
22 CHAPTER 1 Introducing HTML5 markup

This is what the markup for the following screenshot looks like:

<figure>

 <figcaption>Looking out into the Atlantic Ocean
 from south west Ireland</figcaption>
</figure>

Note that <figure> doesn’t have to contain
an element. It might instead contain
an SVG drawing or a <canvas> element, or
even ASCII art in a <pre> element. What-
ever type of graphic it contains, the <figure>
element links the graphic to the caption.

Emphasizing words and phrases
The and <i> elements have a long history in HTML. They were
listed, along with the and elements, in the character-high-
lighting section of the 1993 IETF draft proposal for HTML. The and
<i> elements are listed in the subsection “Physical Styles” (along with
<tt>)—that is, their purpose was entirely presentational. Meanwhile,
 and (along with several others) are in the subsection
“Logical Styles”—elements with semantic meaning. This early distinc-
tion highlights the problem and <i> would later run into.

You saw at the start of this chapter that separation of concerns is the
Holy Grail of web authoring—HTML for content, CSS for presenta-
tion, and JavaScript for behavior. Because and <i> are entirely pre-
sentational, their use has long been frowned on, and there have been
several serious proposals to remove them from HTML. Meanwhile,
 and have always had a semantic definition while appear-
ing identical to and <i>, respectively, in most browsers.

Ever pragmatic, the HTML5 spec recognizes that, with millions of pages of
legacy content out there, browsers aren’t going to be dropping support
for and <i> any time soon. On the other hand, blindly using instead
of <i> and instead of , or using a element to apply a
bold or italic style to a word isn’t good practice semantically.

HTML5’s new global attributes 23

So, instead of removing either or <i>, HTML5 redefines and reha-
bilitates them.

As you can see, the HTML4 definition is entirely presentational,
whereas the HTML5 definition goes to great lengths to give a semantic
meaning while remaining compatible with the purely presentational
uses of the two elements for backward compatibility.

HTML5’s new global attributes
An attribute is global if it can be applied to all elements. The two most
obvious global attributes in HTML4 are id and class, which, as you saw
in the section “Why do we need new elements?” can be used to add

Element HTML4 definition HTML5 definition (taken from the spec on May 12, 2010)

<i> Renders as italic
text style

“The i element represents a span of text in an alternate voice
or mood, or otherwise offset from the normal prose, such as a
taxonomic designation, a technical term, an idiomatic phrase
from another language, a thought, a ship name, or some other
prose whose typical typographic presentation is italicized.”

 Renders as bold
text style

“The b element represents a span of text to be stylistically offset
from the normal prose without conveying any extra importance,
such as key words in a document abstract, product names in a
review, or other spans of text whose typical typographic presen-
tation is boldened.”

24 CHAPTER 1 Introducing HTML5 markup

extra semantic information to elements. In this section, you’ll learn
about new HTML5 global attributes from three major categories:

❂ Accessibility for Rich Internet Applications (ARIA), for providing
extra data to accessibility tools

❂ Data-* attributes, for providing extra data for scripts on your page
❂ Microdata attributes, for providing extra data to browsers and

scripts on other sites

Accessibility with ARIA
ARIA is a standard developed at the W3C in response to the generally
poor accessibility of early AJAX-based web applications.

Notifying users of AJAX updates isn’t the only benefit ARIA can pro-
vide. ARIA consists of a set of attributes and values that can describe to
assistive technology the roles of various page elements and their status.
In other words, they add semantic value to HTML elements so you can

updated content

HTML5’s new global attributes 25

say “this element is a header,” “this element is navigation,” “this ele-
ment is a toolbar,” and so on. Let’s look at an example:

<body role="document">
 <div role="note" aria-live="polite"
 aria-relevant="additions removals">
 An update added by JavaScript
 </div>
 <div role="banner">
 <h1 role="heading" aria-level="1">The heading</h1>
 </div>
 <div role="navigation">
 Home Page
 Inbox
 </div>
 <div role="main">
 A very interesting article goes here.
 </div>
 <div role="footer">
 All rights reserved.
 </div>
</body>

This should all sound a little familiar to you. What HTML5 aims to
accomplish through additions such as the <header> and <nav> elements is
similar to what ARIA tries to accomplish in providing better semantics
to assistive technology. But it’s still worth bothering with ARIA
because it has a wider and more far-reaching vocabulary than HTML5
for describing the components of web applications. Plus it already has
wide support among vendors of browsers, operating systems, and
assistive technology.

