
M A N N I N G

Matthew D. Groves
FOREWORD BY Phil Haack

Practical Aspect-Oriented Programming

Dottie
Text Box
S A M P L E C H A P T E R

AOP in .NET
by Matthew D. Groves

Chapter 2

 Copyright 2013 Manning Publications

vii

brief contents
PART 1 GETTING STARTED WITH AOP1

1 ■ Introducing AOP 3

2 ■ Acme Car Rental 21

PART 2 THE FUNDAMENTALSOF AOP53

3 ■ Call this instead: intercepting methods 55

4 ■ Before and after: boundary aspects 79

5 ■ Get this instead: intercepting locations 115

6 ■ Unit testing aspects 141

PART 3 ADVANCED AOP CONCEPTS169

7 ■ AOP implementation types 171

8 ■ Using AOP as an architectural tool 191

9 ■ Aspect composition: example and execution 213

21

Acme Car Rental

In this chapter, you’ll be coding the business logic for a new application for the (fic-
tional) Acme Car Rental Company. You’ll be given the requirements; you can then
follow along as I gradually add code to conform to those requirements.

 I’ll start from scratch and not use any AOP. The business requirements are the
most important, so we’ll do those first. Once the business logic is working, we’ll add
code to cover the nonfunctional requirements. Once we’ve fulfilled the require-
ments, we’ll look at possible ways to clean up and refactor the code, again without
using any AOP to refactor the cross-cutting concerns.

 After this first pass, you’ll turn to the long tail of an application’s life. Software is
rarely static for long: new features are requested and new bugs are discovered. A
piece of software is rarely in development longer than it’s in production, which
means that most of the software’s life is the maintenance phase. An application
that’s hard or expensive to maintain leads to either high costs or low quality (or
both) and eventually spirals into a big ball of mud.

This chapter covers
 Creating requirements for a fictional project

 Writing code from scratch to satisfy the requirements

 Taking a pass to refactor messy code, without any AOP

 Taking a different pass to refactor, this time using AOP

22 CHAPTER 2 Acme Car Rental

 Then, we’ll take one more pass at refactoring the code, this time with PostSharp.
We’ll isolate the individual cross-cutting concerns into their own classes. Once we’ve
refactored, we’ll examine some of the benefits of using AOP, particularly with regard
to adding more features (such as more business logic). At the end of this chapter, you
should have a good idea of how to use AOP and understand its benefits.

2.1 Start a new project
You’re a developer/architect at Acme Car Rental, and you’ve recently joined a team
that’s starting a new project called the customer loyalty program (a.k.a. Acme
Rewards). The goal of this program is to reward customers for their repeat business
and, it is hoped, to increase sales. For certain rentals, the customers will get points,
which can be redeemed for future rentals or other items.

 We’ll assume a basic three-layer application structure, as shown in figure 2.1. You
will start by writing the core business logic layer which contains all of the rules that
apply to the loyalty program. The persistence layer keeps track of the loyalty points.
The business logic layer is used by all of the UIs available: the website, the mobile
application, and the desktop programs that the clerks use (and we leave the door
open to other UIs in the future).

 In this chapter, we’ll mainly look at the business logic (the middle layer). We can
assume that the persistence logic is already done (or that the decision of which persis-
tence technology to use is being postponed and we’re instead using stubs or a tran-
sient in-memory database like SQLite for now). We’ll also assume that the UI will be
implemented once the business logic is in place.

 I highly encourage you to follow along on your own with this chapter; the best way
to learn is to work hands-on with the code yourself.

Website

UI

Mobile app Business
logic

Persistence
(database)

Point of sale

Figure 2.1 Three-layer system architecture

23Start a new project

To follow along, you’ll need the tools I mentioned in the first chapter’s “Hello, World”
example: Visual Studio (the free Express edition will work), NuGet, and PostSharp
(installed via NuGet; again, the free Express edition will work fine). All of the code is
available for download from Manning’s website (http://www.manning.com/
AOPin.NET) or on GitHub (my GitHub name is mgroves) if you want to follow along
without all those tiresome keystrokes.

2.1.1 Business requirements

The project manager works with you and the stakeholders (such as sales and/or mar-
keting) to identify the business requirements of the loyalty program (illustrated in fig-
ure 2.2). You’ve identified two main sets of requirements: accruing and redeeming
rewards.

A note on tools
Any version of Visual Studio 2010 or 2012 should be sufficient to follow along. Post-
Sharp has additional features to help you identify what aspects have been applied
and where. Those extensions won’t work with Express editions, but they aren’t nec-
essary to complete the examples in this book. Visual Studio 2008 could work, if
you’re determined to use it, although without NuGet it will be more difficult.

If you aren’t familiar with NuGet, see appendix B. NuGet’s support for Visual Studio
2010 Express editions seems to be limited to the Web Developer edition. But all
Visual Studio 2012 Express editions support NuGet.

Rent a car Get 1 loyalty point

Get 2 loyalty pointRent a luxury car
(or larger)

Get a free rental day
of luxury (or larger)

1. Acquire loyalty points

Redeem 10 points

Redeem 15 points

Get a free rental day

2. Spend loyalty points

Figure 2.2 Loyalty program rules

http://www.manning.com/AOPin.NET
http://www.manning.com/AOPin.NET

24 CHAPTER 2 Acme Car Rental

Customers accrue at least one point for every qualifying car they rent per each day
they rent it. Luxury cars and larger vehicles are worth two points per rental day.
The points are added to a customer’s account after he has paid and returned the
rental vehicle.

 Once a customer has accrued 10 points, he can start spending those points on
rewards. Ten points are worth a free day of car rental and 15 points earns the cus-
tomer a free day’s rental of a luxury car or larger vehicle rental.

 That’s all the business requirements for now, but you’ve dealt with sales and mar-
keting before: there’s sure to be something that they’ll want to change or add in the
future.

2.1.2 Necessary nonfunctional requirements

Before you give an estimate of time and cost to your project manager, you have your
own technical concerns that must be addressed.

 First, you see the need for some sort of logging. Customers could get angry if their
points are tallied incorrectly, so you want to make sure you have a record of everything
that your business logic is doing (particularly at first).

 Second, because this business code will be used by multiple UI applications (web,
mobile, desktop), you want to make sure that you’re careful about the data that gets
passed to your code. Your team may or may not end up writing the integration code in
those UIs, so you need to be sure to write defensive code that checks for edge cases
and arguments that don’t make sense.

 Again, because this code will be used by multiple UI applications over varying types
of connections (slow cell phone connections, web browsers in remote countries, and
so on), you need to put in transactions and retry logic to make sure that data integrity
is maintained and users have a pleasant experience.

 Finally, because you can’t plan for everything, and you may not even know what
type of persistence is going to be used at this point, you’ll need to have some way to
handle exceptions (and probably log them).

2.2 Life without AOP
You submit your estimate to the project manager, and all the necessary approvals and
paperwork have been signed. You’re now ready to get started.

 Let’s begin. Open Visual Studio and select File->New Project. Use the Class Library
template, as shown in figure 2.3. Put the project wherever you want and call the proj-
ect what you wish—I’m calling it AcmeCarRental.

 Delete the Class1.cs file. Now you have a blank slate.

25Life without AOP

2.2.1 Write the business logic

Let’s start by creating an interface for accruing loyalty points. ILoyaltyAccrual-
Service seems like as good as name as any.

public interface ILoyaltyAccrualService {
void Accrue(RentalAgreement agreement);

}

The RentalAgreement is an entity that’s already common to the Acme Car Rental
domain, so it would likely be in a different assembly, but for demonstration purposes,
we’ll create one in an Entities folder.

public class RentalAgreement {
public Guid Id { get; set; }
public Customer Customer { get; set; }
public Vehicle Vehicle { get; set; }
public DateTime StartDate { get; set; }
public DateTime EndDate { get; set; }

}

Two more entities in that RentalAgreement can be added to the Entities folder:
Customer and Vehicle. There’s also a Size enumeration, for convenience.

