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welcome 
Thank you for purchasing the MEAP for Flink in Action. We are excited to deliver this book as 
large-scale stream processing using Flink and Google Data Flow is fast gaining in popularity. 
Stream processing is much more than just processing records one at a time as they arrive. 
True stream processing needs support for concepts such as event time processing to ensure 
stream processing systems are just as accurate as the batch processing system. There is a 
need for one system the performs both stream and batch processing. Apache Flink is that 
system.  

As we started exploring Apache Flink, we discovered the subtle challenges that are 
inherent in stream processing. These challenges are intrinsic to how stream processing is 
performed. Unlike batch processing, where all data is available when processing begins, 
stream processing must be able to handle incomplete data, late arrivals, and out-of-order 
arrivals—without compromising performance or accuracy—and be resilient to failure. We 
tackle all these challenges in this book.  

Writing this book has been a challenge, partly because the technology is changing rapidly 
as we write and partly because we want to make this complex topic of streaming easy to 
understand in the context of everyday use cases. We believe that eventually streaming 
systems will become the norm, because the real world operates in the streaming mode. Real-
world events occur and are captured continuously in transaction systems. The reporting 
systems that aggregate these transactions into reports operate in batch-processing mode due 
to technology limitations. These limitations are now being addressed by systems such as 
Apache Flink. We hope this book helps you develop a strong foundation in the concepts and 
the challenges of implementing streaming systems capable of handling high-velocity and high-
volume streaming data. 

Please be sure to post any questions, comments, or suggestions you have about the book 
in the Author Online forum. Your feedback is essential in developing the best book possible. 

 
— Sameer B. Wadkar and Hari Rajaram 
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1  
Introducing Apache Flink 

This chapter covers  

• Why stream processing is important 
• What is Apache Flink 
• Apache Flink in the context of a real world example 

This book is about handling streaming data with Apache Flink. Every business is composed of 
a series of events. Imagine a large retail store or public news site that is serving customers all 
over the world; events are constantly being generated. What distinguishes a streaming system 
from a batch system is that the event stream is unbounded or infinite from a system 
perspective. Decision-makers need to analyze these streaming events together to make 
business decisions. For example: 

• A retail store chain is constantly selling products in various locations. People making 
decisions need to know how the various products are selling. Most current systems do 
this via nightly extract, transform, and load (ETL) processing, which is common in 
enterprise environments, requires decision makers to wait an entire day before reports 
become available. Ideally these decision makers would like to be able to inquire in near 
real-time the performance of sales across the stores and regions. 

• A popular news website is constantly serving user requests. Each request/response can 
be considered an event. The stream of events need to be analyzed in near real-time to 
understand how the news articles are performing with respect to page-views and to 
determine which advertisements should be displayed to the readers as they are 
browsing the website. 

• Near real-time systems are especially valuable in fraud detection systems. Determining 
that a credit card transaction was a fraud within moments of performing it is crucial in 
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preventing as well as minimizing the cost of fraud.  

In this book we will discuss the main challenges of stream processing at scale. We will discuss 
the features of Flink that provide solutions to these challenges.  

If you are reading this book, it’s likely that you have prior Big Data experience working 
with Apache Hadoop or Apache Spark. Both are used predominantly in the batch-processing 
domain, although Spark has a streaming module. We will draw comparisons between these 
systems and Flink when we describe key features of streaming applications. 

Understanding the basics of streaming systems 
The following articles by Tyler Akidau, one of the key members of the Google Cloud DataFlow team, provide an 
excellent introduction to capabilities required of a stream processing system: 

 
   •   World beyond batch: Streaming 101 - https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101   
   •   World beyond batch: Streaming 102 - https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102  
 

1.1 Stream event processing  
First let us understand what is an event and its relationship to streams. From a business 
perspective an event is business transaction: 

• A customer buying a product in a store (online or physical).  
• A mobile device emitting the current geographic location. 
• Clicking a link on news website. 
• Buying or selling stocks via an online brokerage site. 
• Every action during online gaming. 
• Messaging on social media. 

Typically, the information in an event can be broadly classified into the following four 
categories: 

• When – The time the event occurred 
• Where – The location associated with an event 
• Who – The agent (user or machine) associated with the event 
• What – Business information captured by the event 

Examples of event information are: 

• For a buy event in a store this information is, the transaction time, the store identifier 
which identifies the location (for online purchases the IP address of the customer 
identifies the same information, customer, the product identifier, number of items 
purchased, cost per unit and the transaction id associated with all the products 
purchased as part of this transaction. 

• If a user is accessing a News website and clicks on a link to read a news item, an event 
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can be considered to be a combination of the following pieces of information: the time 
the response was generated and sent to the reader, duration of page access, IP 
address of the reader which identifies the location, the page URL, topic and keywords 
associated with the page. 

Figure 1.1 shows the information content of an event processing system such as transaction 
event associated with buying an item in a store or information content of the clickstream 
event associated with the user of a news website clicking and reading a news item. 

 
Figure 1.1. The content of a product purchase event by a customer in a retail store along the 
dimensions of when, where, who and what. 

These events need to be analyzed and presented as reports to decision makers. Consider a 
typical use case of generating aggregate information. For example: 

• What were the sales of a product at various intervals (every 5 minutes, 15 minutes, 30 
minutes, 1 hour, 24 hours, etc.)? 

• Did the sales for a product increase in the day following the introduction of a promotion 
scheme?  

• How many hits did the page generate in the first 1 hour of being published? 
• What are the key words associated with the user activity on our news website in the 

last 5 seconds? Which ads do we show to this user based on this information? 

The most common method of implementing such solutions is to collect the daily transactions 
in a staging database and perform aggregations and other analytics operations in a batch 
processing mode. The output of this batch processing system is then collected in a Data 
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Warehouse and consumed by business users via Business Intelligence applications to make 
decisions. The problem with this mode of operation is, Decision makers have to wait for an 
entire day to receive information. While using batch processing for generating analytics may 
be acceptable for certain types of use cases (Retail store analytics), it will produce sub-optimal 
results when used for use cases like selecting advertisements to display to an online user. 