The HTML5 spec has a long list of elements to which user agents
should automatically assign particular ARIA roles. These elements are
said to have strong native semantics, so if you use HTML5 correctly you’ll
get a certain amount of accessibility for free compared to what HTML4
offered once the browsers and assistive technologies implement sup-
port. The HTML5 spec also explicitly lists the allowed ARIA roles for
those elements where there’s a risk the ARIA role will be in conflict
with the HTML5 semantics—these are implied native semantics. Valida-
tion tools can then flag inappropriate combinations.

26 CHAPTER 1 Introducing HTML5 markup

Using HTML5, you can cut down on the amount of markup required to
provide an accessible user experience. This listing updates the previous
one but takes advantage of the strong and implied native semantics in
place of several of the ARIA attributes:

<body>
 <aside aria-live="polite" aria-relevant="additions removals">
 An update added by JavaScript
 </aside>
 <header role="banner">
 <h1>The heading</h1>
 </header>
 <nav>
 Home Page
 Inbox
 </nav>
 <article role="main">
 A very interesting article goes here.
 </article>
 <footer>
 All rights reserved.
 </footer>
</body>

Extending HTML with custom attributes
Custom data attributes allow authors to add arbitrary data to elements
for their own private use. The idea is that some data isn’t directly rele-
vant to the user but does have meaning to the JavaScript on the page
that can’t be expressed in HTML semantics. It’s a standardization of an
approach taken by several JavaScript widget libraries, such as Dijit
(the Dojo toolkit). These libraries, like HTML5, set out to enhance and
extend the application abilities of HTML4—adding things such as
combo boxes and date pickers, which HTML5 also provides, but also
more complex UI elements such as tree views, drop-down menus, and

Although you don’t have to use the implied ARIA roles on
elements with strong semantics, such as <link> and <nav>, at
present no assistive technologies recognize the HTML5
elements. You should specify both for backward compatibility.

HTML5’s new global attributes 27

tabbed containers. Using one of these libraries, you declare an element
to be a tab control like this:

<div dojoType="dijit.layout.TabContainer">
 <div dojoType="dijit.layout.ContentPane" title="My first tab">
 Lorem ipsum and all around...
 </div>
 <div dojoType="dijit.layout.ContentPane" title="My second tab">
 Lorem ipsum and all around - second...
 </div>
 <div dojoType="dijit.layout.ContentPane" title="My last tab">
 Lorem ipsum and all around - last...
 </div>
</div>

A browser, as with HTML elements, will parse the attribute, even
though it doesn’t recognize it, and add it to the DOM. The Dijit library
will run when the page has loaded, search for these attributes, and run
the appropriate JavaScript to enable the advanced control.

It may seem as though everyone has been getting along fine with creat-
ing their own attributes, so why add support for custom attributes to
HTML5? Well, for one thing, creating your own will stop your markup
from validating.

Failing validation may not bother you too much, but if you’re looking
for that one unintended mistake, having to sift through many intended
ones should be unnecessary. Plus there’s a risk that the attribute names
chosen by the widget libraries will be used in future versions of HTML—
after all, one of the goals of the spec is to codify existing common uses.

The HTML5 solution to both the validation and potential name-clash
issues is the data-* attribute collection. The * is a wildcard—that is, it
can be whatever you want it to be. But anything starting with data- will
be allowed through the validator, and you’re guaranteed that no data-*
attributes will be made part of HTML.

The data-* attributes allow you to add information to your page
for your own personal use. If your goal is to share information

with other websites, you should instead use microdata.

28 CHAPTER 1 Introducing HTML5 markup

Expressing more than just document semantics with microdata
Microdata extends the expressive power of HTML to cover things that
aren’t strictly markup. You can use microdata to designate a portion of
your page as describing contact information, a calendar event, or
licensing information.

