
M A N N I N G

Pete Brown

Revised Edition of
Silverlight 2 in Action

IN ACTION

SAMPLE CHAPTER

Silverlight 4 in Action

by Pete Brown

Chapter 5

Copyright 2010 Manning Publications

v

brief contents
PART 1 INTRODUCING SILVERLIGHT ...1

1 ■ Introducing Silverlight 3

2 ■ Core XAML 20

3 ■ The application model and the plug-in 47

4 ■ Integrating with the browser 73

5 ■ Integrating with the desktop 95

6 ■ Rendering, layout, and transforming 138

7 ■ Panels 171

8 ■ Human input 188

9 ■ Text 203

10 ■ Controls and UserControls 234

PART 2 STRUCTURING YOUR APPLICATION259

11 ■ Binding 261

12 ■ Data controls: DataGrid and DataForm 285

13 ■ Input validation 308

14 ■ Networking and communications 335

BRIEF CONTENTSvi

15 ■ Navigation and dialogs 382

16 ■ Structuring and testing with the MVVM/ViewModel
 pattern 416

17 ■ WCF RIA Services 459

PART 3 COMPLETING THE EXPERIENCE ..513

18 ■ Graphics and effects 515

19 ■ Printing 542

20 ■ Displaying and capturing media 572

21 ■ Working with bitmap images 618

22 ■ Animation and behaviors 637

23 ■ Resources, styles, and control templates 670

24 ■ Creating panels and controls 699

25 ■ The install experience and preloaders 720

95

Integrating
 with the desktop

Silverlight started as an in-browser technology, primarily used for media and sim-
ple games. It later evolved into a more capable business technology and added
some useful but basic desktop integration with additions such as isolated storage
and the OpenFileDialog. With version 3, Silverlight gained the ability to run out-
side of the browser as a sandboxed desktop application. Starting with Silverlight 4,
the sandbox has been expanded and a whole new wave of desktop-integration
capabilities included.

This chapter covers
■ Running Silverlight applications out of the browser
■ Using the elevated trust mode
■ Lighting up on Windows with COM automation
■ Displaying the notification toast
■ Controlling the out-of-browser window
■ Running in full screen
■ Storing and retrieving local information using

isolated storage

96 CHAPTER 5 Integrating with the desktop

 Elevated trust mode is one of the most exciting things to happen to out-of-browser
applications. Now we have access to more local files and resources, fewer confirmation
prompts, and a better integrated experience. On Windows, we also have all the power
provided by COM automation. We get all this as the result of a single setting and a user
confirmation dialog; no messing around with browser settings or code access security.

 Elevated trust mode even lets you control the out-of-browser window, from simple
sizing and location all the way through to creating your own custom window chrome—
the borders, title bars, buttons, and other elements that decorate a typical window on
a given operating system.

 Sometimes what you want isn’t a separate window but rather to take your in-
browser or out-of-browser application and make it run in full screen. Silverlight sup-
ports that as well, a killer feature for media players and kiosk applications. When run
in the elevated trust mode, full-screen applications have even more capabilities.

 Even in the default partial-trust mode, Silverlight 4 gains new out-of-browser capa-
bilities including the new notification API, or toast, as it’s commonly called.

 Applications both in and out of the browser need to integrate with the local OS at
varying levels. In this chapter, we’ll look at some of those local desktop integration fea-
tures and dive deeply into out-of-browser capabilities using both the default partial
trust mode introduced with Silverlight 3 and the elevated trust mode introduced with
Silverlight 4. From there we’ll look at the full-screen mode and isolated storage.
Before we get into some of the deeper topics, it’s fundamental to understand the out-
of-browser mode.

5.1 Silverlight out of the browser
One of the most exciting new features introduced with Silverlight 3 and enhanced in
Silverlight 4 is support for out-of-browser (OOB) applications. OOB applications give
us the best of Silverlight’s cross-platform support along with a locally installed and
offline-enabled experience.

 Out-of-browser Silverlight applications aren’t hosted in a real browser instance—at
least not in the way we’d typically think of a browser—and, therefore, don’t have
access to the HTML DOM described in the previous chapter. Instead, the applications
must be full-page, self-contained applications, without reliance on HTML, JavaScript,
or other in-page assets.

 Out-of-browser Silverlight applications are already seeing significant uptake within
corporations, behind the firewall, due to their simple installation and update models
and their presentation and data manipulation capabilities.

 Out-of-browser Silverlight applications look just like their full-page in-browser
equivalents but without all of the extra browser chrome. A sample OOB Silverlight
application may be seen in figure 5.1 and its in-browser version in figure 5.2.

 Between the two screenshots, you can see that the Silverlight portion of the experi-
ence remains identical (with the exception of the frame rate display I’ve turned on
when in the browser). The code and the .xap file are the same in both instances. What

97Silverlight out of the browser

Figure 5.1 My first out-of-browser Silverlight application—a Commodore 64 emulator using the updated
MediaStreamSource API described in chapter 20

Figure 5.2 The same Silverlight application running in the browser

98 CHAPTER 5 Integrating with the desktop

changes is how much chrome surrounds the application and how much real estate is
made available to Silverlight rather than to browser functionality.

 Silverlight provides APIs for detecting and responding to changes in network con-
nectivity as well as an API for indentifying whether the application is running in or out
of the browser and if there are any updates available. All of these, combined with the
already rich set of capabilities offered by Silverlight, make for a compelling out-of-
browser application platform.

 Before deciding on creating an out-of-browser application, it’s important to under-
stand both the capabilities and restrictions.

5.1.1 Capabilities and restrictions

Out-of-browser Silverlight applications work just like in-browser Silverlight applica-
tions with some minor differences:

■ Isolated storage quota for out-of-browser applications is 25 MB by default as
opposed to 1 MB for in-browser applications. In both cases, this can be
extended by prompting the user.

■ Out-of-browser applications provide access to keys that the browser normally
captures, such as function keys.

■ Out-of-browser applications can be pinned to the Start menu or taskbar on Win-
dows systems and display custom icons but otherwise can’t integrate with the
Windows 7 taskbar without using COM automation in the elevated trust mode.

■ Out-of-browser applications require an explicit check for a new version,
whereas in-browser versions automatically update.

■ Out-of-browser applications support the elevated trust mode, discussed in sec-
tion 5.3.1.

■ Out-of-browser applications can’t receive initialization parameters or take
advantage of any of the plug-in parameters while running out of the browser.

■ Out-of-browser applications can’t interact with the HTML DOM—there’s no
DOM to work with.

If you want those capabilities and can live with those restrictions, then an out-of-
browser application may be for you. If you need more power and fewer restrictions,
consider creating a click-once WPF application.

 The end-user experience for installing Silverlight applications is slightly more com-
plex than just hitting a web page and running Silverlight content but not nearly as
involved as a regular platform application (.exe) install.

5.1.2 The end-user experience

An end-user visiting your site will see a typical Silverlight application. If the applica-
tion is out-of-browser enabled, he or she will be able to right-click on the surface to
install it locally, assuming you’ve left that capability intact. In addition, you may pro-
vide a onscreen button to perform the installation without requiring the right click.
The default experience is shown in figure 5.3.

99Silverlight out of the browser

The installation process is painless, being simply a copy of files to an obfuscated loca-
tion on the local machine. There are no registry entries required, no additional plat-
form DLLs, and no admin rights—nothing extra. As seen in figure 5.4, there’s only a
choice of where to put shortcuts (Start menu and/or desktop) and whether to
approve or cancel the install—a very low-friction experience compared to a typical
platform application install.

 Once the user takes the application out of the browser, the .xap will be rerequested
from the server and stored in a low-trust location on the local machine along with the
information about the original URI of the .xap and the download timestamp. It’ll then
appear in the places the user selected (Start menu and/or desktop) via the dialog shown
in figure 5.4 and also on the taskbar. The user may, as with any other application, pin
the shortcut to the Start menu or (in Windows 7) to the taskbar for convenience.

Figure 5.3 The install menu for an out-of-browser-enabled application is accessed by right-clicking on
the Silverlight surface.

Figure 5.4 The install dialog
gives the user the option to place
shortcuts on the Start menu and
on the desktop. The install icon
on the left is customizable, as is
the application name.

100 CHAPTER 5 Integrating with the desktop

The application will also immediately launch in the out-of-browser mode, as seen in
figure 5.5. At this point, the user may close the browser window if she wishes to do so.

 Figures 5.6 and 5.7 show a Silverlight application (the Commodore 64 emulator)
pinned to the Start menu and the task-
bar on a Windows 7 machine. Note the
use of custom icons and information
about the name of the application.

 To uninstall the application, the
user may right-click the Silverlight
application and select the menu option
Remove This Application or use the
control panel’s Add/Remove Programs
applet. Again, no special rights are
required and the process is painless.

 As you can see, out-of-browser Silver-
light applications look and act much
like any other desktop application
while providing a simple installation
experience for the end user. You get the
local experience of a desktop applica-
tion with the ease of deployment of a
web application. Next, we’ll look at how
to configure and code your applica-
tions for out-of-browser support.

Figure 5.5 The
application is running
in the out-of-browser
mode. Note that both
the application window
title and source domain
(localhost in this case)
are displayed in the
title bar.

Figure 5.6 An out-of-browser Silverlight application
with custom icons pinned to the Start menu in
Windows 7. The application below it, TweetDeck, is
an Adobe AIR application, another competing out-of-
browser RIA technology.

Figure 5.7 The same Silverlight out-of-browser
application pinned to the taskbar in Windows 7

101Creating out-of-browser applications

5.2 Creating out-of-browser applications
An out-of-browser application may be as simple as an existing Silverlight application
enabled to be run outside the browser chrome or something more complex that uses
the Silverlight APIs to check the network state and support offline scenarios. Perhaps
it even has a very different user interface when running out of the browser, building
upon those APIs and those for runtime mode detection. Before covering the more
advanced scenarios, let’s start with the minimal changes needed common for all three
cases—the settings file.