Streaming systems like Flink were designed to solve the delayed-information delivery 
problem. Flink can deliver the aggregation results or event alerts at various levels of 
granularity almost as soon as the information is available. But how soon is “almost as soon?” 
The answer is complex as we will discuss this in detail soon. We will see how Flink allows you 
to make controlled trade-offs between latency of information availability and accuracy. 
Latency of information availability is defined by the how fast the information is presented to 
the user after the event occurs in the real world. Accuracy is a measure of how accurate the 
information is. We will soon see how Flink allows you to trade off speed of information delivery 
with accuracy of the delivered information. In other words, you could get the information 
sooner if you are willing to tolerate approximate aggregation results or an occasional wrong 
alert. Or you can wait a little longer to get the most accurate information. Or you can 
implement a system that will provide approximate results very close to real-time, which will be 
eventually corrected.  

Figure 1.2 shows the difference batch and stream processing. 

 
Figure 1.2. Comparing batch workflow with streaming workflow. 
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In an ETL batch-processing scenario, the transactions databases collect event data during the 
day, which is bulk loaded to a staging database at night. A large ETL process then executes to 
produce aggregations on this data and store these results to the data warehouse. The 
Business Intelligence applications then present the reports based on these aggregates to the 
business users the following day. Users have to wait an entire day to get insights into business 
operations. 

Streaming systems operate differently. The transactions database will stream the logs in 
near real-time which are processed by a streaming system which will produce aggregations 
within intervals. The most intuitive interval is time. For example, calculate aggregates like 
total sales by region for every 5-minute interval. We will soon see that other types of intervals 
are also possible in Flink. These aggregates will be stored in the Data Warehouse which 
provide a more real-time insight into business operations to the business users. The intervals 
should not be too small (ex. 5-seconds) because Data Warehouses are typically designed for 
optimal reads (lots of indexes) which will slow down the writing of the granular aggregates 
and cause the overall system to have bottlenecks.  

Note that is not possible to calculate these streaming aggregates in a batch system like 
Hadoop as you would need to collect transaction data which occurred in the required interval 
in files and process these files as a batch job. Hadoop jobs have a large (a few seconds to a 
couple of minutes) of startup overhead. Also it is difficult to know for sure when all the events 
which occurred in a given interval have arrived. Flink supports what is known as Event Time 
Processing which guarantees this. We will see examples of this soon. 

Spark can support processing of these mini-batches in a Spark Streaming. However, 
Spark’s current support for Event Time Processing is limited. It will probably evolve. But as of 
now Spark does not support true Event Time Processing.  

Additionally, when treating a batch system like Spark to process streaming in mini-batches 
you can only perform aggregates in time intervals which are multiples of the minimum interval 
for a batch. And we cannot make it too small as it will cause write bottlenecks on a Data 
Warehouse which is optimized for read and is slower to write data to when the indexes are 
active. Most ETL processes disable indexes during a bulk load at night after the ETL process 
has finished aggregating the data. 

1.2 How Flink works 
In this section we will delve deeper into how Flink works in the context of a lifecycle of events. 
We will trace the event lifecycle as it is generated in the real world, arrives into Flink, is 
processed with other events and finally written out to an external system or storage. 

Figure 1.3 shows the reference architecture for a typical Flink implementation for handling 
a streaming data.  
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Figure 1.3. Flink Reference Architecture-Events are persisted in a durable store (Kafka), read using a streaming 
source component, processed in a Flink Pipeline composed of a graph of operators streaming events from 
upstream to downstream. Results are finally persisted in an external data store or data stream called a sink. 

The main steps in the stream processing are: 

1. Events are streamed over a reliable TCP connection from a real world event source. 
2. The listener on these TCP connections will persist these events into a durable, 

partitioned, failure resilient store which maintains the temporal order (there are 
exceptions, which will be described in chapter 5) of the event arrival. The product most 
commonly used is Apache Kafka which is a durable and distributed publish/subscribe 
messaging system capable of handling event velocity of over 100K messages per 
second. The events are published to a Kafka Topic. A Kafka topic consists of multiple 
partitions and each partition can run on a separate machine which allows events 
published to a Kafka topic to be processed in parallel. The events are now ready to be 
processed by the Flink application which we will refer to as the Flink Pipeline. 

3. The streaming source is the first component of the Flink Pipeline. Each streaming 
source instance will pull data from the durable event store partition in the order it was 
received and pass it to a chain of operators for processing. 

4. After the event data is processed the last step in the Flink Pipeline will write the data to 
an external data store or stream which is known as a sink. 

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and 
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders. 

https://forums.manning.com/forums/flink-in-action

6

https://forums.manning.com/forums/flink-in-action


1.2.1 The need for a durable event store like Kafka 

It is natural to wonder why a system like Apache Kafka is needed. Why can the streaming 
source in the Flink Pipeline not connect directly to the network sources which stream the 
events? This is certainly possible. However, by doing so you have given up your ability to 
recover from failure. A distributed system like Flink has many tasks (each operator instance in 
the pipeline runs as a task) running on multiple nodes. It is possible for nodes to fail. Flink will 
restart the tasks on a healthy node. But what about the data which was delivered to the task 
for processing. If the data is processed in flight, it is cannot be resent.  

Apache Kafka is a distributed, durable publish-subscribe messaging system that is resilient 
to failure. Events arriving into Kafka are published to a Topic in Kafka. The actual event data is 
written to a partition of a topic. Partitions of a topic are usually maintained on separate Kafka 
brokers (servers). Partitions allow multiple writers to write to the same topic as well as 
multiple consumers read from the same topic in parallel. Each write to a partition is persisted 
to a disk and replicated on disks on the cluster where Kafka is deployed. If the event data 
needs to be re-read by the Flink pipeline to re-execute a failed operator, the Streaming Source 
can simply rewind the pointer to the Kafka partition and re-read the data and re-send it down 
the pipeline for re-processing. In a nutshell, persisting event data before processing, allows 
Flink to be recover from failure as well as support re-processing of data. We will revisit this 
topic again when we discuss checkpoints and snapshots. 