Microdata uses three global attributes: item, itemtype, and itemprop. All
three can be seen in action in this short example that describes contact
information:

<section id="rob" itemscope
 itemtype="http://microformats.org/profile/hcard">
 <h1 itemprop="fn">Rob Crowther</h1>
 <p itemprop="n" itemscope>Full name:
 Robert
 John
 Crowther
 </p>
 <p itemprop="org" itemscope>
 Manning Publications Co.
 (Hello! Series)
 </p>
</section>

This code, because of the itemtype attribute on the parent element ref-
erencing the hCard vocabulary, describes a person—me! The itemprop
attributes are extracted as a set of name-value pairs into a tree-like data
structure following the markup, like this:

The HTML5 content model 29

This information could then be recovered from the page in a usable for-
mat by a web browser or a search engine. Of course, you may not want
the information to be more easily usable by computers; normal rules of
internet publishing apply.

The HTML5 content model
The content model is somewhat theoretical, but it’s important because
it’s the main way of determining whether it’s valid to use a certain ele-
ment at a particular place in your document. In HTML5, elements are
split into categories. One element can be a member of several catego-
ries; it can also be a member of a category only in particular circum-
stances, such as when an attribute is given a certain value. In this

You’ll learn more about microdata in chapter 5 when
we look at the Microdata API, a convenient method
for extracting the data from a document. The next

section looks at how you can produce a valid HTML5
document by learning about the content model.

30 CHAPTER 1 Introducing HTML5 markup

section, you’ll learn where you can find this information in the spec,
what elements fit into which content categories, and what the content
categories are. The categories of which an element is a member are
stated prominently in the HTML5 spec. The following diagram shows
the content categories of the <hgroup> element.

The spec is good if you have a question about a particular element, but
it’s cumbersome if you want a quick overview. Rather than trawl through
the entire spec, the content categories can be summarized in a table.

Element

M
et

ad
at

a
co

nt
en

t

Fl
ow

 c
on

te
nt

Ph
ra

si
ng

 c
on

te
nt

In
te

ra
ct

iv
e

co
nt

en
t

Em
be

dd
ed

 c
on

te
nt

H
ea

di
ng

 c
on

te
nt

Se
ct

io
ni

ng
 c

on
te

nt
<a>, <button>, <input>, <keygen>, <label>,
<select>, <textarea>

● ● ●

<abbr>, <area>, , <bdo>,
, <cite>,
<code>, <datalist>, , <dfn>, , <i>,
<ins>, <kbd>, <map>, <mark>, <meter>, <out-
put>, <progress>, <q>, <ruby>, <samp>,
<small>, , , <sub>, <sup>,
<time>, <var>, <wbr>

● ●

<address>, <blockquote>, <div>, <dl>,
<fieldset>, <figure>, <footer>, <form>,
<header>, <hr>, , <p>, <pre>, <table>,
, <Text>

●

<article>, <aside>, <nav>, <section> ● ●

the <hgroup> element is in the
flow content and heading
content categories.

The HTML5 content model 31

Now you know which content models apply to which elements, but
that’s only part of the story. You also need to know what content cate-
gories are allowed as children of any given element. The following dia-
gram shows a couple of other excerpts from the HTML5 spec to
illustrate where you can find this information.

<audio>, <embed>, <iframe>, <img*>,
<object>, <video>

● ● ● ●

<base>, <title> ●

<canvas>, <math>, <svg> ● ● ●

<command>, <link>, <meta>, <noscript>,
<script>

● ● ●

<details>, <menu> ● ●

<h1>, <h2>, <h3>, <h4>, <h5>, <h6>, <hgroup> ● ●

<style> ● ●

Element

M
et

ad
at

a
co

nt
en

t

Fl
ow

 c
on

te
nt

Ph
ra

si
ng

 c
on

te
nt

In
te

ra
ct

iv
e

co
nt

en
t

Em
be

dd
ed

 c
on

te
nt

H
ea

di
ng

 c
on

te
nt

Se
ct

io
ni

ng
 c

on
te

nt

children.
the <section> element allows
flow content children.

the <pre> element allows only
phrasing content children.