5.2.1 The out-of-browser settings file

As we saw in chapter 3, the application manifest file tells the Silverlight plug-in all
about the components of your Silverlight application. What it doesn’t include is infor-
mation about the out-of-browser configuration. That information is included in the
out-of-browser configuration file OutOfBrowserSettings.xml (see listing 5.1).

<OutOfBrowserSettings ShortName="Pete's App"
 EnableGPUAcceleration="True"
 ShowInstallMenuItem="True">
 <OutOfBrowserSettings.Blurb>
 Pete's Application on your desktop; at home, at work
 or on the go.
 </OutOfBrowserSettings.Blurb>
 <OutOfBrowserSettings.WindowSettings>
 <WindowSettings Title="Pete's Out-of-Browser Application"
 Top="100" Left="100"
 WindowStartupLocation="Manual"
 Height="450" Width="700" />
 </OutOfBrowserSettings.WindowSettings>
 <OutOfBrowserSettings.Icons>
 <Icon Size="16,16">AppIcon016.png</Icon>
 <Icon Size="32,32">AppIcon032.png</Icon>
 <Icon Size="48,48">AppIcon048.png</Icon>
 <Icon Size="128,128">AppIcon128.png</Icon>
 </OutOfBrowserSettings.Icons>
</OutOfBrowserSettings>

The short name of the application is what’s displayed in the right-click Silverlight
menu, the installation dialog, and the created shortcuts. The title, when combined with
the domain name, is shown in the title bar of the window hosting your application.

 Typically, you won’t edit the settings file directly. Instead, you’ll use the Out-of-
Browser Settings dialog from the project properties, as seen in figure 5.8.

 This dialog is displayed when you click the Out-of-Browser Settings button on the
Silverlight tab of the project properties. One of the options is Show Install Menu,
which allows you to toggle whether the default right-click install experience is dis-
played. If you uncheck that option, you must provide another way for users to install
your application out of the browser.

Listing 5.1 A basic out-of-browser application configuration file

Shown in
Start menu

Shortcut
comment

Window title

Window
startup
positionWindow

startup
dimensions

Custom
icons

102 CHAPTER 5 Integrating with the desktop

The default right-click installation experience is adequate, but there may be times when
you want to provide a more controlled experience both with custom icons and with a
more obvious way to take the application out of the browser. We’ll cover that next.

5.2.2 Controlling the experience

Silverlight provides several useful APIs for both detaching your application from the
browser and for checking the current state of your application. The first is the Appli-
cation.Current.InstallState value. The values for InstallState are shown in
table 5.1.

 When the installation state is changed, the Application object will raise an Install-
StateChanged event that informs you to look at InstallState for the latest state.

 You can extend this concept to force an out-of-browser-only mode in your applica-
tion simply by refusing to display the application UI unless running outside of the
browser. In that case, your in-browser application would simply be an install-me-locally
splash screen. Listing 5.2 shows how to set up your application so that it provides a
meaningful experience only when run out of the browser.

Figure 5.8 The Out-of-
Browser Settings dialog

103Creating out-of-browser applications

XAML:
...
<Grid x:Name="IBNotInstalledExperience">
 <Button x:Name="InstallButton"
 Height="100"
 Width="400"
 FontSize="30"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Content="Take Out of Browser" />
</Grid>

<Grid x:Name="IBInstalledExperience">
 <Rectangle Fill="Azure"
 Stroke="LightBlue"
 RadiusX="10"
 RadiusY="10"
 Margin="20" />

 <TextBlock Text="This application is installed locally.

➥ Please run from the shortcut."
 FontSize="30"
 Margin="30"
 TextWrapping="Wrap"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

<Grid x:Name="OobExperience"
 Visibility="Collapsed">

 <Rectangle Fill="Azure"
 Stroke="LightBlue"
 RadiusX="10"
 RadiusY="10"
 Margin="20" />

 <TextBlock Text="Running out of browser"
 FontSize="30"

Table 5.1 The various values of InstallState

State Meaning

Installed The application has been installed by the user. Note that the current instance of
the application may still be running in the browser. This value only tells you it’s
available in the locally installed mode for the current user/machine.

InstallFailed The application tried to install, but failed.

Installing The application is currently installing. This is a good place to download the
required assets if you intend to allow the application to run offline as well as out
of the browser.

NotInstalled This value indicates that the application hasn’t been locally installed.

Listing 5.2 Forcing out-of-browser mode

104 CHAPTER 5 Integrating with the desktop

 Margin="30"
 TextWrapping="Wrap"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

C# code:
public MainPage()
{
 InitializeComponent();

 Loaded += new RoutedEventHandler(MainPage_Loaded);
 InstallButton.Click += new RoutedEventHandler(InstClick);
 Application.Current.InstallStateChanged +=
 new EventHandler(OnInstallStateChanged);
}

private void UpdateUserInterface()
{
 if (Application.Current.IsRunningOutOfBrowser)
 {
 OobExperience.Visibility = Visibility.Visible;
 }
 else
 {
 if (Application.Current.InstallState == InstallState.Installed)
 {
 IBInstalledExperience.Visibility = Visibility.Visible;
 IBNotInstalledExperience.Visibility = Visibility.Collapsed;
 OobExperience.Visibility = Visibility.Collapsed;
 }
 else
 {
 IBInstalledExperience.Visibility = Visibility.Collapsed;
 IBNotInstalledExperience.Visibility = Visibility.Visible;
 OobExperience.Visibility = Visibility.Collapsed;
 }
 }
}

void OnInstallStateChanged(object sender, EventArgs e)
{
 UpdateUserInterface();
}

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 UpdateUserInterface();
}

void InstClick(object sender, RoutedEventArgs e)
{
 Application.Current.Install();
}

Installation and
execution state check

Fired when
Installed or
uninstalled

Install button
click handler

105Creating out-of-browser applications

The experiences resulting from the code in listing 5.2 are shown in figures 5.9
and 5.10. Note that the Install method may only be called from a user-generated

Figure 5.9 The experience a user will see if he hasn’t installed this application. Clicking the button calls
Application.Current.Install().

Figure 5.10 The same application after it’s detected that it was installed and is running outside of
the browser. Note that the browser-hosted version responded to the InstallStateChanged event
by changing its own UI.

106 CHAPTER 5 Integrating with the desktop

UI event, such as a button click. This is to prevent applications from self-installing
without explicit user intervention.

 So though you can’t exactly force an application to install locally, you can design it
to show different interfaces depending upon its installation state and current mode of
operation. Think carefully before you use this type of code in your own applications; if
there’s no compelling reason to force an application to run out of the browser only,
don’t force the user.

 The next step in customizing the experience is to change the icons displayed in
the install dialog, the application window, the Start menu, and the taskbar.

5.2.3 Customizing icons

The next step in creating a customized out-of-browser experience is changing the
icons used in the application. The icons, which must be .png files, are typically pro-
vided in four sizes from 128×128 to 16×16. The 128×128 size is used in the installation
dialog. The other sizes are used in the Start menu, the window icon, shortcuts, and in
the Apple OS X application list. Though you don’t need to provide every size, I highly
recommend that you do because they may not scale at runtime in quite the way you
want them to. The approach is similar to exploding a typical Windows .ico file into
four .png files.

 To include icons, the OutOfBrowserSettings.Icons section is added to the Out-
OfBrowserSettings.xml inside the OutOfBrowserSettings section, as shown:

<OutOfBrowserSettings ...>
...
 <OutOfBrowserSettings.Icons>
 <Icon Size="16,16">AppIcon016.png</Icon>
 <Icon Size="32,32">AppIcon032.png</Icon>
 <Icon Size="48,48">AppIcon048.png</Icon>
 <Icon Size="128,128">AppIcon128.png</Icon>
 </OutOfBrowserSettings.Icons>
</OutOfBrowserSettings>

The icons themselves are included in your project as Content and copied into the .xap
file at compile time. In the preceding example, they’re in the project root but you cer-
tainly may include them in a subfolder. The filenames can be anything you want as
long as the actual resolution of the file matches up with the known resolution
assigned to it in the Size property.

 That’s it for customizing the install experience. Next, we’ll look at how to handle
two common scenarios for out-of-browser applications: changing the network state
and updating the application.

5.2.4 Checking the network state

You’ll use two mechanisms to check the network state in your Silverlight application:
the GetIsNetworkAvailable method and the NetworkAddressChanged event. Both
are available in an out of the browser but are more commonly used in out-of-browser
scenarios.

107Creating out-of-browser applications

 The NetworkInterface and NetworkChange classes included in the Sys-

tem.Net.NetworkInformation namespace provide access to the network state infor-
mation. Typically, you’ll use them together like this:

NetworkChange.NetworkAddressChanged += new
 NetworkAddressChangedEventHandler(OnNetworkAddressChanged);

...

void OnNetworkAddressChanged(object sender, EventArgs e)
{
 if (NetworkInterface.GetIsNetworkAvailable())
 {
 // Connected to some network
 }
 else
 {
 // Not connected to any network
 }
}

The call to GetIsNetworkAvailable will tell us only that there’s some sort of network
connection. It doesn’t guarantee that we can access required services or even the
Internet in general. On machines with network connections between the host and a
virtual PC (VPC), which is typical in development environments, this may even detect
the VPC connection as a valid network connection and return true.

 Rather than rely just on this call, it’s a good practice to first check to see whether
any network is available and, if so, ping or call a known service on the server you plan
to reach before assuming you’re connected. Since the network state can change dur-
ing the application runtime, you may want to call these methods on a timer or in the
exception handlers in your network service interface layer.

 One thing that can only happen when you’re connected to the network is updat-
ing the application.
UPDATING

A real benefit of browser-based applications is the ability to automatically update the
application without requiring any sort of explicit installation or push to the client
machine. Out-of-browser Silverlight applications aren’t very different in that regard,
except that the developer controls the update process.

 The Silverlight Application object includes a CheckAndDownloadUpdateAsync
method that, as its name indicates, will check for any available .xap updates and down-
load, if present. When the method completes, it fires the CheckAndDownloadUpdate-
Completed event.

