations in a batch
processing mode. The output of this batch processing system is then collected in a Data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

3

https://forums.manning.com/forums/flink-in-action

Warehouse and consumed by business users via Business Intelligence applications to make
decisions. The problem with this mode of operation is, Decision makers have to wait for an
entire day to receive information. While using batch processing for generating analytics may
be acceptable for certain types of use cases (Retail store analytics), it will produce sub-optimal
results when used for use cases like selecting advertisements to display to an online user.

Streaming systems like Flink were designed to solve the delayed-information delivery
problem. Flink can deliver the aggregation results or event alerts at various levels of
granularity almost as soon as the information is available. But how soon is “almost as soon?”
The answer is complex as we will discuss this in detail soon. We will see how Flink allows you
to make controlled trade-offs between latency of information availability and accuracy.
Latency of information availability is defined by the how fast the information is presented to
the user after the event occurs in the real world. Accuracy is a measure of how accurate the
information is. We will soon see how Flink allows you to trade off speed of information delivery
with accuracy of the delivered information. In other words, you could get the information
sooner if you are willing to tolerate approximate aggregation results or an occasional wrong
alert. Or you can wait a little longer to get the most accurate information. Or you can
implement a system that will provide approximate results very close to real-time, which will be
eventually corrected.

Figure 1.2 shows the difference batch and stream processing.

Figure 1.2. Comparing batch workflow with streaming workflow.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

4

https://forums.manning.com/forums/flink-in-action

In an ETL batch-processing scenario, the transactions databases collect event data during the
day, which is bulk loaded to a staging database at night. A large ETL process then executes to
produce aggregations on this data and store these results to the data warehouse. The
Business Intelligence applications then present the reports based on these aggregates to the
business users the following day. Users have to wait an entire day to get insights into business
operations.

Streaming systems operate differently. The transactions database will stream the logs in
near real-time which are processed by a streaming system which will produce aggregations
within intervals. The most intuitive interval is time. For example, calculate aggregates like
total sales by region for every 5-minute interval. We will soon see that other types of intervals
are also possible in Flink. These aggregates will be stored in the Data Warehouse which
provide a more real-time insight into business operations to the business users. The intervals
should not be too small (ex. 5-seconds) because Data Warehouses are typically designed for
optimal reads (lots of indexes) which will slow down the writing of the granular aggregates
and cause the overall system to have bottlenecks.

Note that is not possible to calculate these streaming aggregates in a batch system like
Hadoop as you would need to collect transaction data which occurred in the required interval
in files and process these files as a batch job. Hadoop jobs have a large (a few seconds to a
couple of minutes) of startup overhead. Also it is difficult to know for sure when all the events
which occurred in a given interval have arrived. Flink supports what is known as Event Time
Processing which guarantees this. We will see examples of this soon.

Spark can support processing of these mini-batches in a Spark Streaming. However,
Spark’s current support for Event Time Processing is limited. It will probably evolve. But as of
now Spark does not support true Event Time Processing.

Additionally, when treating a batch system like Spark to process streaming in mini-batches
you can only perform aggregates in time intervals which are multiples of the minimum interval
for a batch. And we cannot make it too small as it will cause write bottlenecks on a Data
Warehouse which is optimized for read and is slower to write data to when the indexes are
active. Most ETL processes disable indexes during a bulk load at night after the ETL process
has finished aggregating the data.

1.2 How Flink works
In this section we will delve deeper into how Flink works in the context of a lifecycle of events.
We will trace the event lifecycle as it is generated in the real world, arrives into Flink, is
processed with other events and finally written out to an external system or storage.

Figure 1.3 shows the reference architecture for a typical Flink implementation for handling
a streaming data.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

5

https://forums.manning.com/forums/flink-in-action

Figure 1.3. Flink Reference Architecture-Events are persisted in a durable store (Kafka), read using a streaming
source component, processed in a Flink Pipeline composed of a graph of operators streaming events from
upstream to downstream. Results are finally persisted in an external data store or data stream called a sink.

The main steps in the stream processing are:

1. Events are streamed over a reliable TCP connection from a real world event source.
2. The listener on these TCP connections will persist these events into a durable,

partitioned, failure resilient store which maintains the temporal order (there are
exceptions, which will be described in chapter 5) of the event arrival. The product most
commonly used is Apache Kafka which is a durable and distributed publish/subscribe
messaging system capable of handling event velocity of over 100K messages per
second. The events are published to a Kafka Topic. A Kafka topic consists of multiple
partitions and each partition can run on a separate machine which allows events
published to a Kafka topic to be processed in parallel. The events are now ready to be
processed by the Flink application which we will refer to as the Flink Pipeline.

3. The streaming source is the first component of the Flink Pipeline. Each streaming
source instance will pull data from the durable event store partition in the order it was
received and pass it to a chain of operators for processing.

4. After the event data is processed the last step in the Flink Pipeline will write the data to
an external data store or stream which is known as a sink.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

6

https://forums.manning.com/forums/flink-in-action

1.2.1 The need for a durable event store like Kafka

It is natural to wonder why a system like Apache Kafka is needed. Why can the streaming
source in the Flink Pipeline not connect directly to the network sources which stream the
events? This is certainly possible. However, by doing so you have given up your ability to
recover from failure. A distributed system like Flink has many tasks (each operator instance in
the pipeline runs as a task) running on multiple nodes. It is possible for nodes to fail. Flink will
restart the tasks on a healthy node. But what about the data which was delivered to the task
for processing. If the data is processed in flight, it is cannot be resent.