32 CHAPTER 1 Introducing HTML5 markup

The different content types aren’t applied arbitrarily; each has a dis-
tinct meaning. The following table summarizes the different types.

Now that you know all about the content model, you’ll be able to use
the HTML5 spec to write valid HTML5 documents. That’s more than
enough theory for now. The next section gets back to practicalities and
considers whether your users’ browsers will support HTML5 and what
to do about it if they don’t.

Browser support
Do the new elements we’ve discussed in this chapter work in today’s
browsers? The short answer is, yes (with a couple of exceptions); the

Flow content Most elements are categorized as flow content. It’s the default content
type for elements visible on the page.

Sectioning content Sectioning content defines the scope of headers and footers and feeds
into the document outline.

Heading content Heading content, as you might expect, is just for headings and <hgroup>.

Phrasing content Phrasing content is mostly used to describe the text of a document. In
most cases, phrasing content can only contain other phrasing content.

Embedded content Embedded content is used to put an external resource into the web
page—for example, an image or video.

Interactive content

Interactive content is elements that are specifically intended for user inter-
action—mostly form controls. Note that other elements can be made
responsive to user input through the use of JavaScript, but elements cate-
gorized as interactive content have default functionality in the browser.

Metadata content
Metadata content sets up the presentation or behavior of the rest of the
content, or sets up the relationship of the document with other documents,
or conveys other out-of-band information.

For a text element like <p>, which isn’t required to do much except appear on
the page, there are two principal requirements:

❂ It shows up in the DOM with at least a standard set of element properties.
❂ It shows up in the user’s browser with some sort of default presentation.

Browser support 33

long answer is a little more complex. Consider this question: what does
it mean to say that a browser supports the <p> element?

It turns out that the first requirement is easy to satisfy—as long as you
follow simple tag-naming rules, you can put any tags in your HTML, and
all browsers will put the tags in the DOM with a default set of properties.

Where problems arise is with regard to the second requirement: having
a default presentation. Browsers have only recently started providing
any default presentation for the new elements in HTML5; for instance,
Firefox 3.6 doesn’t, but Firefox 4.0 does. But this isn’t much of a prob-
lem. As you know, we web authors define our content in HTML and
our presentation in CSS—and browsers work exactly the same way.
The default presentation for the supported elements is defined in CSS.
If you use Firefox, you can even find this file on your hard drive—it’s
called html.css.

Here’s a simple HTML5 document to experiment with:

<header>
 <hgroup>
 <h1>Hello! HTML 5</h1>
 <h2>An example page by Rob Crowther</h2>
 </hgroup>
</header>
<nav>

 Link 1
 Link 2
 Link 3

</nav>
<section>
 <article>The first article.</article>
 <article>The second article.</article>
</section>

Using these new elements is a matter of taking on the responsibility
of providing some default CSS rules for them. In most cases you’ll
want to write CSS for these elements anyway, so this doesn’t seem

like too much effort. Let’s see how it works with an example.

34 CHAPTER 1 Introducing HTML5 markup

Starting with the following basic
styles, this screenshot shows what the
page looks like in a browser that
doesn’t have any default HTML5
styles:

header, nav, section, article
 {padding: 4px; margin: 4px;}
header
 { background: #000; color: #999; }
nav
 { border: 4px solid #000; }
section
 { border: 4px dashed #000; }
article
 { border: 2px dotted #000; }

By making a single change to that
CSS, you can make the page work in
most older browsers. See if you can
spot it:

header, nav, section, article
 { padding: 4px; margin: 4px;
 display: block; }
header
 { background: #000; color: #999; }
nav
 { border: 4px solid #000; }
section
 { border: 4px dashed #000; }
article
 { border: 2px dotted #000; }

If you specify that the block-level
HTML5 elements <header>, <nav>,
<section>, and <article> should be
display: block, everything works as
you want.

Browser support 35

Most of the major browsers work identically in this regard. Unfortu-
nately, there are two exceptions, one minor and one major. The minor
one is Firefox 2.0; Firefox users tend to upgrade regularly, so this ver-
sion is now used by a very small number of people and we won’t worry
about it. The larger problem is Internet Explorer 8 and earlier, which is
still one of the most commonly used browsers on the web.