 The code is fairly simple and, if you use a little lambda expression sugar to create
the delegate, you can even fit it all into a single short function:

private void CheckForUpdates()
{
 Application.Current.CheckAndDownloadUpdateCompleted +=
 (s, e) =>
 {

108 CHAPTER 5 Integrating with the desktop

 if (e.UpdateAvailable)
 {
 MessageBox.Show("A new version was downloaded.");
 }
 };

 Application.Current.CheckAndDownloadUpdateAsync();
}

When the CheckForUpdates call is made, Silverlight looks at the stored origin URI of the
.xap file and makes a normal background HTTP request to that location to verify that
the latest version is installed. If a new version is available, Silverlight will receive that in
the background and programmatically indicate that a new version is available by setting
the UpdateAvailable property to true in the returned event arguments class. Unless you
prompt the user to shut down and relaunch the application, he’ll still be running the
old version. It’s not until the next run that he’ll execute the newly downloaded version.

 But, when you detect that a new version is available, you can display a dialog to the
user and request a restart. If the nature of the application allows it, you can also be
more draconian and completely block all of the UI functionality until the user restarts
the application. What you can’t do is force an application to restart programmatically.
A best practice is to gently inform your user (perhaps soothing music and pastel colors
will help) that a new version is available and let him restart at his convenience. At the
worst, he’ll get the new version during the next session.

 Once you’ve decided to take your application out of the browser, one of the capa-
bilities you’ll enable is the notification API, introduced in Silverlight 4.

5.2.5 Alerting the user with Notification toast

Windows notifications have been nicknamed toast due to their way of popping up
from the bottom right of the desktop, like a piece of toast in an old toaster. Notifica-
tion is used for everything from displaying new email messages in Outlook, to new
tweets in the popular Twitter programs, to new items in the queue of a business appli-
cation. Notifications are an essential tool for alerting the user when the application is
sitting in the background or on another screen.

 Creating a simple notification window is easy. All you need to do is create an instance
of NotificationWindow, set the size, and set the content. The result will be less than stel-
lar, though; it’ll be a simple opaque white rectangle with your text overlaid:

if (Application.Current.IsRunningOutOfBrowser)
{
 NotificationWindow notify = new NotificationWindow();
 notify.Height = 75;
 notify.Width = 300;

 TextBlock text = new TextBlock();
 text.Text = "Basic Notification";

 notify.Content = text;

 notify.Show(5000);
}

109Creating out-of-browser applications

The Show method takes a number of mil-
liseconds representing how long to show
the window. The value of 5000 millisec-
onds used in this example is 5 seconds.

 To really use NotificationWindow,
you’ll need to fill it up with something
more meaningful. Typically you’ll create
a user control to represent the content
and assign that rather than a simple
TextBlock. Figure 5.11 shows an example of a user control with a red and black border,
gray header text, and white body text.

 On Windows, the notification windows will always display on the bottom-right cor-
ner on the screen. On Mac OS X, they display at the top-right corner.

 The window may be closed by simply timing out or by calling the Notification-
Window.Close method. In either case, the NotificationWindow.Closed event is fired,
allowing you to take action as necessary.

 Notifications are one of many capabilities enabled when you run your application
out-of-browser. Before we delve more deeply into other capabilities, let’s take a detour
into the implementation specifics of out-of-browser applications.

5.2.6 Implementation specifics

When developing and debugging out-of-browser applications, it can be essential to
understand how Silverlight implements them under the covers. This is especially
important when you’re developing a true cross-platform application and need to
ensure consistent behavior.

 On Windows, out-of-browser Silverlight applications run in a process named
sllauncher.exe. That process hosts the IE rendering surface mshtml.dll hosted in
shdocvw. The rendering surface is where your Silverlight application exists, visually.
Similarly, on Apple OS X, the process hosts the Safari/WebKit rendering surface and
related libraries. In both cases, Silverlight doesn’t rely on the entire browser stack, just
the core functionality required to host Silverlight content inside the native operating
system window chrome.

 Though the Silverlight team has gone through great pains to ensure performance
is similar on all supported operating systems, understanding the limitations of Safari/
WebKit and Internet Explorer can really help with diagnosing performance issues.
For example, current implementations of Safari use a plug-in compositing mode
that’s not as efficient as Internet Explorer. If your application has lots of animation
and internal compositing going on, it’s a good idea to test performance on OS X
before the release.

 As in the case with process-isolated tabs in the browser, each out-of-browser Silver-
light application will have its own process, app domain, and instance of the CoreCLR.

 Out-of-browser Silverlight support now enables us to create a new class of applica-
tions that combine the best of Silverlight web development with the great experience

Figure 5.11 A customized notification window

110 CHAPTER 5 Integrating with the desktop

of a desktop application. If you want to enable out-of-browser and offline scenarios,
need access to keys normally swallowed by the browser, or just want more screen real
estate, you take advantage of the new OOB features. Best of all, the partial-trust appli-
cations are just as safe and secure as their browser-hosted versions and easier to install
than typical desktop applications.

 As compelling as that is, sometimes you need a bit more power. Silverlight 4 adds
even more desktop-like functionality in the form of the new elevated trust mode.

5.3 Escaping the sandbox—elevated trust
Silverlight 4 introduces the concept of elevated-trust applications. Elevated-trust appli-
cations are out-of-browser applications that have access to additional capabilities on
the machine on to which they’re installed. For all intents and purposes, elevated-trust
applications are actually full-trust applications. For example, elevated-trust applica-
tions can use the new COM automation capabilities discussed in section 5.2.2, as well
as make web network requests without first checking for a client access policy. The full
list of capabilities enabled by elevated trust includes:

■ Using COM for native Windows integration.
■ Calling web services and making network requests without requiring a client

access policy check and without any cross-domain or cross-scheme restrictions.
■ Relaxed user consent for clipboard, webcam, and microphone access.
■ Relaxed user initiation requirements. For example, you can enter the full-

screen mode in an Application.Startup event handler rather than requiring a
button click or other user-initiated event.

■ Reading and writing files in user document folders.
■ Using the full-screen mode without keyboard restrictions and without the Press

ESC to exit overlay and staying in full-screen mode even if the user switches
focus to another window or display.

■ Controlling the size, position, and ordering of the host window.

That’s a pretty powerful list; it addresses most of the restrictions developers have been
bothered by since the initial release of Silverlight 2. In particular, the ability to make
network calls without worrying about cross-domain, and the new COM automation
capability, both open up entirely new areas for Silverlight development.

 We’ll first cover how to create elevated trust applications and the important step of
how to sign them and then follow that up with sections covering specific elevated trust
features you’ll use in your own applications—including enhancements to local file
access and the COM automation support introduced in Silverlight 4.

5.3.1 Creating elevated-trust applications

To mark your application as requiring elevated trust, first you must make the applica-
tion support the out-of-browser mode. Then, it’s as simple as a check box on the Out-
of-Browser Settings page, shown in figure 5.8 earlier in this chapter.

111Escaping the sandbox—elevated trust

It may seem simple to just mark all out-of-browser applications as requiring elevated
trust, but the end-user install prompt is slightly scarier when elevated trust is used. Fig-
ure 5.12 shows the normal out-of-browser installation prompt. It’s pretty tame, since
the application is still running in a pretty tight sandbox.

 Once you move into the elevated trust mode, the dialogs rightfully get scarier to
encourage the user to install applications only from the sources they trust.
UNSIGNED APPLICATIONS

Figure 5.13 shows the elevated trust install dialog, in the case of an unsigned applica-
tion. It’s a pretty scary dialog that’ll give most users pause. For that reason alone, it’s
good to be judicious about which applications really require elevated trust or perhaps
even offer alternative versions of your application (perhaps the in-browser version)
that don’t require additional permissions.

 If you want to have a friendly elevated trust installation dialog, you’ll need to sign
the application (sign the .xap) using a certificate from a trusted certificate authority.
SIGNED APPLICATIONS

The only way to have an elevated trust application without a scary dialog is to sign the
.xap using a certificate from a trusted authority such as VeriSign, Thawte, GoDaddy,

Figure 5.12 Normal out-of-
browser installation prompt

Figure 5.13 Unsigned
out-of-browser elevated
trust install prompt

112 CHAPTER 5 Integrating with the desktop

or Comodo. Once you sign the .xap, you’ll get a much friendlier dialog, as seen in
figure 5.14.

 Users are much more likely to install an application with the friendlier dialog and
your publisher information than with the yellow-bannered “unverified source” shown
in figure 5.13.

 For testing purposes, you can self-sign your .xap using a test certificate. Visual Stu-
dio, via the options on the Signing tab for the Silverlight project, will generate the test
cert for you. You’ll then need to add the certificate to your own store in the Trusted
Certificate Root. Anyone else who’s going to test the application will also need to
install the certificate. The fewer people with your test cert, the better, so be sure to get
a real certificate early in the process.

 Once you have a certificate, you can use it in Visual Studio 2010 to sign your .xap.
This is accomplished via the Signing tab in the project properties window for the Sil-
verlight application. Figure 5.15 shows a .xap file signed by my own test certificate.

Figure 5.14 Signed out-
of-browser elevated trust
install prompt

Figure 5.15 Signing options in Visual Studio 2010

113Local file access

Once you have the certificate installed and it’s recognized by your target machines,
you’re good to test and deploy. Make sure you get the certificate early in the process
because it typically is not a simple, quick, or completely online process. Nevertheless,
this is the same process you’ll go through for certificates for any use, including appli-
cation signing and secure sockets.

TIP Jeff Wilcox from the Silverlight team at Microsoft put together a great walk-
through of purchasing and installing a certificate for personal use. You can find
it on his blog here: http://www.jeff.wilcox.name/2010/02/codesigning101/.

Trusted applications have a lot going for them, but users can still reject elevated per-
missions. If you’re going to build elevated trust applications and potentially share any
code with a normal trust application, one thing you’ll need to do is check to see
whether the user has actually granted you elevated permissions.