Apache Kafka is a distributed, durable publish-subscribe messaging system that is resilient
to failure. Events arriving into Kafka are published to a Topic in Kafka. The actual event data is
written to a partition of a topic. Partitions of a topic are usually maintained on separate Kafka
brokers (servers). Partitions allow multiple writers to write to the same topic as well as
multiple consumers read from the same topic in parallel. Each write to a partition is persisted
to a disk and replicated on disks on the cluster where Kafka is deployed. If the event data
needs to be re-read by the Flink pipeline to re-execute a failed operator, the Streaming Source
can simply rewind the pointer to the Kafka partition and re-read the data and re-send it down
the pipeline for re-processing. In a nutshell, persisting event data before processing, allows
Flink to be recover from failure as well as support re-processing of data. We will revisit this
topic again when we discuss checkpoints and snapshots.

1.2.2 Flink application pipeline

The Flink Application pipeline is depicted in figure 1.3 (reproduced again for convenience).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

7

https://forums.manning.com/forums/flink-in-action

Figure 1.3. A sample Flink application pipeline. The Streaming Source operator receives data from an external
data stream. The next layer is a Map type operator which processes events one at a time, followed by a
configuration of Map or Reduce type operators which finally write to a Sink operator which pipe data into an
external data store.

This section assumes a basic knowledge of MapReduce.

Basics of MapReduce
We will assume that the reader has a basic knowledge of how MapReduce works. There are many sources online that
describe MapReduce. The following StackOverflow link does a reasonable job of explaining what it is -
http://stackoverflow.com/questions/28982/please-explain-mapreduce-simply.

One of the authors of this book has also published a book on Hadoop, Pro Apache Hadoop
(https://www.amazon.com/Pro-Apache-Hadoop-Jason-Venner/dp/1430248637). The first three chapters of that book
cover the basics of YARN (Hadoop 2) and MapReduce. The first seven chapters cover MapReduce in detail.

There are four distinct layers in a Flink Application Pipeline:

• The first is the Streaming Source component. This is a custom component which
logically speaking, reads data from each event stream which can be a TCP connection.
Physically, it may read from a Kafka partition or another data source to which the event

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

8

http://stackoverflow.com/questions/28982/please-explain-mapreduce-simply
https://www.amazon.com/Pro-Apache-Hadoop-Jason-Venner/dp/1430248637
https://forums.manning.com/forums/flink-in-action

stream is persisted.
• A Streaming Source component is directly connected to a Mapper-type operator. Each

event is streamed into a Mapper type operator instance. The Map operator will process
events one at a time and stream them out to the next layer in the pipeline.

• The subsequent layers can consist of either Map type or Reduce type operators
configured in the form of a processing pipeline. Map type operators process an event
stream one event at a time and produce a Key-Value pair. The Reduce type component
receive input as a list of values for a given key and produce one to many Key-Value
pairs.

• The Reduce type components can be connected to other Map or Reduce type operators.
In this respect Flink is similar to Spark which allows you to configure a DAG (Directed
Acyclic Graph) of tasks (Mapper or Reducer component) through which the data flows
to achieve your computational goal. Basic MapReduce only allows you to have a job
with Mapper and Reducer configuration. If you need a more complex configuration you
have the create a chain of MapReduce jobs. The output of the upstream job(s) becomes
the input to the downstream job(s). This leads to excessive IO which has serious
performance implications. The Flink (and Spark) style of creating complex processing
pipeline is more performant.

• The operators in the final layer of the processing pipeline (leaf nodes of the processing
pipeline) are connected to a sink type operator. The sink operator receives Key-Value
pairs and writes them to an external data store that can be persistent storage like a
NoSQL store, HDFS, local file system or event another data stream.

The key question now is when a Map type operator streams data to a Reduce type operator, it
is shuffled by the Key from the Key-Value pairs emitted by the Map operators. In batch
processing the Reduce operator instance will reduce all the values for the given key. But in
case of stream processing, the stream is potentially infinite and there is no concept of all
values for a key. Still a Reduce operator needs to operate on list of values for a given key.
What values make up this list? This brings us to the concept of windows in Flink. Each such list
is known as a Window.

1.3 Basics of windowing in Flink
In stream processing, a window is a dynamic runtime component that contains multiple events
that arrive in a stream. An event can be assigned to a single window or multiple windows.
Various types of operations such as aggregations are applied on elements (events) in a
window. The concept of windowing is crucial to stream processing. Without windows it is
impossible to do data processing on streams because most data processing use cases are
required to perform aggregations and aggregations cannot be performed on a single data
element. Aggregations by nature can only be performed on multiple data elements.

The lifecycle of each Key-Value pair from arrival to a Reduce operator instance to being
processed and emitted to the next stage in the pipeline is depicted in figure 1.4.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

9

https://forums.manning.com/forums/flink-in-action

Figure 1.4. How elements arriving for a given key at the Reduce type operator instance are assigned to
windows and finally evaluated using the Windows Assigner, Trigger and the optional Evictor
components.

The key components participating in this lifecycle are as follows:

• A Windows Assigner and Trigger pair of components
• An optional Evictor component
• The Reduce side operator (denoted as Operator A and Operator B in the figure)

instances.