Supporting Internet Explorer
Internet Explorer won’t apply CSS rules to any elements it doesn’t rec-
ognize. Here’s what the sample page looks like in IE7.

But all is not lost. You can trick IE into recognizing elements with a bit
of JavaScript. This code will persuade IE that the <section> element
exists and should have styles applied to it:

document.createElement("section");

36 CHAPTER 1 Introducing HTML5 markup

Here’s the final listing, with each element we want to use enabled in IE:

<script>
 document.createElement("header");
 document.createElement("nav");
 document.createElement("article");
 document.createElement("section");
</script>

<style>
 header, nav, section, article {
 padding: 4px; margin: 4px; display: block; }
 header { background: #000; color: #999; }
 nav { border: 4px solid #000; }
 section { border: 4px dashed #000; }
 article { border: 2px dotted #000; }
</style>

Enabling HTML5 support in Internet Explorer with html5.js
Rather than work out for yourself what elements you need to fix in
Internet Explorer, you can use one of the freely available compatibility
scripts. A simple one with a good following is html5.js, available at
http://code.google.com/p/html5shiv/.

Of course, the main drawback of these approaches is that they won’t
work if JavaScript is disabled in the browser or if something blocks
your JavaScript from being downloaded, such as a corporate content
filter or a personal firewall. Although this is likely to be a small per-
centage of users for most sites, you should do some analysis of your
existing site visitors before embarking on an HTML5 redesign.

Summary
In this chapter, you’ve learned about the new markup elements in
HTML5 and the formal structure provided for them, and the elements
inherited from HTML4, provided by the outlining algorithm and the
content model. You’ve looked at several popular websites and seen
how the content they display fits naturally into the new semantic ele-
ments of HTML5, reducing the need for content authors to add seman-
tic meaning to neutral <div> and tags through the id and class

Summary 37

attributes. You’ve also seen how the new global attributes in HTML5
allow you to extend the expressive power and accessibility of HTML
documents.

Now that you’ve learned how HTML5 improves matters for those
writing traditional HTML documents, it’s time to move on to the
main focus of HTML5: markup for applications. We’ll start in the
next chapter with a look at the enhanced support for forms.

Whether you’re building web pages, mobile apps, or desktop apps, you need to learn
HTML5 and CSS3. So why wait? Hello! HTML5 & CSS3 is a smart, snappy, and fun

way to get started now.

In this example-rich guide to HTML5 and CSS3, you’ll start with a user-friendly introduction to
HTML5 markup and then take a quick tour through forms, graphics, drag-and-drop, multimedia,
and more. Next, you’ll explore CSS3, including new features like drop shadows, borders, colors,
gradients, and backgrounds. Every step of the way, you’ll find hands-on examples, both large
and small, to help you learn by doing.

What’s inside

 Easy-to-follow intro to HTML5 and CSS3

 Fully illustrated and loaded with examples

 Designed for low-stress learning

 No prior experience needed!

Don’t worry—you aren’t alone! The cast of characters from User
Friendly is learning HTML5 and CSS3 along with you as you read.

Rob Crowther is a web developer and blogger from London.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/HelloHTML5andCSS3

US $39.99 / Can $41.99

WEB DEVELOPMENT/HTML

Rob Crowther

M AN N I N G

HTML5
& CSS3

Free eBook
see insert

“A fast-paced introduction. Recommended to
 anyone who needs a quick-start resource.”

—Jason Kaczor, Microsoft MVP

“It’s 2012. You need this book!”
—Greg Donald, CallProof, LLC

“Everything you need to know explained
 simply and clearly.”

—Mike Greenhalgh, NHS Wales

“Level up your web skills!”
—Greg Vaughn, LivingSocial

PROFESSIONAL DEVELOPMENT?
AREN’T MOST WEBSITES DONE BY

THE BOSS’S TEENAGE NEPHEW?

YOU KNOW IT’S
NOT 1999 ANY MORE.

RIGHT?