Figure 2.3 Start new project

26 CHAPTER 2 Acme Car Rental

public class Customer {
public Guid Id { get; set; }
public string Name { get; set; }
public string DriversLicense { get; set; }
public DateTime DateOfBirth { get; set; }

 }

public class Vehicle {
public Guid Id { get; set; }
public string Make { get; set; }
public string Model { get; set; }
public Size Size { get; set; }
public string Vin { get; set; }

 }

public enum Size {
Compact = 0, Midsize, FullSize, Luxury, Truck, SUV

}

With that out of the way, let’s go back and look at the ILoyaltyAccrualService inter-
face. This interface has an Accrue method that interacts with these entities. Software
at Acme will be calling the Accrue method with these entities. Let’s write an imple-
mentation of the accrual service (see listing 2.1). It will depend on a data service to
persist the data. The Accrue method will contain the business logic to figure out the
number of days in the agreement, determine how many points each of those days are
worth, and store the calculated number of total points in the database.

 The ILoyaltyDataService has only two methods, AddPoints and SubtractPoints.

public class LoyaltyAccrualService : ILoyaltyAccrualService {
readonly ILoyaltyDataService _loyaltyDataService;

public LoyaltyAccrualService(ILoyaltyDataService service) {
_loyaltyDataService = service;

}

public void Accrue(RentalAgreement agreement) {
var rentalTimeSpan =

(agreement.EndDate.Subtract(agreement.StartDate));
var numberOfDays = (int) Math.Floor(rentalTimeSpan.TotalDays);
var pointsPerDay = 1;
if (agreement.Vehicle.Size >= Size.Luxury)

pointsPerDay = 2;
var points = numberOfDays*pointsPerDay;
_loyaltyDataService.AddPoints(agreement.Customer.Id, points);

}
}

That database interface, ILoyaltyDataService, represents the data layer that will get
passed in to the constructor via DI. Again, we’re focused on only the business logic

Listing 2.1 An implementation of the accrual service

The service must
be passed in to

this object when
the object is
instantiated.

This method contains the
logic and rules of the
loyalty program.

Calls a persistence service
method to store the

accrued points

27Life without AOP

for now, so its implementation (FakeLoyaltyDataService) isn’t going to do any data-
base manipulation:

public class FakeLoyaltyDataService : ILoyaltyDataService {
public void AddPoints(Guid customerId, int points) {

Console.WriteLine("Adding {0} points for customer '{1}'",
points, customerId);

}
}

And you’re finished with the accrual portion of the business logic. Hooray!
 Now, on to what the customer cares about: redeeming loyalty points for free stuff.

Let’s create another interface, ILoyaltyRedemptionService:

public interface ILoyaltyRedemptionService {
void Redeem(Invoice invoice, int numberOfDays);

}

The Invoice class also belongs in the common entities folder, and looks like the
following:

public class Invoice {
public Guid Id { get; set; }
public Customer Customer { get; set; }
public Vehicle Vehicle { get; set; }
public decimal CostPerDay { get; set; }
public decimal Discount { get; set; }

}

The Redeem implementation subtracts the points from the customer’s account based
on the vehicle he’s getting (and the number of free days he’s redeeming) and popu-
lates the discount amount in the invoice. It also uses the ILoyaltyDataService to sub-
tract the calculated points from the database, as the following code shows:

public class LoyaltyRedemptionService : ILoyaltyRedemptionService {
readonly ILoyaltyDataService _loyaltyDataService;

public LoyaltyRedemptionService(ILoyaltyDataService service) {
_loyaltyDataService = service;

}

public void Redeem(Invoice invoice, int numberOfDays) {
var pointsPerDay = 10;
if (invoice.Vehicle.Size >= Size.Luxury)

pointsPerDay = 15;
var points = numberOfDays*pointsPerDay;
_loyaltyDataService.SubtractPoints(invoice.Customer.Id, points);
invoice.Discount = numberOfDays*invoice.CostPerDay;

}
}

The following is the fake SubtractPoints implementation, which is similar to the fake
AddPoints implementation. A corresponding method signature is also added to the
ILoyaltyDataService interface:

28 CHAPTER 2 Acme Car Rental

public void SubtractPoints(Guid customerId, int points) {
Console.WriteLine("Subtracting {0} points for customer '{1}'",

points, customerId);
}

Our completed business logic is ready for a trial run.

2.2.2 Testing the business logic

I created a simple Console UI project to simulate the use of the business logic, as the
following shows.

class Program {
static void Main(string[] args) {

SimulateAddingPoints();

Console.WriteLine();
Console.WriteLine(" ***");
Console.WriteLine();

SimulateRemovingPoints();

Console.WriteLine();
Console.WriteLine();

}

static void SimulateAddingPoints() {
var dataService = new FakeLoyaltyDataService();
var service = new LoyaltyAccrualService(dataService);
var rentalAgreement = new RentalAgreement {

Customer = new Customer {
Id = Guid.NewGuid(),
Name = "Matthew D. Groves",
DateOfBirth = new DateTime(1980, 2, 10),
DriversLicense = "RR123456"

},
Vehicle = new Vehicle {

Id = Guid.NewGuid(),
Make = "Honda",
Model = "Accord",
Size = Size.Compact,
Vin = "1HABC123"

},
StartDate = DateTime.Now.AddDays(-3),
EndDate = DateTime.Now

};
service.Accrue(rentalAgreement);

}

static void SimulateRemovingPoints() {
var dataService = new FakeLoyaltyDataService();
var service = new LoyaltyRedemptionService(dataService);
var invoice = new Invoice {

Customer = new Customer {
Id = Guid.NewGuid(),

Listing 2.2 A simple Console application to test the business logic

This is a basic
windows
console

application.

We’ll simulate addition
(accrual) of points.

We’ll simulate subtraction
(redemption) of points.

We aren’t
concerned with the
database right now,
so we’re using a
fake data service.

The accrual
method requires a
Rental Agreement

object to apply the
business logic to,

so I’ve created
one that will earn

three points.

We’ll send the Rental
Agreement to the
accrual service method.

Again, a fake
data service is

being used. The redemption service
requires an invoice to which
to apply the loyalty discount.

29Life without AOP

Name = "Jacob Watson",
DateOfBirth = new DateTime(1977, 4, 15),
DriversLicense = "RR009911"

},
Vehicle = new Vehicle {

Id = Guid.NewGuid(),
Make = "Cadillac",
Model = "Sedan",
Size = Size.Luxury,
Vin = "2BDI"

},
CostPerDay = 29.95m,
Id = Guid.NewGuid()

};
service.Redeem(invoice, 3);

}
}

Figure 2.4 shows the console output; the fake data services write to the screen instead
of to the database.

The business logic is now complete. Our code is clean and separated. It’s easy to read
and it’s going to be easy to maintain. This service will get marketing pumped up, and
it’s sure to increase your bonus once sales go through the roof.

 But wait a minute: this code can’t go into production as is. There are all kinds of
things that could go wrong that we need to prepare for. Let’s get cracking on those
nonfunctional requirements.

2.2.3 Add logging

Being able to audit loyalty transactions isn’t a requirement (yet), but to be on the safe
side, it’s a good idea to log every request, at least for quality assurance (QA) purposes.
In production, you may want to limit or eliminate logging, but for now let’s put some
simple logging in place to help developers reproduce any bugs that QA finds.

 I won’t use a real logging framework. There are many good ones for .NET, such as
NLog and log4net, and I encourage you to check those out. The point of this book
isn’t to learn a logging tool, so let’s log to Console (or Debug or Trace, if you prefer)
for now.

 When logging the accrual of points, we should log information about the cus-
tomer, the vehicle, and the dates. Let’s log that the Accrue method is being used (with
a timestamp) first. Then, logging the IDs of the customer and the vehicle should be

The redemption service
also needs a number of
days to redeem points for;
I’ve chosen three.