5.3.2 Detecting elevated trust mode

Before enabling certain features in your application, it’s a good practice to check to
see if you’re running in elevated trust mode. The Application object exposes the
HasElevatedPermissions property, which allows you to do just that:

if (Application.Current.HasElevatedPermissions)
{
 /* Light up the awesomeness */
}

Checking for elevated permissions allows you to take alternative approaches in cases
where the permissions weren’t granted. Graceful downgrading of functionality is always
a good idea when it comes to web applications. You can provide the users with the level
of features they’re comfortable with while maximizing the number of people you serve.

 We’ve now turned on the elevated trust mode and considered what it takes to
detect it. One of the areas that’s available in Silverlight by default but is enhanced by
elevated trust mode is local file access.

5.4 Local file access
Since version 2, Silverlight has offered the ability to load data from local files but it was
restricted to isolated storage and to streams loaded via the OpenFileDialog. Starting
with Silverlight 4 and the new elevated trust mode, you now have the ability to open
any file in the My Documents folder (and the equivalent folder on the Mac) without
injecting additional user interface in the process.

5.4.1 Accessing special folders

The paths to the special folders are accessed using Environment.GetFolderPath and
passing it a value in the Environment.SpecialFolder enumeration. An example of
enumerating all of the files in the My Music folder would look like this:

var music = Directory.EnumerateFiles(
 Environment.GetFolderPath(Environment.SpecialFolder.MyMusic));

http://www.jeff.wilcox.name/2010/02/codesigning101/

114 CHAPTER 5 Integrating with the desktop

The result would be an IEnumerable<string> containing all of the files in the
C:\Users\Pete.Brown\Music folder on my machine.

 The full list of special folders currently supported in Silverlight is shown in table 5.2.
The enumeration itself has quite a few other values, but those are for compatibility with
the full framework. Using them in Silverlight will throw an exception.

In addition to enumerating files, you’d expect to be able to read from and write to the
files in those directories, and you’d be correct.

5.4.2 Reading from a file

You may read from a file rooted in one of the allowed directories using the File
object and opening a stream:

if (Application.Current.HasElevatedPermissions)
{
 string path = Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments);
 string fileName = System.IO.Path.Combine(path, "sltest.txt");

 if (File.Exists(fileName))
 {
 using (StreamReader reader = File.OpenText(fileName))
 {
 string contents = reader.ReadToEnd();

 // do something with contents

 reader.Close();
 }
 }
}

Table 5.2 The values of SpecialFolder currently supported in Silverlight

Enum value Description

MyComputer The My Computer folder
Note: The MyComputer constant always contains the empty
string ("") because no path is defined for the My Computer folder.
Example: ""

MyMusic The My Music folder
Example: C:\Users\Pete.Brown\Music

MyPictures The My Pictures folder
Example: C:\Users\Pete.Brown\Pictures

MyVideos The My Videos folder
Example: C:\Users\Pete.Brown\Videos

Personal The directory that serves as a common repository for documents
This is the same as MyDocuments.

MyDocuments The My Documents folder
Example: C:\Users\Pete.Brown\Documents

115COM automation

If you try to open from an unsupported location, Silverlight will throw an exception
and you’ll be unable to open the file.

 In addition to reading files from the supported locations, you’ll probably want to
write files.

5.4.3 Writing to a file

Writing to a file works just as you’d expect it to, using the File object and a Stream-
Writer, as long as you root your file in one of the allowed folders. Again, it’s a good
idea to check for elevated permissions before taking any action:

if (Application.Current.HasElevatedPermissions)
{
 string path = GetFolderPath(Environment.SpecialFolder.MyDocuments);
 string fileName = System.IO.Path.Combine(path, "sltest.txt");

 using (StreamWriter writer = File.CreateText(fileName))
 {
 writer.WriteLine("Test from Silverlight.");
 writer.Close();
 }
}

Reading and writing to files in the My Documents folder is great but still falls short of
what full-fledged desktop applications enable. Should you desire to do so, COM auto-
mation will allow you to gain access to any folder the user would normally have access
to. It also provides a lot of great new capabilities such as calling Windows APIs and
automating programs like Excel.

5.5 COM automation
One of the more interesting capabilities introduced in Silverlight 4 in the Sys-
tem.Windows.Interop namespace is the ability to use COM automation to integrate
with native code and applications on the desktop. The primary intent of this feature is
to allow automation of other applications, including Microsoft Office. Secondarily,
this feature may be used to gain access to a subset of the Windows APIs, specifically
those that support IDispatch. Although there are hacks to make it work, it was not a
goal of this feature to allow access to custom COM DLLs you may write or the third par-
ties provide and which you package and install along with your Silverlight application
or to allow access to the full desktop CLR.

 With that disclaimer out of the way, the COM automation feature of Silverlight is an
incredibly powerful way to extend the sandbox, both for good and for evil. Once you
have access to an IDispatch-compatible API, you can do anything you want with it. It
doesn’t respect the sandbox otherwise enforced by Silverlight; the only security that
comes into play is operating system-level security.

5.5.1 Detecting COM automation availability

COM automation may not be available in any particular running instance of your
application. Reasons for this may be that it’s running in the browser, the user has

116 CHAPTER 5 Integrating with the desktop

declined the elevation request, or the application is running on a platform other than
Windows. In those cases, you want to nicely degrade the functionality in a way that
both respects the user and still provides a good experience.

 In addition to checking for elevated permissions as described in section 5.2.1, Sil-
verlight provides some calls you may use to detect the presence of COM automation.
The first is the call to check that you’re running on Windows. The primary reason to
get used to coding this check is that the future versions of Silverlight may include
automation of scripting capabilities on other platforms and you’d want to branch to
them here.

switch (System.Environment.OSVersion.Platform)
{
 // Mac
 case PlatformID.MacOSX:
 break;

 // Unix/Linux
 case PlatformID.Unix:
 break;

 // Windows
 case PlatformID.Win32NT:
 break;
}

I recommend using the OS check sparingly. You never know if capabilities available only
on one platform may show up in another in the future. Rather than drive that based on
the OS, drive it based on feature availability. The exception to this is COM automation,
which is a Windows-only feature. We may have an approach to accomplish the same
thing on Mac OS X in the future, but the implementation will differ substantially.

 Once you check for the OS, the next logical check is to see that you’re running out
of the browser. While this isn’t strictly necessary, you may want to do this to provide a
different downgrade experience than the in-browser version:

if (Application.Current.IsRunningOutOfBrowser)
{
 /* Out-of-browser coolness goes here */
}

The final check is to see if COM automation is available. Technically, this is the only call
you’re required to make but, if I kept this book just to the required bits, it’d be a rehash
of our documentation on msdn.microsoft.com and would seem too much like work:

if (AutomationFactory.IsAvailable)
{
 /* do awesome stuff */
}

Once you ensure automation is available, you can start using it to interact with other
applications or operating system APIs. It truly is a powerful level of integration with
the native code bits of the system. Let’s look at some cool things you can do with it.

117COM automation

5.5.2 Using COM automation to make Silverlight talk

As an example of one of the neat OS-level things you can do with the API, let’s look at
speech. System.Speech, available as part of the full .NET framework, makes speech
easily accessible to any desktop or server application. But System.Speech simply wraps
and makes .NET-friendly the Speech API (SAPI) native to Windows. As luck would have
it, SAPI supports a script- and Silverlight-friendly IDispatch interface. The code here
shows a simple “Hello World!” speech application using the C# dynamic keyword and
Silverlight 4’s new COM automation feature:

if (AutomationFactory.IsAvailable)
{
 using (dynamic voice =

➥ AutomationFactory.CreateObject("Sapi.SpVoice"))
 {
 voice.Speak("I'm better than any in-page midi file!");
 }
}

In order to use the C# dynamic keyword, you need to have a reference to Micro-
soft.CSharp.dll. The DLL is delivered with the Silverlight SDK.

 Another interesting use of COM automation is access to the Windows 7 Sensor and
Location API.

5.5.3 Accessing GPS data using COM automation

I’m writing this part of the chapter on the return trip from speaking at an event in Ice-
land (in-flight power and limitless coffee are a real win, in spite of how hot my US
power supply is from the 240V power). Right above my multi-touch tablet screen is a
small seat-back console that displays the graphical representation of our geographical

IDispatch
IDispatch is COM’s standard interface that supports late binding using the OLE Auto-
mation protocol interface. IDispatch provides methods to allow a client to query the
component to find out what properties and methods it supports as well as a method
to invoke any one of those methods.

Each method supported by the COM component is assigned an ID. When the IDis-
patch interface’s GetIDsOfNames function is passed a string name of a function, it
returns the ID. The calling code then uses the Invoke function to invoke that function.

Due to the late binding nature of IDispatch, it supports scripting as well as clients
using the dynamic functionality in .NET 4, along with older clients such as Visual Ba-
sic (pre-.NET)

The method-ID table approach of IDispatch isn’t as performant as the early bound ref-
erences using custom interfaces. For that reason, consider alternative approaches
when looking at calling many IDispatch methods in a large loop in an application.

118 CHAPTER 5 Integrating with the desktop

position on the world map. (For reference, we’re above Canada between the amus-
ingly named Goose Bay and Gander.)

 Watching that reminded me that all the nifty GPS work I’ve done with WPF on Win-
dows 7 is also available in Silverlight because the native API supports IDispatch. Loca-
tion-aware Silverlight applications? Awesome.

 Access to location information was first offered as part of the full .NET 4 framework
in the System.Device.Location namespace. Much like System.Speech, System.
Device.Location simply (or not so simply if you’re the one who had to write it) wraps
and makes .NET-friendly the Windows 7 Location API. Though you do lose some con-
venience such as the INotifyPropertyChanged implementation (see chapter 9) by
going directly against the native COM API, it’s still pretty usable.