Each of the components in the figure 1.4 work as a system. The order described in the figure
is an indication of the order in which events are processed and how the individual components
are chained to one another. The key steps in the processing are as follows:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

10

https://forums.manning.com/forums/flink-in-action

• When a data element arrives at the Reduce operator instance shuffled by key, the
Windows Assigner component will assign it to one or more windows. Assignment to
windows may be based on time (all events from 12:00:00 to 12:00:05), count (all
events are assigned to the same window called a Global window), session (a window
per session where a session is defined as a period of activity followed by a period of in-
activity) or custom criteria.

• The Trigger component is responsible for evaluating if a window is ready for processing.
Logically, each pane gets its own Trigger component. The Trigger component checks if
the window is ready for evaluation each time an element is assigned to it or when a
timer assigned to the window expires.

• When the Trigger component decides that the elements of the window should be
evaluated (called the firing of the window) it takes all the elements in the window and
sends it to the Reduce type instance for evaluation. The Reduce operator instance is
invoked for the given key and list of values for the key assigned to the window just
fired. The Window can then be purged which reclaims the memory. This type of
processing typically occurs in time based windows. For example, windows where all
events between 12:00:00 or 12:00:05 are processed together.

• The Window can be evaluated by an optional evictor component before it is sent for
processing by the Reduce type operator instance. The evictor will iterate through all the
elements of the window, possibly remove some and only send the remaining elements
for processing by the operator instance. In such cases the Window is not purged and
the remaining elements in the window are available for processing again the next time
the window is triggered. We will discuss the role of Evictor component when we discuss
count-based windows in Chapter 4.

In the next section we will discuss two types of windows in detail:

• Time based windows
• Count based windows

We will also describe how each of these types of windows can be further subdivided into
tumbling and sliding windows.

We will defer the discussion on session and custom windows to advanced section of the
book.

1.4 Time-based windows
In this section we will look at time-based windows. In such windows, events are allocated to
windows based on time. But which time? There are three types of times associated with an
event:

• Event time – This is the time the event occurs in the real world. It is one of the
attributes of the event data. It is assigned by the source of the event in the real world.

• Processing time – This is the time the event arrives at the operator for evaluation.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

11

https://forums.manning.com/forums/flink-in-action

For a given event the processing time assigned to it changes as it arrives at each
operator. Processing time is a dynamic attribute of the event based on when it arrives
for processing at an operator instance.

• Ingestion time – This is the time the event arrives inside the Flink system. It is
similar to event time in that, it is assigned once and never changes. It is different from
event time since it is assigned by the Flink system and not by the source of the event.

Time based windows are used to calculate aggregations based on time. Some applications of
time based windows are:

• Streaming Extract Transform Load (ETL) operation which generates sales by product
line per store for a large retail chain for every 5-minute interval. Decision makers will
be able to access reports with at most 5-minute delay on how various product lines are
performing.

• Calculate aggregations like average temperature every 5 second intervals in an
Internet of Things (IoT) application.

• Page visits per user in one minute intervals to decide what advertisements to show a
user.

To understand these window types, we will consider the lifecycle of three events in an event
stream being processed by a Flink processing pipeline. We also focus our attention on two
operators (called Operator A and Operator B) in the pipeline. Table 1.1 shows the various
times associated with the events.

Table 1.1 Times of three events in a stream processed by a pipeline

Event Id Event-Time Ingestion-Time Arrival time at Operator A Arrival time at operator B

101 12:00:01 12:00:07 12:00:09 12:00:17

102 12:00:06 12:00:07 12:00:09 12:00:17

103 12:00:06 12:00:07 12:00:11 12:00:17

1.4.1 Event time-based windows

When windows are based on event time, they are assigned to a time window based on when
they occurred in the real world. In this chapter we will assume that the task of assigning this
timestamp to the event rests with the streaming source operator responsible for reading in
event stream into the Flink processing pipeline. There are other options to assign the
timestamp to the event which will be described in chapter 5.

The streaming source operator is custom developed to extract the event timestamp from
the event payload. It assigns this timestamp to the event so that the Flink framework can
extract it from the event at any stage of processing in the pipeline. The Windows Assigner will
extract this timestamp from the event and use it to assign the event to the correct window.
Note that the event will be assigned to a pane of the window based on the key.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

12

https://forums.manning.com/forums/flink-in-action

But how is this window triggered? In order to trigger this window, the Trigger needs to
determine that all the events for its window have arrived. Or in other words the Trigger needs
to determine that no more events will arrive for its window. If an operator is receiving events
from multiple sources, the trigger needs to determine that all events for the time period have
arrived.

For the purpose of this discussion we will make several simplifying assumptions which will
be relaxed in chapter 5:

• Timestamps have a minimum resolution of 1 second. This makes the explanations
easier to follow as compared to using a resolution of 1 millisecond.

• Events arrive at a streaming source operator in the increasing order of their timestamp.
• Events are never late.
• A time window will contain events which include the starting timestamp but exclude the

ending timestamp of the interval. For example, the window 12:00:00-12:00:05 will
include events with timestamp 12:00:00 but the events with timestamp 12:00:05 will
go to the window 12:00:05-12:00:10.

The information that all events for a time period have arrived is contained in special
lightweight events known as Watermarks. A watermark is a timestamp based on the last seen
event timestamp by a given source operator. Each source operator produces its own
watermarks. Assume that each source operator will generate a watermark event which one
second less than that current timestamp it observes. We will assume that the source operator
will generate a watermark event for every event processed. This has an overhead and chapter
5 will describe how to avoid it. For the purpose of this chapter we will assume we get one
watermark event per event processed.