Figure 2.4
Console output
simulating writes
to the database

30 CHAPTER 2 Acme Car Rental

enough to go on for now. Let’s also log when the accrual ends, along with a time-
stamp, as shown next.

public void Accrue(RentalAgreement agreement) {

// logging
Console.WriteLine("Accrue: {0}", DateTime.Now);
Console.WriteLine("Customer: {0}", agreement.Customer.Id);
Console.WriteLine("Vehicle: {0}", agreement.Vehicle.Id);

var rentalTimeSpan =
(agreement.EndDate.Subtract(agreement.StartDate));

var numberOfDays = (int) Math.Floor(rentalTimeSpan.TotalDays);
var pointsPerDay = 1;
if (agreement.Vehicle.Size >= Size.Luxury)

pointsPerDay = 2;
var points = numberOfDays*pointsPerDay;
_loyaltyDataService.AddPoints(agreement.Customer.Id, points);

// logging
Console.WriteLine("Accrue complete: {0}", DateTime.Now);

}

Add similar logging code to the Redeem implementation.

public void Redeem(Invoice invoice, int numberOfDays) {

// logging
Console.WriteLine("Redeem: {0}", DateTime.Now);
Console.WriteLine("Invoice: {0}", invoice.Id);

var pointsPerDay = 10;
if (invoice.Vehicle.Size >= Size.Luxury)

pointsPerDay = 15;
var points = numberOfDays*pointsPerDay;
_loyaltyDataService.SubtractPoints(invoice.Customer.Id, points);
invoice.Discount = numberOfDays*invoice.CostPerDay;

// logging
Console.WriteLine("Redeem complete: {0}", DateTime.Now);

}

And there you have it. That wasn’t so bad—just a few extra lines of code in each imple-
mentation.

Listing 2.3 Accrue code, now with logging

Listing 2.4 Redeem code, now with logging

This is the same Accrue
method as before, with
some logging added.

Write in the
log (the

Console again)
that the

Accrue
method is

being used
(and when).

Write key
information to
the log:
customer ID
and vehicle ID.

Close the book
by writing one

more log
message that
the Accrual is

complete.

This is the same
Redeem code as before,
with logging added.

Similar to
Accrue, except

now logging
when a

Redeem call
has started.

Log key
information,
in this case
the invoice ID

Close the book
with one final

log message
that the

Redeem call
has ended.

31Life without AOP

2.2.4 Introducing defensive programming

Because this core loyalty business logic has no control over the data that gets passed in
as parameters, we may have to check for worst-case scenarios. For a simple example,
what if a null reference is passed in for the RentalAgreement parameter? That’s not a
problem that our logic can cope with, so an exception should be thrown. We hope the
code calling our API can cope with that exception. If not, then at least we’re alerting
the UI developers and/or QA that something has gone wrong. This philosophy is
known as defensive programming. Like defensive driving, it’s meant to reduce the risk of
dangerous (or in the case of programming, invalid) scenarios by anticipating invalid
contexts or mistakes in other parts of the application.

 In the following listing, you’ll put defensive programming in place to check for the
invalid scenario of a null RentalAgreement being passed in.

public void Accrue(RentalAgreement agreement) {
// defensive programming
if(agreement == null) throw new ArgumentNullException("agreement");

// logging
Console.WriteLine("Accrue: {0}", DateTime.Now);
Console.WriteLine("Customer: {0}", agreement.Customer.Id);
Console.WriteLine("Vehicle: {0}", agreement.Vehicle.Id);

var rentalTimeSpan =
(agreement.EndDate.Subtract(agreement.StartDate));

var numberOfDays = (int) Math.Floor(rentalTimeSpan.TotalDays);
var pointsPerDay = 1;
if (agreement.Vehicle.Size >= Size.Luxury)

pointsPerDay = 2;
var points = numberOfDays*pointsPerDay;
_loyaltyDataService.AddPoints(agreement.Customer.Id, points);

// logging
Console.WriteLine("Accrue complete: {0}", DateTime.Now);

}

We could check numerous other things about the properties of RentalAgreement as
well, but for now that’s good enough.

 With the Redeem implementation, there are similar issues. The numberOfDays
parameter shouldn’t be less than 1. Renting a car for zero days? That’s an invalid
argument.

 The Invoice argument could be null as well, so let’s also check for that, as shown
next.

public void Redeem(Invoice invoice, int numberOfDays) {
// defensive programming

Listing 2.5 Accrue with defensive programming

Listing 2.6 Redeem with defensive programming

This is the
same Accrue

code as in
the last
section,

with
defensive

programing
added.

We hope that a
null agreement is
never passed in,
but if it is, we
throw this
exception early.

The same Redeem method
as in the last section, with
defensive programming added

32 CHAPTER 2 Acme Car Rental

if(invoice == null) throw new ArgumentNullException("invoice");
if(numberOfDays <= 0)

throw new ArgumentException("","numberOfDays");

// logging
Console.WriteLine("Redeem: {0}", DateTime.Now);
Console.WriteLine("Invoice: {0}", invoice.Id);

var pointsPerDay = 10;
if (invoice.Vehicle.Size >= Size.Luxury)

pointsPerDay = 15;
var points = numberOfDays*pointsPerDay;
_loyaltyDataService.SubtractPoints(invoice.Customer.Id, points);
invoice.Discount = numberOfDays*invoice.CostPerDay;

// logging
Console.WriteLine("Redeem complete: {0}", DateTime.Now);

}

Now our code is starting to get more defensive. If something goes wrong outside the
control of this core logic, we aren’t going to let it affect us.

 With logging and defensive programming in place, the Accrue and Redeem meth-
ods are starting to get a little long, and a bit repetitive as well. But let’s soldier on for
now and look at transactions and retries.

2.2.5 Working with transactions and retries

Transactions are necessary if we’re using more than one data layer operation in order
to make them atomic. That is, we want all the data layer calls to succeed (commit), or
for none of them to succeed (rollback). This business logic class might not be the best
place for this operation, particularly because we’re unsure about exactly what persis-
tence technology will be used. But hypothetically, it could be put in this layer.

 Let’s assume for now that the underlying data layer will use some technology that’s
compatible with .NET’s built-in ambient transaction class: TransactionScope (you’ll
need to add a System.Transactions reference). Combining with a try/catch block,
we can add transaction code to the Accrue implementation, as shown next.

public void Accrue(RentalAgreement agreement) {
// defensive programming
if(agreement == null) throw new ArgumentNullException("agreement");

// logging
Console.WriteLine("Accrue: {0}", DateTime.Now);
Console.WriteLine("Customer: {0}", agreement.Customer.Id);
Console.WriteLine("Vehicle: {0}", agreement.Vehicle.Id);

using (var scope = new TransactionScope()) {
try {

var rentalTime =
(agreement.EndDate.Subtract(agreement.StartDate));

Listing 2.7 Accrue with a transaction

A null Invoice
passed in will

cause an
exception to

be thrown.

It makes sense to
redeem a
positive amount
of days, so throw
an exception
otherwise.

Same method
as last section,

but we
continue to

build on it by
using a

transaction.
Instantiating a
new Transaction
scope begins the
transaction.

33Life without AOP

var numberOfDays = (int) Math.Floor(rentalTime.TotalDays);
var pointsPerDay = 1;
if (agreement.Vehicle.Size >= Size.Luxury)

pointsPerDay = 2;
var points = numberOfDays*pointsPerDay;
_dataService.AddPoints(agreement.Customer.Id, points);

scope.Complete();
}

catch {
throw;

}
}
// logging
Console.WriteLine("Accrue complete: {0}", DateTime.Now);

}

If there’s an exception, then scope.Complete() will never be reached, and when
scope is disposed, the transaction will be rolled back. For now, we’re only rethrowing
the exception. Similarly, we can use TransactionScope in the Redeem method, as
shown here.

public void Redeem(Invoice invoice, int numberOfDays) {
// defensive programming
if(invoice == null) throw new ArgumentNullException("invoice");
if(numberOfDays <= 0)

throw new ArgumentException("","numberOfDays");

// logging
Console.WriteLine("Redeem: {0}", DateTime.Now);
Console.WriteLine("Invoice: {0}", invoice.Id);

using (var scope = new TransactionScope()) {
try {

var pointsPerDay = 10;
if (invoice.Vehicle.Size >= Size.Luxury)

pointsPerDay = 15;
var points = numberOfDays*pointsPerDay;
_dataService.SubtractPoints(invoice.Customer.Id, points);
invoice.Discount = numberOfDays*invoice.CostPerDay;

scope.Complete();
}

catch {
throw;

}
}

// logging
Console.WriteLine("Redeem complete: {0}", DateTime.Now);

}

Listing 2.8 Redeem with a transaction

Calling Complete() signals that
the transaction was successful.