 The following example shows how to access location information, specifically the lat-
itude and longitude reported by a GPS receiver such as the u-blox device included with
Microsoft Streets and Trips 2010. Note that this example requires a version of Windows 7
that supports the Sensor and Location API (all versions except the Starter edition):

if (AutomationFactory.IsAvailable)
{
 using (dynamic factory =
 AutomationFactory.CreateObject("LocationDisp.LatLongReportFactory"))
 {
 AutomationEvent newReportEvent =
 AutomationFactory.GetEvent(factory, "NewLatLongReport");

 newReportEvent.EventRaised += (s, ev) =>
 {
 using (dynamic report = factory.LatLongReport)
 {
 LatitudeDisplay.Text = factory.Latitude.ToString();
 LongitudeDisplay.Text = factory.Longitude.ToString();
 }
 };

 factory.ListenForReports(1000);

 }
}

In addition to working only on a Windows 7 PC (I don’t check for that in this example,
but you should), this code will only work if you have a GPS attached to your PC and you’re
in a spot where you can get a satellite signal. If you don’t have a different Location API-
compatible receiver, I recommend getting the inexpensive u-blox one and downloading
the Location API drivers from www.ublox.com/en/usb-drivers/windows-7-driver.html.
The device itself is fairly simple, reporting only latitude and longitude (no altitude,
speed, or heading) but is otherwise quite capable.

 Speech and location are fun and likely to be used by lots of applications, but the
one example requested more than any else and the one feature many people have
requested of Silverlight is the automation of Microsoft Office applications such as
Outlook and Excel.

www.ublox.com/en/usb-drivers/windows-7-driver.html

119COM automation

5.5.4 Automating Excel

Finally, the canonical example of using COM automation in Silverlight is to automate
Excel to populate data. Listing 5.3 shows an example of creating a worksheet with data
and a chart.

if (AutomationFactory.IsAvailable)
{
 dynamic excel =
 AutomationFactory.CreateObject("Excel.Application");
 excel.Visible = true;

 dynamic workbook = excel.workbooks;
 workbook.Add();

 dynamic sheet = excel.ActiveSheet;

 int i = 1;

 double[] data = new double[] { 1.0, 5.0, 9.5, 2.7, 3.2, 0.6 };

 foreach (double d in data)
 {
 dynamic cell = sheet.Cells[i, 1];
 cell.Value = "Row " + i;
 cell.ColumnWidth = 10;

 cell = sheet.Cells[i, 2];
 cell.Value = d;
 i++;
 }

 dynamic shapes = sheet.Shapes;

 shapes.AddChart(-4100, 120, 2, 300, 200);
}

The resulting worksheet with data and chart looks like figure 5.16. Note that the com-
munication need not be one way as shown in this example. You can also wire up Excel
data change events to update the data back in your own Silverlight application.

 That’s pretty impressive from what’s otherwise thought of as a web application
technology. Though you can’t actually embed Office UI (such an Excel worksheet)
into your application, the ability to automate Excel and other Office applications
really helps to make Silverlight ready for business.

 You can do quite a bit with elevated trust mode applications in Silverlight 4 and above.
The local file access capability makes for an even richer cross-platform experience and
enables scenarios previously restricted to platform-specific desktop applications.

 Special among the elevated trust features, the COM capabilities are almost endless
but should be used with discretion and caution. This feature provides yet another
option for creating Windows client applications.

 COM automation is exciting, powerful, and a little scary. The sky is the limit with what
you can do. Coming back down to Earth on the elevated trust capabilities, we’ll next
cover the control you have over the window hosting the out-of-browser application.

Listing 5.3 Automating Excel to create data and a chart

Create
worksheet

Iterate
dummy data

Label
cell

Value
cell

Add 3d rotated
chart (type –4100)

120 CHAPTER 5 Integrating with the desktop

5.6 Controlling the host window
To create a truly differentiated out-of-browser experience, you’ll probably want to
have complete control over the title bar, resize bar, window buttons, and other ele-
ments that make up the window chrome. You may want to just change the color or you
may want to provide a completely different look and feel that blends seamlessly with
the application, without any jarring window borders.

 Silverlight supports several levels of customization to the out-of-browser window.
The simplest is setting the size and position of the window. From there, you can also
set it to be a topmost window—one that floats above all others. You can also program-
matically activate it.

 Those are all easy controls, but often you need to go a step further. Silverlight sup-
ports customizing the out-of-browser window chrome. It even includes functions and
properties that make it possible for you to easily replicate the normal window behav-
ior, including minimizing, maximizing/restoring, closing, moving, and resizing
the window.

Figure 5.16 An Excel worksheet and chart generated through COM Interop using the Silverlight
elevated trust mode

What about other platforms?
Silverlight is a cross-platform product so it’s reasonable to ask what the strategy is
for the Mac and Linux. Though nothing is official at this point, the Silverlight team is
looking into providing access to similar or equivalent technologies on other supported
platforms. One example of that may be AppleScript on the Mac. Though that means
we’d have to write different code for different platforms, I think the nature of this feature
makes that a necessary evil, should you desire deep integration with the operating
system features.

121Controlling the host window

 In this section we’ll start with the basic properties, but as they’re simple and pretty
self-explanatory, we won’t linger there. Instead, we’ll hop right into the meatier topics
of changing the window chrome, modifying the window state, and moving and resiz-
ing the window.

5.6.1 Basic window properties

Elevated trust applications can change the properties of the host window at runtime,
including size, location, and even the chrome. The Window class used is similar to the
one used by WPF, so many of the properties and methods may be familiar to you. The
list of important properties and functions is shown in table 5.3.

The following example uses all of these properties and functions to size and position
the window, set its state, ensure it’s topmost, and then activate if it’s not already acti-
vated. We’ll cover the window state changes after we cover customizing the window
chrome because that’s where the window state typically comes into play:

if (Application.Current.HasElevatedPermissions)
{
 Window win = Application.Current.MainWindow;

 win.TopMost = true;
 win.Height = 200;
 win.Width = 200;

 win.Left = 150;
 win.Top = 150;

 if (!win.IsActive)
 win.Activate();
}

Setting the size and state of the window is important, but that’s not changing the look
of the window chrome itself. To do that, you’ll need to use a few more features intro-
duced with Silverlight 4.

Table 5.3 Runtime-controllable properties of the out-of-browser host window

Member Description

Top, Left Gets or sets the position of the window

Height, Width Gets of sets the size of the window

TopMost Set to true to make the Silverlight application float above all other windows
Useful for certain types of utility applications, but don’t abuse

WindowState Get or set the state of the window
Possible values are Normal, Minimized, and Maximized

IsActive Read-only
Returns a Boolean indicating whether the window is currently active

Activate Attempts to activate the application window by bringing it to the foreground and
setting focus to it

122 CHAPTER 5 Integrating with the desktop

5.6.2 Changing window chrome

Silverlight applications tend to be highly visual and highly branded experiences.
When an out-of-browser application with a custom look gets wrapped in the standard
OS window chrome, it can really ruin the experience. What you really want is edge-to-
edge control over the look of your application, including the borders, buttons, and
title bar.

 Elevated trust out-of-browser applications enable you to control the window
chrome. You can choose to have the default OS chrome, no border, or borderless
rounded corners. At this point, you can’t have irregularly shaped windows or windows
with transparency, but that may show up
in a future version. Figure 5.17 shows
the various options inside the out-of-
browser configuration dialog in Visual
Studio 2010.

 The setting here adds an attribute to
the Window element in the OutOfBrows-
erSettings.xml file. The possible values
for the style are shown in table 5.4.

Figure 5.18 shows a close-up of the corner of the win-
dow when using the BorderlessRoundCornersWindow
as the window style. The result is a rectangle with a 5 px
corner radius on all four corners, with no anti-aliasing
or operating system drop shadow. This is a clipping
function in Silverlight; you don’t need to make any
changes to your layout to accommodate the rounded
corner, unless you want to.

 When you create custom chrome for your windows, you’re suddenly responsible
for the full behavior of the window, including creating a title bar (should you want
one), adding your own minimize, maximize, and close buttons, and handling moving
and resizing. Luckily, Silverlight provides several functions and events to help you
do this.

Table 5.4 Window styles for out-of-browser applications

Value Description

(unspecified element) The default window chrome is based on the operating sys-
tem in use.

BorderlessRoundCornersWindow The window is drawn with a 5-pixel corner radius on all four
corners.

None The window is a rectangular shape with no border.

Figure 5.17 Custom chrome settings for elevated
trust out-of-browser applications

Figure 5.18 A close-up view of
the top-left corner of a black
window using the round-corners
setting. The radius is fixed by
Silverlight itself.

123Controlling the host window

5.6.3 Minimizing, maximizing, restoring, and closing

Most chrome implementations will have at least three buttons on the upper right of
the window: Minimize, Maximize/Restore, and Close. When you use the normal OS
chrome, those buttons are provided for you. When using custom chrome, you’ll need
to set the window state or call the Close method on the Application.Current.Main-
Window object. Listing 5.4 shows how to handle these functions in an application with
custom chrome. The Grid is assumed to be the main layout root in MainPage.xaml.

XAML:
<Grid x:Name="LayoutRoot" Background="Orange">
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right"
 VerticalAlignment="Top" Margin="8">
 <Button x:Name="MinimizeButton" Width="15" Height="15" />
 <Button x:Name="MaximizeButton" Width="15" Height="15" />
 <Button x:Name="CloseButton" Width="15" Height="15" />
 </StackPanel>
</Grid>

C#:
public MainPage()
{
 InitializeComponent();

 MaximizeButton.Click +=
 new RoutedEventHandler(MaximizeButton_Click);
 MinimizeButton.Click +=
 new RoutedEventHandler(MinimizeButton_Click);
 CloseButton.Click +=
 new RoutedEventHandler(CloseButton_Click);
}

void CloseButton_Click(object sender, RoutedEventArgs e)
{
 Application.Current.MainWindow.Close();
}

void MinimizeButton_Click(object sender, RoutedEventArgs e)
{
 Application.Current.MainWindow.WindowState =
 WindowState.Minimized;
}

void MaximizeButton_Click(object sender, RoutedEventArgs e)
{
 if (Application.Current.MainWindow.WindowState ==
 WindowState.Maximized)
 {
 Application.Current.MainWindow.WindowState =
 WindowState.Normal;
 }
 else
 {

Listing 5.4 Handling window state with custom chrome

Close

Minimize

Restore

124 CHAPTER 5 Integrating with the desktop

 Application.Current.MainWindow.WindowState =
 WindowState.Maximized;
 }
}

In this example, you can see how easy it is to add your own window state management
buttons to the elevated trust out-of-browser application. That gets you half way there.
The other half of the required functionality is the ability to move your window by
dragging it with the mouse.