1.2.2 Flink application pipeline 

The Flink Application pipeline is depicted in figure 1.3 (reproduced again for convenience). 
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Figure 1.3. A sample Flink application pipeline. The Streaming Source operator receives data from an external 
data stream. The next layer is a Map type operator which processes events one at a time, followed by a 
configuration of Map or Reduce type operators which finally write to a Sink operator which pipe data into an 
external data store. 

This section assumes a basic knowledge of MapReduce. 

Basics of MapReduce 
We will assume that the reader has a basic knowledge of how MapReduce works. There are many sources online that 
describe MapReduce. The following StackOverflow link does a reasonable job of explaining what it is - 
http://stackoverflow.com/questions/28982/please-explain-mapreduce-simply.  

One of the authors of this book has also published a book on Hadoop, Pro Apache Hadoop 
(https://www.amazon.com/Pro-Apache-Hadoop-Jason-Venner/dp/1430248637). The first three chapters of that book 
cover the basics of YARN (Hadoop 2) and MapReduce. The first seven chapters cover MapReduce in detail.  
 

There are four distinct layers in a Flink Application Pipeline: 

• The first is the Streaming Source component. This is a custom component which 
logically speaking, reads data from each event stream which can be a TCP connection. 
Physically, it may read from a Kafka partition or another data source to which the event 
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stream is persisted. 
• A Streaming Source component is directly connected to a Mapper-type operator. Each 

event is streamed into a Mapper type operator instance. The Map operator will process 
events one at a time and stream them out to the next layer in the pipeline. 

• The subsequent layers can consist of either Map type or Reduce type operators 
configured in the form of a processing pipeline. Map type operators process an event 
stream one event at a time and produce a Key-Value pair. The Reduce type component 
receive input as a list of values for a given key and produce one to many Key-Value 
pairs.  

• The Reduce type components can be connected to other Map or Reduce type operators. 
In this respect Flink is similar to Spark which allows you to configure a DAG (Directed 
Acyclic Graph) of tasks (Mapper or Reducer component) through which the data flows 
to achieve your computational goal. Basic MapReduce only allows you to have a job 
with Mapper and Reducer configuration. If you need a more complex configuration you 
have the create a chain of MapReduce jobs. The output of the upstream job(s) becomes 
the input to the downstream job(s). This leads to excessive IO which has serious 
performance implications. The Flink (and Spark) style of creating complex processing 
pipeline is more performant. 

• The operators in the final layer of the processing pipeline (leaf nodes of the processing 
pipeline) are connected to a sink type operator. The sink operator receives Key-Value 
pairs and writes them to an external data store that can be persistent storage like a 
NoSQL store, HDFS, local file system or event another data stream. 

The key question now is when a Map type operator streams data to a Reduce type operator, it 
is shuffled by the Key from the Key-Value pairs emitted by the Map operators. In batch 
processing the Reduce operator instance will reduce all the values for the given key. But in 
case of stream processing, the stream is potentially infinite and there is no concept of all 
values for a key. Still a Reduce operator needs to operate on list of values for a given key. 
What values make up this list? This brings us to the concept of windows in Flink. Each such list 
is known as a Window.  

1.3 Basics of windowing in Flink 
In stream processing, a window is a dynamic runtime component that contains multiple events 
that arrive in a stream. An event can be assigned to a single window or multiple windows. 
Various types of operations such as aggregations are applied on elements (events) in a 
window. The concept of windowing is crucial to stream processing. Without windows it is 
impossible to do data processing on streams because most data processing use cases are 
required to perform aggregations and aggregations cannot be performed on a single data 
element. Aggregations by nature can only be performed on multiple data elements. 

The lifecycle of each Key-Value pair from arrival to a Reduce operator instance to being 
processed and emitted to the next stage in the pipeline is depicted in figure 1.4. 
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Figure 1.4. How elements arriving for a given key at the Reduce type operator instance are assigned to 
windows and finally evaluated using the Windows Assigner, Trigger and the optional Evictor 
components. 

The key components participating in this lifecycle are as follows: 

• A Windows Assigner and Trigger pair of components 
• An optional Evictor component 
• The Reduce side operator (denoted as Operator A and Operator B in the figure) 

instances. 

Each of the components in the figure 1.4 work as a system. The order described in the figure 
is an indication of the order in which events are processed and how the individual components 
are chained to one another. The key steps in the processing are as follows: 
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• When a data element arrives at the Reduce operator instance shuffled by key, the 
Windows Assigner component will assign it to one or more windows. Assignment to 
windows may be based on time (all events from 12:00:00 to 12:00:05), count (all 
events are assigned to the same window called a Global window), session (a window 
per session where a session is defined as a period of activity followed by a period of in-
activity) or custom criteria. 

• The Trigger component is responsible for evaluating if a window is ready for processing. 
Logically, each pane gets its own Trigger component. The Trigger component checks if 
the window is ready for evaluation each time an element is assigned to it or when a 
timer assigned to the window expires.  

• When the Trigger component decides that the elements of the window should be 
evaluated (called the firing of the window) it takes all the elements in the window and 
sends it to the Reduce type instance for evaluation. The Reduce operator instance is 
invoked for the given key and list of values for the key assigned to the window just 
fired. The Window can then be purged which reclaims the memory. This type of 
processing typically occurs in time based windows. For example, windows where all 
events between 12:00:00 or 12:00:05 are processed together.  

• The Window can be evaluated by an optional evictor component before it is sent for 
processing by the Reduce type operator instance. The evictor will iterate through all the 
elements of the window, possibly remove some and only send the remaining elements 
for processing by the operator instance. In such cases the Window is not purged and 
the remaining elements in the window are available for processing again the next time 
the window is triggered. We will discuss the role of Evictor component when we discuss 
count-based windows in Chapter 4.  