A transaction without calling Complete()
means it will be rolled back.

Again, the same
Redeem method

that we continue to
build on by adding

a transaction.

Instantiating
a new

Transaction
scope begins

the transaction.

Calling Complete() signals that
the transaction was successful.

A transaction without calling Complete()
means it will be rolled back.

34 CHAPTER 2 Acme Car Rental

This code is starting to get long and ugly. The original business logic is now a couple
of indentations deep, surrounded by a bunch of code to take care of the cross-cutting
concerns: logging, defensive programming, and the use of a transaction.

 But we’re not even done. Let’s assume that the underlying data persistence layer is
prone to occasional high traffic and that some requests will thus fail (for example,
throwing a timeout exception). If that’s the case, then performing a couple of retries
will keep our program running smoothly (albeit a little slower during those high-traf-
fic times). Let’s put a loop around the transaction. Every time the transaction rolls
back, we’ll increment the retry count. Once the retry count hits a limit, we’ll let it go,
as shown here.

public void Accrue(RentalAgreement agreement) {
// defensive programming
if(agreement == null) throw new ArgumentNullException("agreement");

// logging
Console.WriteLine("Accrue: {0}", DateTime.Now);
Console.WriteLine("Customer: {0}", agreement.Customer.Id);
Console.WriteLine("Vehicle: {0}", agreement.Vehicle.Id);

using (var scope = new TransactionScope()) {
var retries = 3;
var succeeded = false;
while (!succeeded) {

try {
var rentalTime =

(agreement.EndDate.Subtract(agreement.StartDate));
var days = (int) Math.Floor(rentalTime.TotalDays);
var pointsPerDay = 1;
if (agreement.Vehicle.Size >= Size.Luxury)

pointsPerDay = 2;
var points = days * pointsPerDay;
_dataService.AddPoints(agreement.Customer.Id, points);

scope.Complete();
succeeded = true;

// logging
Console.WriteLine("Accrue complete: {0}", DateTime.Now);

}
catch {

if(retries >=0)
retries--;

else
throw;

}
}

}
}

Notice that the Accrue complete logging had to be moved inside the try block as
well. Add similar code for redemption, as shown in the following listing.

Listing 2.9 Accrue with transaction and retries

Retry the
transaction up
to three times

Keep looping until success

After the
transaction is
complete, set

succeeded to true
to make this the

last loop iteration. The complete logging
had to be moved

inside the try block.

Don’t rethrow the
exception until you run
out of retry attempts.

35Life without AOP

public void Redeem(Invoice invoice, int numberOfDays) {
// defensive programming
if(invoice == null) throw new ArgumentNullException("invoice");
if(numberOfDays <= 0)

throw new ArgumentException("","numberOfDays");

// logging
Console.WriteLine("Redeem: {0}", DateTime.Now);
Console.WriteLine("Invoice: {0}", invoice.Id);

// start new transaction
using (var scope = new TransactionScope())
{

var retries = 3;
var succeeded = false;
while (!succeeded) {

try {
var pointsPerDay = 10;
if (invoice.Vehicle.Size >= Size.Luxury)

pointsPerDay = 15;
var pts = numberOfDays * pointsPerDay;
_dataService.SubtractPoints(invoice.Customer.Id, pts);
invoice.Discount = numberOfDays*invoice.CostPerDay;

// complete transaction
scope.Complete();
succeeded = true;

// logging
Console.WriteLine("Redeem complete: {0}", DateTime.Now);

}
catch {

// don’t rethrow until the
// retry limit is reached
if (retries >= 0)

retries--;
else

throw;
}

}
}

}

Wow! Yet another indentation of the original business logic, and more clutter to go
with it. Now the cross-cutting concerns are taking up roughly half of the lines of code
in both of these methods.

 But we’re still not done. We need to talk some more about handling exceptions.

2.2.6 Handling exceptions

Wait, more exception handling? Wasn’t that first try/catch block enough? Maybe. But
if some condition occurs that a retry won’t fix (perhaps a server goes completely
offline), then after the retry limit is reached, the exception will be rethrown. And if

Listing 2.10 Redeem with transaction and retries

Retry the
transaction up to
three times

Keep looping until success

After the
transaction is
complete, set

succeeded to true
to make this the

last loop iteration. The logging had to be
moved inside the try

block as well.

Don’t rethrow the
exception until you run
out of retry attempts.

36 CHAPTER 2 Acme Car Rental

that’s the case, then you’ll need to handle that exception some other way (before it
crashes your program).

 So let’s add one more try/catch block immediately after the defensive program-
ming that envelopes everything else, as the following listing shows.

public void Accrue(RentalAgreement agreement)
{

// defensive programming
if(agreement == null) throw new ArgumentNullException("agreement");

// logging
Console.WriteLine("Accrue: {0}", DateTime.Now);
Console.WriteLine("Customer: {0}", agreement.Customer.Id);
Console.WriteLine("Vehicle: {0}", agreement.Vehicle.Id);

try
{

// start new transaction
using (var scope = new TransactionScope())
{

var retries = 3;
var succeeded = false;
while (!succeeded)
{

try
{

var rentalTime =
(agreement.EndDate.Subtract(

agreement.StartDate));
var days =

(int) Math.Floor(rentalTime.TotalDays);
var pointsPerDay = 1;
if (agreement.Vehicle.Size >= Size.Luxury)

pointsPerDay = 2;
var points = days * pointsPerDay;
_dataService.AddPoints(

agreement.Customer.Id, points);

scope.Complete();
succeeded = true;

// logging
Console.WriteLine("Accrue complete: {0}",

DateTime.Now);
}
catch
{

// don’t re-throw until the
// retry limit is reached
if(retries >=0)

retries--;
else

throw;

Listing 2.11 Accrue with exception handling

One more try statement
to surround everything in
the transaction (including
the transaction)

37Life without AOP

}
}

}
}
catch (Exception ex)
{

if (!ExceptionHandler.Handle(ex))
throw;

}
}

We might be able to recover from certain exceptions. In the case of other excep-
tions, we may have to log and tell the customer that something went wrong (and sug-
gest trying again later). Let’s do the same thing again with the Redeem method.

public void Redeem(Invoice invoice, int numberOfDays) {
// defensive programming
if(invoice == null) throw new ArgumentNullException("invoice");
if(numberOfDays <= 0)

throw new ArgumentException("","numberOfDays");

// logging
Console.WriteLine("Redeem: {0}", DateTime.Now);
Console.WriteLine("Invoice: {0}", invoice.Id);

try
{

// start new transaction
using (var scope = new TransactionScope())
{

// retry up to three times
var retries = 3;
var succeeded = false;
while (!succeeded)
{

try
{

var pointsPerDay = 10;
if (invoice.Vehicle.Size >= Size.Luxury)

pointsPerDay = 15;
var points = numberOfDays*pointsPerDay;
_dataService.SubtractPoints(

invoice.Customer.Id, points);
invoice.Discount = numberOfDays*invoice.CostPerDay;

// complete transaction
scope.Complete();
succeeded = true;

// logging
Console.WriteLine("Redeem complete: {0}",

DateTime.Now);
}
catch

Listing 2.12 Redeem with exception handling

A matching
catch
statement If the exception

can’t be handled,
continue to throw it

Surround the
transaction and
business logic

38 CHAPTER 2 Acme Car Rental

{
// don’t re-throw until the
// retry limit is reached
if (retries >= 0)

retries--;
else

throw;
}

}
}

}
catch(Exception ex)
{

if (!ExceptionHandler.Handle(ex))
throw;

}
}

At this point, we’ve implemented all the nonfunctional requirements: logging, defen-
sive programming, transactions, retries, and exception handling. Adding all this code
to handle these cross-cutting concerns has made the original Accrue and Redeem bal-
loon to huge methods. The code is ready for production (or more likely a QA/staging
environment), but yikes, what a mess!