The source operator will generate a watermark event which is equal to a timestamp which
is one second less than the timestamp of the event it processed. For example, if the event had
a timestamp 12:00:01, it will generate a watermark with timestamp 12:00:00. If the next
event also has timestamp 12:00:01, the next watermark will have timestamp 12:00:00 again.
If this is followed by an event with timestamp 12:00:02, the watermark will advance to
12:00:01. Why did we subtract one second from the current timestamp? Because watermarks
make an assertion that no more events with the timestamp represented by the watermark will
arrive after the watermark. If the source sees an event for 12:00:01 it means (given our
assumption) that all events for 12:00:00 have arrived. But as described in our example,
events with 12:00:01 can still arrive as there may be multiple events with that timestamp. We
cannot produce a watermark with timestamp 12:00:01 yet. We can only do that when the
source sees an event for timestamp 12:00:02. Figure 1.5 demonstrates how this simplified
watermark generation mechanism works.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

13

https://forums.manning.com/forums/flink-in-action

Figure 1.5. A simplistic watermark generation mechanism. Each source generates a watermark event when it
observes and event. It emits the event and a watermark with a timestamp one second less than the event
timestamp.

To recap the key points about the watermark event at each source are:

• You control watermark generation with custom code. We will describe all options to do
that in chapter 5.

• Watermarks only move forward with respect to time. If an event arrives slightly out of
order (chapter 5) you do not move the watermark back. Instead you leave it at its
current level. In figure 1.5 we see how events with the same timestamp arrive one
after the other. The watermark stays at the same level for each subsequent event of
the same timestamp.

These watermark events from each source will flow through the Flink application pipeline into
all operators. An operator knows how many streams are sending data to it. It receives
watermarks from all these streams. Assume that we have defined time windows with length of
five (5) second. When an operator is receiving data from two separate streams and it receives

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

14

https://forums.manning.com/forums/flink-in-action

the watermark event with timestamp 12:00:05 (or higher) from both streams, the trigger
attached to the window, 12:00:00-12:00:05, knows based on this information that no more
events will arrive at this the window and it can be triggered. The trigger needs to make
evaluation each time a watermark event arrives at the window. A Trigger will only fire a
window if all sources indicate that time has progressed to cover the window interval
(Watermark arrival of 12:00:04 from both sources for the time window 12:00:00-12:00:05 to
fire). In our example if Stream 1 has sent watermark for timestamp 12:00:04 but Stream 2 is
only at 12:00:03, it means that the Stream 2 can still send events with timestamp 12:00:04.
The window can only fire when both streams send the watermark 12:00:04 or higher. Note
that we say 12:00:04 or higher because the Source2 may directly see events with timestamp
12:00:06 after events with timestamp 12:00:04 in which case the watermark for source 2 will
advance to 12:00:05 directly from 12:00:03.

Table 1.2 shows the time windows in which our three events described in Table 1.1 would
have been processed when using event time based processing.

Table 1.2 Event time processing ensures events are processed consistently from operator to
operator in the Flink application pipeline

Operator Time windows

12:00:00-12:00:05 12:00:05-12:00:10 12:00:10-12:00:15 12:00:15-12:00:20

A 101 102, 103

B 101 102,103

What happens if one of the stream is delayed substantially? In such cases we can define
custom triggers which function based on our specific business needs. Flink provides the API
level control to handle these situations. We will defer this discussion until chapter 7.

The concept of watermarks is extremely important to understanding event-time based
processing. We will discuss it in more detail in chapter 4 and chapter 7.

1.4.2 Processing time-based windows

When windows are based on processing time, the Windows Assigner will assign events to a
window based on when it arrives at that operator. Processing time for a given event is the
time the Windows Assigner reads the event for assignment to windows. Assume we are
performing aggregations on 5 second windows. For a window based on time interval
12:00:00-12:00:05 where we assign events which arrive with timestamps starting 12:00:00
and ending (but not including) 12:00:05. We have another window 12:00:05-12:00:10 and so
on. Events are assigned to one or the other window based on when they arrive for processing
at the operator.

The trigger is applied when a timer assigned to the window expires. Thus when the time
12:00:05 based on the wall clock of the machine elapses, the window representing the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

15

https://forums.manning.com/forums/flink-in-action

interval 12:00:00-12:00:05 is triggered. Similarly, at 12:00:10 the window for the interval
12:00:05-12:00:10 is triggered.

The important point to note about processing time windows is, even for windows of the
same size in a Flink pipeline, events processed in a window for certain time interval, can find
themselves in different time interval window in a downstream operator since the window
assignment is based on when the events are evaluated by the Windows Assigner of an
operator. Network delays can cause events to be assigned to different windows at each
operator. Table 1.3 illustrates this situation. Note how event 101 is processed in a different
window from events 102 and 103 for operator 1, but operator 2 processes them together in
the same window.

Table 1.3 Processing time based processing is fast but can lead to inconsistent assignment to
windows across multiple operators in the processing pipeline

Operator Time windows

12:00:00-12:00:05 12:00:05-12:00:10 12:00:10-12:00:15 12:00:15-12:00:20

A 101 102,103

B 101,102,103

1.4.3 Ingestion time-based windows

Ingestion time windows are similar in function to event time windows except that the
timestamp is assigned based on the arrival time at the streaming source operator. The rest of
the operations are identical to the event-time based windows. Watermarks are added based
on the ingestion time using the same mechanism as event-time based processing.