In the next section we will discuss two types of windows in detail: 

• Time based windows  
• Count based windows 

We will also describe how each of these types of windows can be further subdivided into 
tumbling and sliding windows. 

We will defer the discussion on session and custom windows to advanced section of the 
book. 

1.4 Time-based windows 
In this section we will look at time-based windows. In such windows, events are allocated to 
windows based on time. But which time? There are three types of times associated with an 
event: 

• Event time – This is the time the event occurs in the real world. It is one of the 
attributes of the event data. It is assigned by the source of the event in the real world.  

• Processing time – This is the time the event arrives at the operator for evaluation. 
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For a given event the processing time assigned to it changes as it arrives at each 
operator. Processing time is a dynamic attribute of the event based on when it arrives 
for processing at an operator instance. 

• Ingestion time – This is the time the event arrives inside the Flink system. It is 
similar to event time in that, it is assigned once and never changes. It is different from 
event time since it is assigned by the Flink system and not by the source of the event. 

Time based windows are used to calculate aggregations based on time. Some applications of 
time based windows are: 

• Streaming Extract Transform Load (ETL) operation which generates sales by product 
line per store for a large retail chain for every 5-minute interval. Decision makers will 
be able to access reports with at most 5-minute delay on how various product lines are 
performing. 

• Calculate aggregations like average temperature every 5 second intervals in an 
Internet of Things (IoT) application.  

• Page visits per user in one minute intervals to decide what advertisements to show a 
user. 

To understand these window types, we will consider the lifecycle of three events in an event 
stream being processed by a Flink processing pipeline. We also focus our attention on two 
operators (called Operator A and Operator B) in the pipeline. Table 1.1 shows the various 
times associated with the events.  

Table 1.1 Times of three events in a stream processed by a pipeline 

Event Id Event-Time Ingestion-Time  Arrival time at Operator A Arrival time at operator B 

101 12:00:01 12:00:07 12:00:09 12:00:17 

102 12:00:06 12:00:07 12:00:09 12:00:17 

103 12:00:06 12:00:07 12:00:11 12:00:17 

1.4.1 Event time-based windows 

When windows are based on event time, they are assigned to a time window based on when 
they occurred in the real world. In this chapter we will assume that the task of assigning this 
timestamp to the event rests with the streaming source operator responsible for reading in 
event stream into the Flink processing pipeline. There are other options to assign the 
timestamp to the event which will be described in chapter 5.  

The streaming source operator is custom developed to extract the event timestamp from 
the event payload. It assigns this timestamp to the event so that the Flink framework can 
extract it from the event at any stage of processing in the pipeline. The Windows Assigner will 
extract this timestamp from the event and use it to assign the event to the correct window. 
Note that the event will be assigned to a pane of the window based on the key.  
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But how is this window triggered? In order to trigger this window, the Trigger needs to 
determine that all the events for its window have arrived. Or in other words the Trigger needs 
to determine that no more events will arrive for its window. If an operator is receiving events 
from multiple sources, the trigger needs to determine that all events for the time period have 
arrived.  

For the purpose of this discussion we will make several simplifying assumptions which will 
be relaxed in chapter 5: 

• Timestamps have a minimum resolution of 1 second. This makes the explanations 
easier to follow as compared to using a resolution of 1 millisecond. 

• Events arrive at a streaming source operator in the increasing order of their timestamp. 
• Events are never late. 
• A time window will contain events which include the starting timestamp but exclude the 

ending timestamp of the interval. For example, the window 12:00:00-12:00:05 will 
include events with timestamp 12:00:00 but the events with timestamp 12:00:05 will 
go to the window 12:00:05-12:00:10. 

The information that all events for a time period have arrived is contained in special 
lightweight events known as Watermarks. A watermark is a timestamp based on the last seen 
event timestamp by a given source operator. Each source operator produces its own 
watermarks. Assume that each source operator will generate a watermark event which one 
second less than that current timestamp it observes. We will assume that the source operator 
will generate a watermark event for every event processed. This has an overhead and chapter 
5 will describe how to avoid it. For the purpose of this chapter we will assume we get one 
watermark event per event processed. 

The source operator will generate a watermark event which is equal to a timestamp which 
is one second less than the timestamp of the event it processed. For example, if the event had 
a timestamp 12:00:01, it will generate a watermark with timestamp 12:00:00. If the next 
event also has timestamp 12:00:01, the next watermark will have timestamp 12:00:00 again. 
If this is followed by an event with timestamp 12:00:02, the watermark will advance to 
12:00:01. Why did we subtract one second from the current timestamp? Because watermarks 
make an assertion that no more events with the timestamp represented by the watermark will 
arrive after the watermark. If the source sees an event for 12:00:01 it means (given our 
assumption) that all events for 12:00:00 have arrived. But as described in our example, 
events with 12:00:01 can still arrive as there may be multiple events with that timestamp. We 
cannot produce a watermark with timestamp 12:00:01 yet. We can only do that when the 
source sees an event for timestamp 12:00:02. Figure 1.5 demonstrates how this simplified 
watermark generation mechanism works. 
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Figure 1.5. A simplistic watermark generation mechanism. Each source generates a watermark event when it 
observes and event. It emits the event and a watermark with a timestamp one second less than the event 
timestamp. 

To recap the key points about the watermark event at each source are: 

• You control watermark generation with custom code. We will describe all options to do 
that in chapter 5. 

• Watermarks only move forward with respect to time. If an event arrives slightly out of 
order (chapter 5) you do not move the watermark back. Instead you leave it at its 
current level. In figure 1.5 we see how events with the same timestamp arrive one 
after the other. The watermark stays at the same level for each subsequent event of 
the same timestamp. 