 You might be thinking that this approach involves a bit of overkill. Certainly not all
of these cross-cutting concerns will always be necessary. And you’re right. You might
only need one or two of these solutions in most places, and some of the concerns can
move to the data layer or the UI layer. The point I’m trying to make with this example
is that cross-cutting concerns can clutter your code. They make the code they are cut-
ting across harder to read, maintain, and debug.

2.2.7 Refactor without AOP

It’s time to clean up this mess. When refactoring, you should always have unit tests in
place so you know that your refactoring didn’t cause any regressions, but because this
example is relatively small and contrived, I’ve left them as an exercise for the reader.
(I’ve always wanted to write that.) But don’t worry: chapter 6 is devoted to the topic of
unit testing and aspects.

 As you’ve noticed, there’s a lot of duplicated code between the Accrue and Redeem
implementations. Certainly, you can factor this code into its own classes/methods. But
let’s stop and think about how you’re going to do that.

 One option is to refactor all those nonfunctional concerns into static methods.
This isn’t a good idea because it couples the business logic too tightly to the nonfunc-
tional concern code. It makes your method look shorter and more readable, but
you’re still left with the problem that your methods are doing too much.

 You can use a DI strategy and expect that all the logging, defensive programming,
and other services will be passed in to the constructors of LoyaltyAccrualService
and LoyaltyRedemptionService. Those are going to be some big constructors, but
let’s look at the next listing to see how this strategy might affect the Redeem method.

A matching catch
statement for the
outermost try
statement

Use the same
ExceptionHandler
to see if the
exception can
be handled.

39Life without AOP

public class LoyaltyRedemptionServiceRefactored
: ILoyaltyRedemptionService {

readonly ILoyaltyDataService _dataService;
readonly IExceptionHandler _exceptionHandler;
readonly ITransactionManager _transactionManager;

public LoyaltyRedemptionServiceRefactored(
 ILoyaltyDataService service,

IExceptionHandler exceptionHandler,
ITransactionManager transactionManager) {

_dataService = service;
_exceptionHandler = exceptionHandler;
_transactionManager = transactionManager;No

}

public void Redeem(Invoice invoice, int numberOfDays) {
// defensive programming
if(invoice == null) throw new ArgumentNullException("invoice");
if(numberOfDays <= 0)

throw new ArgumentException("","numberOfDays");

// logging
Console.WriteLine("Redeem: {0}", DateTime.Now);
Console.WriteLine("Invoice: {0}", invoice.Id);

_exceptionHandler.Wrapper(() => {
_transactionManager.Wrapper(() => {

var pointsPerDay = 10;
if (invoice.Vehicle.Size >= Size.Luxury)

pointsPerDay = 15;
var points = numberOfDays*pointsPerDay;
_dataService.SubtractPoints(

invoice.Customer.Id, points);
invoice.Discount =

numberOfDays*invoice.CostPerDay;

// logging
Console.WriteLine("Redeem complete: {0}",

DateTime.Now);
});

});
}

}

This version is a little better. I’ve moved the exception handler code and the transac-
tion/retry code into their own services. This design has its benefits. One, it puts those
pieces into their own classes so that they can be reused in the Accrue method. Two, it
makes the code easier to read by reducing the noise of the cross-cutting concerns.
Those concerns can also be mocked out when writing unit tests later. Mocking is a tech-
nique used in writing unit tests so that you don’t need to worry about testing several
things at the same time. That isolates the code under test, which will be briefly discussed
in chapter 6. We can make similar changes to the Accrual method as well.

Listing 2.13 Redemption service refactored with DI

The loyalty data
service is still
passed in, as it
was before.

An exception
handler
service

instance is
now also
required.

A transaction
manager
service is now
also required.

The wrapper method
takes a lambda as an
argument and will
wrap the lambda in
the try/catch block.

The
transaction

manager has a
wrapper of its
own in which

the retry logic
and

transaction
logic live.

40 CHAPTER 2 Acme Car Rental

public class LoyaltyAccrualServiceRefactored : ILoyaltyAccrualService {
readonly ILoyaltyDataService _dataService;
readonly IExceptionHandler _exceptionHandler;
readonly ITransactionManager _transactionManager;

public LoyaltyAccrualServiceRefactored(
 ILoyaltyDataService service,

IExceptionHandler exceptionHandler,
ITransactionManager transactionManager) {

_dataService = service;
_exceptionHandler = exceptionHandler;
_transactionManager = transactionManager;

}

public void Accrue(RentalAgreement agreement) {
// defensive programming
if(agreement == null)

throw new ArgumentNullException("agreement");

// logging
Console.WriteLine("Accrue: {0}", DateTime.Now);
Console.WriteLine("Customer: {0}", agreement.Customer.Id);
Console.WriteLine("Vehicle: {0}", agreement.Vehicle.Id);

// exception handling
_exceptionHandler.Wrapper(() => {

_transactionManager.Wrapper(() => {
var rentalTime = (agreement.EndDate

.Subtract(agreement.StartDate));
var numberOfDays =

(int) Math.Floor(rentalTime.TotalDays);
var pointsPerDay = 1;
if (agreement.Vehicle.Size >= Size.Luxury)

pointsPerDay = 2;
var points = numberOfDays*pointsPerDay;
_dataService.AddPoints(

agreement.Customer.Id, points);

// logging
Console.WriteLine("Accrue complete: {0}",

DateTime.Now);
});

});
}

Not bad. Now you’ve reduced that messy code back to almost how it looked when you
started—with only the business logic. There’s that Wrapper stuff in there now, but it
doesn’t look all that bad, considering the alternative.

 But look at that constructor. It seems excessive, doesn’t it? Not to mention that
when you do unit testing, you’ll have to pass in mocks/stubs for each of these depen-
dencies in order to run the test. You might call this a constructor gone wild: methods
that have a lot of parameters usually indicate that something is wrong and that refac-
toring should be done, and constructors are no exception. When you see this sort of

Listing 2.14 Accrual service refactored with DI

The loyalty data
service is still
passed in, as it
was before.

An exception
handler
service

instance is
now required.

A transaction
manager
service is now
also required.

The wrapper
method takes a

lambda as an
argument and will

wrap the lambda in
the try/catch block.

The transaction
manager has a
wrapper of its
own in which

the retry logic
and transaction

logic live.

41Life without AOP

thing, it may indicate that the service is doing too much and isn’t following the single
responsibility principle.

We could combine the exception handler and the transaction manager services into
one service, as the next listing shows.

public interface ITransactionManager2 {
void Wrapper(Action method);

}

public class TransactionManager2 : ITransactionManager2 {
public void Wrapper(Action method) {

using (var scope = new TransactionScope()) {
var retries = 3;
var succeeded = false;
while (!succeeded) {

try {
method();
scope.Complete();
succeeded = true;

}
catch (Exception ex) {

if (retries >= 0)
retries--;

else {
if (!Exceptions.Handle(ex))

throw;
}

}
}

}
}

}

This code isn’t too shabby, because things seem pretty cohesive as a single service
(though the name could use some work). Combining services isn’t always going to
work, though.

 One other way to deal with too many dependencies being injected is to move
all these individual services into an aggregate service or façade service (that is, use the
façade pattern to combine all of these little services into one service that orchestrates
all the little services). In our case, the TransactionManager and ExceptionHandler
services would stay separate, but you’d use a third façade class to orchestrate their use.