5.6.4 Moving

There are three approaches to moving your window in Silverlight: making the whole
window draggable, making an element (such as the title bar) draggable, or not both-
ering. The last option isn’t going to make you any friends unless you’re writing some
sort of a docking tool that can only sit on certain positions on the screen, so that
leaves the first two.

 Silverlight includes the DragMove method on the MainWindow object we used in the
previous examples. DragMove can be called from anything but is typically called from
the MouseLeftButtonDown event of a title bar, or of the window itself. Listing 5.5
builds on the previous example by adding a grid to represent the title bar and one
event handler.

XAML:
<Grid x:Name="LayoutRoot" Background="Orange">
 <Grid x:Name="TitleBar"
 Background="Blue" Height="30"
 VerticalAlignment="Top" />

 <StackPanel Orientation="Horizontal" ...

C#:
public MainPage()
{
 InitializeComponent();

 ...

 TitleBar.MouseLeftButtonDown +=
 new MouseButtonEventHandler(TitleBar_MouseLeftButtonDown);
}

void TitleBar_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 Application.Current.MainWindow.DragMove();
}

The DragMove method is interesting because it takes over the mouse management
until the mouse is released. For that reason, you don’t need to wire up any mouse
movement events, or worry about the mouse getting outside the bounds of the win-
dow, or any of the other cruft you may have thought would be required.

Listing 5.5 Code to implement dragging a window

Maximize

Stand-in
title bar

Dragging
to move

125Controlling the host window

 Silverlight provides one more method for window management, this one to allow
the user to resize the window when using custom chrome.

5.6.5 Resizing

While all of the other functions are considered pretty essential to window manage-
ment, resizing is completely optional. Some applications don’t allow resizing by the
end user. But, since Silverlight makes it so simple to rescale or resize elements when
the window is resized, this decision should be made only for aesthetic reasons and not
for lack of time to implement.

 To support resizing, DragMove has a sister function named DragResize. The Dra-
gResize move works much like DragMove, except it takes in a parameter that allows
you to specify exactly where in the window the user is resizing. Listing 5.6 builds on
the previous examples and shows how to use DragResize with a typical corner resize.
Keep in mind that you can specify any edge by using multiple resize elements and call-
ing DragResize with the appropriate parameter.

XAML:
<Grid x:Name="ResizeArea"
 Background="Blue" Height="30" Width="30"
 VerticalAlignment="Bottom" HorizontalAlignment="Right" />

<StackPanel Orientation="Horizontal" ...

C#:
public MainPage()
{
 InitializeComponent();
 ...

 ResizeArea.MouseLeftButtonDown +=
 new MouseButtonEventHandler(ResizeArea_MouseLeftButtonDown);
}

void ResizeArea_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 Application.Current.MainWindow.DragResize(
 WindowResizeEdge.BottomRight);
}

Controlling the main window when running in the out-of-browser mode is an essential
addition to the Silverlight platform. It enables you to write applications that really look
and feel like native operating system apps—if you want them to. It also enables you to
create truly branded experiences that extend all the way to the edges of the window.

 Silverlight provides a number of ways you can control the window, from simply set-
ting its size and position, to floating it above other windows, all the way to using cus-
tom chrome. Silverlight also provides functions and properties to make window
manipulation easier when you implement your own chrome.

Listing 5.6 Implementing resize using an element in the bottom right corner

Stand-in resize
corner

Dragging to
resize

126 CHAPTER 5 Integrating with the desktop

 Sometimes what you want isn’t actually a host window in an out-of-browser applica-
tion but rather just the ability to take your in- or out-of-browser application to full
screen, overlaying even the operating system shell UI elements. Yes, Silverlight can do
that too.

5.7 Running in full screen
Most browsers support the ability to run in the full-screen mode, typically by pressing
F11 or selecting the Full Screen option from the Tools menu equivalent. Though this
mode is nice, the amount of real estate given over to the application isn’t consistent
between browser versions. For example, the older versions of Internet Explorer kept
the status bar and some other elements on the screen. Internet Explorer 8+ and Google
Chrome both allow the browser to take over the entire screen, without any additional,
ahem, chrome visible. Firefox (as of this writing) shows a small gray bar at the top used
as a hotspot for the toolbar. All of these also require the user to navigate a browser-spe-
cific menu or press a browser-specific (but currently identical) hotkey. The other prob-
lem is that there is no way to handle this when running in the out-of-browser mode.

 Silverlight also supports its own full-screen mode, available both in and out of the
browser. The experience is the same across browsers and the mode may be invoked via
a button you provide in the Silverlight application. This allows you to keep the user’s
focus inside the application (no “Best viewed in full-screen mode, accessed by F11”
prompts) and enable the functionality in a way that’s consistent with your applica-
tion’s experience.

 In a sandboxed application in the browser or a non-elevated application out of the
browser, Silverlight’s full-screen support limits the types of keyboard entry just to those
typically used in media players and games (arrow keys, page navigation keys, and so
on). The reason for this is to prevent taking over the entire screen and spoofing an
operating system login experience, thereby capturing the user’s password and per-
haps sending it off to some scary site to be used to gain access to your private informa-
tion, like your tax returns for the past five years and that passwords.txt file you
thought no one would notice.

 There are some significant differences between the capabilities enabled by full
screen in the partial-trust mode and full screen in the elevated-trust mode. Let’s tackle
them separately.

5.7.1 Normal full-screen mode

In keeping with the promise of delivering rich interactive experiences, Silverlight goes
far beyond the standard web capabilities by providing a full-screen mode. This mode
enables a user to enjoy immersive visual experiences and interactive media outside the
bounds of the web browser. This full-screen experience comes with some limitations
that you’ll see in a bit. Because of these limitations, the full-screen mode is generally
used strictly with media. This section will show you the differences between the full-
screen and the normal screen modes. Then, you’ll learn how to programmatically tog-
gle between the screen modes.

127Running in full screen

 If a Silverlight application is put in
the full-screen mode, the user will be
greeted with a brief overlay message that
looks like figure 5.19.

 Note that full-screen mode doesn’t
support the OpenFileDialog and
SaveFileDialog classes nor does it support multi-touch input (covered in chapter 8).
But full-screen mode is supported whether running in-browser or out.

 Figure 5.19 shows the prompt shown to users when they enter the full-screen
mode. This message will overlay the Silverlight content for approximately 3.5 seconds.
After that time, the prompt will gracefully fade out of view. This prompt can’t be cus-
tomized and, in the normal partial trust mode, it can’t be turned off because this
prompt is designed to prevent spoofing.

 Spoofing is a security attack used by malicious developers who try to deceptively
mask their application as another or as Windows itself. The purpose of this malicious
attempt is to collect otherwise sensitive information such as bank account numbers
and passwords.

 Because of the severity of this type of attack, Silverlight imposes two safeguards
when running in the partial trust mode. The first safeguard limits user input to the
arrow, Tab, Enter, Home, page up, page down, and space keys, as well as mouse events.
Additional information entered through the keyboard won’t be passed to the Silver-
light application. The second safeguard ensures that the full-screen mode can only be
entered through a user-initiated event such as a button click. Once this happens, you
can switch the Silverlight plug-in into the full-screen mode through the host.
TOGGLING BETWEEN SCREEN MODES

The SilverlightHost class gives you access to the information associated with a
plug-in instance. The switch to the full-screen mode is made using the Content prop-
erty, which exposes a bool property of its own called IsFullScreen. As you might
expect, this property can be used to toggle between the full-screen and the embed-
ded modes:

private void GoFullScreen_Click(object sender, RoutedEventArgs e)
{
 Application.Current.Host.Content.IsFullScreen = true;
}

This example shows how to switch a plug-in into the full-screen mode. As you proba-
bly already guessed, you can set the IsFullScreen property to false to go back to
the embedded mode. Regardless of which direction you’re going, a change in the
screen mode will cause the FullScreenChanged event to be triggered. This event is
useful for resizing the content so that it scales to an appropriate size based on the
screen mode.

 If you want to avoid the onscreen message, keyboard restrictions, and the require-
ment for user initiation, you’ll need to run in the elevated trust mode.

Figure 5.19 The prompt displayed to users when
they enter the full-screen mode

128 CHAPTER 5 Integrating with the desktop

5.7.2 Elevated trust full-screen mode

Out-of-browser applications can go full screen whether they’re running in the normal
partial trust mode or in the elevated trust mode. The mechanisms for going full
screen and detecting the mode are the same. But the elevated trust mode provides
some real benefits to applications that require it.

 First of all, elevated-trust applications allow you to enter the full-screen mode from
any branch of code and not just something that’s user-initiated. For example, you can
go full screen from the Loaded event of the main page:

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 if (Application.Current.HasElevatedPermissions)
 {
 Application.Current.Host.Content.IsFullScreen = true;
 }
}

Elevated trust also eliminates the “Press ESC to exit full-screen mode” prompt that’s
displayed when the full-screen mode is first entered. At the same time, it eliminates
the use of the Escape key for this purpose altogether. You’ll need to provide the user
with another way to exit the full-screen mode either by capturing the Escape key and/
or providing a button to drop out of full screen.

 The keyboard restrictions on the partial-trust full-screen mode make it suitable for
only a small class of applications. The full-screen mode in the elevated trust also pro-
vides access to all the keys you get in the normal out-of-browser mode. This is a huge
boon that makes the mode acceptable for kiosks, full-screen games, interactive media
players with chat, and many other application types.

 The full-screen mode works whether running in or out of the browser, in partial
trust or elevated trust. Once in the full-screen mode, you can simulate an entire desk-
top, provide your own window management, and so forth. It effectively gives you a
work space that’s larger than what we’d traditionally consider a window.