These watermark events from each source will flow through the Flink application pipeline into 
all operators. An operator knows how many streams are sending data to it. It receives 
watermarks from all these streams. Assume that we have defined time windows with length of 
five (5) second. When an operator is receiving data from two separate streams and it receives 
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the watermark event with timestamp 12:00:05 (or higher) from both streams, the trigger 
attached to the window, 12:00:00-12:00:05, knows based on this information that no more 
events will arrive at this the window and it can be triggered. The trigger needs to make 
evaluation each time a watermark event arrives at the window. A Trigger will only fire a 
window if all sources indicate that time has progressed to cover the window interval 
(Watermark arrival of 12:00:04 from both sources for the time window 12:00:00-12:00:05 to 
fire). In our example if Stream 1 has sent watermark for timestamp 12:00:04 but Stream 2 is 
only at 12:00:03, it means that the Stream 2 can still send events with timestamp 12:00:04. 
The window can only fire when both streams send the watermark 12:00:04 or higher. Note 
that we say 12:00:04 or higher because the Source2 may directly see events with timestamp 
12:00:06 after events with timestamp 12:00:04 in which case the watermark for source 2 will 
advance to 12:00:05 directly from 12:00:03. 

Table 1.2 shows the time windows in which our three events described in Table 1.1 would 
have been processed when using event time based processing.  

Table 1.2 Event time processing ensures events are processed consistently from operator to 
operator in the Flink application pipeline 

Operator Time windows 

12:00:00-12:00:05 12:00:05-12:00:10 12:00:10-12:00:15 12:00:15-12:00:20 

A 101 102, 103   

B 101 102,103   

What happens if one of the stream is delayed substantially? In such cases we can define 
custom triggers which function based on our specific business needs. Flink provides the API 
level control to handle these situations. We will defer this discussion until chapter 7. 

The concept of watermarks is extremely important to understanding event-time based 
processing. We will discuss it in more detail in chapter 4 and chapter 7. 

1.4.2 Processing time-based windows 

When windows are based on processing time, the Windows Assigner will assign events to a 
window based on when it arrives at that operator. Processing time for a given event is the 
time the Windows Assigner reads the event for assignment to windows. Assume we are 
performing aggregations on 5 second windows. For a window based on time interval 
12:00:00-12:00:05 where we assign events which arrive with timestamps starting 12:00:00 
and ending (but not including) 12:00:05. We have another window 12:00:05-12:00:10 and so 
on. Events are assigned to one or the other window based on when they arrive for processing 
at the operator.  

The trigger is applied when a timer assigned to the window expires. Thus when the time 
12:00:05 based on the wall clock of the machine elapses, the window representing the 
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interval 12:00:00-12:00:05 is triggered. Similarly, at 12:00:10 the window for the interval 
12:00:05-12:00:10 is triggered.  

The important point to note about processing time windows is, even for windows of the 
same size in a Flink pipeline, events processed in a window for certain time interval, can find 
themselves in different time interval window in a downstream operator since the window 
assignment is based on when the events are evaluated by the Windows Assigner of an 
operator. Network delays can cause events to be assigned to different windows at each 
operator. Table 1.3 illustrates this situation. Note how event 101 is processed in a different 
window from events 102 and 103 for operator 1, but operator 2 processes them together in 
the same window.  

Table 1.3 Processing time based processing is fast but can lead to inconsistent assignment to 
windows across multiple operators in the processing pipeline 

Operator Time windows 

12:00:00-12:00:05 12:00:05-12:00:10 12:00:10-12:00:15 12:00:15-12:00:20 

A  101 102,103  

B    101,102,103 

1.4.3 Ingestion time-based windows 

Ingestion time windows are similar in function to event time windows except that the 
timestamp is assigned based on the arrival time at the streaming source operator. The rest of 
the operations are identical to the event-time based windows. Watermarks are added based 
on the ingestion time using the same mechanism as event-time based processing.  

Like event-time based processing (and unlike processing-time based processing), 
ingestion-time processing ensures that events are consistently assigned to the same time 
windows as they flow through the application pipeline. Unlike event-time based processing 
there is no risk of late arriving events as the timestamps are assigned on arrival. This implies 
that watermark events can never be delayed. This also means that, once a window is 
evaluated for an operator, it will never be used again and can be safely discarded. 

Ingestion time based processing has a very slight overhead as compared to processing 
time based processing. But results are more consistent compared to processing-time based 
processing. Table 1.4 illustrates how our three events are processed using ingestion-time 
based processing. Due to a delays in arrival of events 101 and 102, they end up getting 
processed in the same window. 
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Table 1.4 Ingestion time processing also ensures events are processed consistently from operator 
to operator in the Flink application pipeline.  

Operator Time windows 

12:00:00-12:00:05 12:00:05-12:00:10 12:00:10-12:00:15 12:00:15-12:00:20 

A  101,102,103   

B  101,102,103   

1.4.4 Using various time windows to support Lambda Architecture style of 
processing 

It is common to use processing-time windows to implement the Lambda Architecture. In the 
Lambda Architecture (http://lambda-architecture.net/) streaming events are processed as 
quickly as possible at the cost of some accuracy to provide decision makers with fast (but 
approximate and somewhat inaccurate) results. Eventually a batch processing system will 
correct these approximate results. In Flink processing-time or ingestion-time based processing 
can provide the fast approximate results. Another Flink pipeline with the same configuration 
but operating using event-time based processing will also operate on this event stream and 
correct any inaccuracies in the results produced by the processing or ingestion time based 
pipeline. Event-time based processing will always follow processing-time and ingestion-time 
based processing due to the delays introduced by watermark injection.  

Due to its consistency of windows assignment through the processing pipeline, ingestion-
time should be preferred to processing-time to implement the fast approximate phase of 
Lambda architecture based processing. Table 1.5 combines tables 1.2, 1.3, and 1.4 to provide 
a side-by-side comparison of various types of time windows. 

Table 1.5 Comparing various types of time windows. Note the consistency of window assignment 
between operators of a pipeline in event time and ingestion time processing as compared to 
processing time based processing. 