Like event-time based processing (and unlike processing-time based processing),
ingestion-time processing ensures that events are consistently assigned to the same time
windows as they flow through the application pipeline. Unlike event-time based processing
there is no risk of late arriving events as the timestamps are assigned on arrival. This implies
that watermark events can never be delayed. This also means that, once a window is
evaluated for an operator, it will never be used again and can be safely discarded.

Ingestion time based processing has a very slight overhead as compared to processing
time based processing. But results are more consistent compared to processing-time based
processing. Table 1.4 illustrates how our three events are processed using ingestion-time
based processing. Due to a delays in arrival of events 101 and 102, they end up getting
processed in the same window.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

16

https://forums.manning.com/forums/flink-in-action

Table 1.4 Ingestion time processing also ensures events are processed consistently from operator
to operator in the Flink application pipeline.

Operator Time windows

12:00:00-12:00:05 12:00:05-12:00:10 12:00:10-12:00:15 12:00:15-12:00:20

A 101,102,103

B 101,102,103

1.4.4 Using various time windows to support Lambda Architecture style of
processing

It is common to use processing-time windows to implement the Lambda Architecture. In the
Lambda Architecture (http://lambda-architecture.net/) streaming events are processed as
quickly as possible at the cost of some accuracy to provide decision makers with fast (but
approximate and somewhat inaccurate) results. Eventually a batch processing system will
correct these approximate results. In Flink processing-time or ingestion-time based processing
can provide the fast approximate results. Another Flink pipeline with the same configuration
but operating using event-time based processing will also operate on this event stream and
correct any inaccuracies in the results produced by the processing or ingestion time based
pipeline. Event-time based processing will always follow processing-time and ingestion-time
based processing due to the delays introduced by watermark injection.

Due to its consistency of windows assignment through the processing pipeline, ingestion-
time should be preferred to processing-time to implement the fast approximate phase of
Lambda architecture based processing. Table 1.5 combines tables 1.2, 1.3, and 1.4 to provide
a side-by-side comparison of various types of time windows.

Table 1.5 Comparing various types of time windows. Note the consistency of window assignment
between operators of a pipeline in event time and ingestion time processing as compared to
processing time based processing.

Window Type Operator Time windows

12:00:00-
12:00:05

12:00:05-
12:00:10

12:00:10-
12:00:15

12:00:15-
12:00:20

Event Time
A 101 102,103

B 101 102,103

Processing Time
A 101 102,103

B 101,102,103

Ingestion Type
A 101,102,103

B 101,102,103

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

17

http://lambda-architecture.net/
https://forums.manning.com/forums/flink-in-action

1.4.5 Tumbling versus sliding time windows

Time windows can be defined as tumbling or sliding. In all our examples so far we have
considered tumbling windows. Tumbling windows do not have overlapping portions. Thus
12:00:00-12:00-05 and 12:00:05-12:00:10 are tumbling windows. Each event is assigned to
one only one window. Figure 1.6 shows and example of a tumbling window. Notice how events
can only be assigned exactly one window.

Figure 1.6. Tumbling windows. Events are assigned to only one window and windows are non-overlapping

Time windows can also be sliding. An example of a sliding window is, a window which 5
seconds long which slides every 1 second. For examples, 12:00:00-12:00:05,
12:00:01:12:00:06, 12:00:02:12:00:07 are examples of sliding windows. Events will be
assigned to more than one window based on their timestamp. Figure 1.7 shows an example of
sliding windows. Notice how windows are overlapping and events are assigned to one more
than one window.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

18

https://forums.manning.com/forums/flink-in-action

Figure 1.7. Sliding windows. Events are assigned to multiple overlapping windows.

1.5 Count-based windows
When count-based windows are used, the Reduce type operator uses a single window known
as the Global Window. All elements arriving at the operator are assigned to the same window.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

19

https://forums.manning.com/forums/flink-in-action

Each key gets its own pane in the window. The Trigger associated with each window pane will
fire the window pane based on number of elements in the pane. When this count crosses a
predefined threshold, the Trigger associated with the pane will fire the pane and hand those
elements to the operator for evaluation.

The count window can be one of the two types:

• Tumbling count window – In this type of count windows, the pane is fired when the
element count in the pane reaches a pre-defined level. For example, if this threshold is
set to 100, the pane will fire when the pane has 100 elements. The trigger will send
only those 100 elements for evaluation and remove these evaluated elements. Events
will continue to accumulate in the pane and when the number of elements in the pane
reached 100, it will fire again. The process repeats itself with an event being evaluated
exactly once per operator.

• Sliding count window – In this type of count window the trigger mechanism depends on
two parameters, the size of the window pane and how much it slides by. Imagine a
configuration defined for a sliding window with size 100 and slide size 10. When the
size of a window pane first reaches 100, the Trigger hands it to the Evictor component.
The Evictor component will iterate through these elements and sends all 100 elements
for evaluation. The evaluated elements are not removed from the window pane.
Elements continue to be added to the window pane. When the size of the pane reaches
110, the pane is once again handed to the Evictor component. This time the Evictor
component removes the 10 oldest elements in the window pane and hands the
remaining 100 elements for evaluation. Thus 90 most recent elements from the earlier
evaluation are re-evaluated along with 10 new elements. This process repeats itself.
During each evaluation the 10 oldest elements are moved from the window pane and
exactly 100 elements (most recently arrived) are evaluated by the operator.