Listing 2.15 Combined exception handler and transaction handler

Code smells
A code smell is a slang term for often-observed patterns in code that may (but not
always) indicate a deeper problem. It’s not a bug, per se, but it indicates that you
might have a problem with the architecture. It’s a heuristic (a rule of thumb). Much
like a bad smell in the refrigerator could indicate rotten food hiding in the back, a
code smell could indicate a rotten design that should be cleaned up.

The Wrapper
method expects an

Action argument
that it will wrap

some code around.
This syntax

results in the
Action

argument
being

executed.

42 CHAPTER 2 Acme Car Rental

THE FACADE PATTERN Façade is a pattern that’s used to provide a simplified
interface to a larger or more complex piece of code. For instance, a service
class that provides a wide variety of methods and options can be put behind a
façade interface that reduces complexity by limiting options or providing a
small subset of simplified methods.

public interface ITransactionFacade {
void Wrapper(Action action);

}

public class TransactionFacade : ITransactionFacade {
readonly IExceptionHandler _exceptionHandler;
readonly ITransactionManager _transactionManager;

public TransactionFacade(
IExceptionHandler exceptionHandler,
ITransactionManager transactionManager) {

_exceptionHandler = exceptionHandler;
_transactionManager = transactionManager;

}

public void Wrapper(Action action) {
_exceptionHandler.Wrapper(() => {

_transactionManager.Wrapper(() => {
action();

});
});

}
}

This approach reduces the need to have multiple wrappers, reducing the amount of
Wrapper boilerplate that we need in the Accrual service and Redemption service
methods.

 But look at what’s still left: defensive programming and logging, both of which
depend on the parameters of the method. Factoring those concerns out could be
messy and could involve reflection. (In other languages such as PHP, JavaScript, or
Ruby, this might not be as difficult.)

Don’t get me wrong: I would prefer to use the refactored code over the original mess,
for sure. But if there were a way I could somehow get all the way back to the code I
started with—only the business logic—that would be even better. It would be the easiest
code to read, and I’d have fewer constructor-injected services to worry about. I wouldn’t

Listing 2.16 An aggregate service for orchestrating two services

This façade
service requires
an exception
service.

It also
requires a

transaction
manager
service.

This façade provides
orchestration of the
exception handler
wrapper . . .

. . . and the
transaction
manager wrapper.

Refactoring with the decorator pattern
One other way that you could refactor this code without using AOP and that you might
also be familiar with is the decorator or proxy pattern. You’ll see in chapter 7 how this
pattern can be used to refactor this kind of code. (Spoiler alert: the decorator/proxy
pattern is just a simple form of AOP.)

43The cost of change

have to worry about forgetting or accidentally omitting one of these cross-cutting ser-
vices every time the business logic changes, thus reducing the cost of change.

2.3 The cost of change
One constant in software engineering is change. Requirements change. Business rules
change. Technology changes.

 Any change in business rules or requirements would be challenging to deal with
in the original version of the business logic (before we refactored). You’d have to
climb through all the loops, try/catches and ifs, in order to find the meat of the
business logic. Once you made the change, you’d have to hope that it didn’t affect
the nonfunctional concerns (otherwise, you might have to copy and paste those
changes everywhere).

 The refactoring we did with DI and/or the façade pattern is pretty good, but it’s
more vulnerable to change than you might think. In this section, I want to discuss,
however briefly, some of the reasons for change and the costs associated with them
because in the next section, we’ll refactor the Acme Car Rental code again, except
that we’ll be using PostSharp to demonstrate that AOP can help reduce the costs asso-
ciated with change.

2.3.1 Requirements will change

Requirements change for any number of reasons. The core assumptions that went
into making the requirements could be invalid. The requirements may have been
vague in the beginning and get clearer and more concrete only as the software starts
taking shape. Your stakeholders could change their minds. What seems like a simple
change to them might mean a world of difference in the code (and vice versa).

 Even though I know that this axiom—that requirements will change—is true, and
even though I’ve seen it over and over again, I still often make the mistake of coding as
if nothing will change. Almost every time I make this mistake, I regret it. Being a good
developer means not only accepting that requirements may change but also expecting
them to change. And even when I do code with change in mind, I often find that I run
into the limits of a programming language. Or I find myself lost in architecture land,
where I’m continually refactoring back and forth, trying to find a perfect, elegant way
of expressing a solution.

2.3.2 Small versus large projects

The size of your project matters a great deal. If you’re a one-person team writing a
piece of simple software (for example, a website with maybe one or two forms and
mostly static content), then the cost of change may be low because you have less
things that can change. If this is the case, you can relax those architectural muscles a
little bit. You aren’t cooking a 5-course meal at a 5-star restaurant for 100 tables every
night—you’re just throwing a bag of popcorn in the microwave for yourself.

44 CHAPTER 2 Acme Car Rental

 The size of a “small” project is something for which I can’t give you a concrete mea-
sure. But I must warn you that what you thought was going to be a small, trivial project
can turn into a complex medium-to-large project quickly. So unless you’re entirely
certain that you won’t need all the benefits of a well-architectured application, it’s bet-
ter to be safe than sorry. Otherwise, you might end up building a pyramid and contin-
uously piling rocks on top of each other with brute force.

2.3.3 Signature changes

One of the things that you’ll have to look out for is method signature changes. Consider
whether you need to change the signature of a method by adding or removing param-
eters. If you remove a parameter, you have to remove the defensive programming for
that parameter; otherwise, your project won’t build. If you change a parameter’s type,
then your defensive programming edge case may also change (from null to 0 or vice
versa). And even more dangerously, if you add a parameter, you have to remember to
add the defensive programming for that parameter. Unfortunately, your compiler
won’t help you there—you’ll have to remember.

 If you look back at the Accrue and Redeem methods, you can see that a signature
change anywhere will immediately affect the defensive programming and logging con-
cerns, as this listing shows.

public void Accrue(RentalAgreement agreement) {
// defensive programming
if(agreement == null) throw new ArgumentNullException("agreement");

// logging
Console.WriteLine("Accrue: {0}", DateTime.Now);
Console.WriteLine("Customer: {0}", agreement.Customer.Id);
Console.WriteLine("Vehicle: {0}", agreement.Vehicle.Id);

// ... snip ...

// logging
Console.WriteLine("Accrue complete: {0}", DateTime.Now);

}

If there’s another parameter added to this method, you have to remember to add
another line of defensive programming. If the parameter’s name changes from
agreement to rentalAgreement, then you have to remember to change the string
being passed to ArgumentNullException’s constructor. If the method itself changes
names (to Accrual, for instance), you’ll have to change the logging to reflect the new
name. Refactoring tools such as ReSharper, unit tests, and the C# compiler itself will
help you out, but they can do only so much. For the rest of it, you have to rely on your
own and your team’s vigilance.

Listing 2.17 Accrue method’s defensive programming and logging

45Refactor with AOP

2.3.4 Working on a team

One of the problems with change comes from working on a software team. If you
work on software completely by yourself, you may never experience this problem
(although you might. Read on).

 Suppose there’s a new requirement that needs another method on the ILoyalty-
AccrueService interface. Maybe this task falls to some other team member, and this
team member implements the business logic and calls the task complete. Unfortu-
nately, this team member forgot to use the Wrapper method of TransactionFacade.
His code passes unit tests, so it’s sent over to QA. If you’re working on an Agile project,
this might not be a huge issue: QA could catch it and report it back to you within one
sprint. In a waterfall project, QA might not discover this bug until months later.
Months later, you might not even remember what your intentions were that caused
the bug. It’s like you’re working with a new team member: your past self.

 Worst case: it might even pass QA, assuming conditions are such that an exception
or retry isn’t necessary or noticed. Whoops! Code made it into production without
defensive programming, logging, transactions, and so on.

 Unfortunately, with DI and/or façade service(s), we can’t do much more with the
architecture, because the code is still scattered around—just remember to communi-
cate well with your team, pair program, code review. And hope that no one forgets.
The bigger the team and the bigger the project, the harder this gets.