Window Type Operator Time windows 

12:00:00-
12:00:05 

12:00:05-
12:00:10 

12:00:10-
12:00:15 

12:00:15-
12:00:20 

Event Time 
A 101 102,103   

B 101 102,103   

Processing Time 
A  101 102,103  

B    101,102,103 

Ingestion Type 
A  101,102,103   

B  101,102,103   
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1.4.5 Tumbling versus sliding time windows 

Time windows can be defined as tumbling or sliding. In all our examples so far we have 
considered tumbling windows. Tumbling windows do not have overlapping portions. Thus 
12:00:00-12:00-05 and 12:00:05-12:00:10 are tumbling windows. Each event is assigned to 
one only one window. Figure 1.6 shows and example of a tumbling window. Notice how events 
can only be assigned exactly one window.  

 
Figure 1.6. Tumbling windows. Events are assigned to only one window and windows are non-overlapping 

Time windows can also be sliding. An example of a sliding window is, a window which 5 
seconds long which slides every 1 second. For examples, 12:00:00-12:00:05, 
12:00:01:12:00:06, 12:00:02:12:00:07 are examples of sliding windows. Events will be 
assigned to more than one window based on their timestamp. Figure 1.7 shows an example of 
sliding windows. Notice how windows are overlapping and events are assigned to one more 
than one window. 
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Figure 1.7. Sliding windows. Events are assigned to multiple overlapping windows. 

1.5 Count-based windows  
When count-based windows are used, the Reduce type operator uses a single window known 
as the Global Window. All elements arriving at the operator are assigned to the same window. 
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Each key gets its own pane in the window. The Trigger associated with each window pane will 
fire the window pane based on number of elements in the pane. When this count crosses a 
predefined threshold, the Trigger associated with the pane will fire the pane and hand those 
elements to the operator for evaluation. 

The count window can be one of the two types: 

• Tumbling count window – In this type of count windows, the pane is fired when the 
element count in the pane reaches a pre-defined level. For example, if this threshold is 
set to 100, the pane will fire when the pane has 100 elements. The trigger will send 
only those 100 elements for evaluation and remove these evaluated elements. Events 
will continue to accumulate in the pane and when the number of elements in the pane 
reached 100, it will fire again. The process repeats itself with an event being evaluated 
exactly once per operator.  

• Sliding count window – In this type of count window the trigger mechanism depends on 
two parameters, the size of the window pane and how much it slides by. Imagine a 
configuration defined for a sliding window with size 100 and slide size 10. When the 
size of a window pane first reaches 100, the Trigger hands it to the Evictor component. 
The Evictor component will iterate through these elements and sends all 100 elements 
for evaluation. The evaluated elements are not removed from the window pane. 
Elements continue to be added to the window pane. When the size of the pane reaches 
110, the pane is once again handed to the Evictor component. This time the Evictor 
component removes the 10 oldest elements in the window pane and hands the 
remaining 100 elements for evaluation. Thus 90 most recent elements from the earlier 
evaluation are re-evaluated along with 10 new elements. This process repeats itself. 
During each evaluation the 10 oldest elements are moved from the window pane and 
exactly 100 elements (most recently arrived) are evaluated by the operator. 

Tumbling Count windows can be used for the following types of use cases: 

• To calculate trends in website like twitter. For example, to calculate which hashtags are 
trending we can calculate the sum for each hashtag for the current date each time a 
certain threshold (ex. 1000) tweets of a given hashtag are made. 

• To calculate leader boards and award badges. For example, give a bronze badge each 
time a user responds to 10 questions on an online question-answer forum like Stack 
Overflow. Next grant a silver badge to a user when they answer 50 questions and gold 
badge when the user answers 100 questions. 

Sliding Count windows can be used when you need to look for patterns in the last n elements. 
If you are monitoring a temperature sensor and need to send an alert if three consecutive 
readings are above a threshold you will use a sliding count window with size equal to three (3) 
and slide equal to one (1). For each new reading this window triggers and determines if the 
last 3 elements are above the threshold temperature. A tumbling window of size 3 is 
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inadequate for such as use-case because the three consecutive reading may be in different 
tumbling window boundaries. 

1.6 Batch processing as special case of stream processing 
Finally, we are ready to understand how Flink can treat batch processing as a special case of 
stream processing. Flink can perform batch processing by using the Global Window 
assignment which we discussed in the count-based window. A custom trigger will evaluate the 
pane only when all the elements for that pane have arrived. The elements from the pane will 
then be discarded. The results of this evaluation will be exactly the same as if we had used a 
separate batch processing API like Spark.  

But, batch processing is still very commonly used. And a batch processing framework can 
make several performance and memory optimizations based on the knowledge that it is 
processing all elements at once. We will explore what constitutes this knowledge in the next 
chapters of the book. To take advantage of these optimizations Flink provides a separate 
batch processing API called the Dataset API. This API uses the same underlying streaming 
framework components to execute the job but has some specialized pieces which enable the 
batch processing jobs to execute faster. Dataset API is the topic for chapter 3. 

Regardless of the option you choose, the processing operators you develop in Flink and the 
ones available in the Flink libraries can be reused across both (streaming and batch) API’s in 
Flink.  

1.7 Pipelined processing and backpressure handling 
Backpressure is a situation where the Flink system is receiving data faster than it can process 
it. This results in the backlog at the source. A system not designed to handle backpressure 
elegantly will end up in one of these two undesirable states: 

• The system components will run out of memory. It is unacceptable for an enterprise 
system to crash when it receives a deluge of data is unacceptable. 

• The system will start dropping data elements at the source. Enterprise systems rely on 
accurate processing of data. Loss of data is unacceptable. 

In this section we will explore how Flink uses its pipelined processing architecture to elegantly 
handle backpressure without running out of memory or dropping data elements at the source. 

In a typical batch processing scenario, a downstream operator in the topology cannot start 
until the upstream operators have finished processing. This is not practical in a streaming 
scenario because streams are essentially infinite. 

Flink operators are provided input and output buffers. Data is received into its input buffers 
and when evaluated by the operator, it is pushed to its output buffers. The system is 
configured to push these buffers to downstream operators (over a TCP connection if operators 
are on different nodes) when the buffers are full. The size of the buffers can be configured to 
control latency in a Flink system. Flink also allows for buffers to be pushed downstream when 
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a user defined timer elapses per buffer. This feature needed to control latency when data is 
not arriving fast enough to fill the buffers. This is known as pipelined processing and it allows 
data to be constantly streamed and evaluated using user-defined settings to control latency of 
responses. 