 So far, we’ve covered a number of different ways Silverlight can integrate with the
local machine. One final area of local machine integration, available both in and out
of the browser, is isolated storage.

5.8 Storing data in isolated storage
Even in the out-of-browser mode, Silverlight is a browser-based plug-in so, by default,
it has the lowest of security privileges to ensure a safe browsing experience for your
users. This safety restriction introduces a number of development challenges, such as
working with data across browser sessions. Although working with data across browser
sessions may not be a problem if the data is stored on a web server, it can be a problem
if the data needs to be stored locally.

 Isolated storage is a mechanism that allows you to preserve data across browser ses-
sions on a user’s machine. This storage area is tied to an individual user and helps you
overcome the 4 KB limitation of a cookie. Unlike a cookie, isolated storage lies outside

129Storing data in isolated storage

of the browser cache—if a user clears the browser history, the items within isolated
storage will remain in place. In order to access this storage area, you use the System.
IO.IsolatedStorage namespace.

 The System.IO.IsolatedStorage namespace provides the functionality to work
with a user’s isolated storage area. This area can be accessed through the Isolated-
StorageFile class, which exposes two statically visible methods that retrieve an Iso-
latedStorageFile. These methods are GetUserStoreForApplication and GetUser-
StoreForSite. The GetUserStoreForApplication can be used to retrieve a user’s iso-
lated storage for a specific Silverlight application, defined by the full URL to the .xap.
The GetUserStoreForSite method gets a user’s isolated storage for an entire domain.
As you may have guessed, this method gives you the ability to share information across
multiple Silverlight applications.

NOTE The GetUserStoreForSite method doesn’t exist in the full .NET
framework. You should consider this fact if you want to promote your Silver-
light application to WPF down the road.

Either way, an example of retrieving an IsolatedStorageFile is shown here:

IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication();

This code gives you access to a user’s isolated storage area. Once you’ve retrieved an
IsolatedStorageFile, you can use it to manage a virtual filesystem, which gives you
the ability to read and write files and directories. This information can be leveraged
through the IsolatedStorageFile and IsolatedStorageFileStream classes.

5.8.1 IsolatedStorageFile: the virtual filesystem

The IsolatedStorageFile class represents a virtual filesystem that a Silverlight appli-
cation can manage. Note the word virtual; outside of the elevated security mode, you
can’t directly access the user’s local filesystem due to security constraints. As the previ-
ous example showed, you can still access data related to the requesting Silverlight
application but, in reality, the term filesystem is a probably a stretch.

 The IsolatedStorageFile object represents a specific partition within the iso-
lated storage area. This partition is tied to both the user and the application. It’s easi-
est to think of this partition as a specific folder or directory. And, like a regular
directory, the isolated storage area enables you to perform several operations, includ-
ing the ability to list the contents of a directory. This directory can have other files or
directories added to or removed from it, so you should probably keep track of the iso-
lated storage usage statistics to ensure you don’t run out of space. Fortunately, the
IsolatedStorageFile allows you to check these statistics and request more space if
you need it.
LISTING THE CONTENTS OF THE VIRTUAL FILESYSTEM

The IsolatedStorageFile class provides two methods that enable you to retrieve the
items within a storage area. The first method, GetDirectoryNames, enables you to

130 CHAPTER 5 Integrating with the desktop

retrieve the names of the directories that match a certain
pattern; the GetFileNames method allows you to search
for files that match a particular filter. To gain a solid
understanding of how these filters work, look at the sam-
ple isolated storage area structure in figure 5.20.

 The isolated storage area depicted in figure 5.20 con-
tains a number of common filesystem items. For instance,
there are three text files, one XAML file, and one subdirec-
tory. With this hierarchical structure in mind, let’s turn our
focus to mastering the filtering string syntax used for searching the isolated storage area.

 The first and most verbose approach involves searching for a specifically named
item. This approach works with both the GetDirectoryNames and GetFileNames meth-
ods. To perform the search, you simply provide the exact path to the file or directory.
If the filename or directory is found, a string array with one element will be returned.
Otherwise, an empty result set will be returned. Both approaches are shown here:

string[] directory1 = isoFile.GetDirectoryNames("Directory1");
string[] noDirFound = isoFile.GetDirectoryNames("Directory2");
string[] testfile1 = isoFile.GetFileNames("testfile1.txt");
string[] noFileFound = isoFile.GetFileNames("testfile2.txt");
string[] nestedFile = isoFile.GetFileNames("Directory1/file1.txt");

Similarly, wildcard characters may be used to pattern-match file names. Following nor-
mal Windows operating system rules, the * character matches any number of charac-
ters, and the ? character matches any single character:

string[] results1 = isoFile.GetFileNames("*");
string[] results2 = isoFile.GetFileNames("Directory1/*");
string[] results3 = isoFile.GetFileNames("textfile*");
string[] results4 = isoFile.GetFileNames("*.txt");

The * and ? wildcard characters are applicable within the GetDirectoryNames
method as well. Once you have the file you’re looking for, you can open it and work
on it just like you would any other file, including deleting it.
REMOVING ITEMS FROM ISOLATED STORAGE

The IsolatedStorageFile class exposes two utility methods that enable you to
remove items from the storage area. The first method, DeleteDirectory, is used to
remove a directory from the isolated storage area. The second method, DeleteFile,
similarly allows you to remove a file. The usage of the DeleteFile method is illus-
trated here:

soFile.DeleteFile("testfile1.txt");
isoFile.DeleteFile("Directory1/file1.txt");

As this example shows, you must explicitly provide the absolute path to the file
you want to delete. If you provide an invalid path, an IsolatedStorageException
will be thrown. In addition, this same exception will be thrown if you attempt to
remove a directory that isn’t empty. Other than that, the syntax is the same when

Figure 5.20 An illustration
of a potential isolated storage
area

131Storing data in isolated storage

using the DeleteDirectory method. But, before you can delete a directory, it needs
to be created.
CREATING DIRECTORIES WITHIN ISOLATED STORAGE

The IsolatedStorageFile class exposes a method called CreateDirectory that
enables you to create a directory within the isolated storage space. There isn’t any-
thing too shocking about the syntax associated with this method—to create a direc-
tory, you state the name of the folder:

isoFile.CreateDirectory("Directory1");

In addition to creating directories at the root of the isolated storage area, the Create-
Directory method enables you to create subdirectories. To do this, you use a URL-
style syntax that uses forward slashes as separators:

isoFile.CreateDirectory("Directory1/SubDirectory1");
isoFile.CreateDirectory("Directory1/Sub2/Leaf");

The first line of code is pretty simple; it creates a subdirectory under an existing
directory. The second line of code shows an additional feature. If you provide an
absolute path to a subdirectory further down the line, all missing directories along
the way will automatically be added. Once a directory exists, you can add files to it.
We’ll discuss adding files later in this section. But first, let’s make sure there’s space
for a new file.
CHECKING THE AVAILABLE SPACE

The IsolatedStorageFile class exposes two read-only properties that inform you of
an isolated storage area’s memory situation. The first property, Quota, holds the total
number of bytes allocated to the storage area. The other property, Available-
FreeSpace, represents the number of bytes remaining in the storage area. You can use
these properties together to create a cool little memory quota bar (see listing 5.7).
Note that this sample will only show the green bar if you pair it with other code that
actually uses some space in isolated storage; otherwise the bar will be white, showing
zero quota usage.

Result:

XAML:
<UserControl x:Class="IsolatedStorgageExample.QuotaBar"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Canvas x:Name="LayoutRoot" Background="White">
 <Rectangle x:Name="maximumRectangle" Width="1" Height="20"
 Fill="#FFFFFFFF" Stroke="#FF000000"
 Canvas.Left="1" Canvas.Top="5" RadiusX="5" RadiusY="5"/>
 <Rectangle x:Name="currentRectangle" Width="1" Height="20"

Listing 5.7 Creating a file quota bar associated with the user’s isolated storage area

132 CHAPTER 5 Integrating with the desktop

 Stroke="#FF000000" Canvas.Left="1" Canvas.Top="5"
 RadiusX="5" RadiusY="5" StrokeThickness="0">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="0.5,1.35" StartPoint="0.5,-0.3">
 <GradientStop Color="#FF54CDEA" Offset="0"/>
 <GradientStop Color="#FF017328" Offset="0.5"/>
 <GradientStop Color="#FF54CDEA" Offset="1"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 </Canvas>
</UserControl>

C#:
...
public MainPage()
{
 InitializeComponent();
 // Set the rectangle sizes accordingly
 using (IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 double usedSpace = isoFile.Quota - isoFile.AvailableFreeSpace;
 maximumRectangle.Width = (isoFile.Quota / 10024) * 2;
 currentRectangle.Width = (usedSpace / 10024) * 2;
 }
}
...

Listing 5.7 shows one way you can put the AvailableFreeSpace and Quota properties
to use. These properties are used to set the widths of the Rectangle elements based
on the available and used space. In this example, we divided these values by 10024 (a
convenient number for sizing the control) and then multiplied them by 2 to create a
reasonably sized quota bar.

 By default, the Quota property value is set to 1,048,576. The reason why is because,
by default, each isolated storage area is given 1 MB of space. If you remember that the
Quota property represents the number of bytes allocated to an isolated storage area,
you can see how 1,048,576 bytes equals 1024 KB, which equals 1 MB. Significantly
though, you have the option to ask the user for more space should your application
need it.
REQUESTING MORE SPACE

The IsolatedStorageFile class enables the application to ask the user for more stor-
age space. This request can be made by calling the IncreaseQuotaTo method, which
accepts a long parameter that represents the new quota size you want. This size signals
the total number of bytes you want to allocate to the isolated storage area; it doesn’t
represent the number of bytes by which you want to increase the storage. When the
IncreaseQuotaTo method is called, the user will be shown a dialog box, as shown in
listing 5.8.