2.4 Refactor with AOP
Let’s try refactoring the code again, this time using AOP. Using NuGet, add PostSharp
to your project. You can do this with the Install-Package postsharp command in the
Package Manager Console. Alternatively, you can use the NuGet UI by right-clicking
References and selecting Manage NuGet Packages. Then click Online, search for Post-
Sharp, and click Install (note that I’m using NuGet 2.0 at the time of this writing).

 PostSharp has a trial version of its full Professional edition, and there’s also a free
Express edition (which requires a license, but it’s a free license). Either one of these
will work, but I won’t use any features in this chapter that you can’t use with the
Express edition.

 Now that PostSharp is installed, let’s start moving nonfunctional features into their
own aspects.

2.4.1 Start simple and isolate the logging

Let’s start with an easy cross-cutting concern to refactor: logging. Let’s log a time-
stamp when the method is called, and the name of the method. I’ll create a class that
inherits one of PostSharp’s built-in base classes, OnMethodBoundaryAspect, which
allows us to insert code at the boundaries of a method, as the following listing shows.

46 CHAPTER 2 Acme Car Rental

[Serializable]
public class LoggingAspect : OnMethodBoundaryAspect {

public override void OnEntry(MethodExecutionArgs args) {
Console.WriteLine("{0}: {1}", args.Method.Name, DateTime.Now);

}

public override void OnSuccess(MethodExecutionArgs args) {
Console.WriteLine("{0} complete: {1}",

args.Method.Name, DateTime.Now);
}

}

Notice that we can get the method name from the MethodExecutionArgs argument,
so right away we know that this aspect can be reused for redemption, too. Logging-
Aspect is similar to the “Hello, World” aspect from the previous chapter. Apply the
aspect using an attribute, as shown here.

[LoggingAspect]
public void Accrue(RentalAgreement agreement) {

// ... snip ...
}

[LoggingAspect]
public void Redeem(Invoice invoice, int numberOfDays) {

// ... snip ...
}

And now you can remove the logging code from each of those methods.
 Before we run the console application again to make sure that this is working,

you might have noticed that I left something out: the logging of the ID values from
the parameters being passed in. With PostSharp, I’m able to examine all of the argu-
ments being passed in, but in order to get the IDs, I have to work a little more (see
the following listing). I could apply brute force to it with a couple of if statements.

public override void OnEntry(MethodExecutionArgs args) {
Console.WriteLine("{0}: {1}", args.Method.Name, DateTime.Now);

foreach (var argument in args.Arguments) {
if (argument.GetType() == typeof(RentalAgreement)) {

Console.WriteLine("Customer: {0}",
((RentalAgreement)argument).Customer.Id);

Console.WriteLine("Vehicle: {0}",
((RentalAgreement)argument).Vehicle.Id);

}
if(argument.GetType() == typeof(Invoice))

Console.WriteLine("Invoice: {0}", ((Invoice)argument).Id);
}

}

Listing 2.18 A method boundary aspect to handle logging

Listing 2.19 Applying the logging aspect to the Accrue and Redeem methods

Listing 2.20 Examining and logging argument value

LoggingAspect
being used as an
attribute on Accrue

The same aspect
being applied to
Redeem

Loop through the
arguments using
the PostSharp API.

Check to see
whether the

argument is a
Rental-

Agreement.

Check to see whether the
argument is an Invoice.

47Refactor with AOP

That’s fine for this contrived example, but in a bigger application, you could have doz-
ens or hundreds of different types. If your requirement is to log entity IDs and infor-
mation, you might want to use a common interface (or base class) on your entities. If
you had an ILoggable interface with a string LogInformation() method and you
made both Invoice and RentalAgreement implement that interface, then you could
do something like what’s shown here.

public override void OnEntry(MethodExecutionArgs args) {
Console.WriteLine("{0}: {1}", args.Method.Name, DateTime.Now);

foreach (var argument in args.Arguments)
if(argument != null)

if (typeof(ILoggable).IsAssignableFrom(argument.GetType()))
Console.WriteLine(

((ILoggable)argument).LogInformation());
}

Reflection would be another option for general use. But this is a decision that you’ll
have to make, because it will be related to the specifics of the logging requirements of
your project.

 The Redeem and Accrue methods are starting to shrink, because we’ve moved logging
functionality to its own class. Next, let’s move defensive programming to its own class.

2.4.2 Refactor defensive programming

To refactor the defensive programming shown in listing 2.22, I’ll again use the
OnMethodBoundaryAspect base class. Let’s check to make sure that none of the argu-
ments are null and that none of the int arguments are zero or negative.

[Serializable]

public class DefensiveProgramming : OnMethodBoundaryAspect {

public override void OnEntry(MethodExecutionArgs args) {

var parameters = args.Method.GetParameters();

var arguments = args.Arguments;

for (int i = 0; i < arguments.Count; i++) {

if (arguments[i] == null)

throw new ArgumentNullException(parameters[i].Name);

if (arguments[i].GetType() == typeof(int)

&& (int)arguments[i] <= 0)

throw new ArgumentException("", parameters[i].Name);

}

}

}

Listing 2.21 An alternative way to log certain entities

Listing 2.22 A defensive programming aspect

Again, looping through the
arguments with PostSharp’s API

This code assumes
that entities that
should be logged

implement a
hypothetical

ILoggable
interface that

includes a
LogInformation()

method (at least).

Use the
PostSharp API

to get
information

about the
parameters.

We also need
argument
information to
match it with.

Defend against null arguments

Defend against
zero/negative

integers

48 CHAPTER 2 Acme Car Rental

Check first to see whether the argument is null. After that, see whether the argument
is an integer and whether it’s a valid integer (such as a negative number). You can per-
form these tests by passing in nulls or negative numbers in the console application. (It
should crash your console application, but you should see the correct Argument-
NullException or ArgumentException with the parameter name.)

 Again, notice that there’s nothing in this class that couples directly to any of
the parameter types or service classes, meaning that it can be used on both services,
as in the following listing.

[LoggingAspect]
[DefensiveProgramming]
public void Accrue(RentalAgreement agreement) {

// ... snip ...
}

[LoggingAspect]
[DefensiveProgramming]
public void Redeem(Invoice invoice, int numberOfDays) {

// ... snip ...
}

At this point, it’s important to point out that attributes in .NET aren’t applied in a
deterministic way. Although LoggingAspect is listed first, that doesn’t necessarily
mean that it will be applied first, and vice versa. This is why I had to put the null check
[if(argument != null)] in the logging aspect: in case the logging aspect gets applied
first. PostSharp has some features that allow you to specify ordering of aspects, which
is covered in chapters 8 and 9.

 For the rest of this section, I’m going to assume two things:

 When you use AOP for the first time in your project, you’ll probably start with
only one aspect, which means that you won’t have to worry about ordering/
dependencies at first.

 The aspects in this example will be applied in the order that we want.

With defensive programming and logging out of the way, we’re on our way back to the
nice, clean business logic that we started with. Next up: let’s get that transaction man-
agement code into its own class.

Listing 2.23 Refactoring to aspects with an attribute

Defensive programming aspects
The defensive programming aspect that I’ve written here is probably not the best
approach to writing a general-purpose aspect. With C#, you can put attributes directly
on each parameter, so you can take that approach instead. In fact, this is what Phil
Haack did when he recently created the NullGuard library (available on NuGet and
GitHub).

49Refactor with AOP

2.4.3 Creating an aspect for transactions and retries

To refactor transaction management code this time, instead of OnMethodBoundary-
Aspect, I’ll use MethodInterceptionAspect, as the next example (listing 2.24) shows.
Instead of inserting code at the boundaries of a method, this aspect will intercept any
calls to the method. An interception aspect will run code instead of the method that’s
being intercepted; a boundary aspect will run code before and after a method exe-
cutes. I’ll explore boundaries and interception more thoroughly in later chapters.