1.7.1 Backpressure handling 

Flink handles backpressure gracefully. It does not run out of memory or drop data, which 
would cause loss of data. The key components of backpressure handling are: 

• Durable event store which delivers event data in the order it was received. We have 
looked at Kafka as an example of such as a store. 

• Pipelined processing using Input/Output buffers 

Consider figure 1.8, which illustrates what a Flink system looks like when there is no 
backpressure. It contains two operators, a Map operator and a Sum operator. A word count 
application configured to operate in the streaming mode will have this configuration. 

 
Figure 1.8. Steady sate with no backpressure. The system is processing the data faster than it arrives. 
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In this situation, there is no backpressure and the system continues reading data from Kafka 
and processing it through the entire topology of operations. 

Figure 1.9 shows a situation where the backpressure starts to build up from the Map 
operator.  

 
Figure 1.9. The Map operator is processing slower than it receives data. The input buffers fill up until no space is 
available in them. The connection with the streaming source is interrupted. 

The Map operator is now processing data slower than it is receiving it. Consequently, the input 
buffers on the Map operator fill up until no more input buffers are available. This causes the 
connection to the streaming source to get interrupted. The Streaming source continues to read 
data from Kafka as it has available input/output buffers. The Sum operator also continues 
processing due to the availability of input/output buffers. 

Figure 1.10 shows what happens if the Mapper does not release its input buffers soon 
enough. The backpressure will then accumulate in the streaming source as its input/output 
buffers fill up.  
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Figure 1.10. Backpressure has now built up into the Streaming Source and it stops reading data from the Kafka 
source. 

At this point the streaming source stops reading data from Kafka. Note that data continues to 
be added to Kafka from external sources. This is the main reason why we need a durable 
messaging system. Without a system like Kafka we would either run out of memory or be 
forced to drop data elements to handle backpressure. 

Durable staging of data is the key to handling backpressure 
One of the reasons Flink does not connect to external streaming sources of data directly is to be able to handle 
backpressure gracefully. A system like Kafka guarantees that all data received is persisted in a failure resilient storage. 
Flink is free to stop processing this data to catch up on a large backlog of events. When it resumes processing, it reads 
from the last read point in Kafka (or other durable storage system being used). 

Eventually, the Map operator catches up on its processing and proceeds to have available 
input buffers. This causes the streaming source to empty its output buffers into the input 
buffers of the Mapper. The streaming source now starts reading out of the Kafka system 
again. However, now the Sum operator has no free input buffers and it stops collecting data 
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from the Mapper operators. This will cause the connection to the Mapper to be interrupted. 
Figure 1.11 illustrates this situation. 

 
Figure 1.11. Backpressure has relieved on the streaming source and Mapper as the Mapper catches up with its 
processing but the Sum operator does not have any input buffers available. 

Thus each stage of the Flink processing pipeline can handle backpressure gracefully without 
running out of memory or loss of data. 

1.8 Failure recovery and exactly once processing using checkpoints  
One of the features that distinguish Flink from other streaming frameworks is its support for 
exactly once processing. Most frameworks offer at-least once processing (meaning an event 
may be re-processed giving duplicate results) or at-most once processing (meaning an event 
can be lost where we get missing data). These trade-offs are typical in a distributed system 
where components of the processing pipeline may fail due to the hardware failures in a large 
cluster. Distributed frameworks need to be able to handle such failure. Ignoring such failure 
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leads to at-most once processing and simply re-processing the data on a healthy node may 
lead to some elements being re-processed again resulting in at-least once processing.  

Flink supports exactly-once processing by taking period snapshots called checkpoints. A 
checkpoint represents a time interval which is global to the Flink cluster. This means that the 
checkpoint start and end time instance are the same across the cluster nodes.  

The checkpoint contains the state of the Kafka pointers at the start and end of the 
snapshot. Events read as a part of the checkpoint flow through the Flink processing pipeline. 
Each operator in the pipeline can will store the results of evaluating the events which are part 
of the checkpoint. Thus a checkpoint captures the following information: 

• Kafka pointers at the start and end of the global time period representing the snapshot. 
• State of each operator just before it emits the results of its evaluation for the data 

elements which are part of the snapshot. 

Checkpoint is considered complete only when all the sinks commit for the data elements which 
hare part of the same snapshot. If Flink needs to re-process data, it will start the entire 
pipeline from the last successful snapshot. This will cause it to read Kafka pointers from the 
location contained in the last successful checkpoint and the pipeline will continue processing 
from there.  

Flink also provides the option of choosing at-least once processing by relaxing some of the 
strict consistency constraints placed on how checkpoints are captured and propagated through 
the system. It is faster than exactly-once processing but can result in duplicate processing 
occasionally. Thus you can make trade-offs between performance and accuracy on a use case 
basis. 

Details about how consistent checkpoints are taken across the system will be discussed in 
a chapter dedicated to the concepts of failure recovery.  

1.9 Reprocessing using save points 
Imagine you need to do one of more of the following: 

• You can perform application upgrades and initiate processing from a point in time in the 
past 

• You need to perform A/B testing on a currently executing pipeline. A/B testing allows 
two versions of the code to be tested using the same initial conditions (save points) to 
compare results or performance. For example, you have collected user activity per 
session where a session is defined a period of activity followed by a period of inactivity 
for 15 minutes. You use these results in the recommendation engine. Your business 
analyst wants to know how the recommendations produced by the engine change if 
session is defined based on an inactivity period of 5 minutes. You will need to re-
process data from a point in time in the past and compare the results of the two 
recommendation engines.  

• You have just deployed a new version of the application. After running it for one day 
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you discover there is a bug in the application. You deploy the code fixes but you will 
need to re-process the data from the time the new code was deployed yesterday to 
ensure the results are correct.  