Tumbling Count windows can be used for the following types of use cases:

• To calculate trends in website like twitter. For example, to calculate which hashtags are
trending we can calculate the sum for each hashtag for the current date each time a
certain threshold (ex. 1000) tweets of a given hashtag are made.

• To calculate leader boards and award badges. For example, give a bronze badge each
time a user responds to 10 questions on an online question-answer forum like Stack
Overflow. Next grant a silver badge to a user when they answer 50 questions and gold
badge when the user answers 100 questions.

Sliding Count windows can be used when you need to look for patterns in the last n elements.
If you are monitoring a temperature sensor and need to send an alert if three consecutive
readings are above a threshold you will use a sliding count window with size equal to three (3)
and slide equal to one (1). For each new reading this window triggers and determines if the
last 3 elements are above the threshold temperature. A tumbling window of size 3 is

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

20

https://forums.manning.com/forums/flink-in-action

inadequate for such as use-case because the three consecutive reading may be in different
tumbling window boundaries.

1.6 Batch processing as special case of stream processing
Finally, we are ready to understand how Flink can treat batch processing as a special case of
stream processing. Flink can perform batch processing by using the Global Window
assignment which we discussed in the count-based window. A custom trigger will evaluate the
pane only when all the elements for that pane have arrived. The elements from the pane will
then be discarded. The results of this evaluation will be exactly the same as if we had used a
separate batch processing API like Spark.

But, batch processing is still very commonly used. And a batch processing framework can
make several performance and memory optimizations based on the knowledge that it is
processing all elements at once. We will explore what constitutes this knowledge in the next
chapters of the book. To take advantage of these optimizations Flink provides a separate
batch processing API called the Dataset API. This API uses the same underlying streaming
framework components to execute the job but has some specialized pieces which enable the
batch processing jobs to execute faster. Dataset API is the topic for chapter 3.

Regardless of the option you choose, the processing operators you develop in Flink and the
ones available in the Flink libraries can be reused across both (streaming and batch) API’s in
Flink.

1.7 Pipelined processing and backpressure handling
Backpressure is a situation where the Flink system is receiving data faster than it can process
it. This results in the backlog at the source. A system not designed to handle backpressure
elegantly will end up in one of these two undesirable states:

• The system components will run out of memory. It is unacceptable for an enterprise
system to crash when it receives a deluge of data is unacceptable.

• The system will start dropping data elements at the source. Enterprise systems rely on
accurate processing of data. Loss of data is unacceptable.

In this section we will explore how Flink uses its pipelined processing architecture to elegantly
handle backpressure without running out of memory or dropping data elements at the source.

In a typical batch processing scenario, a downstream operator in the topology cannot start
until the upstream operators have finished processing. This is not practical in a streaming
scenario because streams are essentially infinite.

Flink operators are provided input and output buffers. Data is received into its input buffers
and when evaluated by the operator, it is pushed to its output buffers. The system is
configured to push these buffers to downstream operators (over a TCP connection if operators
are on different nodes) when the buffers are full. The size of the buffers can be configured to
control latency in a Flink system. Flink also allows for buffers to be pushed downstream when

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

21

https://forums.manning.com/forums/flink-in-action

a user defined timer elapses per buffer. This feature needed to control latency when data is
not arriving fast enough to fill the buffers. This is known as pipelined processing and it allows
data to be constantly streamed and evaluated using user-defined settings to control latency of
responses.

1.7.1 Backpressure handling

Flink handles backpressure gracefully. It does not run out of memory or drop data, which
would cause loss of data. The key components of backpressure handling are:

• Durable event store which delivers event data in the order it was received. We have
looked at Kafka as an example of such as a store.

• Pipelined processing using Input/Output buffers

Consider figure 1.8, which illustrates what a Flink system looks like when there is no
backpressure. It contains two operators, a Map operator and a Sum operator. A word count
application configured to operate in the streaming mode will have this configuration.

Figure 1.8. Steady sate with no backpressure. The system is processing the data faster than it arrives.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

22

https://forums.manning.com/forums/flink-in-action

In this situation, there is no backpressure and the system continues reading data from Kafka
and processing it through the entire topology of operations.

Figure 1.9 shows a situation where the backpressure starts to build up from the Map
operator.

Figure 1.9. The Map operator is processing slower than it receives data. The input buffers fill up until no space is
available in them. The connection with the streaming source is interrupted.

The Map operator is now processing data slower than it is receiving it. Consequently, the input
buffers on the Map operator fill up until no more input buffers are available. This causes the
connection to the streaming source to get interrupted. The Streaming source continues to read
data from Kafka as it has available input/output buffers. The Sum operator also continues
processing due to the availability of input/output buffers.

Figure 1.10 shows what happens if the Mapper does not release its input buffers soon
enough. The backpressure will then accumulate in the streaming source as its input/output
buffers fill up.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

23

https://forums.manning.com/forums/flink-in-action

Figure 1.10. Backpressure has now built up into the Streaming Source and it stops reading data from the Kafka
source.

At this point the streaming source stops reading data from Kafka. Note that data continues to
be added to Kafka from external sources. This is the main reason why we need a durable
messaging system. Without a system like Kafka we would either run out of memory or be
forced to drop data elements to handle backpressure.