[Serializable]
public class TransactionManagement : MethodInterceptionAspect {

public override void OnInvoke(MethodInterceptionArgs args) {
// start new transaction

using (var scope = new TransactionScope()) {
// retry up to three times
var retries = 3;
var succeeded = false;
while (!succeeded) {

try {
args.Proceed();

// complete transaction
scope.Complete();
succeeded = true;

}
catch {

// don’t re-throw until the
// retry limit is reached
if (retries >= 0)

retries--;
else

throw;
}

}
}

}
}

That example is largely identical to the code we wrote inside of the service methods,
except that I’ve replaced the business logic code with a call to args.Proceed(). The
Proceed() call means “proceed to the method that was intercepted.” Once again, I’ve
moved all of the transaction code into its own class, and it can be applied with an attri-
bute, as in the following listing.

[DefensiveProgramming]
[LoggingAspect]
[TransactionManagement]
public void Accrue(RentalAgreement agreement) {

// ... snip ...

Listing 2.24 A transaction aspect

Listing 2.25 Continuing to refactor with aspects

This aspect will
run the code in

OnInvoke
instead of the

intercepted
method. Use the PostSharp

API to proceed to
the intercepted
method here.

50 CHAPTER 2 Acme Car Rental

}

[DefensiveProgramming]
[LoggingAspect]
[TransactionManagement]
public void Redeem(Invoice invoice, int numberOfDays) {

// ... snip ...
}

Make sure to remove that transaction code from Accrue and Redeem.
 In order to demonstrate that the transaction aspect is working, you can put some

Console.WriteLine()s at the start and end of the OnInvoke() function, as figure 2.5
shows.

 One more cross-cutting concern to go: exception handling.

2.4.4 Put exception handling into its own class

For the exception handling aspect, I could use OnMethodBoundaryAspect again, or I
could use OnExceptionAspect. Either way, it should look similar to the following.

[Serializable]
public class ExceptionAspect : OnExceptionAspect {

public override void OnException(MethodExecutionArgs args) {
if (Exceptions.Handle(args.Exception))

args.FlowBehavior = FlowBehavior.Continue;
}

}

I’ll still use the Exceptions static class. There’s something new in this aspect: Flow-
Behavior, which is how you specify what you want to happen once the aspect is done.
In the previous example, I set the behavior to Continue if the exception was handled.
This means that the exception will be swallowed and the program will continue. Oth-
erwise, the default FlowBehavior for an OnExceptionAspect is RethrowException,
which means that the aspect will have no effect on the method and the exception will
be thrown as normal.

Listing 2.26 An aspect to handle exceptions

Figure 2.5 Console output
with the use of AOP

51Refactor with AOP

 Once more, add this attribute to your services and remove the exception handling
code from inside of them. Now all of the cross-cutting concerns have been refactored.
Let’s take a look at the finished product.

[DefensiveProgramming]
[ExceptionAspect]
[LoggingAspect]
[TransactionManagement]
public void Accrue(RentalAgreement agreement) {

var rentalTime =
(agreement.EndDate.Subtract(

agreement.StartDate));
var days = (int) Math.Floor(rentalTime.TotalDays);
var pointsPerDay = 1;
if (agreement.Vehicle.Size >= Size.Luxury)

pointsPerDay = 2;
var pts = days * pointsPerDay;
_dataService.AddPoints(agreement.Customer.Id, pts);

}

[DefensiveProgramming]
[ExceptionAspect]
[LoggingAspect]
[TransactionManagement]
public void Redeem(Invoice invoice, int numberOfDays) {

var pointsPerDay = 10;
if (invoice.Vehicle.Size >= Size.Luxury)

pointsPerDay = 15;
var points = numberOfDays*pointsPerDay;
_dataService.SubtractPoints(invoice.Customer.Id, points);
invoice.Discount = numberOfDays*invoice.CostPerDay;

}

Looks good to me. All of the cross-cutting concerns are now in their own classes. The
services are back to their initial unspoiled single responsibility state. They’re easier to
read.

 Are they easier to change? If you add or change the names of the methods or the
parameters of the methods, then the aspects you wrote can cope with that (particu-
larly defensive programming and logging). The aspects don’t care if the business logic
changes (for example, if you changed it from 10/15 points to 15/20 points). The busi-
ness logic doesn’t care if you switch from using Console to using log4net/NLog. Or if
you need to use something else besides TransactionScope. Or if you want to change
the maximum retries from three to five.

 Even more important, if you add a new method to either service (or if you add a
new service), you can reuse the aspects that you’ve already written instead of copying
and pasting similar code every time.

 Maybe you’re looking at that stack of attributes on each method—isn’t that just
another form of tight coupling and/or repetition that will have to be copied and

Listing 2.27 All cross-cutting concerns refactored into aspects

The Accrue method is
back to being only the
business logic with
which we started.

The Redeem
method is also
back to only
business logic.

52 CHAPTER 2 Acme Car Rental

pasted? Perhaps. For this example, it’s not a big deal because our project is so small. In
later chapters, you’ll learn how to multicast aspects to an entire class, namespace, or
assembly with PostSharp.

2.5 Summary
The first goal of this chapter was to demonstrate that cross-cutting concerns can muck
up your code. Normal OOP and good use of design patterns can help you refactor but
in many cases can get you only part of the way and can still leave your business logic
tightly coupled to cross-cutting concerns. Even if your code follows principles such as
Single Responsibility and DI, often it’s not enough and can still leave your code tan-
gled, scattered, or repetitive.

 The second goal was to show that the cost of change is tied to how flexible,
readable, and modular your code is. Even with good refactoring, you’ll find some
cross-cutting concerns in traditional OOP that can’t be easily decoupled.

 The final goal was to show how an AOP tool such as PostSharp is able to get you that
last mile of loose coupling among cross-cutting concerns. In the PostSharp-refactored
version, each of the cross-cutting concerns had its own class, and the services were
reduced to performing business logic and only business logic.

 This chapter is a crash course in using AOP. If this is your first time writing an
aspect (it probably isn’t—even if you think it is, keep reading and you’ll see that it
might not be), then you’re well on your way to creating better architected software
that’s more flexible and easier to change and maintain. In the next chapter, I’m going
to expand on the reasons to use AOP, focus on the benefits it provides, and examine in
more detail how cross-cutting concerns can wreak havoc in your code.

Matthew D. Groves

C
ore concerns that cut across all parts of your application,
such as logging or authorization, are diffi cult to maintain
independently. In aspect-oriented programming (AOP)

you isolate these cross-cutting concerns into their own classes,
disentangling them from business logic. Mature AOP tools like
PostSharp and Castle DynamicProxy now off er .NET developers
the level of support Java coders have relied on for years.

AOP in .NET introduces aspect-oriented programming and
provides guidance on how to get the most practical benefi t
from this technique. Th e book’s many examples concentrate on
modularizing non-functional requirements that oft en sprawl
throughout object-oriented projects. You’ll appreciate its
straightforward introduction using familiar C#-based examples.

What’s Inside
● Clear and simple introduction to AOP
● Maximum benefi t with minimal theory
● PostSharp and Castle DynamicProxy

Th is book requires no prior experience with AOP. Readers
should know C# or another OO language.

Matthew D. Groves is a developer with over ten years of
professional experience working with C#, ASP.NET,
JavaScript, and PHP.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/AOPin.NET

$49.99 / Can $52.99 [INCLUDING eBOOK]

AOP in .NET

AOP/.NET

M A N N I N G

“Helps the reader integrate
techniques and technologies
 with real-world practices.”

—From the Foreword by Phil Haack
GitHub Developer

“Shows how you can clean
up your code using a

 powerful concept.”—Maarten Balliauw, JetBrains

“Th e best single volume for
 the variety of .NET AOP
 concepts presented.”—Mick Wilson
Mind Over Machines, Inc.

“Cuts through the
complexity of AOP

 with relevant examples.”—Heather Campbell, Kainos

“A great introduction to AOP
for .NET developers.”—Paul Stack, OpenTable Inc.

SEE INSERT