Flink supports the above use cases using the concept of save-points. A save-point is a user 
initiated snapshot of the system at a point in time. A Flink application pipeline can be restarted 
from a save point. The Fink application will start processing data from the state of the system 
stored in the save point. Save points enable the recovery use cases mention as follows: 

• Initiate a save point just prior to the application upgrade. Then perform the application 
upgrade. Initiate processing from the save point. 

• Periodically create save points for your program. For the new definition of session (5 
minutes of inactivity) initiate a new instance of your Flink pipeline from one of your 
save points which define the session as a period of activity followed by over 5 minutes 
of inactivity. Run your current pipeline based on the old definition of session (15 
minutes of inactivity) from the same save point. Collect results and train your 
recommendation engines using both datasets and compare the results. 

• Just before you deploy your new version of the application take a save point. When a 
bug fix is deployed you will just need to re-process from that save point. 

Save points will be discussed in more detail in a chapter dedicated to failure, recovery and 
state management in Flink. 

1.10 Real world example – news website 
In this book, we will use an example of a fictitious news website called Newsflink. Newsflink is 
very popular website, and a large number users visit the site daily to read news articles. As 
the website serves user request for news articles, for each response it also generates a 
newsfeed event, which is sent to the Flink system for analysis. Newsflink, being a very popular 
website, has a large number of web-servers serving the requests simultaneously. Figure 1.12 
shows the overall workflow of events within the Newsflink infrastructure. 
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Figure 1.12. Users request news articles, which are served to the user. The events representing this response are 
sent to the Flink system for Streaming Analysis. 

The workflow of the events in the Newsflink infrastructure is as follows: 

1. The user (anonymous or logged-in) of the website makes a request for a news article. 
2. The webserver serves the news article. 
3. Simultaneously, the webserver also generates an event representing this response and 

sends it to the Flink system for streaming analysis.  
4. The Flink system first persists the event (Kafka can be used to persist events) to ensure 

it is never lost and can be re-processed if necessary, and then delivers it to the Flink 
processing units for processing. 

5. The results (typically user defined aggregations) are computed and delivered to the 
business systems. 

6. The business applications then use these results for various purposes. For example, the 
results can be used to feed recommendation engines that are used to propose similar 
articles to the user. 
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Why did we select Newsflink as an example? 
Streaming applications are used to support a wide array of exotic use-cases ranging from real-time ad generation 
based on online user behavior to real-time fraud detection. Why then did we select Newsflink as our use case. The 
reason we did that is because we want to show that Streaming can be used to provide business value in everyday ETL 
style applications.  

We will also use very limited use case examples to illustrate the capability of Flink. For example, we will frequently 
use the use case of finding aggregate page count per section and sub-section of the website. This is done on purpose. 
We do not want you to get lost into the business details of understanding a use-case. Instead we want to use simple yet 
realistic use-cases to illustrate what Flink can and cannot do.  

Where appropriate we will describe other use cases for a given topic but will revert to a familiar one for source code 
illustrations. Our goal is to provide enough details to enable you to apply this knowledge to your own use-cases. 
 

1.10.1 Event Schema 

The schema of the event sent to Flink System for analysis is depicted in figure 1.13 
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Figure 1.13. The data model for our Newsflink website. The master data sources are the PAGE and the 
PAGE_CONTENT tables. The NEWSFEED and COMMENT are the streaming sources. 
The data model of the Newsflink corporation includes the following sources (or tables in the 
traditional sense): 

• PAGE – This source contains information about the page such as the name of the 
author, publish date, section (Ex. Sports), sub-section (Ex. Football), topic (Ex. Super 
bowl), etc.  

• PAGE_CONTENT – This source contains the content for a given page. The content can 
be modified regularly in response to viewership statistics. Hence a page can support 
multiple version. Each version is also associated with key words associated with the 
content of that row. Only one version can be active at a time. 

• NEWSFEED – This source identifies all activity by user for a given page. Each time a 
user accesses a page this event is generated. This event contains the information about 
the user, and the current state of the page. This is the most important source for the 
analytics use case. It is also very large. Thus a website receiving 100 million unique 
requests per day with an event payload of 1KB per request, will produce 100 GB of 
data each day. The newsfeed events will constantly stream into our system. 

• COMMENT – A user may comment on a given page. This table stores each comment for 
a page along with the information of the user writing the comment. The comment 
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events will also be constantly streaming into our system. 

We will use this data model in the book to describe the capabilities of Flink in next chapters. 
We will expand each data source at the appropriate time during the rest of the book. 

1.11 Summary 
• The Apache Flink framework supports processing of streams of events. Event streams 

are how businesses execute in the real world. True stream processing allows these 
events to be processed in near real time, allowing the decision makers to have faster 
access to information. 

• Flink supports rich and complex windowing semantics. Flink supports windows based on 
time, count, session and custom criteria. Flink handles time based windows based on 
event-time, processing-time and ingestion-time. Windows can be non-
overlapping(tumbling) or overlapping(sliding). These complex windows allow Flink to 
implement faster versions of the famous Lambda Architecture. 

• Flink employs pipelined processing data where each stage of the pipeline will keep 
flowing the data to the subsequent stage. Pipelined processing allows graceful handling 
of backpressure situations where the system is processing slower than it is ingesting 
data. Flink handles backpressure without running out of memory or allowing data loss. 

• Flink allows the user to select between at-least once or exactly-once processing in 
exchange of slightly increased latency. Flink’s ability to take precise snapshot of the 
system state based on a system-wide global marking of time supports the exactly-once 
processing. 

• Flink allows creation of user-defined snapshots called save points. Snapshots allow you 
to go back to a point in time to reprocess data, to perform A/B testing and to apply 
application upgrades or bug fixes. 

• Flink treats batch processing as special case of stream processing. Flink operators can 
be reused across batch and streaming topologies. Treating batch as special case of 
streaming provides Flink with a more fine-grained ability to process data. 

In the next chapter we will show you how to install Flink and write simple programs in Flink 
using the DataSet, DataStream and Table APIs of Flink.  
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