Durable staging of data is the key to handling backpressure
One of the reasons Flink does not connect to external streaming sources of data directly is to be able to handle
backpressure gracefully. A system like Kafka guarantees that all data received is persisted in a failure resilient storage.
Flink is free to stop processing this data to catch up on a large backlog of events. When it resumes processing, it reads
from the last read point in Kafka (or other durable storage system being used).

Eventually, the Map operator catches up on its processing and proceeds to have available
input buffers. This causes the streaming source to empty its output buffers into the input
buffers of the Mapper. The streaming source now starts reading out of the Kafka system
again. However, now the Sum operator has no free input buffers and it stops collecting data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

24

https://forums.manning.com/forums/flink-in-action

from the Mapper operators. This will cause the connection to the Mapper to be interrupted.
Figure 1.11 illustrates this situation.

Figure 1.11. Backpressure has relieved on the streaming source and Mapper as the Mapper catches up with its
processing but the Sum operator does not have any input buffers available.

Thus each stage of the Flink processing pipeline can handle backpressure gracefully without
running out of memory or loss of data.

1.8 Failure recovery and exactly once processing using checkpoints
One of the features that distinguish Flink from other streaming frameworks is its support for
exactly once processing. Most frameworks offer at-least once processing (meaning an event
may be re-processed giving duplicate results) or at-most once processing (meaning an event
can be lost where we get missing data). These trade-offs are typical in a distributed system
where components of the processing pipeline may fail due to the hardware failures in a large
cluster. Distributed frameworks need to be able to handle such failure. Ignoring such failure

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

25

https://forums.manning.com/forums/flink-in-action

leads to at-most once processing and simply re-processing the data on a healthy node may
lead to some elements being re-processed again resulting in at-least once processing.

Flink supports exactly-once processing by taking period snapshots called checkpoints. A
checkpoint represents a time interval which is global to the Flink cluster. This means that the
checkpoint start and end time instance are the same across the cluster nodes.

The checkpoint contains the state of the Kafka pointers at the start and end of the
snapshot. Events read as a part of the checkpoint flow through the Flink processing pipeline.
Each operator in the pipeline can will store the results of evaluating the events which are part
of the checkpoint. Thus a checkpoint captures the following information:

• Kafka pointers at the start and end of the global time period representing the snapshot.
• State of each operator just before it emits the results of its evaluation for the data

elements which are part of the snapshot.

Checkpoint is considered complete only when all the sinks commit for the data elements which
hare part of the same snapshot. If Flink needs to re-process data, it will start the entire
pipeline from the last successful snapshot. This will cause it to read Kafka pointers from the
location contained in the last successful checkpoint and the pipeline will continue processing
from there.

Flink also provides the option of choosing at-least once processing by relaxing some of the
strict consistency constraints placed on how checkpoints are captured and propagated through
the system. It is faster than exactly-once processing but can result in duplicate processing
occasionally. Thus you can make trade-offs between performance and accuracy on a use case
basis.

Details about how consistent checkpoints are taken across the system will be discussed in
a chapter dedicated to the concepts of failure recovery.

1.9 Reprocessing using save points
Imagine you need to do one of more of the following:

• You can perform application upgrades and initiate processing from a point in time in the
past

• You need to perform A/B testing on a currently executing pipeline. A/B testing allows
two versions of the code to be tested using the same initial conditions (save points) to
compare results or performance. For example, you have collected user activity per
session where a session is defined a period of activity followed by a period of inactivity
for 15 minutes. You use these results in the recommendation engine. Your business
analyst wants to know how the recommendations produced by the engine change if
session is defined based on an inactivity period of 5 minutes. You will need to re-
process data from a point in time in the past and compare the results of the two
recommendation engines.

• You have just deployed a new version of the application. After running it for one day

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

26

https://forums.manning.com/forums/flink-in-action

you discover there is a bug in the application. You deploy the code fixes but you will
need to re-process the data from the time the new code was deployed yesterday to
ensure the results are correct.

Flink supports the above use cases using the concept of save-points. A save-point is a user
initiated snapshot of the system at a point in time. A Flink application pipeline can be restarted
from a save point. The Fink application will start processing data from the state of the system
stored in the save point. Save points enable the recovery use cases mention as follows:

• Initiate a save point just prior to the application upgrade. Then perform the application
upgrade. Initiate processing from the save point.

• Periodically create save points for your program. For the new definition of session (5
minutes of inactivity) initiate a new instance of your Flink pipeline from one of your
save points which define the session as a period of activity followed by over 5 minutes
of inactivity. Run your current pipeline based on the old definition of session (15
minutes of inactivity) from the same save point. Collect results and train your
recommendation engines using both datasets and compare the results.

• Just before you deploy your new version of the application take a save point. When a
bug fix is deployed you will just need to re-process from that save point.

Save points will be discussed in more detail in a chapter dedicated to failure, recovery and
state management in Flink.

1.10 Real world example – news website
In this book, we will use an example of a fictitious news website called Newsflink. Newsflink is
very popular website, and a large number users visit the site daily to read news articles. As
the website serves user request for news articles, for each response it also generates a
newsfeed event, which is sent to the Flink system for analysis. Newsflink, being a very popular
website, has a large number of web-servers serving the requests simultaneously. Figure 1.12
shows the overall workflow of events within the Newsflink infrastructure.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

27

https://forums.manning.com/forums/flink-in-action

Figure 1.12. Users request news articles, which are served to the user. The events representing this response are
sent to the Flink system for Streaming Analysis.