133Storing data in isolated storage

Result:

C#:
IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication();
long newQuotaSize = isoFile.Quota * 2;
bool requestAccepted = isoFile.IncreaseQuotaTo(newQuotaSize);

This listing shows how to request more space for an application from a user. You also
have the option of asking for more storage for a domain if you retrieve the Isolated-
StorageFile through the GetUserStoreForSite method. Either way, the Increase-
QuotaTo method can only be called from a user-initiated event such as a button click.
Once this request is made, the dialog box shown in listing 5.8 will be displayed to the
user. This dialog box displays the name of the website requesting the new quota. This
value is automatically set behind the scenes to prevent malicious coding. In addition,
this dialog box shows how much space is currently being used and the quota size
being requested. The user’s accept or deny decision will be returned from the
IncreaseQuotaTo method in the form of a bool.

 The IsolatedStorageFile represents a virtual filesystem. This file system gives
you the flexibility to create, navigate, and remove items from within it. To make sure
that you have space to create items, you may need to check the Available-
FreeSpace property, which represents the number of bytes available within the allo-
cated storage Quota. If you need more space, you can request it using the
IncreaseQuotaTo method. Requesting more space can come in handy as you read
and write files.

5.8.2 Reading and writing files: the isolated storage way

Files stored within the isolated storage area can be created and retrieved through a
file stream. This file I/O task is like any other in the .NET framework but, because
you’re working within a special area that provides additional security features, you
must use a specific type of file stream. This particular type of file stream is appropri-
ately named IsolatedStorageFileStream.

 The IsolatedStorageFileStream object provides in-memory access to a file
stored within the isolated storage area. With this object, you can create, update, and

Listing 5.8 Requesting more isolated storage space

134 CHAPTER 5 Integrating with the desktop

read a file from the isolated storage area. Because a file must exist before you can read
it, it makes sense to first discuss how to create and update files within isolated storage.
ISOLATED FILE CREATION

Creating a file within a user’s isolated storage area is a simple process. This process
hinges on the System.IO.StreamWriter object. You can use a StreamWriter to write
content into a file stored within isolated storage. Listing 5.9 shows the process of writ-
ing a text file to the user’s isolated storage area.

using (IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication())
{
 using (IsolatedStorageFileStream stream =
 new IsolatedStorageFileStream(
 "file1.txt", FileMode.Create, isoFile))
 {
 using (StreamWriter writer = new StreamWriter(stream))
 {
 writer.Write("Hello, from the isolated storage area!");
 }
 stream.Close();
 }
}

Listing 5.9 shows how easily you can write a text file into the isolated storage area. The
first step is to retrieve a user’s isolated storage area. Then, you create an Isolated-
StorageFileStream that represents a file within isolated storage. The contents of this
file are created using a StreamWriter. This StreamWriter gives you the flexibility to
write either binary data or plain text. This is important to recognize because the con-
tents of an isolated storage area aren’t encrypted automatically. Because of this, you
may want to manually encrypt your data when writing it to a file.

 You may have noticed the use of the FileMode enumeration. This value determines
how the file will be opened. In all, there are six different ways to open a file. All six
options are explained in table 5.5.

Listing 5.9 Creating a text file within a user’s isolated storage area

Table 5.5 The FileMode enumeration

FileMode Description

Append Opens an existing file and prepares to add content onto the end

Create A brute-force approach to creating a new file
If a file of the same name exists, it’ll be overwritten. Either way, a new, empty file
with the specified name will be created.

CreateNew Attempts to create a new file
If a file of the same name exists, an IsolatedStorageException will be
thrown. If there isn’t a preexisting file with the same name, a new, empty file will be
created.

135Storing data in isolated storage

The FileMode options shown in this table cover a wide variety of file operations. These
values are useful when you’re creating files or attempting to read a file from isolated
storage.
READING AN ISOLATED FILE

The process of reading a file from a user’s isolated storage area is similar to writing to
a file. Instead of taking advantage of a StreamWriter, you use of a StreamReader. The
process of using a StreamReader to read a file is shown in listing 5.10.

using (IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication())
{
 using (IsolatedStorageFileStream stream =
 new IsolatedStorageFileStream("file1.txt", FileMode.Open, isoFile))
 {
 using (StreamReader writer = new StreamReader(stream))
 {
 myTextBlock.Text = writer.ReadToEnd();
 }
 stream.Close();
 }
}

As this example shows, reading a file is almost identical to creating a file. The first step
involves retrieving the user’s isolated storage area. Then, you create an Isolated-
StorageFileStream object—this time using the FileMode.Open option. Once the file
is opened, you can read through it using a StreamReader.

 Both the StreamReader and StreamWriter classes provide a lot of features for
working with character-based and binary input and output. These I/O features pro-
vide a lot of flexibility in regard to the client-side storage within the isolated storage
area. Once an isolated storage area is created, you may need to remove it for testing
during development. For this reason, it’s beneficial to know how to administer it.

Open Attempts to open a file with the given name
If the file exists, the IsolatedStorageFileStream will have access to the
file. If the file doesn’t exist, an IsolatedStorageException will be thrown.

OpenOrCreate Opens a file if it exists. If the file doesn’t exist, a new one will be created with the
given name.

Truncate Open an existing file and removes all its contents. This FileMode doesn’t allow
read operations.

Listing 5.10 Reading a file from the user’s isolated storage area

Table 5.5 The FileMode enumeration (continued)

FileMode Description

136 CHAPTER 5 Integrating with the desktop

5.8.3 Administering isolated storage

Administering an isolated storage area involves interacting with the physical filesys-
tem. The reason you’d want to do this is to test a user’s initial interaction with a Silver-
light application. During development, it can be easy to get lost in the action and
forget a user’s initial experience with an application. Because the isolated storage area
is separate from the browser’s cache, you need an easy way to remove information
from the isolated storage area, so you should know where the isolated storage area is
located on the physical filesystem.

 The isolated storage area is located in different locations based on the user’s oper-
ating system. The specific location for each operating system is shown in table 5.6.

This table shows the base location for the isolated storage area. Each unique Silver-
light application that uses isolated storage will create a new directory under this loca-
tion. This new directory will be given a name that appears encrypted, but don’t let this
fool you. The data stored in the isolated storage area isn’t encrypted so you shouldn’t
store sensitive information, such as passwords, in the isolated storage.

 Isolated storage is a great way to store nonpermanent data on the end user’s local
machine. It’s flexible in that it works in all modes of Silverlight operation (in-
browser, out-of-browser, elevated out-of-browser) and works as a virtual filesystem.
When combined with the other features described in this chapter, it really helps
round out a feature set that makes for extremely capable connected and discon-
nected rich Internet applications.

5.9 Summary
For a web technology, Silverlight provides an unprecedented level of desktop integra-
tion. With Silverlight 4, we now have the ability to run in and out of the browser in the
partial trust mode or out of the browser in the elevated trust mode.

 When running out of the browser in partial trust, you gain additional storage
capacity without prompting, additional keyboard information, and a reduction in host
chrome that allows you to take a greater advantage of screen real estate and provide a
truly custom experience. For many behind-the-firewall business applications, and
both custom experiences and self-contained Internet-delivered applications, this is a
compelling option with no real downside.

Table 5.6 The base location of the isolated storage area on each operating system supported in Silverlight

Operating system Location

Mac OS X AppData/Local

Windows XP C:\Documents and Settings\[UserName]\Application Data\Microsoft\Silverlight\is

Windows Vista
and Windows 7

C:\Users\[UserName]\AppData\LocalLow\Microsoft\Silverlight\is

137Summary

 When running in the elevated trust mode, your Silverlight applications gain a level
of desktop integration rivaled only by the native applications. You can access the local
files on all supported operating systems, eliminate many of the user confirmation
prompts, have a truly usable full-screen mode, have almost complete control over the
window chrome, and even automate installed applications and call native APIs when
running on Windows.

 In either out-of-browser mode, you have access to the notification APIs to provide a
richer desktop experience as well as access to the virtual file system in the isolated
storage.

 With both in-browser and out-of-browser support, you get access to the new net-
work connectivity detection APIs to allow you to create an even more robust applica-
tion that can work online or offline, in the browser or on the desktop. You get the
ability to run full screen to provide a truly differentiated experience. You also get the
simplicity of web-based deployment combined with the confidence that the applica-
tion is secure and sandboxed.

 With both approaches, you get the full Silverlight application model discussed in
chapter 3 as well as support for great user experience capabilities, including the layout
and transformation capabilities we’ll discuss in the next chapter. It’s hard not to get
excited about something so compelling.

S
ilverlight gives you entirely new ways to create rich inter-
net applications, and now Silverlight 4 adds many power-
ful enhancements to the mix.

Silverlight 4 in Action is a comprehensive guide to application
building using C#. It goes into action immediately in a thor-
ough introduction. It then follows up with numerous nift y
examples to explore fl exible layout, control extensibility, the
communication and binding models, rich media, animation,
and much more.

Th is book explores practical questions in patterns, testing,
and performance optimization throughout. No previous
experience with Silverlight is required.

What’s Inside
Comprehensive and deep
Author an authority
Eff ective UI design with MVVM
Building with WCF RIA Services
Out-of-browser, COM and Custom Chrome

Pete Brown is the Microsoft Community Program Manager
for Silverlight and WPF. Th e First Edition was written by
independent developers Chad Campbell and John Stockton.

For online access to the author and a free ebook for owners
of this book, go to manning.com/Silverlight4inAction

$49.99 / Can $57.99 [INCLUDING eBOOK]

Silverlight 4 IN ACTION Pete Brown

SILVERLIGHT/.NET

“It raises the bar for
 Silverlight titles—go and
 buy this book!”
 —Richard Costall
 NxtGenUG Blog

“Th is is a great book and
 its MVVM chapter
 a true gem.”
 —Omar Shraim, Manning
 Author Online Forum

“Goes deeply into why Silverlight works the way
 it does, not just step by step explanations. Pete
 Brown is the only guy who could have written
 this book.” —Al Pascual, ERSI

M A N N I N G

SEE INSERT