The workflow of the events in the Newsflink infrastructure is as follows:

1. The user (anonymous or logged-in) of the website makes a request for a news article.
2. The webserver serves the news article.
3. Simultaneously, the webserver also generates an event representing this response and

sends it to the Flink system for streaming analysis.
4. The Flink system first persists the event (Kafka can be used to persist events) to ensure

it is never lost and can be re-processed if necessary, and then delivers it to the Flink
processing units for processing.

5. The results (typically user defined aggregations) are computed and delivered to the
business systems.

6. The business applications then use these results for various purposes. For example, the
results can be used to feed recommendation engines that are used to propose similar
articles to the user.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

28

https://forums.manning.com/forums/flink-in-action

Why did we select Newsflink as an example?
Streaming applications are used to support a wide array of exotic use-cases ranging from real-time ad generation
based on online user behavior to real-time fraud detection. Why then did we select Newsflink as our use case. The
reason we did that is because we want to show that Streaming can be used to provide business value in everyday ETL
style applications.

We will also use very limited use case examples to illustrate the capability of Flink. For example, we will frequently
use the use case of finding aggregate page count per section and sub-section of the website. This is done on purpose.
We do not want you to get lost into the business details of understanding a use-case. Instead we want to use simple yet
realistic use-cases to illustrate what Flink can and cannot do.

Where appropriate we will describe other use cases for a given topic but will revert to a familiar one for source code
illustrations. Our goal is to provide enough details to enable you to apply this knowledge to your own use-cases.

1.10.1 Event Schema

The schema of the event sent to Flink System for analysis is depicted in figure 1.13

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

29

https://forums.manning.com/forums/flink-in-action

Figure 1.13. The data model for our Newsflink website. The master data sources are the PAGE and the
PAGE_CONTENT tables. The NEWSFEED and COMMENT are the streaming sources.
The data model of the Newsflink corporation includes the following sources (or tables in the
traditional sense):

• PAGE – This source contains information about the page such as the name of the
author, publish date, section (Ex. Sports), sub-section (Ex. Football), topic (Ex. Super
bowl), etc.

• PAGE_CONTENT – This source contains the content for a given page. The content can
be modified regularly in response to viewership statistics. Hence a page can support
multiple version. Each version is also associated with key words associated with the
content of that row. Only one version can be active at a time.

• NEWSFEED – This source identifies all activity by user for a given page. Each time a
user accesses a page this event is generated. This event contains the information about
the user, and the current state of the page. This is the most important source for the
analytics use case. It is also very large. Thus a website receiving 100 million unique
requests per day with an event payload of 1KB per request, will produce 100 GB of
data each day. The newsfeed events will constantly stream into our system.

• COMMENT – A user may comment on a given page. This table stores each comment for
a page along with the information of the user writing the comment. The comment

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

30

https://forums.manning.com/forums/flink-in-action

events will also be constantly streaming into our system.

We will use this data model in the book to describe the capabilities of Flink in next chapters.
We will expand each data source at the appropriate time during the rest of the book.

1.11 Summary
• The Apache Flink framework supports processing of streams of events. Event streams

are how businesses execute in the real world. True stream processing allows these
events to be processed in near real time, allowing the decision makers to have faster
access to information.

• Flink supports rich and complex windowing semantics. Flink supports windows based on
time, count, session and custom criteria. Flink handles time based windows based on
event-time, processing-time and ingestion-time. Windows can be non-
overlapping(tumbling) or overlapping(sliding). These complex windows allow Flink to
implement faster versions of the famous Lambda Architecture.

• Flink employs pipelined processing data where each stage of the pipeline will keep
flowing the data to the subsequent stage. Pipelined processing allows graceful handling
of backpressure situations where the system is processing slower than it is ingesting
data. Flink handles backpressure without running out of memory or allowing data loss.

• Flink allows the user to select between at-least once or exactly-once processing in
exchange of slightly increased latency. Flink’s ability to take precise snapshot of the
system state based on a system-wide global marking of time supports the exactly-once
processing.

• Flink allows creation of user-defined snapshots called save points. Snapshots allow you
to go back to a point in time to reprocess data, to perform A/B testing and to apply
application upgrades or bug fixes.

• Flink treats batch processing as special case of stream processing. Flink operators can
be reused across batch and streaming topologies. Treating batch as special case of
streaming provides Flink with a more fine-grained ability to process data.

In the next chapter we will show you how to install Flink and write simple programs in Flink
using the DataSet, DataStream and Table APIs of Flink.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/flink-in-action

31

https://forums.manning.com/forums/flink-in-action

	Flink in Action MEAP V02
	Copyright
	Welcome
	Brief contents
	Chapter 1: Introducing Apache Flink
	1.1 Stream event processing
	1.2 How Flink works
	1.2.1 The need for a durable event store like Kafka
	1.2.2 Flink application pipeline

	1.3 Basics of windowing in Flink
	1.4 Time-based windows
	1.4.1 Event time-based windows
	1.4.2 Processing time-based windows
	1.4.3 Ingestion time-based windows
	1.4.4 Using various time windows to support Lambda Architecture style of processing
	1.4.5 Tumbling versus sliding time windows

	1.5 Count-based windows
	1.6 Batch processing as special case of stream processing
	1.7 Pipelined processing and backpressure handling
	1.7.1 Backpressure handling

	1.8 Failure recovery and exactly once processing using checkpoints
	1.9 Reprocessing using save points
	1.10 Real world example – news website
	1.10.1 Event Schema

	1.11 Summary

